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On the Capacity Region of the Two-user

Interference Channel with a Cognitive Relay
Alex Dytso, Stefano Rini, Natasha Devroye and Daniela Tuninetti

Abstract

This paper considers a variation of the classical two-user interference channel where the communica-

tion of two interfering source-destination pairs is aided by an additional node that has a priori knowledge

of the messages to be transmitted, which is referred to as the cognitive relay. For this Interference Channel

with a Cognitive Relay (ICCR) novel outer bounds and capacity region characterizations are derived.

In particular, for the class of injective semi-deterministic ICCRs, a sum-rate upper bound is derived for

the general memoryless ICCR and further tightened for the Linear Deterministic Approximation (LDA)

of the Gaussian noise channel at high SNR, which disregards the noise and focuses on the interaction

among the users’ signals. The capacity region of the symmetric LDA is completely characterized except

for the regime of moderately weak interference and weak links from the CR to the destinations. The

insights gained from the analysis of the LDA are then translated back to the symmetric Gaussian noise

channel (GICCR). For the symmetric GICCR, an approximate characterization (to within a constant gap)

of the capacity region is provided for a parameter regime where capacity was previously unknown. The

approximately optimal scheme suggests that message cognition at a relay is beneficial for interference

management as it enables simultaneous over the air neutralization of the interference at both destinations.
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I. INTRODUCTION

In the last two decades the wireless industry has grown at such a rapid rate that it has started to

exhaust much of the precious frequency spectrum [3]. As a response, new technologies have emerged

to improve spectrum management. Pico and femto cells technologies [4], [5], for example, use many

small base-stations with relatively small coverage areas (as opposed to and in addition to standard macro

base-stations with larger coverage areas) to achieve higher throughputs through aggressive spatial reuse.

When the small cells have knowledge of the messages to be transmitted by the macro base-stations, they

may act as relays to help other devices on the network, as shown in Fig. 1a, by providing an additional

communication path for a message to the desired destination, and by allowing the small cell to better

manage / combat the interference. In this work we seek to obtain insights into the performance of such

small cell inspired systems. We take an information theoretic approach to the study of such architectures

in order to obtain technology-independent characterizations on the possible performance of the system,

measured here in terms of capacity regions.

We study the Interference Channel with a Cognitive Relay (ICCR) shown in Fig. 1b. In this simple

model, the ICCR has two independent sources (macro base stations) that send information to their

respective destinations by sharing the same channel, i.e., interfering with each other. In addition, a

relay (small cell base station) that is non-causally aware of both messages before transmission starts, aids

the two sources. Since the relay knows both messages, we term it the Cognitive Relay (CR) following

[6]. Non-causal message knowledge at the relay may be possible when the relay backhauls to the other

transmitting nodes. Alternatively, if no backhauls are possible, the relay may learn the messages of the

other transmitters over the air in a causal fashion—in this case the model studied may provide a useful

outer bound to the performance of any causal system. Non-causal message knowledge could also be

the result of a failed transmission in systems employing retransmission protocols. Besides its practical

motivations, the ICCR is also independently interesting from a theoretical perspective as it generalizes

several channel models: the Interference Channel (IC) [7], when the relay is not present, the Broadcast

Channel (BC) [8], when both transmitters are not present, and the Cognitive Interference Channel (CIC),

when one source is not present [6].

Past Work: In this work we focus on the case where the relay has non-causal message knowledge

and is in-band, that is, the CR shares the same channel as the two source-destination pairs. We note

however that significant work exists on models with causal cognition at the relay (where the relay is
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(a) Network aided by a small cell.
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(b) The two-user GICCR.

Fig. 1: Network model under investigation.

in-band [9], or out-of-band [10], or out-of-band with noiseless rate-limited links from the CR to the

destinations [11], and others variations such as those investigated in [12], [13]). If only one message is

available non-causally we obtain a MIMO CIC studied in [14]. Finally, if only portions of the messages

are available, the techniques developed in this paper would apply to the portion of the messages known

at the relay, but decoding rates would differ (as for example, partial message knowledge does not allow

for complete neutralization of the interference) and might more resemble that of an IC.

To the best of our knowledge, the ICCR was first considered in [15], where an achievable rate region was

proposed. This rate region was improved upon in Gaussian noise in [16], and again for a general discrete

memoryless channel in [17]. The authors of [16] first proposed a sum-rate outer bound for the Gaussian

channel. In our conference work [1], we derived the first outer bound for a general memoryless channel,

which we further tightened for a class of semi-deterministic channels subject to injectivity conditions in

the spirit of [18]. The tightened outer bound was shown in [1] to be capacity for the class of Linear

Deterministic Approximation (LDA) of the Gaussian noise channel at high SNR (first introduced in [19])

in the absence of interfering links and in several other special cases. In [20], [21] general inner and

outer bounds were obtained, and shown to match for a class of ICCRs with “very strong interference at

one destination.” In our conference work [2], the capacity of the symmetric ICCR LDA was shown for

almost all channel parameters with a tighter outer bound than that in [1]. The insight from the capacity

achieving schemes were used to show capacity to within 3 bits/sec/Hz in the Gaussian ICCR (GICCR)

without interfering links in [22], which was recently improved upon by [23], where capacity was shown

for this channel through the derivation of a new outer bound tailored to the channel without interfering

links.

Contributions: The general ICCR is a complex channel model that generalizes many classical

channel models for which capacity is open, including the IC and the BC. As such, deriving its capacity
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region is a challenging and ambitious task. We approach this task by first focusing our attention on the

LDA, which highlights the interplay between users’ signals by eliminating the randomness of the noise

[19]. The LDA models the Gaussian channel at high SNR, and as such, schemes developed for the LDA

can often be translated into “good” achievable strategies for the Gaussian noise channel at any finite

SNR, that is, although not optimal in the sense of exactly achieving an outer bound, they lie within a

bounded distance of the outer bounds regardless of the channel parameters. This approach has allowed

for progress on long standing open problems; for example, the capacity of the IC [24] and of the CIC

[25] are known to within 1 bit/sec/Hz. In this work, we first analyze the symmetric LDA by determining

its capacity region in almost all parameter regimes (roughly speaking, the case of weak links from the

CR to the destinations and of moderately weak interference at a destination from the non-intended source

is excluded). We present new achievable techniques that are sum-capacity optimal for the LDA model

that were not presented in our conference work [2]. Then, with the insight gained from the study of the

LDA, we move back to the symmetric Gaussian noise channel and show capacity to within a constant

gap in several parameter regimes that mimic the capacity results for the LDA, which has not appeared

in any conference version of our work.

Our central contributions are: (1) Deriving novel (non cut-set) outer bounds for the class of injective

semi-deterministic ICCRs; (2) Further tailoring and tightening of the outer bounds for the LDA and

GICCR; (3) Deriving optimal achievability schemes in almost all parameter regimes for the symmetric

LDA and providing insight into what might be missing in the parameter regime for which we do not

have capacity; (4) Deriving the capacity to within a constant gap for the symmetric Gaussian channel in

regimes where it was open; (5) Numerically comparing the proposed inner and outer bounds with other

achievability schemes.

We note that the central contribution of this work lies in considering a general ICCR for the outer bound,

rather than models where the assumptions of strong interference [21] or the absence of interfering links

[23] significantly simplify the problem. For sake of space, and in order to convey the key contributions of

this work, we focus here only on symmetric channels for achievability results, that is, ICCRs in which the

capacity is the same when the role of the sources is swapped. This is done so as to reduce the number

of parameters and obtain insightful analytically tractable results. Nevertheless, our outer bounds and

achievable scheme apply to general non-symmetric LDAs and GICCRs. We expect that the extension

of the presented analysis to the fully general ICCR may follow the same approach used here for the
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symmetric case, albeit with more involved analytical computations.

Paper Organization: We introduce the channel model in Section II. In Section III we present our

novel outer bounds. In Section IV we determine the capacity region for the LDA in almost all parameter

regimes. In Section V we derive the capacity to within a constant gap for some parameter regimes of

the Gaussian channel which were open, and numerically compare the inner and outer bounds with other

relaying schemes. Section VI concludes the paper. Some proofs are found in the Appendix.

Notation: We use the notation convention of [26]: [n1 : n2] is the set of integers from n1 to n2 ≥ n1;

[x]+ := max{0, x} for x ∈ R; xn denotes a vector of length n with components (x1, . . . , xn); lower

case x is an outcome of random variable in upper case X which lies in calligraphic case alphabet X ;

N (µ, σ2) denotes a proper-complex Gaussian random variable with mean µ ∈ C and variance σ2 ∈ R+;

δ(·) denotes the Dirac delta function.

