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This paper investigates the decoding process of asynchronous convolutional-coded physical-layer net-5

work coding (PNC) systems. Specifically, we put forth a layered decoding framework for convolutional-6

coded PNC consisting of three layers: symbol realignment layer, codeword realignment layer, and7

joint channel-decoding network coding (Jt-CNC) decoding layer. Our framework can deal with phase8
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symbol offsets; previously proposed PNC decoding algorithms (e.g., XOR-CD and reduced-state Viterbi11

algorithms) can only deal with fractional symbol offset. Moreover, the Jt-CNC algorithm, based on12

belief propagation (BP), is BER-optimal for synchronous PNC and near optimal for asynchronous PNC.13

Extending beyond convolutional codes, we further generalize the Jt-CNC decoding algorithm for all cyclic14

codes. Our simulation shows that Jt-CNC outperforms the previously proposed XOR-CD algorithm and15

reduced-state Viterbi algorithm by 2 dB for synchronous PNC. For phase-asynchronous PNC, Jt-CNC is16

4 dB better than the other two algorithms. Importantly, for real wireless environment testing, we have17
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I. INTRODUCTION1

This paper investigates the use of convolutional codes in asynchronous physical-layer network coding2

(PNC) systems to ensure reliable communication. In particular, we focus on the decoding problem when3

simultaneous signals from multiple transmitters arrive at a PNC receiver with asynchronies between them.4

PNC was first proposed in [1] as a way to exploit network coding [2], [3] at the physical layer. In the5

simplest PNC setup, two users exchange information via a relay in a two-way relay network (TWRN). The6

two users transmit their messages simultaneously to the relay; the relay then maps the overlapped signals7

to a network-coded message and broadcasts it to the two users; and each of the two users recovers the8

message from the other user based on the network-coded message and the knowledge of its own message.9

PNC can potentially boost the throughput of TWRN by 100% compared with a traditional relay system10

[1].11

Our paper focuses on PNC decoding as applied to TWRN. To ensure reliable transmission, com-12

munication systems make use of channel coding to protect the information from noise and fading. In13

channel-coded PNC, the goal of the relay is to decode the simultaneously received signals not into the14

individual messages of the two users, but into a network-coded message. This process is referred to as15

the channel-decoding network coding (CNC) process in [4].16

In addition to the issue of channel coding, in practice, the signals from the two users may be17

asynchronous in that there may be relative symbol arrival-time asynchrony (symbol misalignment), phase18

asynchrony (phase offset), and other asynchronies between the two signals received at the relay. These19

PNC systems are referred to as asynchronous PNC (APNC) systems [5].20

Both [4] and [5] assume the use of repeat accumulate (RA) codes. Our current paper, on the other21

hand, focuses on the use of convolutional codes. A main motivation is that convolutional codes are22

commonly adopted in many communications systems (e.g., the channel code in IEEE 802.11 is a23

convolutional code [6]). Convolutional codes have been well studied and there are many good designs24

for the encoding/decoding of convolutional codes in the conventional communication setting. Given this25

backdrop, whether these designs are still applicable to PNC, and what additional considerations and26

modifications are needed for PNC, are issues of utmost interest. This paper is an attempt to address these27

issues.28

Our main contributions are as follows:29

• We put forth a layered decoding framework for asynchronous PNC system. The proposed decoding30

framework can deal with synchronous PNC as well as asynchronous PNC with relative phase offset31
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and general symbol misalignment—by general symbol misalignment, we mean that the arrival times1

of the two users’ signals at the relay are offset by (τI+τF) symbol durations, where τI is an integral2

offset and τF is a fractional offset smaller than one.3

• We design a joint channel-decoding network coding (Jt-CNC) decoder for convolutional-coded4

PNC. The Jt-CNC decoder, based on belief propagation (BP), is optimal in terms of bit error rate5

(BER) performance.6

• We implement the Jt-CNC decoder in a real PNC system built on USRP software radio platform.7

Our experiment shows that the Jt-CNC decoder works well under real wireless channel.8

• We propose an algorithm that can handle general symbol misalignment in cyclic-coded PNC,9

building on the insight obtained from our study of convolutional-coded PNC; that is, the algorithm10

is applicable to all cyclic codes, not just convolutional codes.11

The remainder of this paper is organized as follows. Section II overviews related work. Section III12

describes the PNC system model. Section IV puts forth our Jt-CNC framework, focusing on synchronous13

