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Abstract—This paper examines the uplink of cellular systems
employing base station cooperation for joint signal process-
ing. We consider clustered cooperation and investigate effective
techniques for managing inter-cluster interference in order to
improve users’ performance in terms of both spectral and energy
efficiency. We use information theoretic analysis to establish
general closed form expressions for the system achievable sum
rate and the users’ Bit-per-Joule capacity while adopting a
realistic user device power consumption model. Two main inter-
cluster interference management approaches are identified and
studied, i.e. through: 1) spectrum re-use; and 2) users’ power
control. For the former case, we show that isolating clusters by
orthogonal resource allocation is the best strategy. For the latter
case, we introduce a mathematically tractable user power control
scheme and observe that a green opportunistic transmission strat-
egy can significantly reduce the adverse effects of inter-cluster
interference while exploiting the benefits from cooperation. In
order to compare the different approaches in the context of real-
world systems and evaluate the effect of key design parameters
on the users’ energy-spectral efficiency relationship, we fit the
analytical expressions into a practical macrocell scenario. Our
results demonstrate that significant improvement in terms of both
energy and spectral efficiency can be achieved by energy-aware
interference management.

Index Terms—Land mobile radio cellular systems, Multi-Cell
Processing, Green wireless communications, User-side energy
conservation, Interference management, Information theory.

I. I NTRODUCTION

Energy consumption of communication systems has recently
become an important issue [1]. Particularly, wireless access
networks have been an active subject of interest due to
their current and (most importantly) forecasted significant
contribution to the overall energy consumption of commu-
nication networks [2]. This has led to extensive research on
“green” techniques for wireless communications to minimise
their carbon footprint as well as the energy conservation
for economical (lower energy costs) and practical (increased
battery life in mobile devices) benefits [3], [4], [5]. While most
recent studies focus on the operational energy conservation
of radio Base Stations (BSs), the significance of total energy
consumption orEnergy Efficiency(EE) at terminal ends, due
to network activity at both uplink and downlink, shall not
be belittled [6]. Especially in uplink, EE at terminal ends
can be straightforwardly improved by managing their transmit
power. The explosive growth of user terminals (currently in
the order of billions [7]) and especially of battery draining
smart phones downloading content from the Internet, renders

the augmentation of the overall end user devices’ EE a very
important factor for achieving “holistic green” communication
systems, i.e. from both network and user devices perspective.

On the other hand, the need of new services, emerging from
the wide-spreading use of mobile internet, retains the trend
of exploding data volume and throughput demand in cellular
industry. Essentially, this demand translates into highSpectral
Efficiency (SE) needs requiring aggressive radio spectrum
usage [8]. Unavoidably, future deployments will face critically
increased levels of Inter-Cell Interference (ICI) which, if left
uncontrolled, leads into significant losses in throughput and
fairness degradation. To this end,multi-cell cooperationis
regarded as a key technique for ICI management in cellular
systems [9]. In particular, cooperation through multi-celljoint
signal processing, where transmit (in downlink) or receive (in
uplink) information is exchanged among cells, provides the
potential of even exploiting ICI as a diversity signal [10],
[11]. The resulting Distributed Multiple-Input-Multiple-Output
(DMIMO) system provides macro-diversity gains [12] and has
the potential to boost overall SE as well as to provide more
homogeneous distribution of user data rates [13].

Multi-cell cooperation, although not a newly introduced
concept, has become only currently a very active field of
research for practical implementation under the label of “Coor-
dinated Multi-Point” in LTE-Advanced standards [14]. Thus,
while earlier studies focused on the theoretical SE gains in
global cooperation systems, where cooperation among all cells
in a system is assumed possible, more recently, implementa-
tion related issues have been examined (e.g. see [15], [16],
[17], [18], [19], [9]). These practical issues mainly regard
the extra effort needed for signal processing to enable BS
cooperation as well as the limitations of the backhaul links
connecting cooperating BSs. It has become evident that a
limited number of BSs can cooperate in practical systems
for affordable overhead, complexity and energy consumption
burden. In that regard, this paper’s focus is onclustered
cooperation, where multiple sets of cells in a system form
independent cooperation clusters, which is essentially a more
practically realisable scenario.

However, clustered cooperation introduces undesired Inter-
Cluster Interference (ICLI) into the system. Since there is
no coordination available between the clusters, ICLI can in
principle be managed in a similar way as ICI is mitigated in
conventional uncoordinated networks. Focusing in the uplink,
the various ICI mitigation techniques are generally classified
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into [20]: 1) avoidance, i.e. by re-use of time/frequency
resources; 2)randomisationi.e. by averaging the interference
at BSs and making ICI appear as additional background
Additive White Gaussian Noise (AWGN); 3)cancellation, i.e.
by regenerating the interfering signals at BSs and subsequently
subtract them from the desired signal; and 4)power control
at User Terminals (UTs). Regarding ICLI management, all
aforementioned approaches can be essentially applied; how-
ever, cancellation techniques are quite impractical since the
generally large amount of out-of–cluster interfering UTs will
add extreme processing complexity to BSs. On the other
hand, randomization techniques can be combined with either
avoidance or power control techniques to mitigate any residual
ICLI. Therefore, there exist two main practical ways to reduce
ICLI in uplink (described in more detail within Section IV):
a) through effective spectrum re-use among clusters and;
b) through effective power control of user devices. In this
work, both approaches are analysed and compared with the
benchmark scenario of single-cell processing and the worst-
case scenario of total ICLI allowance where all inter-cluster
signals are simply tolerated without any ICLI management
technique taking place.

The main objective of this paper is to identify if and
under which circumstances ICLI management techniques can
improve the EE-SE relationshipof all active UTs during
uplink in multi-cell processing systems by providing a good
balance between the harmful effect due to ICLI and the
benefits originating from BSs cooperation. In general, EE-
SE relationships are considered as important performance
measures for deployment and operation of future wireless
access systems and it has in fact been shown that in practice
they follow a non-monotonic trend [21]. In this work, we
are interested in energy-aware solutions when the throughput
performance of the system is still of high priority, i.e. we want
to optimize system SE while harvesting potential EE gains for
UTs. Uplink activities are proved to be of equal importance
to downlink activities in terms of energy consumption at user
radio modules for services or applications where either more
(e.g. cellular phone calls, text messaging, emailing, internet-
based audio/video calls) or less (e.g. web browsing, file
download, gaming) data have to be transferred in the uplink
[6]. Thus, the investigation of techniques to improve SE and
EE in uplink is also imperative. To obtain useful insights on the
potential performance gains of the different ICLI management
techniques we characterise the system SE and overall UTs’
EE, realised in uplink, considering the system achievable sum
rate and the overall users’ Bit-per-Joule capacity, respectively.
Thus, we formulate general closed form SE and EE expres-
sions based on an information theoretic analysis. To obtain a
realistic view on the users EE-SE relationship we need to get
a full picture of the total consumed power at the UTs. To this
end, we consider a general user device consumption model
including circuit power dissipation as proposed in [22].

The main contribution of this work lies on the detailed
analysis of the different ICLI management approaches, in
terms of both system SE and overall UTs’ EE in uplink.
We first show that the best spectrum re-use strategy is to
completely isolate clusters, i.e. fully eliminate ICLI. On the

other hand, for UT power control approaches, we introduce
a mathematically tractable power control scheme and we
observe that by employing an opportunistic transmission strat-
egy, both the adverse effects of inter-cluster interference and
high energy consumption at user devices can be significantly
reduced while the positive impacts of intra-cluster joint pro-
cessing can still be exploited. Furthermore, we evaluate the
analytical expressions in the context of a real-world network
by interpreting them into a practical macrocell deployment
scenario. Our results reveal that significant gains in both EE
and SE can be yielded through appropriate energy-aware ICLI
management. In addition, we identify and analyse the effect
of various key design parameters of the practical multi-cell
system, such as inter-site distance, number of served UTs per
cell and cooperation cluster size among others, that affect the
overall UTs’ EE-SE relationship.