II. CHANNEL MODELS

A. The General Memoryless ICCR

The general two-user memoryless ICCR is characterized by three input alphabets (X0,X1,X2), two

output alphabets (Y1,Y2), and a memoryless transition probability PY1,Y2|X0,X1,X2
. Source i, i ∈ [1 : 2],

encodes the message Wi, assumed independent of everything else and uniformly distributed on [1 : 2nRi ],

into a codeword Xn
i ∈ X ni , where n ∈ N denotes the codeword length and Ri the rate in bits per channel

use. Message Wi is intended for receiver i, i ∈ [1 : 2], which forms the estimate Ŵi from channel

output Y n
i ∈ Yni . The two sources are aided by a cognitive relay that has knowledge of and encodes

W1 and W2 into the codeword Xn
0 ∈ X n0 . A non-negative rate pair (R1, R2) is said to be achievable if

there exists a sequence of encoding functions Xn
1 (W1), X

n
2 (W2), X

n
0 (W1,W2), and decoding functions

Ŵ1(Y
n
1 ), Ŵ2(Y

n
2 ),

such that the maximum probability of error satisfies maxi∈[1:2] P[Ŵi 6= Wi] → 0 as n → +∞. The

capacity region is the convex closure of all achievable rate pairs (R1, R2) [26].

Since the destinations do not cooperate, the channel capacity only depends on the conditional marginal

distributions PY`|X0,X1,X2
(y`|x0, x1, x2), ` ∈ [1 : 2]. In other words, all ICCRs that share the same

conditional marginal distributions have the same capacity region, as for the BC [26, Lemma 5.1]. Note

that the ICCR contains three important channels as special cases: (a) the IC if X0 = ∅, (b) the BC if

X1 = X2 = ∅ , (c) the CIC if either X1 = ∅ or X2 = ∅.
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B. The Injective Semi-deterministic ICCR

The injective semi-deterministic ICCR was introduced in [27] and corresponds to the special case when

the transition probability satisfies

PY1,Y2|X0,X1,X2
(y1, y2|x0, x1, x2)

=
∑
v1,v2

PV1|X1
(v1|x1)PV2|X2

(v2|x2) δ
(
y1 − f1(x1, x0, v2)

)
δ
(
y2 − f2(x2, x0, v1)

)
, (1)

for some memoryless transition probabilities PV1|X1
and PV2|X2

, and some deterministic functions f1 and

f2 that are injective when (X1, X0) and (X2, X0), respectively, are held fixed, which implies that for

all PX0,X1,X2
one has H(Y1|X1, X0) = H(V2|X1, X0) = H(V2|X0), and similarly for the other source.

Injective semi-deterministic channels are important because approximate capacity results for this class

of channels are available while those of their more general counterpart are still open. For example, the

injective deterministic IC (where PV1|X1
and PV2|X2

are noiseless) was completely solved in [28] and the

injective semi-deterministic IC capacity was characterized to within a constant gap in [18]. Intuitively, it

is easier to characterize the capacity of an injective semi-deterministic IC, compared to the general IC,

as one knows exactly what the interference signals are through the random variables V1 and V2 [18]. We

also note that the important Gaussian channel is a special case of the injective semi-deterministic model.

For continuous alphabets, the summations in (1) must be replaced with integrals.

C. The GICCR

The complex-valued single-antenna power-constrained GICCR in a standard form [21] is shown in

Fig. 1b and is described by the input-output relationships

Y1 = |h11|X1 + |h10|X0 + h12X2 + Z1, (2a)

Y2 = h21X1 + |h20|X0 + |h22|X2 + Z2, (2b)

where, without loss of generality, the input Xi ∈ C is subject to power constraint E[|Xi|2] ≤ 1,

i ∈ [0 : 2], the noise Zj ∼ N (0, 1), j ∈ [1 : 2], and the channel gains hij , i ∈ [1 : 2], j ∈ [0 : 2], are

complex-valued, fixed and known to all nodes. Without loss of generality, some channel gains can be

taken to be real-valued and non-negative [21, Appendix M]. The Gaussian GICCR is a special case of

the injective semi-deterministic ICCR in (1), where V1 := h21X1 + Z2, V2 := h12X2 + Z1, and f1 and

f2 are complex-valued linear combinations.
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The capacity region of the GICCR is open. Progress towards understanding its fundamental limits is

possible by providing an approximate characterization of its capacity as pioneered in [19]. The capacity

is said to be known to within GAP bits if one can show an inner bound region I and an outer bound

region O such that (R1, R2) ∈ O =⇒ ([R1 − GAP]+, [R2 − GAP]+) ∈ I. The GAP upper bounds the

worst-case distance between the inner and outer bounds [24].

D. The LDA

The linear deterministic approximation (LDA) of the GICCR is a model that captures the behavior of

the GICCR in (2) at high SNR. The LDA is a fully deterministic model described by [19]

Y1 = Sm−n11X1 ⊕ Sm−n10X0 ⊕ Sm−n12X2, (3a)

Y2 = Sm−n21X1 ⊕ Sm−n20X0 ⊕ Sm−n22X2, (3b)

where S is the binary down-shift matrix of dimension m := max{n11, n12, n10, n21, n22, n20}, for

{nij ∈ N, i ∈ [1 : 2], j ∈ [0 : 2]}, all inputs and outputs are binary column vectors of dimension m, and

where the symbol ⊕ denotes the component-wise modulo-2 addition of the binary vectors. The LDA is

a special case of injective semi-deterministic ICCR in (1) where V1 := Sm−n21X1, V2 := Sm−n12X2,

and f1 and f2 are modulo-2 additions. The LDA in (3) may be related to the GICCR in (2) by taking

nij = blog(1 + |hij |2)c [24]. The capacity of the LDA often gives insight into strategies that are optimal

to within a constant gap for the GICCR [29].

III. OUTER BOUNDS

We start off stating a known outer bound for the general memoryless ICCR, and then deriving new

outer bounds for the injective semi-deterministic ICCR, the LDA and the GICCR.

Theorem 1. (Outer bound to the capacity of the general memoryless ICCR [21, Thm. III.1]). If (R1, R2)

lies in the capacity region of the general memoryless ICCR, then

R1 ≤ I(Y1;X1, X0|Q,X2), (4a)

R2 ≤ I(Y2;X2, X0|Q,X1), (4b)

R1 +R2 ≤ I(Y2;X1, X2, X0|Q) + I(Y1;X1, X0|Q, Ȳ2, X2), (4c)

R1 +R2 ≤ I(Y1;X1, X2, X0|Q) + I(Y2;X2, X0|Q, Ȳ1, X1), (4d)
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for some input distribution that factors as PQ,X1,X2,X0
= PQPX1|QPX2|QPX0|X1,X2,Q, where Ȳ1 and

Ȳ2 have the same conditional marginal distributions of the channel outputs Y1 and Y2 given the inputs

(X1, X2, X0), respectively, but are otherwise arbitrarily jointly distributed. �

The region in Theorem 1 is not the tightest in general. For example, [21] reports other outer bounds

that can actually be used to prove capacity in some regimes. However, these other outer bounds depend

on auxiliary random variables for which no cardinality bound is known on the corresponding alphabets.

The advantage of Theorem 1 is that it only contains random variables defined in the channel model

(with the exception of the time-sharing random variable Q) and it is therefore in principle computable.

Note that the correlation among Ȳ1 and Ȳ2 in Theorem 1 may be chosen to tighten the bound since the

capacity region of the ICCR is only a function of the output conditional marginal distributions, as for

the BC [26, Lemma 5.1] and the CIC [21].

Theorem 1 reduces to: (a) the capacity region of a deterministic BC when X1 = X2 = ∅ [26], and

(b) the capacity region of a deterministic CIC when either X2 = ∅ or X1 = ∅ [30]. However, it does

not reduce to the capacity region of the class of fully deterministic IC when X0 = ∅ [28]. Hence, in the

following we develop additional rate bounds that reduce to the bounds for the injective semi-deterministic

IC developed in [31], which includes the fully deterministic IC studied in [28], when X0 = ∅.

A. Novel Outer bounds for the Injective Semi-deterministic ICCR

The outer bound of Theorem 1 may be tightened for the injective semi-deterministic ICCR defined

in (1) as follows, whose proof can be found in the Appendix A:

Theorem 2. If (R1, R2) lies in the capacity region of the injective semi-deterministic ICCR, then in

addition to the bounds in (4), the following must hold

R1 +R2 ≤ H(Y1|Ṽ1, Q)−H(Ṽ2|X2) +H(Y2|Ṽ2, Q)−H(Ṽ1|X1) + MLP1, (5a)

2R1 +R2 ≤ −H(Ṽ1|X1)− 2H(V2|X2) +H(Y1|Q) +H(Y1|Ṽ1, X2, Q) +H(Y2|Ṽ2, Q) + MLP1, (5b)

R1 + 2R2 ≤ −H(Ṽ2|X1)− 2H(V1|X2) +H(Y2|Q) +H(Y2|Ṽ2, X1, Q) +H(Y1|Ṽ1, Q) + MLP1, (5c)

where the multi-letter portion (MLP) MLP1 is given by

MLP1 := sup
n∈N

1

n

(
I(V n

1 ;Xn
0 |W2) + I(V n

2 ;Xn
0 |W1)

)
, (5d)
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and where the random variables Ṽ1 and Ṽ2 are conditionally independent copies of V1 and V2, respectively,

that is, they are jointly distributed with (Q,X1, X2, X0) as

PṼ1,Ṽ2|Q,X1,X2,X0
(v1, v2|q, x1, x2, x0) = PV1|X1

(v1|x1)PV2|X2
(v2|x2), (5e)

where PV1|X1
and PV2|X2

are part of the channel model definition in (1). �

The auxiliary random variables Ṽ1 and Ṽ2 are provided as “genie side information” at receivers 1 and

2, respectively, as a mathematical tool to enable the derivation of “single letter” outer bounds; they are

identical to those used in [31], and thus with this choice Theorem 2 reduces to [31, Theorem 1], which is

tight for the LDA [29] and is optimal to within 1 bit for the Gaussian IC [24], when X0 = ∅. Theorem 2

is however not in the desirable “single-letter” format, as it contains the MLP in (5d). We discuss how to

“single-letterized” the MLP in (5d) for the LDA and the GICCR in the rest of the section.