PNC. Section V extends the Jt-CNC framework to asynchronous PNC. We further show how the algorith-14

mic framework is actually applicable to the general cyclic-coded PNC. Section VI presents simulations15

and experimental results. Section VII concludes this work.16

II. RELATED WORK17

A. Synchronous PNC with Convolutional Codes18

The first implementation of TWRN based on the principle of PNC was recently reported in [7],19

[8]. This system employs the convolutional code defined in the 802.11 standard and adopts the OFDM20

modulation to eliminate symbol misalignment [9]. In [7], [8], first the log-likelihood ratio (LLR) of21

the XORed channel-coded bits is computed; then this soft information is fed to a conventional Viterbi22

decoder. We refer to this decoding strategy as the soft XOR and channel decoding (XOR-CD) scheme23

[10]. The experiment shows that the use of XOR-CD on the convolutional-coded PNC system, thanks to24

its simplicity, is feasible and practical.25

The acronym XOR-CD refers to a two-step process: first, prior to channel decoding and without26

considering the correlations among the received symbols due to the channel code, we apply symbol-by-27

symbol PNC mapping on the received symbols to obtain estimates on the successive XORed bits; after28

that, we perform channel decoding on the XORed bits to obtain the XORed source bits. The performance29

of XOR-CD is suboptimal because the PNC mapping in the first step loses information [4]. Furthermore,30

only linear channel codes can be correctly decoded in the second step. Jt-CNC, on the other hand,31
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performs channel decoding and network coding as an integrated process rather than two disjoint steps.1

Jt-CNC can be ML (maximum likelihood) optimal, depending on which variations of Jt-CNC we use2

and whether the underlying PNC system is synchronous or asynchronous.3

Within the class of Jt-CNC algorithms, for optimality, there are two possible decoding targets: (i) ML4

XORed codeword; (ii) ML XORed bits. To draw an analogy, for the conventional single-user point-to-5

point communication, if convolutional codes are used, then the Viterbi algorithm [11] aims to obtain the6

ML codeword, while the BCJR [12] aims to obtain ML bits. For PNC systems, the aim is to obtain the7

network-coded codeword or the network-coded bits instead.8

A Jt-CNC algorithm for finding the XORed codeword was proposed in [13]. However, as will be9

discussed later, finding the ML XORed codeword requires exhaustive search that could have prohibitively10

high complexity. Therefore, the log-max approximation is adopted in [13] and the ML algorithm is11

simplified to (approximated with) a full-state Viterbi algorithm. The term “full-state” comes from the12

fact that this algorithm combines the trellises of both end nodes to make a virtual decoder. By searching the13

best path on the combined trellis with the Viterbi algorithm, [13] tries to decode the ML pair of codewords14

of the two end nodes. To further reduce the complexity, [13] simplifies the full-state Viterbi algorithm to a15

reduced-state Viterbi algorithm. Reference [13], however, did not benchmark their approximate algorithm16

with the optimal one. As we will show later, the algorithm proposed by us in this paper can yield better17

performance than that in [13].18

In this paper, we aim to find the ML XORed bits within the codeword rather than the overall ML19

XORed codeword. In Section IV we show that our algorithm is ML XORed-bit optimal for synchronous20

PNC. Finding ML XORed bits turns out to have much lower complexity than finding the ML XORed21

codeword. This is quite different from the conventional point-to-point communication system, in which22

the simple Viterbi algorithm can be used to decode the ML codeword, and in which BCJR (slightly more23

complex than the Viterbi algorithm) can be used to decode the ML bits.24

B. Asynchronous PNC with Convolutional Codes25

In asynchronous PNC systems, the signals from the two end nodes may arrive at the relay with26

symbol misalignment and relative phase offset [5]. To our best knowledge, there was no Jt-CNC decoder27

for convolutional codes that can deal with integral-plus-fractional symbol misalignment. In [14], a28

convolutional decoding scheme with an XOR-CD algorithm was proposed to deal with integral symbol29

misalignment. As pointed out in [14], symbol misalignment entangles the channel-coded bits of the30

trellises of the two encoders in a way that ordinary Viterbi decoding, based on just one of the trellises,31
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is not applicable. Therefore the XOR-CD algorithm for synchronous PNC cannot be applied anymore1

in the presence of integral symbol misalignment. Their solution is to rearrange the transmit order of the2

channel-coded bits into blocks, and pad Dmax zeros between adjacent blocks. The zero padding acts3

as a guard interval between blocks that avoids the entanglement of channel-coded bits and facilitates4