The rest of the paper is organised as follows. First, Section
II introduces the system model. In section III we derive the
general analytical expressions characterising the SE and EE of
the clustered cooperative network in uplink and we formulate
the general optimization problem for UTs’ performance. Sec-
tion IV presents the main approaches for ICLI management
and provides performance formulations for each case. Partic-
ularly, subsection IV-A deals with ICLI management through
spectrum re-use while subsection IV-B introduces a tractable
model to mitigate ICLI through UT power control. Section V
provides numerical results interpreting the theoretical analysis
into the context of a real-world network along with insightful
observations and evaluation on overall UTs’ EE-SE relation-
ship. Finally, concluding remarks are given in section VI.

For the mathematical formulations in the paper, the follow-
ing hold. Scalars, variables, column vectors, matrices and sets
are denoted by capital italic, lowercase italic, bold lowercase,
bold capital and calligraphic letters respectively.1n denotes
the all ones column vector of sizen while In denotes ann×n
identity matrix. Moreover,(∙)∗ denotes the complex conjugate,
(∙)† denotes the conjugate transpose matrix,|∙| denotes the
norm of a complex scalar,E [∙] stands for the expectation of the
respective scalar or matrix andΛ(∙) stands for the covariance
matrix of the respective vector.CN represents a complex
Gaussian distribution.Zn is the finite set of integers modulon.
Symbols, and

a.s.
−−→
n→∞

stand for “is defined as” and “converges
almost surely whenn tends to infinity”, respectively.

II. SYSTEM MODEL

This section introduces the system model considered in this
paper including the main assumptions on the network setup,
the propagation and the channel model.

A. System Deployment

The uplink of a linear cellular grid, as shown in Fig. 1,
is considered in this paper, similar to the one presented in
[23]. The linear model has been extensively used in theoretical
works as it provides very accurate insights on the performance
of most practical cellular networks (e.g. see [11], [24], [25])
while keeping the mathematical analysis tractable. It is also
rather suitable for describing several real-world scenarios, e.g.
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Fig. 1. Multi-cell system with clustered cooperation.

highways , train lines or railway networks, satellite cellular
networks. Thus, we consider a system comprisingN cells,
each served by a single antenna BS positioned at its centre.
Note that since each BS forms a single cell, both terms will
be used interchangeably hereafter. Thus, when for example it
is mentioned that a UT is in cellq, this means that this UT is
associated with theqth BS forming this specific cell. The Inter-
Site Distance (ISD) between consequent BSs is assumed same
for any two BSs. Moreover,K single antenna UTs are at any
time associated with each BS. We consider the UTs uniformly
positioned across the grid of their associated cell; the uniform
positioning renders the mathematical analysis of the system
more tractable while providing a precise approximation of
the average effect from randomly positioned UTs over a
reasonable amount of system instances [26]. It is noted that
both system geometry and UT spatial distribution can be
adjusted to any other higher complexity topology scenario.

Furthermore, we consider multiple subsequent BSs forming
cooperation clusters. Cooperation among BSs is limited only
to those belonging to the same cluster; hence, aJoint Processor
(JP) in each cluster of cells can be considered to jointly decode
all received signals from UTs in that cluster. We consider
that each of theM total formed clusters comprisesQ BSs
with Q � N . It is further assumed that cooperating BSs
are perfectly synchronised in frequency and time (e.g. by
using a global positioning system), JPs have perfect knowledge
of the channels between UTs and BSs in their assigned
cluster (e.g. through an efficient estimation process achieving
accurate channel state information at BSs, extracted through
UT transmissions), while unlimited, delayless and error-free
information exchange is taking place between JPs and their
assigned cluster BSs (e.g. through a high-speed fiber backhaul
network) [27]. Thus, each cluster can be essentially viewed
as a DMIMO system. Moreover, a wideband medium access
scheme is considered, as defined in [11], where at any time all
activeUTs in the cluster (assumed as many as the BSs in the
cluster) share non-orthogonally the whole system bandwidth
and their signals get perfectly decoded at the cooperating BSs,
i.e. no intra-cluster interference is considered.

B. Channel Model

For the channel model we consider the complex baseband
of linear and memoryless flat fading channels. Hence, the
received symbolym,q at the BS in any cellq ∈ ZQ of any
clusterm ∈ ZM , at any time, can be viewed as the sum of the
simultaneously transmitted symbolsxm,q̇,k from all theQK
UTs in the same cluster of cells plus the interfering symbols
xṁ,q̇,k from UTs in cells outside the cluster of interest,

∀q̇, ṁ ∈ ZQ,ZM respectively, all appropriately scaled by
channel attenuation coefficients, plus the noisenm,q realised
at the reference BS:

ym,q =

Q∑

q̇=1

K∑

k=1

ςm,qm,q̇,kg
m,q
m,q̇,kxm,q̇,k

+
∑

ṁ 6=m

Q∑

q̇=1

K∑

k=1

ςm,qṁ,q̇,kg
m,q
ṁ,q̇,kxṁ,q̇,k + n

m,q, (1)

where ςm,qṁ,q̇,k and gm,qṁ,q̇,k denote the path loss and flat fading
coefficient, respectively, experienced in the transmission path
between BSq in clusterm and UTk ∈ ZK in cell q̇ of cluster
ṁ. Path loss coefficients are determined based on a power-

law path loss model [28]:ςm,qṁ,q̇,k =
(
1 + dm,qṁ,q̇,k

)−η/2
with

η denoting the path loss exponent anddm,qṁ,q̇,k defined as the
distance along the direct path. Each UT is assumed to have
an average transmit power constraint, i.e.E [xx?] ≤ Pmax.
Moreover, flat fading coefficients are independent identically
distributed (i.i.d.), complex circularly symmetric (c.c.s.) Gaus-
sian random variables, i.e.g ∼ CN (0, 1). Furthermore,nm,q

denotes the AWGN realised at any BSm in cluster q with
powerσ2, i.e. n ∼ CN (0, σ2).

ICLI can be assumed a sum of numerous complex Gaussian
inputs and thus, can be viewed as an, independent from the
AWGN, additional noise component at the BSs. Hence, the
power of the undesired symbolzm,q, i.e. the sum of ICLI and
AWGN, can be given by:

E
[
zm,q (zm,q)

∗]
= σ2 +

∑

ṁ

Q∑

q̇=1

K∑

k=1

E
[(
ςm,qṁ,q̇,kg

m,q
ṁ,q̇,kxṁ,q̇,k

)(
ςm,qṁ,q̇,kg

m,q
ṁ,q̇,kxṁ,q̇,k

)∗]
. (2)

We note that the treatment of ICLI as an additional noise
component is not the optimal approach for achieving capacity
in any system; for example, in the simpleinterference channel
case, the optimal approach depends on the strength of the in-
terference links and considering interference as noise is proved
to be optimal only forvery weak interference[29]. However,
this is a fairly valid assumption for practical macrocell systems
which will constitute the focus of this work; in such systems
the average interference originating from UTs in adjacent
clusters, when compared to the average desired received power
in the cluster of interest, can be considered weak enough.