Note that the step of tightening the bound used in the proof of Theorem 2 (i.e., conditioning on the

interference function Vj rather then on the interfering codeword Xj , j ∈ [1, 2]) highlights a stumbling

block in deriving outer bounds for general IC and BC: in general we do not know the exact form of

the interfering signal(s) at a receiver for any possible input distribution. Assuming that the channel is

deterministic and in a certain way invertible, allows one to exactly determine the interference. Notice that

“conditioning” on the interference functions V1 or V2 may be interpreted as if the interference has been

removed without necessarily decoding the corresponding messages. On the other hand, conditioning on

X1 or X2 may be interpreted as if the message carried by X1 or X2 were known through decoding.

B. Outer Bounds for the LDA

For a discrete-valued channel (for which the entropy is non-negative), one may turn the MLP in (5d)

into a single-letter expression as

MLP1 ≤ sup
n∈N

1

n

(
min{H(V n

2 ), H(Xn
0 )}+ min{H(V n

1 ), H(Xn
0 )}
)

≤ min{H(V2), H(X0)}+ min{H(V1), H(X0)}. (6)

For the LDA we next provide a tighter bound than that in (6). The LDA belongs to a special class of

injective deterministic channels whose outputs are described by

Y1 = f1
(
X1, q1(X0), V2

)
, V2 = g2

(
X2

)
, Y2 = f2

(
X1, q2(X0), V1

)
, V1 = g1

(
X1

)
, (7a)
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where q1, q2, g1, g2, f1, f2 are deterministic functions. The difference between (7) and (1) is that in

the former the output at receiver i ∈ [1 : 2] depends on a function qi(X0) rather than on X0; this

distinction is important when the function qi(·) is not a bijection, as it may be the case in the LDA.

We further require the function f1 to be injective when its first two arguments are known, that is,

H(Y1|q1(X0), X1) = H(V2|q1(X0)), and analogously for f2.

For the LDA, Theorem 2 may be tightened as follows, whose proof may be found in Appendix B:

Theorem 3. For the LDA the term MLP1 in (5d) can be tighten by using instead

MLP2 := min{n20, n21}+ min{n10, n12}, (8)

and the resulting region in (5) is exhausted by considering i.i.d. Bernoulli(1/2) inputs. �

C. Outer Bounds for the GICCR

The proof of Theorem 3 inspired the following bound on the MLP for the Gaussian noise channel.

For the GICCR, Theorem 2 may be tightened as follows, whose proof may be found in Appendix C:

Theorem 4. For the GICCR the term MLP1 in (5d) can be tighten by using instead

MLP2 := log(1 + min{|h12|2, |h10|2}) + log(1 + min{|h21|2, |h20|2}) + 2 log(2), (9)

and the resulting region in (5) is exhausted by considering jointly Gaussian inputs. �

IV. CAPACITY FOR THE SYMMETRIC LDA

In this section we propose achievable schemes that match the outer bound in Theorem 3 for almost

all channel parameters, where channel gains and the rates are parametrized as

n11 = n22 = nS > 0, (10a)

n12 = n21 = nI = α nS, α ≥ 0, (10b)

n10 = n20 = nC = β nS, β ≥ 0, (10c)

Ri = ri nS, ri ≥ 0, i ∈ [1 : 2]. (10d)

The focus on the symmetric case is not for lack of generality of the developed theory but for simplicity

of exposition (the symmetric model is specified by three parameters rather than six).
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Fig. 2: Parameter regimes for the LDA and the GICCR at high SNR. Regimes I to VI.1: capacity is known for
the LDA and to within a constant gap for the GICCR. Regimes VI.2 to VI.4: capacity is open for both models

(but sum-capacity is known in some cases for the LDA).

Under the symmetric condition in (10), the outer bound in Theorem 3 simplifies to

r1 ≤ max{1, β}, r2 ≤ max{1, β}, (11a)

r1 + r2 ≤ [1−max{α, β}]+ + β + max{1, α}, (11b)

r1 + r2 ≤ max{1, β}, apply for α = 1 only, (11c)

r1 + r2 ≤ 2 max{1− α, α, β}+ 2 min{α, β}, (11d)

2r1 + r2 ≤ max{1, β, α}+ max{1− α, α, β}+ max{1− α, β}+ 2 min{α, β}, (11e)

r1 + 2r2 ≤ max{1, β, α}+ max{1− α, α, β}+ max{1− α, β}+ 2 min{α, β}. (11f)

The outer bound in (11) naturally leads to the division of the channel parameter space (α, β) in (10)

into the six regimes illustrated in Fig. 2 based on the different values of the max / min terms in (11).

Theorem 5. For the symmetric LDA, capacity is known for the following regimes (see Fig. 2): Regimes

I to V (1 ≤ max{α, β}) and Regime VI.1 (β ≤ α ≤ 1
2 ). For the remaining regimes the sum-capacity is

known for 4α − 3 ≤ β ≤ 3α − 2, 2/3 ≤ α ≤ 1, which in Regime VI.4 implies that the whole capacity

region is known. �

Proof: We now prove Theorem 5 for different cases and regimes.

a) Case nS > 0 and α = 1 (line α = 1 in Fig. 2): The outer bound in (11) when α = 1 is

simply the triangle formed by r1 + r2 ≤ max{1, β}, from (11c) only, which is trivially achieved by time
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division between the cases where one source is silent and the cognitive relay fully helps the other source.

In particular, in order to prove capacity, it suffices to show the achievability of (r1, r2) = (max{1, β}, 0),

which can be attained as follows. Case 1) If 1 ≥ β: X2 = X0 = 0, i.e., the information bits for

destination 1 are carried by X1. The achievable rate is r1 = 1, r2 = 0. Case 2) If 1 < β: X2 = X1 = 0,

i.e., the information bits for destination 1 are carried by X0. The achievable rate is r1 = β, r2 = 0.

The other corner point (r1, r2) = (0,max{1, β}) is achieved by swapping the role of the users. By

time-sharing, the whole dominant face of the outer bound region is achievable, thus proving capacity.

Remark 1. The points (r1, r2) = (max{1, β}, 0) and (r1, r2) = (0,max{1, β}) are always corner points

of the capacity region, but are not the dominant ones in general.

b) Case nS > 0, α 6= 1 and max{α, β} > 1 (Regimes I to IV in Fig. 2): When (11e), (11f) and

(11d) are redundant, that is, for max{α, β} > 1 (all but Regimes V and VI in Fig. 2), the region in (11)

simplifies to the pentagon region

r1 ≤ max{1, β}, r2 ≤ max{1, β}, r1 + r2 ≤ β + max{1, α}. (12)

We show achievability with two different strategies.

b.1) Regimes II, III, and IV in Fig. 2. For β ≥ 1, in order to prove capacity, it suffices to show the

achievability of the corner point (r1, r2) = (β,min{β,max{1, α}}). The other corner point (r1, r2) =

(min{β,max{1, α}}, β) is achieved by swapping the role of the users. By time-sharing between the

corner points, the whole dominant face of the outer bound region is achievable, thus proving capacity.

Let U0, U1p, U2p be independent vectors. Consider the following strategy

X1 = Sm−nCU1p, X2 = Sm−nCU2p, X0 = Sm−nI(U1p + U2p) + U0, (13)

where X0 is so as to neutralize over the air the interference at the destinations. The received signal at

destination 1 is

Y1 =
(
Sm−nSSm−nC + Sm−nCSm−nI

)
︸ ︷︷ ︸

6=0 if nS 6=nI ⇐⇒ α 6=1

U1p +
(
Sm−nCSm−nI + Sm−nISm−nC

)
︸ ︷︷ ︸

=0, interference neutralized

U2p + Sm−nCU0

= Sm−nC

((
Sm−nS + Sm−nI

)
U1p + U0

)
, (14)
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and similarly for the received signal at destination 2. Let the top m − max{nS, nI} bits of U0, which

are received clean on top of the bits of
(
Sm−nS + Sm−nI

)
Uip at each destination i ∈ [1 : 2], be

i.i.d. Bernoulli(1/2) bits dedicated to user 1 and the rest of U0 be set to zero. U1p and U2p are i.i.d.

Bernoulli(1/2) bits. Hence, R1 = nC and R2 = min{nC,max{nS, nI}} (note that the rates cannot

be larger than nC because of the multiplication by Sm−nC of the signals at each receiver (14)). By

normalizing the rates by nS the claim follows.

Notice that by setting U0 = 0 and by using the “neutralize over the air” technique in (13), it is

always possible to achieve the normalized private rates r1 = r2 = min{β,max{1, α}}, where we use the

qualifier “private” to follow the nomenclature convention for the classical IC: a message that is decoded

only at an intended destination is referred to as a“private message.” A message also decoded at a non

intended destination is referred to as a “common message.” In Regimes II to IV, a “common message”

for user 1 is sent by the CR through the top bits of U0 whenever β > max{1, α}.