Viterbi decoding. However, this scheme can only deal with integral symbol misalignment of at most5

Dmax symbols. In addition, it incurs a code-rate loss factor of (1 − Dmax/L) due to the zero padding6

between blocks.7

C. Asynchronous PNC with Other Channel Codes8

The use of LDPC codes in asynchronous PNC systems have previously been considered. In [5], the au-9

thors designed a Jt-CNC decoder for the RA code that can deal with fractional symbol misalignment (i.e.,10

symbol misalignment that is less than one symbol duration) and phase offset. Our decoding framework11

adopts the over-sampling technique proposed in [5] to address fractional symbol misalignment.12

To deal with asynchrony in PNC, our decoding framework consists of three layers: symbol-realignment13

layer, codeword-realignment layer, and joint channel-decoding network coding (Jt-CNC) layer. The first14

two layers, symbol realignment and codeword realignment, counter fractional and integral symbol mis-15

alignments, respectively; the third layer, Jt-CNC, decodes the ML XORed bits. Other decoding schemes16

(e.g., XOR-CD, full-state Viterbi) can also be used in the third layer of the framework. We further show17

that our decoding framework is not only applicable when convolutional codes are adopted, it is also18

applicable when general cyclic codes are used. Besides convolutional codes, an important class of cyclic19

codes is the cyclic LDPC.20

The Jt-CNC decoder proposed in [5] was extended by [15] to deal with general asynchrony using21

cyclic LDPC. However, the proposed decoder in [15] discards the non-overlapped part of the received22

signal, losing useful information that can potentially enhance performance. Therefore, for the decoder in23

[15], the larger the symbol misalignment, the worse the performance. By contrast, our framework makes24

full use of the non-overlapped portion of the signal so that the larger symbol misalignment can enhance25

performance.26

III. SYSTEM MODEL27

We consider the application of PNC in a two-way relay network (TWRN) as shown in Fig. 1 In this28

model, nodes A and B exchange information with the help of relay node R. We assume that all nodes29

are half-duplex and there is no direct link between A and B.1
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With PNC, nodes A and B exchange one packet with each other in two time slots. The first time slot2

corresponds to an uplink phase, in which node A and node B transmit their channel-coded packets simul-3

taneously to relay R. The relay R then constructs a network-coded packet based on the simultaneously4

received signals from A and B. This operation is referred to as the channel decoding network coding5

(CNC) process [10], because the received signals are decoded into a network-coded message rather than6

the individual messages from A and B. The second time slot corresponds to a downlink phase, in which7

relay R channel-codes the network-coded message and broadcasts it to both A and B. Upon receiving8

the network-coded packet, A (B) then attempts to recover the original packet transmitted by B (A) in the9

uplink phase using self-information [1]. This paper focuses on the design of the CNC algorithm in the10

uplink phase; the issue in the downlink phase is similar to that in conventional point-to-point transmission11

and does not require special treatment [10].12

A B
RUplink

Downlink

Encoder 

C(•)

Interleaver 

Π (•) +
Interleaver 

Π (•)

Encoder 

C(•)

Deinterleaver 

Π
-1

 (•)

Decoder 

C
-1

(•)

A
U

A
C A

X
B

X

R
W

R
Y

B
C B

U

R
Û

Fig. 1. System model of two-way relay network operated with physical-layer network coding.

As shown in Fig. 1, in the uplink phase, the source packets of nodes A and B each goes through a13

convolutional encoder, an interleaver, and a modulator. We adopt tail biting convolutional code1 [16] and14

block interleaver throughout this paper. We denote the source packets of node A and node B by two15

K-bit binary sequences:1

U i =
(
ui1, u

i
2, · · · , uiK

)
, i ∈ {A,B} (1)

1The use of other kinds of convolutional codes (e.g., zero-tailing and recursive) is discussed in the Appendix.
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where uik is the input bit of end nodes i’s source packet at time k. The source packets are encoded into2

two M -bit channel-coded binary sequences. We assume nodes A and B use the same convolutional code3

with code rate r = 1/R where R is an integer. In the following presentation we choose r = 1/3, thus4