III. SPECTRAL AND ENERGY EFFICIENCY

In this section we characterise the system SE and the
overall UTs’ EE, realised in uplink, to establish general closed
form solutions for each individual metric as well as for their
relationship. To this end, we first regard theper-cluster ergodic
achievable sum rate(sum of all UT rates in the cluster)
to evaluate the SE of the system. We use an information
theoretic analysis for its derivation and provide a closed form
approximation formula. We then define the BS contributing
rate metric, which can stand as a useful measure for clustered
systems. On the other hand, user-side EE is characterized



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 4

by the Bit-per-Joule Capacity, focusing on the efficient use
of UTs’ energy to transmit their data. We adopt a realistic
UT power consumption model and discuss how overall UTs’
EE gains can be realised in the uplink of any cooperative
system where multiple cells exchange receive information to
manage ICI. Finally, we formulate the general analysis for the
performance optimization of the system.

A. System Spectral Efficiency: The Ergodic Sum Rate

For the performance analysis we assume that all clusters
are identical, e.g. a circular model can be considered to avoid
system edge effects [30]. In that case, results from a single
cluster analysis become valid for the whole system. Thus, the
baseband cluster channel model, for any clusterm, can be
expressed in matrix form as:

ym = Hmxm +HmI x
m
I + n

m = Hmxm + zm , (3)

whereym ,
[
ym,1 . . . ym,Q

]T
stands for theQ× 1 received

symbol vector by all BSs in the cluster, jointly processed at the
corresponding JP;xm ,

[
xm,1

T . . . xm,Q
T
]T

is theQK× 1
transmitted symbol vector from all UTs in the cluster, with
xm,q , [xm,q,1 . . . xm,q,K ]

T denoting the concatenation of
the transmitted symbols from theK UTs in cell q; H is
the overallQ × QK cluster channel gain matrix comprising
the respective channels’ path loss and flat fading coefficients;
finally, zm = HmI x

m
I + n

m ,
[
zm,1 . . . zm,Q

]T
denotes the

Q × 1 noise plus interference vector, withxmI representing
the (M − 1)QK × 1 transmitted symbol vector from all UTs
outside the cluster,HmI standing for theQ × (M − 1)QK
respective channel gain matrix andnm being the theQ × 1
AWGN vector. Since all clusters are considered identical we
omit the cluster superscript index in system matrices hereafter.
Cluster sum rate is bounded by the joint mutual information
between the UTs and BSs in clusterm and thus, assuming that
the UTs apply independent, complex Gaussian codebooks and
that channelH is fully known at the cluster BSs, the ergodic
achievable cluster sum rate (orcapacity) is given by:

C ,WEg

[

log2

(
det (HΛxH

† +Λz)

det (Λz)

)]

bits/sec, (4)

whereΛz is the noise plus interference covariance matrix,
W is the system bandwidth and the expectation is taken over
all the system fading realizations. Considering separately the
numerator and denominator inside the logarithmic function
in (4), Jensen’s inequality (i.e.E [φ (A)] ≤ φ (E [A]), for
any convex functionφ and matrixA) [31], can be applied
(since− log det is a convex function [32]), and in fact reduce
to equality; for large enough number of users per cell, the
dimensionality of matrices in (4) becomes large, with im-
proved eigenvalue distribution, rendering safe to assume them
converging to deterministic matrices according to the law of
large numbers [11]. In that case:

Eg
[
log2 det

(
HΛxH

† +Λz
)]

K→∞
−−−−→ log2 detEg

[
HΛxH

† +Λz
]

(5)

and
Eg [log2 det (Λz)]

K→∞
−−−−→ log2 detEg [Λz] . (6)

Thus, cluster capacity converges as:

C =WEg

[

log2

(
det (HΛxH

† +Λz)

det (Λz)

)]

K→∞
−−−−→W log2

(
detEg

[
HΛxH

† +Λz
]

detEg [Λz]

)

. (7)

Note that in Section V, we verify through simulations that the
above convergence stands for a tight approximation in practical
systems with reasonable number of UTs per cell.

We further approximate cluster capacity while considering
different transmit power at each UT. We introduce the overall
UTs’ transmit power profilep , [P1,1 . . . Pq,k . . . PQ,K ]

T as
the vector defining the set of the transmit powers from all
UTs in the cluster. Thus, by assuming independent inputs,
theQK ×QK input covariance matrixΛx will be diagonal,
constrained by the maximum UT transmit power:

Λx , E
[
xm (xm)

†
]
= p (1QK)

T ≤ Pmax ∙ IQK , (8)

where Pq,k denotes the transmit power of UTk in cell q
of any cluster. Furthermore, considering (2) and the Rayleigh
nature of the flat fading, the expected noise plus interference
covariance matrix will be of the form:

Eg [Λz] = Eg
[
nn† +HIΛxIHI

†
]

a.s.
−−→
K→∞

diag









Q elements
︷ ︸︸ ︷

. . . σ2 +
∑

ṁ

Q∑

q̇=1

K∑

k=1

Pq̇,k

(
ςm,qṁ,q̇,k

)2
. . .









. (9)

By substituting (7), (8) and (9) in (4) and recalling that the
determinant of a diagonal matrix is the product of its diagonal
elements, we get:

C
a.s.
−−→
K→∞

W log2

Q∏

q=1



1 +

∑Q
q̇=1

∑K
k=1 Pq̇,k

(
ςm,qm,q̇,k

)2

σ2 +
∑
∀ṁ 6=m

∑Q
q̇=1

∑K
k=1 Pq̇,k

(
ςm,qṁ,q̇,k

)2




 , Rm.

(10)

To comprehend the convergence in both (9) and (10) it is high-
lighted here that: 1) at the diagonal entries ofEg

[
HΛxH

†
]

andEg
[
HIΛxIHI

†
]
, takes place the productEg

[
|g|2
]
= 1

and; 2) at the off-diagonal entries, we consider the fact that the
expectation of the product of two different realisations of the
fading coefficientsEg

[
g (ǵ)

∗]
= 0, whereg 6= ǵ, indicating

that both Eg
[
HΛxH

†
]

and Eg
[
HIΛxIHI

†
]

converge to
Q×Q diagonal matrices. In this paper, the approximated sum
rate formulation in (10), i.e.Rm, is used to assess the SE of
the system which stands for solidly tight approximation (as
will be shown in section V).



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 5

1) Individual BS Contribution on Sum Rate:The cluster
sum rate given in (10) can be written in an equivalent
condensed form:

Rm =W

Q∑

q=1

log2

(

1 +
Pm,qD

Pm,qU

)

, (11)

wherePm,qD andPm,qU stand for the desired (from UTs within
the region of the respective JP) and the undesired (i.e. interfer-
ence plus noise as given in (2)) power received, respectively,
in BS q of clusterm. We can define thecontribution of theqth

BS on cluster sum rateas:

Rm,q ,W log2 (1 + SINRm,q)

=W log2




1 +

∑Q
q̇=1

∑K
k=1 Pq̇,k

(
ςm,qm,q̇,k

)2

σ2 +
∑
ṁ

∑Q
q̇=1

∑K
k=1 Pq̇,k

(
ςm,qṁ,q̇,k

)2






(12)

where SINRm,q , Pm,qD /Pm,qU is the Signal-to-Interference-
plus-Noise-Ratio (SINR) realised at the respective BS. Note
that the equality in (12) comes from the fact that SINRm,q

actually refers to theqth individual product term in (10).
Generally, due to cluster edge effects, an uneven SINR dis-
tribution is realised among BSs in the cluster as desired (due
to cooperation) and undesired (due to ICLI) average received
power at each BS will highly depend on its location within
the cluster. The BS contribution rate can be used as a useful
figure of merit as in some way reveals the portion of the cluster
sum rate that can be attributed to each individual cooperating
entity; thus, it could provide important information to network
operators for optimizing clustering among cells (i.e. deciding
which BSs should cooperate with each other) or even for
the actual deployment (e.g. installation locations) of BSs.
Therefore, in Section V, we also provide results for the
individual BS contributing rates as this analysis can become
a useful starting point for future research on that area.