Remark 2. The achievability in this case can also be used to show the achievability of the region in (15)

when nS = 0, in which case the region in (11) simplifies to (here we do not normalize by the strength

of the direct link as this link does not exist)

R1 ≤ nC, R2 ≤ nC, R1 +R2 ≤ nC + nI. (15)

Clearly this is a special case of 1 < max{α, β} since 0 = nS ≤ max{nI, nC}.

b.2) Regime I in Fig. 2. For β < 1 (and as a consequence of max{α, β} > 1 we must have α > 1), in

order to prove capacity, it suffices to show the achievability of (r1, r2) = (1,min{1, β + α − 1}). Here

we build on the observation made for the achievable scheme in Regimes II to IV and develop a scheme

that in addition to the “private rates” r1p = r2p = min{β,max{1, α}} = β also conveys common rates

r1c = 1− β and r2c = min{α− 1, 1− β}. In this regime some interfering bits can be decoded because

the interference is strong (α > 1) at the non-intended destination. As opposed to Regimes II to IV where

the “common bits” were carried by the CR though U0, here they will be carried by X1 and X2, i.e.,

cooperation through the CR in this regime is too weak and it is better used to neutralize the interference

rather than to deliver common bits. Let U1c, U1p, U2c, U2p be independent vectors. Consider

X1 = Sm−nCU1p + U1c, X2 = Sm−nCU2p + U2c, X0 = Sm−nI(U1p + U2p). (16)
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The received signal at destination 1 is

Y1 = Sm−nSU1c + Sm−nIU2c + Sm−nC

(
Sm−nS + Sm−nI

)
U1p, (17)

and similarly for destination 2. Clearly, if only the top nS(1 − β) bits of U1c are non-zero and the top

nS min{α− 1, 1− β} bits of U2c are non-zero, then destination 1 can decode U2c, U1c, U1p in this order

and destination 2 can decode U1c, U2c, U1p in this order, thus achieving the desired rates.

Remark 3. Interestingly, the region in (12) is equivalent to the capacity region under “strong interference

at both receivers” in [21, Theorem V.2], defined as the channel parameters for which

I(Y2;X2, Xc|X1) ≤ I(Y1;X2, X0|X1), I(Y1;X1, Xc|X2) ≤ I(Y2;X1, X0|X2), (18)

hold for all distributions that factor as PX1,X2,X0
= PX1

PX2
PX0|X1,X2

. Evaluation of the condition of

“strong interference at both receivers” in (18) is difficult because all possible input distributions must be

tested—or an argument must be found that allows restriction to a specific subset of input distributions

without loss of generality. For the LDA, it was not clear that i.i.d. Bernoulli(1/2) input bits at all nodes

would exhaust all possible input distributions, as this does not capture the possible correlation between

X0 and (X1, X2). It is interesting to notice that, with i.i.d. Bernoulli(1/2) input bits at all terminals,

that the condition of “strong interference at both receivers” in (18) gives max{α, β} ≥ max{1, β}, or

equivalently, max{α, β} ≥ 1.

c) Case nS > 0, α 6= 1 and max{α, β} ≤ 1: sub-case 0 ≤ α ≤ β ≤ 1 (Regime V in Fig. 2):

In Regime V the outer bound region is a square and has only one dominant corner point given by

r1 = r2 = 1. Let U1p, U2p be independent vectors and set

X1 = U1p, X2 = U2p, X0 = SnC−nI(U1p + U2p), (19)

so as to neutralize the interference at the destinations (note the different shifts of the “private codewords”

as compared to the scheme for Regimes I to IV in Fig. 2). In this regime m = max{nS, nC, nI} = nS.

The received signal at destination 1 is

Y1 =
(
Sm−nS + Sm−nCSnC−nI

)
U1p, (20)
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and similarly for the received signal at destination 2. Hence R1 = R2 = nS max{1, α} = nS · 1. By

normalizing the rates by nS the claim follows.

Remark 4. Notice that X0 in (19) is obtained by downshifting U1p+U2p by nC−nI positions, or in other

words, the top nC − nI bits of X0 are zero. This strategy is slightly counter-intuitive as the cognitive

relay, with knowledge of all messages, should be able to use all its bits without harm. However, including

bits here would not improve rates as the direct link is already able to convey these bits directly, and

the cognitive relay is only really needed to simultaneously cancel the interference at both receivers. The

desired signal can be obtained by multiplying the received signal by the inverse of Sm−nS + Sm−nI ,

which is well defined as long as nS 6= nI ⇐⇒ α 6= 1.

d) Case nS > 0, α 6= 1 and max{α, β} ≤ 1: sub-case 0 ≤ β ≤ α < 1 (Regime VI in Fig. 2): In

Region VI in Fig. 2, the region in (11) simplifies to

r1 ≤ 1, r2 ≤ 1, (21a)

r1 + r2 ≤ 2− α+ β, (21b)

r1 + r2 ≤ 2 max{1− α, α}+ 2β, (21c)

2r1 + r2 ≤ 1 + max{1− α, α}+ max{1− α, β}+ 2β, (21d)

r1 + 2r2 ≤ 1 + max{1− α, α}+ max{1− α, β}+ 2β. (21e)

Due to the complexity of the outer bound region in (21), Regime VI is further divided into four

sub-regimes, which also correspond to a generalization of the division of the W-curve in [24] as β is

relatively small in this regime. The boundary between Regimes VI.1 and VI.2 occurs at 2α = 1, that

between Regimes VI.2 and VI.3 at β + 3α = 2, and that between Regimes VI.3 and VI.4 at β + α = 1.

These boundaries reduce to those of the W-curve in weak interference for β = 0. So far we were unable

to show capacity for the whole Regime VI. We propose next a capacity achieving scheme Regime VI.1

and discuss strategies for the remaining cases.

In Regime VI.1 (0 ≤ β ≤ α ≤ 1
2 ) capacity can be proved by showing the achievability of the corner

point (r1, r2) = (1, 1− 2α+ 2β) from (21), because in this regime the bounds in (21b), (21d) and (21e)

are redundant. We will demonstrate our achievable scheme by using the graphical representation proposed

in [29]. Fig. 3a shows such a strategy. The blocks represent the signals arriving at each destination, where

block lengths has been normalized by nS. Due to the channel downshift operation, the desired signal at
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a destination has normalized length of 1, the signal from a cognitive relay has normalized length β, and

the interfering signal has normalized length α. Bits intended for destination 1 are denoted by Ai, and

those destined to destination 2 by Bi, i ∈ [1 : 3]. In our example, the relay sends C := A2 ⊕B1, where

A2 and B1 play the role of U1p and U2p, respectively, in the previous regimes, i.e., they are “private

bits” whose effect is “neutralized over the air” by the relay. Source 1 sends the block of bits indicated

as A1 “on top” of A2; here A1 plays role of U1c in the previous regimes, i.e., they are “common bits”

decodes at both destination; as for the classical IC, bits A2 can be decoded at destination 2 if they

are received interference-free at destination 2 [29], which is possible thanks to the fact that a portion

of the signal sent by source 2 contains zeros (in between blocks B2 and B3). Blocks A3, B2 and B3

are “private bits” too. However these bits do not require “neutralization” by the relay as they appear

“below the noise floor” at the non-intended receiver (similarly to the classical IC [29], these bits are

actually not received at the non-intended destination). Notice that the top portion of the signal sent by

source 2 is also populated by zeros (above block B1); this is needed to allow destination 1 to decode

A3. Destination/Rx1 decodes A1, A2, A3 in this order, as does not suffers any interference from user 2,

and achieves normalized rate r1 = 1. Destination/Rx2 decodes B1, B2, A1, B3 in this order, and achieves

normalized rate r2 = 1− 2α+ 2β.

e) On Capacity and sum-capacity for parts of Regimes VI.3 and VI.4 in Fig. 2: Fig. 3b shows an

achievable scheme for the case 4α−3 ≤ β ≤ 3α−2, 2/3 ≤ α ≤ 1, where the restriction of the possible

values of (α, β) is due to the fact that certain pieces of X2 must have non-negative length. The corner

point we aim to achieve is (r1, r2) = (1, 1 − α + β). Because the outer bound region in Regime VI.4,

described by

r1 ≤ 1, r2 ≤ 1, r1 + r2 ≤ 2− α+ β, (22a)

has only two corner points, achieving one of them implies the achievability of the entire capacity region

by a time sharing argument. In contrast, Regime VI.3 described by

r1 ≤ 1, r2 ≤ 1, (23a)

r1 + r2 ≤ 2− α+ β, (23b)

2r1 + r2 ≤ 1 + α+ max{1− α, β}+ 2β, (23c)

r1 + 2r2 ≤ 1 + α+ max{1− α, β}+ 2β, (23d)
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(b) Sum-capacity optimal strategy for parts of Regimes
VI.3 and VI.4.