M = 3K. The two channel-coded packets are5

Ci =
(
ci1, c

i
2, · · · , ciM

)
=

(
c̄i1, c̄

i
2, · · · , c̄iK

)
=

(
ci1,1, c

i
1,2, c

i
1,3, c

i
2,1, c

i
2,2, · · · , ciK,1, ciK,2, ciK,3

)
, i ∈ {A,B} (2)

where cik,j is the jth channel-coded bit of end nodes i’s channel-coded packet at time k; the 3-bit tuple6

c̄ik = (cik,1, c
i
k,2, c

i
k,3) is the output of the convolutional encoder of node i at time k. Then, CA and CB

7

are fed into block interleavers that realize the same permutation to produce8

C̃i =
(
ci1,1, c

i
2,1, · · · , ciK,1, ci1,2, · · · , ciK,2, ci1,3, · · · , ciK,3

)
, i ∈ {A,B} . (3)

Note that the permutation groups the jth coded bits of all times together into a block. There are9

altogether three blocks. Finally, C̃i are modulated to produce the two sequences of N complex symbols:10

11

Xi =
(
xi1, x

i
2, · · · , xiN

)
, i ∈ {A,B} . (4)

Throughout this paper, we focus on BPSK and QPSK modulations; our framework can be easily12

extended to higher order constellations [17]–[19]. For BPSK N=3K and xin ∈ {1,−1}. For QPSK13

N=3K/2 and xin∈1/
√

2 {1 + j,−1 + j, 1− j,−1− j}. The complex symbol sequences XA and XB
14

are shaped using a pulse shaping function p(t) with symbol duration T and transmitted. Without loss of15

generality, we assume p(t) is the rectangular pulse throughout this paper.16

Let us denote the channel coefficients of the channels from node A and node B to relay R by hA and17

hB, respectively. Both hA and hB are complex numbers, whose phase difference φ = 6 (hB/hA) is the18

relative phase offset between node A and node B. We assume that the channel state information (CSI)19

hA and hB can be estimated at the relay R using orthogonal preambles [7].20

The received complex baseband signal at the relay is21

yR(t) =
N∑
n=1

{
hAxA

n p (t− nT ) + hBxB
np (t− nT − τT )

}
+ wR(t) (5)

where τT is the symbol misalignment (i.e., the arrival time of the signal of B lags the arrival time of22

the signal of A by τT ), and wR(t) is the noise, assumed to be circularly complex with variance σ2. We1
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assume the symbol misalignment to consist of two parts: an integral part τI ∈ N+; and a fractional part2

τF ∈ [0, 1) so that τ = τI + τF.3

IV. SYNCHRONOUS CONVOLUTIONAL-CODED PNC4

This section focuses on synchronous convolutional-coded PNC, where the signals of node A and node5

B are symbol-aligned (τ = 0). We first derive the XOR packet-optimal Jt-CNC algorithm that aims at6

finding the ML XORed source packet. We show that the XOR packet-optimal algorithm has prohibitively7

high complexity. Then we introduce our XOR bit-optimal Jt-CNC algorithm for finding the ML XORed8

bits, which has much lower complexity.9

A. XOR Packet-Optimal Decoding of Synchronous Convolutional-Coded PNC10

In the case of synchronous convolutional-coded PNC, the received baseband signal at relay R is obtained11

by setting symbol misalignment τ to zero in (5):12

yR(t) =
N∑
n=1

{
hAxA

n p(t− nT ) + hBxB
np(t− nT )

}
+ wR(t). (6)

After matched filtering [5], the received baseband samples at relay R are13

Y R =
(
yR

1 , y
R
2 , · · · , yR

N

)
(7)

where14

yR
n = hAxA

n + hBxB
n + wR

n . (8)