B. Overall Users’ Energy Efficiency: The Bit/Joule Capacity

To evaluate the EE of all active UTs in the network
during uplink, it is important to adopt an appropriate metric
that characterizes the correspondence between theconsumed
resources(i.e. the total energy consumed by UTs during
transmission) and theattained utility (i.e. the uplink useful
information exchange in Bits). Therefore, we focus on the
UTs’ Bit-per-Joule Capacitywhich is a very important metric
for capacity limited future multi-media applications systems.
In order to get a realistic view of the total consumed energy
at UTs during transmission mode we have to consider both
transmit power (Pq,k) andcircuit power (PC,k) at anykth UT
in any cellq. Circuit power represents the energy consumption
of the UTs electronics and is considered independent of data
rate [22]. On the other hand, transmit power of each UT will
be decided by the chosen transmit power profile. In general,
the power of a UTk in cell q can be given by:

P TOT
q,k = PC,k +

Pq,k

εk
, (13)

whereεk ∈ [0, 1] denotes the efficiency of the power amplifier
at the UT. We note that in reality, the circuit powers and
power amplifiers of different UTs are largely variant. However,
to analytically model the overall UTs’ EE, without any loss
of generality, we normalise the circuit power of any UT to
an averagePC value and assume ideal power amplifiers, i.e.
εk = ε = 1, ∀k; the UTs’ power differences, in the sense of
various circuit power and amplifier efficiency values perceived
at different user devices, can be simply absorbed into the
channel coefficients or the noise variances in equation (10).
Thus, average UT EE,U , can be formulated as:

U ,
Rm∑

q

∑
k P

TOT
q,k

=
Rm

QKPC +
∑
q

∑
k Pq,k

bits/Joule.

(14)
Eventually, it becomes obvious from (14) that the average

UT EE realised at any cooperative system depends on two
factors: 1) the sum rate achieved and; 2) the sum power used
by UTs. Thus, there exist two types of overall UTs’ EE gain:
1) theSE-related EE gain, which is in fact equivalent to the SE
gain realised due to BSs cooperation and 2) thePower-related
EE gainwhich arises from any power usage reductions at UTs.
Note that the Power-related EE gain is more implicitly linked
to UTs’ green operation as it has to do with the reduction of
the total energy consumed over a time period and thus, the
energy cost reduction.

C. Performance Optimisation Problem

We formulate now the UTs’ performance optimization prob-
lem. In (10) and (14), we have derived analytical formulas
to calculate system SE and overall UTs’ EE, respectively, as
functions of: transmit power profilep; cluster sizeQ; number
of UTs per cellK; topology and propagation system setup
(ISD, η); and system bandwidthW . Furthermore, EE is also
a function of UTs’ circuit powerPC . The general optimization
problem can be expressed as:
[
p̂, Q̂, K̂, ˆISD, η̂, Ŵ , P̂C

]
=

arg max
p,Q,K,ISD,η,W,PC

F (p, Q,K, ISD, η,W, PC) |X , (15)

whereX represents the set of all system constraints andF
can be either the SE or EE performance metric. Expression
(15) stands for a high-dimensional optimization problem, non-
convex due to the discreteness of most optimization parameters
and thus, difficult to solve. We can, however, simplify the
problem by fixing certain parameters.

As already mentioned, our interest lies on optimizing the
overall UTs’ EE-SE relationship by achieving the maximum
system SE while at the same time identifying the possi-
ble UTs’ EE gains that can be attained. Therefore, in the
following, we define and investigate theoptimal transmit
power profile, p?, such that the cluster sum rateRm is
maximized under the given system set of power constraints
and parameters(Q,K, ISD, η,W, PC). Along with Pmax, we
consider a minimum transmit power constraint,Pmin, which
represents the minimum average power needed at any UT
during transmission mode to perform operations like signaling
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and/or other emergency communications. Thus, we determine:

p? = arg max
p∈{p|Pmin≤Pq,k≤Pmax,∀(q,k)}

Rm (p) , (16)

where the set{p|Pmin ≤ Pq,k ≤ Pmax, ∀(q, k)} stands for the
feasible set of transmit power vectors under the specific power
requirements posed. The corresponding EE-SE relationship
will then be given as:

U (p?) ,
Rm (p

?)
∑
q

∑
k P

TOT
q,k (p

?)
. (17)

Now, we can make some further observations regarding the
UTs’ EE-SE relationship. In the clustered cooperative system,
two main “forces” decide the overall experienced SE gain; in
one hand, there exists a positive effect due to ICI management
through cooperation within the cluster (represented by the
desired received powerPm,qD in (11)); in the other hand, there
is a negative effect due to ICLI (included in the undesired
received powerPm,qU in (11)). It becomes obvious from (10)
that bothPm,qD and Pm,qU are functions of the UTs’ transmit
power profile, following the same convexity, i.e. for any two
profilesp1 � p2, choosingp1 instead ofp2 will increase both
Pm,qD andPm,qU (and essentially, both the cooperation and ICLI
effect) and vice-versa. Furthermore, the EE gain is also directly
a function of the UTs’ transmit power profile. Therefore, for
a “green” clustered cooperative system, we should target to
improve UTs’ EE-SE relationship by bringing the right balance
among: 1) thecooperation effect; 2) the ICLI effect and;
3) the UTs power usage1. In the following, we analyse the
feasible ICLI management techniques which aim to engage
either separately or jointly these factors in an efficient way to
improve the overall UTs’ performance in the multi-cell system.

IV. I NTER-CLUSTER INTERFERENCEMANAGEMENT

In this section, we investigate efficient ways to suppress
ICLI in the uplink of cooperative systems. We categorise
ICLI management based on the way system resources are
accessed among the clusters: a) Fully- or Partially-Orthogonal
inter-cluster medium access throughSpectrum Re-use; and
b) Non-Orthogonal inter-cluster medium access through UT
Power Control. We analyse both approaches to acquire EE-SE
formulations; our main target is to identify under which condi-
tions an ICLI management technique becomes the “greenest”
solution, i.e. providing the highest improvement in overall end
user devices’ EE. We also show why partially-orthogonal inter-
cluster medium-access techniques are suboptimal in terms of
capacity compared to the fully-orthogonal one. Furthermore,
we discuss shifting clustering as a potential solution to im-
prove system fairness, in terms of per user performance.

A. Spectrum Re-use

1) Fully-Orthogonal access:First, we analyse the case
where spectrum re-use achieves the total elimination of ICLI.

1Note that in (17), if the UT circuit power is much larger than the
average transmit power, i.e.QKPC �

∑
q

∑
k
Pq,k (see also (14)), the

total UTs power becomes independent of the transmit power vector, i.e.∑
q

∑
k
P TOT
q,k
6∝ p. In that case, the EE is also maximised byp?.

Fig. 2. Descriptive illustration of the two Spectrum Re-use techniques
(example forL = 1). With Spectral Isolation technique, central cells are
allocated full system resources while adjacent edge cells orthogonally use
bandsW1 andW2 (in our case,W1 =W2 =

Wmax+Wmin
2

). By Partially-
Orthogonal Access, multiple spectral sub-bands, e.g. areas A and B, instead
of the whole spectrum, can be allocated to cells (see also Appendix A).