Fig. 3: Achievability Strategies for portions of Regime VI of Fig. 2.

has four corner points and thus achieving (r1, r2) = (1, 1−α+β) does not suffice to show capacity. The

other dominant corner point in Regime VI.3 is determined by the intersection of the r1-bound in (23a)

with the (2r1 + r2)-bound (23c). Thus, the strategy in Fig. 3b is only sum-rate optimal and works in the

following way. Destination/Rx1 decodes the desired vector A1 and the undesired vectors B1 and B2. Now,

since B2 has been decoded, it can be subtracted at the points where its repetition interference with A2

and A3. Thus, A2 and A3 are decoded too (note that the effect of B3 has been “neutralized” by the relay

and the block A2 is decoded before decoding A3 so its effect can be removed from A3). Destination/Rx2

first decodes B1. Next, because vectors B2, B3 and B4 do not experience any interference, they can be

decoded as well. Finally, since B2 has been already decoded, the portion where A1 interferes with B2

can be ignored. This achieves r1 + r2 = 2− α+ β.

It would be interesting to know what could be missing for Regimes VI.2 to VI.4. The capacity region

for Regimes VI.2 to VI.4 remains unknown. These regimes are related to the most involved region of the

W-curve in [24] for the IC in moderately weak interference (i.e., for α ∈ [1/2, 1]) and as such it is not

surprising that these are also the most difficult cases for the ICCR. At this point we conjecture that the way

we have bounded the multi-letter portion (MLP) in (6) is too loose. We note that the entropy of a discrete

random variable is non-negative and is not decreased by removing conditioning. Possibly the bound in

(6) does not accurately capture the correlation between X0 and (X1, X2). Essentially the bound in (6),

which for the symmetric LDA is given in (8), appears to assert that X0 can be simultaneously maximally

correlated with both X1 and X2. However, if X0 is maximally correlated with X1, i.e., X0 = X1, then

it is independent of X2 (recall that X1 and X2 are independent because carry independent messages);

in this case the MLP expression would be min{α, β} rather than 2 min{α, β}. Tightening the bounds in

(11d), (11e) and (11f) so as to capture the correlation among transmitted signals, and/or to derive another
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bound of the form 2R1 +R2 or R1 +2R2 (such a bound was needed for the IC with rate-limited receiver

cooperation [32]) is the subject of ongoing investigation.

V. APPROXIMATE CAPACITY FOR THE SYMMETRIC GICCR

We now concentrate our attention on the symmetric GICCR. We will use the insights gained from the

symmetric LDA to prove a constant gap result in those regimes where capacity is not known [21]. Tthe

symmetric GICCR is parameterize as

|h11|2 = |h22|2 = |hS|2 := SNR1, (24a)

|h12|2 = |h12|2 = |hI|2 := SNRα, α ≥ 0, (24b)

|h20|2 = |h10|2 = |hC|2 := SNRβ, β ≥ 0. (24c)

where here α and β have meaning similar to the parameters used in the LDA model in (10), in particular

α is the ratio of the received power on the interference link expressed in dB over the received power

on the direct link expressed in dB, and β is the ratio of the received power on the relay-destination link

expressed in dB over the received power on the direct link expressed in dB. The normalization of the

SNR-exponent of the direct link to 1 is without loss of generality and parallels the normalization by nS

in the LDA. The following results parallel Theorem 5:

A. Capacity in Regimes I to IV in Fig. 2

Recently, the capacity of (18) was characterized in the “strong interference at both receivers” [21],

which in the symmetric GICCR reduces to [21, eq.(27)] 1

∣∣∣|hS|+ |hC|∣∣∣2 ≤ ∣∣∣|hI|e+jθ + |hC|
∣∣∣2, θ ∈ {∠h12,∠h21}, (25)

where ∠h21,∠h12 are the phases of the cross-link channel gains (the ones that could not be taken to be

real-valued and non-negative without loss of generality in (2)).

Using (24) and taking SNR → ∞ the condition in (25), by assuming that |hI|e+j∠hij + |hC| 6= 0,

reduces to

max{SNR,SNRβ} ≤ max{SNRα,SNRβ} ⇐⇒ 1 ≤ max{α, β}. (26)

1The detailed proof is rather involved and uses the so called extremal inequality [33]. The main difficulty arises from the
fact that X1 and X2 are correlated with X0 and a more elaborate argument to show that Gaussians are optimal is needed. For
interested readers the proof may be found in [21, Theorem VI.1] .
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The high-SNR regime of (26) coincides with Regimes I to IV in Fig. 2 for the LDA (see also Remark 3).

In [21] it was shown that joint decoding of all messages at both receivers is optimal or capacity achieving

when the “strong interference at both receivers” condition is satisfied. We therefore concentrate here on

mimicking, in the Gaussian case, those regimes for which we could prove capacity in the LDA, namely

Regime V and VI.1.

B. Capacity to Within a Constant Gap in Regime V in Fig. 2

Regime V in the LDA is characterized by α ≤ β ≤ 1, which we try to match with something of the

form |hI|2 ≤ |hC|2 ≤ |hS|2 for the GICCR. We now build on the intuition developed for the LDA and

propose a simple scheme that is optimal to within an additive gap.

Theorem 6. For the symmetric GICCR, the capacity outer bound in Theorem 1 is achievable to within

log2

(
4/(1− 1√

2
)2
)
≈ 5.5 bits per user for 2|hI|2 ≤ |hC|2 ≤ |hS|2. �

Proof: In Regime V for the LDA, the cognitive relay simultaneously neutralizes over the air the

interference at both receivers. This mode of operation is reminiscent of zero forcing. We therefore propose:

let U1p and U2p be two independent Gaussian random variables with zero mean and unit variance and

define for some (ρ1, ρ2) such that |ρ1|2 + |ρ2|2 ≤ 1

X1 = U1p, X2 = U2p, X0 = ρ1U1p + ρ2U2p. (27)

Next we choose ρ1 and ρ2 so as to simultaneously neutralize the contribution of U2p at destination 1 and

of U1p at destination 2. This is possible if

ρ1 = −|hI|e
+j∠h21

|hC|
, ρ2 = −|hI|e

+j∠h12

|hC|
, (28)

which requires 2|hI|2 ≤ |hC|2. With this assignment the channel outputs become

Y1 =
(
|hS| − |hI|e+j∠h21

)
U1p + Z1, Y2 =

(
|hS| − |hI|e+j∠h12

)
U2p + Z2, (29)

and thus the following rates are achievable

R1 ≤ log
(

1 +
∣∣|hS| − |hI|e+j∠h21

∣∣2) , R2 ≤ log
(

1 +
∣∣|hS| − |hI|e+j∠h12

∣∣2) . (30)
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From the outer bound we have

R1 ≤ I(Y1;X1, X0|Q,X2) ≤ log
(

1 +
(
|hS|+ |hC|

)2) ≤ log
(
1 + 4 max{|hS|2, |hC|2}

)
, (31)

and similarly for R2. Next, the argument of the log-function in (30) can be lower bounded by (|hS|−|hI|)2.

Imposing |hC|2 ≤ |hS|2, in order to mimic Regime V of the LDA, and 2|hI|2 ≤ |hC|2, implies |hI|2 ≤

|hS|2/2, so that (|hS| − |hI|)2 ≥
(

1− 1√
2

)2
|hS|2. Finally, by taking the difference between the upper

bound in (31) and the lower bound in (30) we arrive at the claimed gap result.

It is pleasing to see that a simple interference management technique reminiscent of zero-forcing is

optimal to within a constant gap for the GICCR. Notice that in this regime the channel behaves effectively

as two non-interfering point-to-point links.

C. Capacity to Within a Constant Gap in Regime VI.1 in Fig. 2

Regime VI.1 for the LDA is characterized by β ≤ α ≤ 1
2 , which we try to match with something of

the form |hC|2 ≤ |hI|2 ≤
√
|hS|2 for the GICCR. Next, we build on the intuition developed in the LDA

and propose a scheme that is optimal to within an additive gap.

Theorem 7. For the symmetric GICCR, the capacity outer bound in Theorem 4 is achievable to within

11.7 bits per user if the channel gains satisfy the following three conditions: (c1) |hC|2 ≤ |hI|2 |hI|2
1+|hI|2 ,

(c2) |hC|2 ≤ 1
2
1+|hS|2
1+|hI|2 , (c3) |hI|2(1 + |hI|2) ≤ |hS|2, (c4) 1 ≤ min{|hS|2, |hI|2}, (c5) |hS|2

1+|hI|2 ≥ 9. �

Proof: The conditions (c1)-(c3) at high SNR are equivalent to β ≤ α ≤ 1
2 ; conditions (c4)-(c5)

are convenient for gap computation. In Regime VI.1 for the LDA, the CR simultaneously neutralizes

interference at destination 1 and part of the interference at destination 2, see Fig. 3a. We therefore propose

the following choice of inputs: for XA1
, XA2

, XA3
, XB1

, XB2
, XB3

i.i.d. Gaussian random variables with

zero mean and unit variance, let

X1 = a1XA1
+ a2XA2

+ a3XA3
, X2 = b1XB1

+ b2XB2
+ b3XB3

, X0 = `1XA2
+ `2XB1

,

|a1|2 =
|hI|2

1 + |hI|2
− |hC|

2

2|hI|2
, b1 =

|hC|√
2|hI|e+j∠h12

, `1 = − 1√
2
,

a2 =
|hC|√

2|hI|e+j∠h21

, |b2|2 =
1

1 + |hI|2
− |hC|2

1 + |hS|2
, `2 = − 1√

2
,

|a3|2 =
1

1 + |hI|2
, |b3|2 =

|hC|2
1 + |hS|2

.
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Under the channel conditions |hC|2 ≤ 2|hI|2 |hI|2
1+|hI|2 so that |a1|2 ≥ 0, and |hC|2 ≤ 1+|hS|2