The ML XORed source packet ÛR = (ûR
1 , û

R
2 , · · · , ûR

K) (i.e., ML XOR of the source packets of node15

A and node B) is given by16

ÛR = arg max
UR

∑
UA,UB:UA⊕UB=UR

exp
(
−M

(
XA, XB

))
(9)

where ⊕ denotes the binary bit-wise XOR operator; XA and XB are the convolutional-encoded and17

modulated baseband signal of UA and UB, respectively; and M(XA, XB) is the distance metric defined18

as follows:1

M
(
XA, XB

)
=

N∑
n=1

∣∣∣yR
n − hAxA

n − hBxB
n

∣∣∣2
2σ2

=

∥∥∥Y R − hAXA − hBXB
∥∥∥2

2

2σ2
. (10)
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For source packets UA and UB of length K, the functional mapping from UA and UB to the XORed2

source packet UR can be expressed as3

fpacket : {0, 1}K × {0, 1}K → {0, 1}K . (11)

The mapping in (11) is a 2K-to-1 mapping; that is, there are 2K possible (UA, UB) that can produce4

a particular UR. This is where the complexity lies in (9). For each XR, the baseband channel-coded5

signal corresponding to UR, we need to examine 2K possible combinations of XA and XB. The Viterbi6

algorithm is a shortest-path algorithm that computes a path in the trellis of (UA, UB). Meanwhile, each7

UR is associated with 2K paths in the trellis. There is no known exact computation method for (9) except8

to exhaustively sum over the possible combinations of (UA, UB) for each UR.9

For each possible (UA, UB), we need to sum over N terms in (10) to compute M(XA, XB). For10

a code-rate r code and M-QAM modulation, N = K/[rlog2(M)]. Computing each term in (10) takes11

two complex operations, and the summation takes (N − 1) operations. Hence the complexity of one12

combination of (UA, UB) is (3K/[rlog2(M)] − 1). Moreover, to find the maximum of (9), (2K − 1)13

comparisons are needed. Given that there are 2K possible UR, from which we want to find the optimal14

ÛR, the overall complexity is therefore 22K(3K/[rlog2(M)] − 1) + 2K − 1. In Big-O notation, the15

complexity is O(K22K).16

This is a big contrast with the regular point-to-point communication system, in which the Viterbi17

algorithm used to find the ML codeword is of polynomial complexity only. For PNC systems, the18

complexity of XOR packet-optimal decoding algorithm is exponential with K, the length of source19

packet.20

B. XOR Bit-Optimal Decoding of Synchronous Convolutional-Coded PNC21

To reduce complexity, we consider an XOR bit-optimal Jt-CNC decoder based on the framework of22

Belief Propagation (BP) algorithms. The proposed decoder aims to find the ML XORed source bit rather23

than the ML XORed source packet. We give two important results: (i) the proposed Jt-CNC decoder is24

optimal in terms of BER performance; and (ii) the complexity is linear in packet length K.25

Unlike finding ML XORed packets, for which the Viterbi algorithm is of little use, the BP (BCJR)26

algorithm can find the ML XORed source bit readily without incurring exponential growth in complexity.27

We first explain the reason before describing the BP algorithm in detail.1

October 5, 2018 DRAFT



10

The kth ML XORed source bits ûR
k , k = 1, 2, . . .K is given by2

ûR
k = arg max

uR
k

∑
ūk:uA

k⊕uB
k =uR

k

Pr
(
ūk|Y R

)
(12)

where Pr(ūk|Y R) can be calculated using the BP algorithm. Fortunately, finding the ML XORed bits in3

PNC systems has much lower complexity, because the functional mapping from (uA
k , u

B
k ) to uR

k can be4

expressed as5

fbit : {0, 1} × {0, 1} → {0, 1}. (13)

The mapping in (13) is a 2-to-1 mapping; hence for each possible XOR bit we need to examine6

only two pairs of source bits. Importantly, the BP algorithm can compute Pr(uA
k , u

B
k |Y R) easily, from7

which Pr(uA
k ⊕uB

k |Y R) can readily be obtained through the 2-to-1 mapping. Because finding a single ML8

XORed source bit in (12) takes two summations and one comparison, so finding all the ML XORed source9

bits takes 3K operations beyond the operations by the BP algorithm that computes Pr(uA
k , u

B
k |Y R), k =10

1, 2, . . .K.11

As will be elaborated later in this section, the BP algorithm has three steps. The initialization takes12

9K/[rlog2(M)] operations in (16). The forward/backword recursions take 6·22/rKS2 operations where13

S is the number of decoder’s states. The termination takes 4·22/rKS2 operations. Therefore finding the14

ML XORed source bits of length-K packets has an overall complexity of 9K/[rlog2(M)]+6·22/rKS2 +15