We define this as theSpectral Isolation(SI) technique. Either
frequency or time division approaches can be considered to
isolate the clusters from each other. Without any loss of
generality, we assume that a BS at any reference cell can
“hear” users residing at a maximum ofL cells away from this
reference cell, i.e. BSs can receive signals from UTs residing
in their cell and inL cells from each side. To efficiently
take advantage of thismaximum ICI span, we employ the
orthogonal medium access only between neighbouringL edge
cells from each side of a cluster while letting all othercentral
cells to use the full system resources. Therefore, BSs and UTs
at the 2L edge cells of each cluster are orthogonally using
spectrumW1 or W2, with W1 = W2 = W

2 , to respectively
receive and transmit (see Fig. 2) and ICLI at the edges of each
cluster is avoided.

The sum rate at any cluster, and therefore the corresponding
UTs’ EE, can be investigated separately for each spectrum
sub-band. The average UT EE in that case will be given by:

USI =
1

W

(
W1U

(1)
SI +W2U

(2)
SI

)
, (18)

whereU (i)SI is the average UT EE achieved at spectrumWi.
With no ICLI in the system, the maximum sum rate is
achieved, as in the global cooperation case [25], when all UTs
are always allowed to transmit with their maximum allowed
powerPmax, i.e. p? = Pmax ∙ 1QK . Based on (7) and (14),
adopting the same approximation approach as for (10) and
taking into consideration the cluster edge effects to create the
HH† matrix we can findU (i)SI for anyQ ≥ 2L+ 1 as:

U
(i)
SI =

W log2
∏
q∈Q2

[

1 + KPmax
σ2

∑

q́∈Qi

∑K
k=1

(
ςm,qm,q́,k

)2
]

QK (PC + Pmax)
,

(19)
whereQ2 andQ1 denote the sets of allQ cells and allQ−2L
central cells of any cluster, respectively. Hence, the average UT
EE will be given by replacing (19) in (18).
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2) Partially-Orthogonal Access:A question that legiti-
mately arises is if the use of a partially-orthogonal medium-
access spectrum re-use technique, i.e. splitting the spectrum
band into more than two sub-bands and letting UTs and BSs
of a cell to use a part of those resources, could improve the
capacity of the system (see Fig. 2). The answer to this question
is not trivial. By controlling the band of the spectrum allocated
to the BS and UTs of each cell we not only decrease the
undesired power received to each BS in the neighbouring
clusters but also the total desired power received at BSs
in the cluster of interest. Our target is to investigate what
happens with the achievable sum rate given these two effects
of simultaneous increase or decrease of desired and undesired
received power. Since there is also not any Power-related gain
induced in this case the same conclusion will apply for the
UTs energy performance.

In Appendix A it is shown that the effect of allocating an
extra sub-band to any cellq of any clusterm in the system will
always be either positive or negative in terms of the achievable
cluster sum rate. Therefore, the best strategy is to allocate
either half (i.e. SI technique, to isolate clusters in case the
negative effect of ICLI is dominant), or the whole (i.e. non-
orthogonal access, to take advantage of the cooperation gain
in case this effect is dominant) of the total available spectral
resources to each cell.

B. UT Power Control

Unarguably, spectrum re-use techniques, although mitigat-
ing effectively ICLI, they are bandwidth wasting and es-
sentially limit the achievable system SE. As an alternative
solution, non-orthogonal multiple access techniques can be
considered where UTs and BSs in all clusters are allowed to
exploit the full spectrum available to the system and UT power
control is employed to manage the ICLI. We define this as the
Power Control(PC) approach. It should be also noted that in
that case, where ICLI is present, allowing every UT to transmit
with Pmax does not necessarily maximise cluster sum rate
anyway; in particular, recalling (10), it is obvious that sum rate
is not a linear function of the transmit power profile. Therefore,
an alternativep? � Pmax ∙ 1QK may exist as a solution for
the optimization problem stated in (16). Moreover, it becomes
apparent that this solution, since it provides Power-related
EE gain, will be “greener” regarding overall UTs’ energy
consumption. In the following we construct a mathematically
tractable model for the overall UTs’ transmit power profile
which will help us to investigate efficient UT power control
solutions that can improve the UTs’ EE-SE relationship.

1) Piecewise Linear Combined Transmit Power Profile:
Since we are interested on the ergodic performance of the
system, we assume that a UT’s location defines the aver-
age strength of its signal over a large enough time period.
Therefore, UTs located close to the center of their respective
a) cell (defined ascell location dependency) and b) cluster
(defined ascluster location dependency), are able to contribute
more on the cluster desired received power and at the same
time cause less ICLI. In line with the observation above, two
power vectorsare introduced, i.e.pcell and pcluster, referring

Fig. 3. Piecewise linear combined transmit power profile example;Q = 7
cells forming a cooperation cluster with profile parameters:α1 = 0.6, α2 =
0.2, α3 = 0.1, β1 = β2 = 0.4, β3 = 0 andν = 0.2. X-axis is normalised
over Inter-Site Distance.

respectively to the cell and cluster location dependency. Based
also on insights from [33] that the cell location dependency has
a dominant role, the following decision algorithm is introduced
to model any heuristic transmit power profilep:
{

(p)j = (pcell)j , (pcell)j ≥ (pcluster)j
(p)j = ν (pcell)j + ν́ (pcluster)j , (pcell)j < (pcluster)j

}

(20)
where (∙)j refers to thej th element of the respective power
vector,ν (with 0 ≤ ν ≤ 1) is a weighting parameter and́ν =
1 − ν. Furthermore, we introduce a mathematically tractable
piecewise linear modelwith additional weighting parameters
α1, α2, α3 for pcell and β1, β2, β3 for pcluster to control the
curve of each transmit power profile (see Fig. 3):

0 ≤ α1, β1 ≤ 1 - edge-UTswith Pmin (21a)

0 ≤ α2, β2 ≤ 1 - center-UTswith Pmax (21b)

0 ≤ α3, β3 ≤ 1 - definePmin = α3Pmax, β3Pmax (21c)

with (α1+α2), (β1+β2) ≤ 1. Termsedge-andcenter-refer to
the respective location of the UT on either the cell or cluster.

We first focus on the power vectorpcell. Since the power of
a UT will be a function of distances from its respective BS,
its elements should take values from the set:





Pmin = α3Pmax , 1
2 ∙ ISD(1− α1) ≤ s ≤ 1

2 ∙ ISD

P (s) , 1
2α2 ∙ ISD≤ s ≤ 1

2 ∙ ISD(1− α1)

Pmax , 0 ≤ s ≤ 1
2α2 ∙ ISD






(22)
where power functionP (s) is defined as:

P (s) , Pmax

(

α3 + (1− α3)
|s− 12 ISD(1− α1) |
1
2 ISD(1− α1 − α2)

)

.

(23)

For thepcluster power vector, the set of elements is obtained
similarly as above with ISD andα parameters in (22) and (23)
replaced byQ∙ISD andβ, respectively. It can be observed that
the proposed transmit power profile requires the assignment of
Pmax to at least one UT in any cluster. This design decision
originates from another important remark:“if a UT maximum
power constraint exists, at least one element of the optimal
transmit power profilep? must be equal to that constraint.”
The proof is provided in Appendix B. Furthermore, Fig.
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3 illustrates a descriptive example of the piecewise linear
combined transmit power profile.