1+|hI|2 so that

|b2|2 ≥ 0, the transmitter power constraints are satisfied; these conditions are true by (c1) and (c2),

respectively. Note that transmitter 2 does not fully utilize its power. With this choice of coefficients /

power allocation, the channel outputs become

Y1 = |hS|(a1XA1
+ a3XA3

) +
|hC|√

2

( |hS|
|hI|

e−j∠h21 − 1

)
XA2

+ |hI|(b2XB2
+ b3XB3

)e+j∠h12 + Z1,

Y2 = |hI|(a1XA1
+ a3XA3

)e+j∠h21 +
|hC|√

2

( |hS|
|hI|

e−j∠h12 − 1

)
XB1

+ |hS|(b2XB2
+ b3XB3

) + Z2,

since XB1
has been zero forced at Y1, and XA2

at Y2, similarly to the scheme in Fig. 3a for the LDA. By

mimicking the corresponding scheme for the LDA, destination 1 successively decodes XA1
, XA2

, XA3
in

this order, and destination 2 successively decodes XB1
, XB2

, XA1
, XB3

in this order; with this decoding

procedure the following rates are achievable (see Appendix E)

RA1
= log

(
1 +

|hI|2
4(3 + |hC|2)

)
, RA2

= log

(
1 +
|hC|2

10

)
, RA3

= log

(
1 +

|hS|2
1 + 2|hI|2

)
,

RB1
= log

(
1 +
|hC|2

10

)
, RB2

= log

(
1 +

|hS|2
4(1 + |hI|2)2

)
, RB3

= log

(
1 +
|hC|2

4

)
.

We next compare this lower bound with the outer bound obtained by intersecting the sum-rate upper

bound in (5a) with the MLP tightened as in Theorem 4 (see Appendix D) and the single-rate upper

bound in (4a) (see eq.(31)), that is, the corner point outer bound with coordinates

R1 = log
(
1 + 4|hS|2

)
, (32a)

R2 = 2 log

((
1 + |hI|2 +

|hS|2
1 + |hI|2

)(
1 + |hC|2

)
2(1 + 1/

√
2)2
)
− log

(
1 + 4|hS|2

)
. (32b)

In Appendix E we show that the gap between the inner and outer bound is at most 11.7 bits per user.

By swapping the role of the users, the other sum-capacity achieving corner point of the capacity region

outer bound can be attained to within the same gap.

By setting R2 = 0 and not using the CR we can achieve R1 = log(1 + |hS|2), which is at most 2 bits

away from the corner point where R1 is upper bounded by (32a) and R2 = 0. The same reasoning holds

with the role of the users swapped. This shows that all corner points of the outer bound region can be

achieved to within 11.7 bits per user. Therefore, by time sharing, the whole capacity region outer bound

can be achieved to within a constant gap. This concludes the proof.

The gap in this regime is fairly large; we believe that this is due to the crude lower bounding steps for
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the achievable rates and to the simplicity of the proposed interference zero-forcing scheme. Numerical

evaluations show that the actual gap when optimizing the power splits in the proposed scheme is actually

lower.

D. Numerical Comparisons

We conclude this section with some numerical examples. Fig. 4 and Fig. 5 compare the performance

of different achievable strategies as a function of the SNR (in dB) in Regime V, where the new constant

gap result is obtained from Theorem 6. We note that the purpose of this paper is to provide simple

achievable schemes for the Gaussian channel that are provably optimal to within a constant gap, rather

than focussing on finding the parameters that optimize the largest known (quite involved) achievable rate

region for the ICCR derived in [21, Theorem IV.1]. To this end, we compare several simple achievability

schemes, including the constant gap to capacity scheme in (30) and the outer bound in (4).

In Fig. 4, we increase the SNR with fixed α = 0.5 and β = 0.7 in (24) and compare the following

strategies. In the first strategy the relay stays silent and we use a well-known achievability strategy for

the Gaussian IC (a version of the Han and Kobayashi strategy [24]). For the second achievability scheme,

the relay is used and performs the simple linear combination scheme (rather than more complex schemes

such as dirty paper coding) X0 = a1X1 + a2X2 : |a1|2 + |a2|2 ≤ 1, where we optimize over a1 and a2.

We consider the following strategies at the receivers:

1) JD (Joint Decoding): both transmitters use common messages only, which are decoded at both

destinations—the region thus looks like a compound multiple access channel with each message

amplified at the receiver due to the relay’s transmission.

2) IaN (Interference as Noise): destinations treat non-desired interference as noise. All messages are

therefore private.

3) Mix: one of the transmitters uses a common message and the other uses a private message; the

common message is decoded at both receivers and the private is decoded at the appropriate receiver

only and treated as noise at the other.

4) ZF (Zero Forcing): use a1 = − |hI|e+j∠h21

|hC| and a2 = − |hI|e+j∠h12

|hC| as in Theorem 6 (when possible).

Finally, the sum-rate outer bound from (31) is plotted (i.e., in this case the whole capacity region is a

square).

From Fig. 4 we see that as the SNR increases, the IaN and ZF schemes (ZF is actually one very specific
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Fig. 4: Numerical comparison of various strategies for the GICCR for α = 0.5, β = 0.7. No relay: the relay is
not used and the rates are given by the optimal interference channel strategy. For the other curves the relay uses a
linear strategy and the receivers apply JD (jointly decode both messages), or IaN (treat interference as noise), or

Mix (one receiver decodes both messages and the other only its intended one), or ZF (relay performs zero forcing
as in (30), which is special case of IaN). The outer bound is from (31).

choice of the IaN scheme where a1, a2 are specified explicitly) essentially overlap with the outer bound,

which verifies the constant gap to capacity claim numerically. This scheme significantly outperforms

(diverging slopes means the gap can be arbitrarily large) not using a relay at all, even with an optimizing

transmission strategy, or using a JD or Mix strategy where the relay uses a simple linear combination

scheme. Fig. 5 shows the actual regions, rather than sum-rates, for the same settings and conventions as

in Fig. 4 for two different SNRs.

We note that our goal is not to derive the best achievability scheme at any SNR, but rather to derive

a simple, constant gap to capacity scheme and compare it to other, simple schemes.

VI. CONCLUSION

We considered an interference channel in which a cognitive relay aids in the transmission of the two

independent messages. We obtained the capacity region in almost all regimes for the symmetric LDA

and translated these insights into a constant gap to capacity result for the corresponding Gaussian model.

The capacity achieving schemes for the symmetric LDA use a variety of techniques at the cognitive
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Fig. 5: Achievable and outs bound regions for the GICCR with α = 0.5, β = 0.7. Same settings and
conventions as in Fig. 4.

relay, which both aid in the transmission of the messages to the receivers, and simultaneously neutralize

interference at the two receivers. Given the generality of this challenging channel model, it is not surprising

that a number of open questions remain: capacity is missing in a parameter regime of the symmetric LDA

which has typically been the most challenging one for the interference channel as well (the moderately

weak interference regime). Constant gap to capacity results for the corresponding regime in the Gaussian

channel are also missing and are an interesting topic for further investigation.

APPENDIX

A. Proof of Theorem 2

Given the random variables (Q,X1, X2, X0, V1, V2, Y1, Y2) with

PQ,X1,X2,X0,V1,V2,Y1,Y2
(q, x1, x2, x0, v1, v2, y1, y2)

= PQ(q)PX1|Q(x1|q)PX2|Q(x2|q)PX0|Q,X1,X2
(x0|q, x1, x2)PV1|X1

(v1|x1)PV2|X2
(v2|x2)

· δ
(
y1 − f1(x1, x0, v2)

)
δ
(
y2 − f2(x2, x0, v1)

)
.

let Ṽ1 and Ṽ2 be conditionally independent copies of V1 and V2, distributed jointly with (Q,X1, X2, X0) as

PṼ1,Ṽ2|Q,X1,X2,X0
(v1, v2|q, x1, x2, x0) = PV1|X1

(v1|x1)PV2|X2
(v2|x2). By Fano’s inequality H(Wi|Y n

i ) ≤
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nεn, i ∈ [1 : 2], such that εn → 0 as n→∞. Similar arguments to those in [31] yield:

n(R1 +R2 − 2εn) ≤ I(W1;Y
n
1 , Ṽ

n
1 ) + I(W2;Y

n
2 , Ṽ

n
2 )

= H(Ṽ n
1 )−H(Ṽ n

1 |W1, X
n
1 ) +H(Y n

1 |Ṽ n
1 )−H(Y n

1 |Ṽ n
1 ,W1, X

n
1 )

+H(Ṽ n
2 )−H(Ṽ n

2 |W2, X
n
2 ) +H(Y n

2 |Ṽ n
2 )−H(Y n

2 |Ṽ n
2 ,W2, X

n
2 )

(a)