4·22/rKS2 + 3K. In Big-O notation, the complexity of source bit-optimal decoding algorithm is O(K).16

We next elaborate the bit-optimal Jt-CNC algorithm.17

BP is a framework for generating inference-making algorithms for graphical models, in which there are18

two kinds of nodes: variable nodes and factor nodes. Each variable node represents a variable, such as the19

state variable of the convolutional encoder; each factor node indicates the relationship among all variable20

nodes connected to it. For example the state transition function of a convolutional encoder is represented21

by a factor node. The goal of BP is to compute the marginal probability distributions Pr(uA
k , u

B
k |Y R) for22

all k. This goal is achieved by means of a sum-product message-passing algorithm [20].23

Fig. 2 shows the Tanner graph of our bit-optimal Jt-CNC decoder. Unlike the conventional point-to-point24

convolutional decoder for single-user systems with only one transmitter, the Jt-CNC decoder combines25

the states and the trellis of both transmitters A and B. In Fig. 2, vectors S=(s0, s1, · · · , sK) represents the26

state variables, where state sk combines the state of both end nodes’ states; vector U = (ū1, ū2, · · · , ūK),27

where ūk = (uA
k , u

B
k ), represents the “virtual” source packet consisting of the duple of the two source28

packets from nodes A and B; similarly, vector C = (c̄1, c̄2, · · · , c̄K), where c̄k = (c̄A
k , c̄

B
k ) (as defined in1
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0s 1s Ks

1u 2u Ku

Kc1c 2c

1f

 R

1Pr cY

2f Kf

 R

2Pr cY  RPr KcY

Fig. 2. Tanner graph of the Jt-CNC decoder on which the BP algorithm operates: sk is the state variable, ūk is the source bit,

c̄k is the channel-coded bit; fi is the factor node that represents the state transition function of the Jt-CNC decoder.

(2) c̄ik denotes the group of channel-coded bits of node i at time k), represents the “virtual” channel-coded2

packet, assuming that both nodes A and B use the same channel code. The behavior of the decoder is3

defined by the functions of the factors node fk(sk−1, ūk, c̄k, sk) that represents the state transition rule4

of the trellis.5

The goal of the Jt-CNC decoder is to find the maximum likelihood XOR bit uR
k through the a posteriori6

probability (APP) Pr(ūk|Y R) by7

Pr
(
uR
k

∣∣∣Y R
)

= max
uR
k

∑
ūk:uA

k⊕uB
k =uR

k

Pr
(
ūk
∣∣∣Y R

)
(14)

where Pr(ūk|Y R) can be computed exactly by the sum-product message-passing algorithm thanks to the8

tree structure of the Tanner graph associated with convolutional nodes [21]. The sum-product algorithm,9

when applied to decode convolutional codes, is the well-known BCJR algorithm [12]. The difference in10

our situation here is that instead of the source bit from one source, we are decoding for the bit duple11

ūk = (uA
k , u

B
k ) from the two sources.12

We now explain the sum-product algorithm in detail. Fig. 3 depicts the messages being passed around13

a factor node within the overall Tanner graph of Fig. 2. We follow the notation of the original paper on14

the BCJR algorithm [12]. In the forward direction, the message from sk−1 to fk is denoted by α(sk−1),15

and the message from fk to sk is denoted by α(sk). In the backward direction, the message from sk to16

fk is denoted by β(sk), and the message from fk to sk−1 is denoted by β(sk−1). Additionally, γ(c̄k)17

denotes the message from c̄k to fk, and δ(ūk) denotes the message from fk to ūk. Note that δ(ūk) is18

the APP Pr(ūk|Y R) and the goal here is to compute it.19

Since the Tanner graph of the Jt-CNC decoder is cycle-free, the operation of the sum-product algorithm1

October 5, 2018 DRAFT



12

1ks  ks

ku

kc

kf

 1ks   ks

 1ks   ks

 kc

 ku

Fig. 3. The messages being passed around a factor node during the operation of the sum-product algorithm.

consists of two natural recursions according to the direction of message flow in the graph: a forward2

recursion to compute α(sk) as a function of α(sk−1) and γ(c̄k); a backward recursion to compute β(sk−1)3

as a function of β(sk) and γ(c̄k).4

The calculation of Pr(ūk|Y R) can be divided into three steps: initialization, forward/backward recur-5

sion, and termination. We present these three steps in detail below.6

Initialization As usual in a cycle-free Tanner graph, the sum-product algorithm begins at the leaf nodes.