Therefore, based on (7) and (14), the average UT EE for
the PC technique will be given by:

UPC=

W log2
Q∏

q=1





1 +

Q∑

q̇=1

∑
K

k=1
Pq̇,k(s)(ςm,qm,q̇,k)

2

σ2+
∑

ṁ

Q∑

q̇=1

∑
K

k=1
Pq̇,k(s)(ςm,qṁ,q̇,k)

2







QKPC +
∑
q

∑
k Pq,k (s)

,

(24)
where each UT powerPq,k (s) , ∀q, k, is obtained from the
piecewise linear combined transmit power profile according
to the chosen weighting parameters.

C. Shifting Clustering. A solution for Fairness

In a “static” cellular system, where UTs rarely move to
other cells, the UTs at edge cells from each cluster will
“suffer” from the ICLI management techniques and they will
be able to achieve less performance than the ones located at
central cells. For a more balanced system with equally served
UTs, a Shifting Clusteringstrategy could be considered for
implementation where all the cells eventually acquire every
possible position within the cluster for equal amount of time
during a large period. This strategy would render possible
for all UTs to achieve similar performance. Such shifting
clustering could be achieved by either having the “active”
backhaul links between the JPs and BSs change periodically
with time or allowing JPs to connect with each other or to
another processor so as clusters are virtually altered (i.e. the
processors change the cells that are jointly processed) over
time. In the linear system, at least2Q− 1 (instead of onlyQ)
BSs need to be able to be connected (physically or virtually) to
the same central processor in order for each cell to assume all
possible positions within a cluster. Thus, on an overall system
performance evaluation, one has to take into account the extra
cost induced due to the increased backhauling needs. All in
all, there will be a tradeoff between the extra induced cost
and the advantage of achieving fairness in the sense of UTs
performance. This study is of course out of the scope of this
paper but a promising fairness solution is indicated here as an
interesting direction for future research.

V. EVALUATION AND DISCUSSION

This section aims to interpret the information theoretic
results into a practical system scenario and evaluate UTs
spectral and energy performance in the context of real-
world cellular networks. To this end, an exemplar UMTS-
based system model and propagation parameters suggested by
3GPP in [34] are chosen. Path loss coefficients are computed
considering power lossG0 at unit reference distance as:
ς (d) =

√
G0 (1 + d)

−η/2 while G0 is fitted to the respective
“Urban Macro - LOS” empirical scenario. Table I summarises
the various system parameter values and ranges.

The approximationanalytical results on UTs’ EE-SE rela-
tionship (i.e. derived using (10)) have been validated through
hybrid event-driven/Monte-Carlo simulations. Averagednu-
merical results (i.e. derived using (4)) were obtained from

TABLE I
SYSTEM MODEL PARAMETERS

Parameter Symbol Values & Ranges
ChannelBandwidth B 5 MHz

Thermal Noise Density atBS N0 −169 dBm/Hz
UTs perCell K {20, 100}

Inter SiteDistance ISD 100 m to 5 Km
ReferenceDistance d0 1 m

Power Loss at ReferenceDistance G0 −34.5 dB
Path LossExponent η {2, 3, 3.5}

UT Max Transmit Power Pmax 23 dBm
Average UT Circuit Power PC 20 dBm
Cooperation ClusterSize Q 1 to 7

generating 100 random system instances to construct the
system channel matrices at each instance. More specifically, at
each system instance, the BSs-UTs distances were calculated
by uniformly placing the UTs across the system grid. At the
same instance, Rayleigh fading coefficients were generated for
all UT-BS links in the network.

A. Simulation Setup and Initial Observations

Here, we aim to define the scenarios of interest and narrow
down the focus of our research on the most beneficial cases
regarding system performance. The first inquisition appertains
the system topology and the propagation environment. The
urban macro system is a multi slope environment which means
that the path loss exponent highly depends on the UT-BS
distances [14], [35]. Therefore, since the ISD relates directly
with the average UT-BS distances, it is safe to define the
system densityaccording to the combination of ISD andη
system parameters. Three representative system density sce-
narios are defined and examined in the following: 1) “Dense”
(ISD= 100m, η = 2); “Medium” (ISD= 600m, η = 3); and
3) “Sparse” (ISD= 2Km, η = 3.5). Moreover, low values of
L (maximum ICI span) are considered (i.e.L = 1 or L = 2)
since few strong interferers are expected in the examined urban
macro system. In fact, this expectation was verified through
the simulations where it was observed that, for all examined
density scenarios, considering values ofL > 2 in both SI and
PC techniques overestimates the amount of strong interferers
and leads to suboptimal system performance.

Furthermore, an exhaustive search was performed to nar-
row down the best performing transmit power profiles for
the PC technique. It was recognised that it is always more
significant for the UTs to manage their power according to
their cell location dependency. It was also observed that the
most efficient strategy is to allow few “best” channel UTs
in each cell to transmit atPmax, while advising most of
the rest to usePmin during that communication slot. This
observation comes in agreement with the mathematical proof
in Appendix B, suggesting that at least one element of the
sum rate maximising vectorp? must be equal toPmax. Thus,
in the following we mainly concentrate on this advantageous
cell-based opportunistic transmission strategywith weighting
parametersv = 1, α1 = 0.45 andα2 = 0.05. Note that this
transmission strategy is more applicable to an elastic traffic
case, for delay tolerant applications, e.g. data transfer through
internet access.
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Fig. 4. Effect of inter-cluster interference management. UTs’ EE vs. system
SE for various ICLI management techniques and system density scenarios.
Q = 6, K = 20, Pmax = 200mW, α3 = 0.

B. Results and Evaluation

In light of the above insights, we begin the evaluation of the
overall UTs’ EE-SE performance for the different ICLI man-
agement techniques while investigating the pragmatic effect of
the various system parameters.

1) General Comparison of ICLI Management Techniques:
Firstly, in Fig. 4 we compare the performance achieved by
the SI and the PC techniques for different system density
scenarios. In addition, we examine the benchmark case ofNo
Power Control(NPC) where UTs and BSs in all clusters use
the full spectrum available to the system and all UTs transmit
with Pmax causing the maximum possible ICLI. We consider
cooperation clusters of sizeQ = 6 and for fair comparisons we
assume that power control in the PC technique is performed
only for UTs in the2L edge cells of each cluster, while letting
all other UTs in central cells transmit withPmax. To this end,
Fig. 4 depicts that SI technique leads to a suboptimal overall
performance when compared to NPC technique for every
examined system density scenario. This behaviour shows that,
for these scenarios, the combined positive effect from ICLI
management and negative effect from less bandwidth usage
in SI technique leads to a performance loss which is lower
than the one perceived from no ICLI management in NPC
technique. In fact, it was observed during the simulations that
SI could provide SE gain only in extremely dense deployments
(e.g. forη = 2, ISD< 100m,K > 100) which however do not
map to realistic macrocell scenarios. Moreover, it is observed
that lower maximum ICI span (i.e.L = 1 instead ofL = 2) is
preferable when the SI technique is adopted. This implies that
cooperation effect is stronger than ICLI effect in that case.

On the other hand, we observe that PC significantly out-
performs the other techniques in dense and medium density
systems. At the same time, for higher maximum ICI span (i.e.
L = 2 instead ofL = 1) overall UTs’ performance is further
improved. This is due to the fact the efficient UTs’ power
control keeps the cooperation effect vigorous while managing
ICLI effectively. Specifically for dense systems, however, ICLI
becomes considerably large, demeaning the impact of the
cooperation effect. Therefore, medium density system seems
to be the most viable scenario in general for implementa-
tion of clustered BS cooperation. In sparse scenarios, both
cooperation and ICLI effects become rather insignificant and
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Fig. 5. Average BS contribution on system SE and UTs’ EE for the various
ICLI management techniques.Q = 7, ISD= 1Km, η = 3, K = 20. For SI:
Lmax = 2. For PC:Pmax = 200mW, α3 = 0 for all cells.

thus, any attempt to manage ICLI will generally decrease the
SE of the system. For that reason it is depicted in that case
that PC technique, although still provides a slightly better EE
performance, it cannot achieve the SE of the NPC technique.
Of course, it should be mentioned here that an operator should
also consider the cost of employing cooperation and/or ICLI
management along with the expected performance gain of each
technique in order to reach to the most profitable solution.