≤ H(Ṽ n
1 )−H(Ṽ n

1 |Xn
1 ) +H(Y n

1 |Ṽ n
1 )−H(Y n

1 |Ṽ n
1 ,W1, X

n
1 , X

n
0 )

+H(Ṽ n
2 )−H(Ṽ n

2 |Xn
2 ) +H(Y n

2 |Ṽ n
2 )−H(Y n

2 |Ṽ n
2 ,W2, X

n
2 , X

n
0 )

(b)
= H(Y n

1 |Ṽ n
1 ) +H(Y n

2 |Ṽ n
2 )−H(Ṽ n

1 |Xn
1 )−H(Ṽ n

2 |Xn
2 )

+H(Ṽ n
1 )−H(V n

1 |W2, Ṽ
n
2 , X

n
2 , X

n
0 )

+H(Ṽ n
2 )−H(V n

2 |W1, Ṽ
n
1 , X

n
1 , X

n
0 )

(c)
= H(Y n

1 |Ṽ n
1 ) +H(Y n

2 |Ṽ n
2 )−H(Ṽ n

1 |Xn
1 )−H(Ṽ n

2 |Xn
2 )

+H(Ṽ n
1 )−H(V n

1 |W2, X
n
0 ) +H(Ṽ n

2 )−H(V n
2 |W1, X

n
0 )

= H(Y n
1 |Ṽ n

1 ) +H(Y n
2 |Ṽ n

2 )−H(Ṽ n
1 |Xn

1 )−H(Ṽ n
2 |Xn

2 )

+ I(V n
1 ;Xn

0 |W2) + I(V n
2 ;Xn

0 |W1),

where: the inequality in (a) follows from further conditioning on X0 (and because given conditioning on

Xn
i we have that V n

i is independent of everything else, so that in particular we can drop the message Wi

from the conditioning, i = 1, 2), the equality in (b) follows from the assumed determinism, the equality

in (c) follows since V n
1 is independent of (Ṽ n

2 , X
n
2 ) so it can be dropped from the conditioning (however

Xn
0 depends on (W1,W2) so we must keep the messages in the conditioning) and similarly for user 2.

Similarly,

n(2R1 +R2 − 3εn)

≤ I(W1;Y
n
1 , Ṽ

n
1 |W2) + I(W1;Y

n
1 ) + I(W2;Y

n
2 , Ṽ

n
2 )

= H(Y n
1 |W2, Ṽ

n
1 , X

n
2 )−H(Y n

1 |W1,W2, Ṽ
n
1 , X

n
1 , X

n
2 , X

n
0 )

+H(Y n
1 )−H(Y n

1 |W1, X
n
1 )

+H(Y n
2 |Ṽ n

2 )−H(Y n
2 |W2, Ṽ

n
2 , X

n
2 )

+H(Ṽ n
1 |W2, X

n
2 )−H(Ṽ n

1 |W1,W2, X
n
1 , X

n
2 , X

n
0 )
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+H(Ṽ n
2 )−H(Ṽ n

2 |W2, X
n
2 )

(a)

≤ H(Y n
1 |Ṽ n

1 , X
n
2 )−H(Y n

1 |Ṽ n
1 , X

n
1 , X

n
2 , X

n
0 )

+H(Y n
1 )−H(Y n

1 |W1, X
n
1 , X

n
0 )

+H(Y n
2 |Ṽ n

2 )−H(Y n
2 |W2, Ṽ

n
2 , X

n
2 , X

n
0 )

+H(Ṽ n
1 )−H(Ṽ n

1 |Xn
1 ) +H(Ṽ n

2 )−H(Ṽ n
2 |Xn

2 )

(b)
= H(Y n

1 |Ṽ n
1 , X

n
2 )−H(V n

2 |Ṽ n
1 , X

n
1 , X

n
2 , X

n
0 )

+H(Y n
1 )−H(V n

2 |W1, X
n
1 , X

n
0 )

+H(Y n
2 |Ṽ n

2 )−H(V n
1 |W2, Ṽ

n
2 , X

n
2 , X

n
0 )

+H(Ṽ n
1 )−H(Ṽ n

1 |Xn
1 ) +H(Ṽ n

2 )−H(Ṽ n
2 |Xn

2 )

(c)
= H(Y n

1 |Ṽ n
1 , X

n
2 )−H(V n

2 |Xn
2 )

+H(Y n
1 )−H(V n

2 |W1, X
n
0 )

+H(Y n
2 |Ṽ n

2 )−H(V n
1 |W2, X

n
0 )

+H(Ṽ n
1 )−H(Ṽ n

1 |Xn
1 ) +H(Ṽ n

2 )−H(Ṽ n
2 |Xn

2 )

≤ H(Y n
1 ) +H(Y n

1 |Ṽ n
1 , X

n
2 ) +H(Y n

2 |Ṽ n
2 )

−H(Ṽ n
1 |Xn

1 )− 2H(V n
2 |Xn

2 ) + I(V n
2 ;Xn

0 |W1) + I(V n
1 ;Xn

0 |W2),

where the inequalities labeled (a), (b) and (c) follow from the same reasoning used in the in the derivation

of the sum-rate bound. The remaining bound is obtained by swapping the users.

B. Proof of Theorem 3

For the channels in (7), instead of conditioning on X0 in the step marked by (a) in Appendix A, we

condition on the qi(X0), i ∈ [1, 2], to obtain the tighter bound

H(Ṽ n
2 )−H(Y n

1 |Ṽ n
1 ,W1, X

n
1 )

(a′)

≤ H(Ṽ n
2 )−H(Y n

1 |Ṽ n
1 ,W1, X

n
1 , q1(X

n
0 ))

= H(V n
2 )−H(V n

2 |Ṽ n
1 ,W1, X

n
1 , q1(X

n
0 )) = H(V n

2 )−H(V n
2 |W1, q1(X

n
0 ))

= I(V n
2 ;W1, q1(X

n
0 )) = I(V n

2 ; q1(X
n
0 )|W1)

≤ min{H(V n
2 ), H(q1(X

n
0 ))} ≤ nmin{H(V2|Q), H(q1(X0)|Q)},
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and similarly for the other users. The fact that the resulting region is exhausted by i.i.d. Bernoulli(1/2)

bits for the input vectors follows by arguments similar to [19].

C. Proof of Theorem 4

Inspired by the proof of Theorem 3 — where the term H(Y n
i |Ṽ n

i ,Wi, X
n
i ), i ∈ [1 : 2], was further

conditioned on qi(X
n
0 ) rather than on Xn

0 (i.e., compare step marked by (a) in Appendix A with step

marked by (a’) in Appendix B) — we mimic here the function qi(Xn
0 ) for the LDA with |hi0|Xn

0 −Zn0
for the GICCR, where Z0 i.i.d. N (0, 1) independent of (Z1, Z2, Z̃1, Z̃2,W1,W2). Recall that

V2 = h12X2 + Z1 ∼ Ṽ2 = h12X2 + Z̃1 : Z2 independent of Z̃1 ∼ Z1,

V1 = h21X1 + Z2 ∼ Ṽ1 = h21X1 + Z̃2 : Z1 independent of Z̃2 ∼ Z2.

Then, we replace the step marked with (a) in Appendix A with

h(Ṽ n
2 )− h(Y n

1 |Ṽ n
1 ,W1, X

n
1 )

(a′)

≤ h(h12X
n
2 + Z̃n1 )− h(|h11|Xn

1 + |h10|Xn
0 + h12X

n
2 + Zn1 |h21Xn

1 + Z̃n2 ,W1, X
n
1 , |h10|Xn

0 − Zn0 )

= h(h12X
n
2 + Zn1 )− h(h12X

n
2 + Zn1 + Zn0 |W1, |h10|Xn

0 − Zn0 )

= −I(h12X
n
2 + Zn1 + Zn0 ;Zn0 ) + I(h12X

n
2 + Zn1 + Zn0 ; |h10|Xn

0 − Zn0 |W1)

≤ −0 + h(|h10|Xn
0 − Zn0 )− h(|h10|Xn

0 − Zn0 |W1, h12X
n
2 + Zn1 + Zn0 , W2)

= I(|h10|Xn
0 − Zn0 ;Xn

0 ) + I(Zn0 ;Zn1 + Zn0 ) ≤ n log(1 + |h10|2) + n log(2).

We can also trivially upper bound MLP1 in (5d) as

h(Ṽ n
2 )− h(Y n

1 |Ṽ n
1 ,W1, X

n
1 ) ≤ I(V n

2 ;Xn
0 |W1) as per Theorem 2

≤ h(h12X
n
2 + Zn1 )− h(h12X

n
2 + Zn1 |Xn

0 , X
n
1 ,W1, W2)

= I(h12X
n
2 + Zn1 ;Xn

2 ) ≤ n log(1 + |h12|2).

Therefore, we conclude that

h(Ṽ n
2 )− h(Y n

1 |Ṽ n
1 ,W1, X

n
1 )

n
≤ log(1 + min{|h12|2, |h10|2}) + log(2).
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By repeating the same reasoning for the other receiver, we conclude that for the GICCR Theorem 2 holds

with MLP1 in (5d) replaced by

MLP2 := log(1 + min{|h12|2, |h10|2}) + log(1 + min{|h21|2, |h20|2}) + 2 log(2).