2) Individual BS Performance Contribution:A more com-
plete view on the UTs’ EE-SE performance under different
ICLI management techniques is attained in Fig. 5. Focusing
on the advantageous medium density scenario, we examine
the average per cell SE and UT EE contributed by each
cooperating BS for the case ofQ = 7. Regarding the
“greenness” of each technique, it is evident here again that
PC is by far the highest performing one due to its implicit
energy-saving nature. However, an additional important insight
is perceived by this figure which can prove particularly useful
in case operators are required to optimize performance via
BS deployment. Under SI technique, BSs in central cells
contribute more on overall system performance than BSs in
edge cells; on the other hand, a more “fair” performance
contribution from each BS in the cluster is attained under
PC technique due to the fact that ICLI management through
this technique leads to similar average desired and undesired
received power to all BSs in the cluster (see (11)). Thus,
while no particular care on deployment is needed when PC
technique is adopted, in cases where SI technique can be
optimal (e.g. dense small cell networks), careful selection
or even re-deployment of BSs to form clusters may provide
further boost on overall performance.

3) Effect of UT power control:Having established the
superiority of the PC technique on the system scenarios of
interest, we attempt to obtain a closer look on this specific
ICLI management technique. Fig. 6 illustrates the UTs’ EE-
SE relationship for various transmit power profiles following
the cell-based opportunistic transmission strategy. Results for
the three representative system density scenarios and for
various cluster sizes (i.e.Q = 1 to 6) are obtained and also
compared with the NPC technique. We should note that the
case ofQ = 1 corresponds to the conventional case ofNo-
Cooperation among cells where similar UT power control
based techniques are used for managing ICI. This is hereafter



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 10

Fig. 6. Effect of ICLI management via UT power control on UTs’ EE-SE
relationship for various density systems and cluster sizes (K = 20). Different
transmit power profiles alter the Performance Angle (i.e. Power-related gain)
and the Performance Area Extend (i.e. SE-related gain due to cooperation) of
the linear relationship.

Fig. 7. SE-related vs. Power-related gain under PC ICLI management
technique. Effect of cooperation and UT power control on System SE and
UTs’ EE gains.K = 20, ISD = 1Km, η = 3.

defined as the NC-PC technique.

To this end, in Fig. 6, it is observed that when UTs follow a
cell-based transmission strategy, their EE-SE relationship for
anyQ remains linear, as expected considering (14). Following
a different transmit power profile changes: 1) the Power-related
gain and thus, alters thePerformance Angleof the linear EE-
SE relationship (i.e. higher angle for lower overall UTs’ power
consumption and vice versa) as well as; 2) the SE-related
gain due to cooperation defined asPerformance Area Extent
in that case. Note also that, without considering the channel
estimation overhead, more cooperation (in the sense of larger
cluster sizes) leads to higher overall performance. In particular,
it is observed that largerQ provides higher SE-related EE gain
due to cooperation (i.e. higher performance area extent) in the
medium density scenario while there is not any actual gain
in the sparse scenario. Finally, it is noted that for systems
with relaxed SE requirements, higher Power-related EE gains
may be achieved when the best channel UTs transmit with
less than the actual maximum available power, while the rest
UTs remain “silent” during the specific transmission slot.
For example, in the same figure, it is depicted that with
Pmax = 100mW (< 200mW) andPmin = 0, high UTs’ EE
can be achieved with minor system SE reduction, while the
choice ofPmin = 50mW significantly degrades the system
overall performance.

Fig. 8. Effect of System density and UT density on UTs’ EE.Q = 3,
Pmax = 200mW, α3 = 0. Arrows fuzzily denote the system density areas
of practical interest.

4) Cooperation versus ICLI Management Gain:In order
to quantify and compare the performance gains due to co-
operation and UT power control in the PC technique, we
plot system SE and average UT EE versus various cluster
sizes (Q = 1 to 6) for the medium density scenario in Fig.
7. While the improvement in SE is quite decent and equally
originates from both cooperation and ICLI management, we
attain a considerable EE gain due to the efficient UTs’ power
control. A numerical example is given when comparing the
performance achieved under NC-PC and NPC techniques to
the one of PC technique with cooperating clusters ofQ = 4
cells. In that case, it is depicted that system SE perceives1dB
gain due to cooperation plus1dB gain due ICLI management
through power control. On the other hand, UTs’ EE perceives
the same gain from cooperation (i.e. SE-related EE gain) but
in addition, there is a much more significant gain of5dB
introduced from UTs’ power control (i.e. Power-related EE
gain). This highlights the significance of the opportunistic
transmission strategy on the improvement of users’ overall
performance in a clustered cooperative system suffering from
the negative effect of ICLI.

5) Effect of System and UT density:Finally, we aim to
shed more light on the effect of system density (combined
ISD andη effect) and UT density on the UTs’ EE when PC
technique is employed. To this end, the “Dense”, “Medium”
and “Sparse” system density scenario are redefined to include
areas of practical interest (i.e. a viable combination of path
loss exponents with ISD ranges) and are fuzzily denoted in
Fig. 8. It becomes apparent, more clearly now, that medium
density systems are beneficial for increasing UTs’ EE through
clustered BS cooperation. Furthermore, regarding UT density,
by comparing upper (lower UT density) and bottom (higher
UT density) graphs in Fig. 8 we observe that lower/higher
number of UTs per cell renders denser/sparser systems more
viable for implementation of clustered BS cooperation and
vice versa. This phenomenon takes place in the examined
macrocell scenario because higher/lower UT density amplifies
more/less the ICLI effect than the cooperation effect. It is also
noted that Fig. 8 reveals the close match between analytical
and numerical results verifying the validity of the approxi-
mated EE-SE formulations arising from theoretical analysis.
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In general, the above observations give in combination a
very important indication to network engineers; cooperation
schemes should be implemented with care according to the
expected system deployment. In real network with variable
system and UT density over space and time, adaptive coopera-
tion mechanisms could make sure that appropriate cooperation
clusters and ICLI management techniques are jointly chosen
so as to always lie in the desired EE-SE performance area.

VI. CONCLUSION

In this work, we have investigated inter-cluster interference
management techniques to improve user EE-SE relationship
in uplink of clustered cooperative cellular systems. Our inves-
tigations focused on the potential Bit-per-Joule gains for all
users while at the same time the highest possible gains on
ergodic system sum rate are obtained. For this, we have tried
to find which technique, and under what circumstances, gives
a good balance between the harmful effect due to ICLI and
the beneficial effect originating from joint signal processing at
cooperating BSs.

Through the analysis, two main types of performance gain
were acknowledged, namely the SE-related gain due to the
efficient blend of cooperation and ICLI management and the
Power-related gain due to efficient power usage at users end.
Furthermore, two main feasible and effective ICLI manage-
ment techniques were identified: 1) the SI technique, based
on orthogonal resource splitting among clusters to eliminate
ICLI; and 2) the PC technique, based on an efficient cell-based
opportunistic transmission power control strategy at UTs,
where only few UTs every time take advantage of their strong
channel conditions with their serving BS, to optimize the
Power-related gain while mitigating ICLI. These techniques
were investigated in detail and compared with each other as
well as with the conventional case of no cooperation and
the scenario of clustered cooperation with total interference
allowance. In addition, various key design parameters that
affect users’ performance have been identified and their effect
is examined in detail. Specifically, these parameters are the
inter-site distance; path loss exponent; number of served UTs
per cell; UTs transmit powers; and cooperation cluster size.

Based on the investigations it was established that the PC
technique can significantly improve the energy and spectral
efficiency of the users for dense to medium density system
deployments. In fact, the medium density system, which
is the typical region of operation for macrocell networks,
proves to provide the best SE-related gain under clustered
BS cooperation while even more significant EE gains at user
terminals are achieved through overall users power control. At
the same time, lower/higher number of UTs per cell can render
denser/sparser deployments more viable for implementation of
clustered BS cooperation and vice versa. In addition, it was
noted that when SE requirements are relaxed, higher Power-
related gain may be achieved if, during a specific transmission
slot, the best channel UTs transmit with lower than the
maximum available power while the rest UTs remain silent.
On the other hand, the SI technique can only provide SE-
related gains in very dense systems and thus, could be deemed

effective for pico- or femto- cellular deployments. However,
higher cost and more complex operations may be needed for
achieving ubiquitous performance across such clustered sys-
tems; in fact, through the introduction of the BS performance
contribution metric, it was observed that adaptive selection
of BSs to form highly isolated clusters may provide further
boost on overall performance in such scenarios. In very sparse
systems, where the effects of cooperation and ICLI become
subtle, any attempt for interference management to improve
EE-SE relationship becomes rather irrelevant and thus, low
complexity non-cooperative schemes should be preferred.

We finally note that in this paper the EE gains are from
the UTs point of view. The important aspect of energy
consumption at the UT side attributes to both overall energy
consumption of the network as well as the battery longevity
of the user devices and it is a significant system design target.
The proposed ICLI management techniques could be used
in a complementary way with other popular techniques for
energy savings at user devices such as load balancing and
computational offloading. In order to obtain a view on overall
systems energy efficiency, we can additionally consider the
extra backhaul and signal processing energy needs due to
higher cooperation size. This is an interesting direction for
future research.

APPENDIX A
SUB-OPTIMALITY OF PARTIALLY -ORTHOGONAL

MEDIUM-ACCESSSPECTRUM RE-USE

In this appendix we show that for a linear clustered system
using spectral isolation for ICLI management, there is only
need of a total of two sub-bands to be allocated to the BS and
UTs of each cell.

Consider a system withQ cells per cluster, total available
spectrum bandW and an even number of total2X (with
X > 1) equal spectrum sub-bands (see Fig. 2). In general,
the cluster ergodic sum rate will be the sum of achievable
ratesR(x)m at each spectrum sub-bandWx = W

2X :

Rm =
1

W

∑

x

WxR
(x)
m , ∀x ∈ {1 . . . 2X}. (25)

Allocating half of the spectrum to each cluster, the achievable
sum rate of a clusterm will be

Rm =
1

W

X∑

x=1

WxR
(x)
m =

1

W

2X∑

x=X+1

WxR
(x)
m , (26)

since the BSs of clusterm do not operate in bandsWi, ∀i >
X. Let us now allocate bandWX+1 to cell q of clusterm.
Due to the symmetrical nature of the system, in neighbouring
clustersm−1 andm+1, the respective cellsq will be allocated
with the extra bandWX . The new band allocation is illustrated
in Fig. 2 (shaded areas A). Them-th cluster sum rate in that
case will be given by:

Ṙm =
1

W

(
X−1∑

x=1

WxR
(x)
m +WXṘ

(X)
m +WX+1Ṙ

(X+1)
m

)

.

(27)
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The allocation of the extra sub-bandX+1 at cellq of clusterm
brought an additional term in (27), i.e.WX+1

W
Ṙ
(X+1)
m , which

is due to the increase on the desired received power in the
cluster. At the same time though, the allocation of sub-band
WX in cells q of clustersm− 1 andm+ 1 results into inter-
cluster interference (or undesired received power ) for the BS
in cell q of clusterm which already operates at that sub-band
leading to a decrease on achievable rate at sub-bandWX , i.e.
Ṙ
(X)
m < R

(X)
m .

We define the rate differences:

δṘundesired, R
(X)
m − Ṙ(X)m > 0 (28a)

δṘdesired, Ṙ
(X+1)
m > 0 (28b)

and δṘm , δṘdesired− δṘundesired (28c)

with δṘm essentially reflecting the difference betweenRm
and Ṙm. Apparently, if the allocation of the extra sub-band
has an increasing effect on the achievable sum rate of cluster
m, δṘm will result into a positive value, and vice versa.

Now, compared to the previous case where sub-bandWX+1
(andWX , respectively) was allocated to cellq of clusterm
(clustersm− 1 andm+ 1, respectively), let us allocate sub-
bandWX+2 (andWX−1, respectively) to the same cellq of
clusterm (clustersm − 1 and m + 1, respectively). This
additional band allocation is illustrated by the shaded areas
B in Fig. 2. The clusterm sum rate becomes:

R̈m =
1

W

(
X−2∑

x=1

WxR
(x)
m +WXR̈

(X−1)
m +WXṘ

(X)
m

+WX+1Ṙ
(X+1)
m +WX+2R̈

(X+2)
m

)
, (29)

where, similarly as before, the extra termWX+2
W
R̈(X+2) comes

due to the increased desired power in cluster whileR̈(X−1)

is related to the arising inter-cluster interference in sub-
bandWX−1. A very important observation is that, in our
symmetrical system, the extra allocation ofWX+2 sub-band
in cell q of clusterm, the additional desired and undesired
power (and hence, the sum rate) in clusterm will be the same
as in the previous case (whenWX+1 was allocated), i.e.

R̈(X+2) = Ṙ(X+1)m (30)

and
R(X−1) − R̈(X−1) = R(X)m − Ṙ(X)m (31)

leading to:

δR̈m , R̈
(X+2)
m −

(
R(X−1)m − R̈(X−1)m

)

= Ṙ(X+1)m −
(
R(X)m − Ṙ(X)m

)
= δṘm . (32)

whereδR̈ essentially reflects the difference betweenṘm and
R̈m. Hence, the effect of allocating an extra sub-band to any
cell q of any clusterm in the system will always be either
positive or negative in terms of the achievable cluster sum rate.
That means that the allocation of more sub-bands to cells’ BSs
and UTs can only either increase or decrease the achievable
cluster sum rate. Since there is also not any Power-related gain
induced in this isolation case (i.e. UTs transmit withPmax for

achieving maximum sum rate) the same conclusion applies for
the energy performance of the system.

APPENDIX B
ON THE OPTIMAL UT POWER PROFILE

We extend a technique presented in [36] to narrow down
the possible solutions of (16). Given a real factorε > 1 and
an overall UTs’ transmit power profilep, we have from (12)
that

Rm,q (εp) , Rm,q (εP1,1, ..., εPQ,K)

=W log2




1 +

∑Q
q̇=1

∑K
k=1 Pq̇,k

(
ςm,qm,q̇,k

)2

σ2

ε
+
∑
ṁ

∑Q
q̇=1

∑K
k=1 Pq̇,k

(
ςm,qṁ,q̇,k

)2






> Rm,q (p) (33)

for all BSs q and any cluster sizeQ. Since the total cluster
sum rate isRm (εp) =

∑Q
q=1Rm,q (εp), we have also that

Rm (εp) > Rm (p) . (34)
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