The resulting region is exhausted by jointly Gaussian inputs by arguments similar to [21].

D. Evaluation of the sum-rate upper bound in (5a) for the GICCR

By Theorem 4 we can restrict attention to jointly Gaussian inputs. Let parameterize the possible jointly

Gaussian inputs as 
X1

X2

X0

 ∼ N
0,


1 0 r∗1

0 1 r∗2

r1 r2 1


 : |r1|2 + |r2|2 ≤ 1,

that is, X0 = r1X1 + r2X2 +X ′0 with X ′0 ∼ N (0, 1− |r1|2 − |r2|2) and independent of everything else.

In (5a), consider the term

h(Y1|Ṽ1, Q)− h(Ṽ2|X2) ≤ h(|h11|X1 + |h10|X0 + h12X2 + Z1|h21X1 + Z̃2)− h(Z̃1)

= h(a1X1 + |h10|X ′0 + a2X2 + Z1|h21X1 + Z̃2)|a1:=|h11|+r1|h10|, a2:=h12+r2|h10| − h(Z1)

= log

( |a1|2
1 + |h21|2

+ |h10|2(1− |r1|2 − |r2|2) + |a2|2 + 1

)
|a1:=|h11|+r1|h10|, a2:=h12+r2|h10|

≤ log

(
(|h11|+ |r1||h10|)2

1 + |h21|2
+ |h10|2(1− |r1|2 − |r2|2) + (|h12|+ |r2||h10|)2 + 1

)
= log

(
(|h11|+ |r1||h10|)2

1 + |h21|2
+ |h10|2(1− |r1|2) + 2|r2||h10||h12|+ |h12|2 + 1

)
where clearly the last expression, for any r1 such that 1− |r1|2 ≥ 0, is maximized by |r2| =

√
1− |r1|2

(recall that the bound must be optimized over |r1|2+|r2|2 ≤ 1); this implies that for some |r1|2+|r2|2 = 1

h(Y1|Ṽ1, Q)− h(Ṽ2|X2) ≤ log

(
(|h11|+ |r1||h10|)2

1 + |h21|2
+ (|h12|+ |r2||h10|)2 + 1

)
. (33)

By a similar reasoning for the other receiver, we have that for some |r1|2 + |r2|2 = 1

h(Y2|Ṽ2, Q)− h(Ṽ1|X1) ≤ log

(
(|h21|+ |r1||h20|)2 +

(|h22|+ |r2||h20|)2
1 + |h12|2

+ 1

)
. (34)
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Finally, by summing (33) and (34), the sum-rate upper bound from Theorem 2 with the MLP from

Theorem 4 reads

R1 +R2 ≤ max
|r1|2+|r2|2=1

log

(
(|h11|+ |r1||h10|)2

1 + |h21|2
+ (|h12|+ |r2||h10|)2 + 1

)
+ log

(
(|h21|+ |r1||h20|)2 +

(|h22|+ |r2||h20|)2
1 + |h12|2

+ 1

)
+ log(1 + min{|h12|2, |h10|2}) + log(1 + min{|h21|2, |h20|2}) + 2 log(2). (35)

In the symmetric case in (24), by the symmetry of the problem, it is easy to see that the maximizing

(r1, r2) is such that |r1|2 = |r2|2 = 1/2; hence the sum-rate upper bound in (35) reads

R1 +R2 ≤ 2 log

(
max{|hS|2, |hC|2}

1 + |hI|2
+ max{|hI|2, |hC|2}+ 1

)
+ 2 log(1 + min{|hI|2, |hC|2}) + 2 log(2(1 + 1/

√
2)2) (36)

where 2 log(2(1 + 1/
√

2)2) ≤ 2 log(6) < 5.17 bits.

E. Lower bounds on the Achievable Rates for the Scheme in Section V-C

The achievable scheme in Section V-C attains the following rates (where the further lower bonds follow

from straightforward but tedious algebraic manipulations by using the conditions (c1)-(c5) of Theorem 7)

RA1
≤ log

1 +
|hS|2

(
|hI|2

1+|hI|2 −
|hC|2
2|hI|2

)
1 + |hS|2

1+|hI|2 + |hI|2
1+|hI|2 + |hC|2

2

∣∣∣ |hS|
|hI| e

−j∠h21 − 1
∣∣∣2
 (37a)

:
|hS|2

(
|hI|2

1+|hI|2 −
|hC|2
2|hI|2

)
1 + |hS|2

1+|hI|2 + |hI|2
1+|hI|2 + |hC|2

2

∣∣∣ |hS|
|hI| e

−j∠h21 − 1
∣∣∣2 ≥

|hI|2
4

1

3 + |hC|2
,

RA2
= log

1 +
|hC|2

2

∣∣∣ |hS|
|hI| e

−j∠h21 − 1
∣∣∣2

1 + |hS|2
1+|hI|2 + |hI|2

1+|hI|2

 ≥ log

(
1 + |hC|2

(
√
t− 1)2

2(2 + t)

)∣∣∣∣
t:=

|hS|2

1+|hI|2

≥ log

(
1 +
|hC|2
nA2

)
for
√
t ≥ 1 +

√
4/nA2

(3/2− 2/nA2
)

1− 2/nA2

, (37b)

RA3
= log

1 +

|hS|2
1+|hI|2

1 + |hI|2
1+|hI|2

 = log

(
1 +

|hS|2
1 + 2|hI|2

)
, (37c)
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RB1
= log

1 +
|hC|2

2

∣∣∣ |hS|
|hI| e

−j∠h12 − 1
∣∣∣2

1 + |hI|2
(
|hI|2

1+|hI|2 −
|hC|2
2|hI|2

)
+ |hI|2

1+|hI|2 + |hS|2
1+|hI|2

 ≥ log

(
1 + |hC|2

(
√
t− 1)2

4(1 + t)

)

≥ log

(
1 +
|hC|2
nB1

)
for
√
t ≥ 1 +

√
8/nB1

(1− 2/nB1
)

1− 4/nB1

, (37d)

RB2
= log

1 +
|hS|2

(
1

1+|hI|2 −
|hC|2

1+|hS|2

)
1 + |hI|2

(
|hI|2

1+|hI|2 −
|hC|2
2|hI|2

)
+ |hI|2

1+|hI|2 + |hS|2|hC|2
1+|hS|2

 ≥ log

(
1 +

|hS|2
4(1 + |hI|2)2

)
,

(37e)

RA1
≤ log

1 +
|hI|2

(
|hI|2

1+|hI|2 −
|hC|2
2|hI|2

)
1 + |hI|2

1+|hI|2 + |hS|2|hC|2
1+|hS|2

 :
|hI|2

(
|hI|2

1+|hI|2 −
|hC|2
2|hI|2

)
1 + |hI|2

1+|hI|2 + |hS|2|hC|2
1+|hS|2

≥ |hI|2
4(2 + |hC|2)

, (37f)

RB3
= log

1 +
|hC|2 |hS|2

1+|hS|2

1 + |hI|2
1+|hI|2

 ≥ log

(
1 +
|hC|2

4

)
. (37g)

and, because XA1
is a “common message” decoded at both destinations, we finally choose

RA1
= min{eq.(37a), eq.(37f)} ≥ log

(
1 +

|hI|2
4(3 + |hC|2)

)
. (37h)

As outer bound consider the corner point obtained by intersecting the sum-rate upper bound in (36)

with the single-rate upper bound in (4a) (see eq.(31)) whose coordinates are given in (32) (note that in this

regime the channel gains satisfy |hC|2 ≤ |hI|2 ≤ |hS|2). We next compare the lower bound in (37) with

the corner point outer bound in (32). It can be easily seen that the gap for R1 is, for nA2
≥ 3, nB1

≥ 4,

gapR1
≤ eq.(32a) - eq.(37h) - eq.(37b) - eq.(37c)

= log
(1 + 4|hS|2)(3 + |hC|2)(1 + 2|hI|2)

(1 + |hS|2 + 2|hI|2)(1 + |hC|2/nA2
)(3 + |hC|2 + |hI|2/4)

≤ log(4 · nA2
· 8), (38)

gapR2
≤ eq.(32b) - eq.(37d) - eq.(37e) - eq.(37g)

= log
4(1 + 1/

√
2)4
(

1 + |hI|2 + |hS|2
1+|hI|2

)2
(1 + |hC|2)2

(1 + 4|hS|2)
(

1 + |hS|2
4(1+|hI|2)2

)
(1 + |hC|2/nB1

)(1 + |hC|2/4)

≤ log
4(1 + 1/

√
2)4 · (1 + 2t)2 · nB1

· 4
1 + t2

∣∣∣∣
t:=

|hS|2

1+|hI|2
≥t0,
√
t0:=max

{
1+
√

4/nA2
(3/2−2/nA2

)

1−2/nA2

,
1+
√

8/nB1
(1−2/nB1

)

1−4/nB1

}

≤ log
(

4(1 + 1/
√

2)4 · 5 · nB1
· 4
)
. (39)

Thus the proposed scheme achieves a corner point of the capacity region outer bound to within at
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most gap = max{ eq.(38), eq.(39) }. For example, for nA2
= nB1

= 10, we have t0 = 9 and gap =

11.7 bits per user. The gap can be reduced by increasing the value of t0.
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