Since tail biting convolutional code is used, the initial and terminal states of end node’s convolutional

encoders are the same, and they are decided by the random input message. Therefore the initial and

terminal states are uniformly distributed among all possible states, so the message α(s0) and β(sK) are

initialized as

α(s0) =
1

NS
, ∀s0 (15a)

and

β(sK) =
1

NS
, ∀sK (15b)

where NS is the number of states per stage.1

October 5, 2018 DRAFT



13

The message γ(c̄k) is the likelihood function of c̄k based on the evidence Y R. For example, if the code2

rate is 1/3 and the BPSK modulation is used, then c̄k = (cA
k,1, c

A
k,2, c

A
k,3, c

B
k,1, c

B
k,2, c

B
k,3). These channel-3

coded bits c̄k are mapped to BPSK modulated symbols (xA
3k−2, x

A
3k−1, x

A
3k) and (xB

3k−2, x
B
3k−1, x

B
3k) at4

node A and node B, respectively. Given the overlapped signal Y R at the relay node, the likelihood of c̄k5

is calculated by6

γ(c̄k) = Pr
(
Y R |c̄k

)
=

3∏
j=1

1√
2πσ2

exp

−
∣∣∣yR

3(k−1)+j − h
AxA

3(k−1)+j − h
BxB

3(k−1)+j

∣∣∣2
2σ2

 . (16)

Forward/backward recursion After initializing the messages from leaf nodes, we can compute the

message α(sk) and β(sk) recursively by following the message update rule below [21]:

α (sk) =
∑

sk−1,ūk,c̄k

fk (sk−1, ūk, c̄k, sk)α (sk−1) γ (c̄k) (17a)

β (sk−1) =
∑

sk,ūk,c̄k

fk (sk−1, ūk, c̄k, sk)β (sk) γ (c̄k) . (17b)

Termination In the final step, the algorithm terminates with the computation of δ(ūk), which gives the7

APP of the source bit ūk.8

δ (ūk) =
∑

sk−1,sk,c̄k

fk (sk−1, ūk, c̄k, sk)α (sk−1) γ (c̄k)β (sk) . (18)

The summation in (18) is over different trellis transitions e = (sk−1, ūk, c̄k, sk) with fixed ūk, such9

that fk(e) = 1 if e is a valid transition, and fk(e) = 0 otherwise. For example, if input ūk causes a state10

transition from sk−1 to sk and the output is c̄k, then fk(e) = 1; on the other hand, if input ūk causes a11

state transition from sk−1 to a state not equal to sk or the output is not c̄k, then fk(e) = 0.12

V. ASYNCHRONOUS CONVOLUTIONAL-CODED PNC13

In this section, we present our three-layer decoding framework for asynchronous convolutional-coded14

PNC. The asynchrony causes unique challenges that the synchronous decoder in Section IV cannot handle.15

As shown in Fig. 4, when the signals of nodes A and B arrive at the relay at different times, their symbols16

can be misaligned. The symbol misalignment consists of two parts: an integral part τI and a fractional17

part τF. These two components impose different challenges: the fractional symbol misalignment causes18

overlaps of adjacent symbols so that the symbol-boundary preserving sampling as expressed in (8) is no19

more valid; the integral symbol misalignment entangles the channel-coded bits of nodes A and B in such20

a way that the decoding scheme as proposed in Section IV cannot be applied anymore.21

To address these challenges, together with the Jt-CNC decoder, we add two layers to construct an22

integrated framework illustrated in Fig. 5. First, to address the fractional symbol misalignment, the1
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Fig. 4. Symbol misalignment in PNC: a general symbol misalignment consists of an integral part τI = 2 and a fractional part

τF = 0.7.

symbol-realignment layer uses a BP algorithm at the relay to “realign” the soft information of the2

symbols. Second, the codeword-realignment layer uses an interleaver/deinterleaver set-up to accommodate3

the integral symbol misalignment. As a result, the three-layer decoding framework can deal with the4

integral-plus-fractional symbol misalignment.5

Furthermore, building on the insight obtained from our study of convolutional-coded PNC, we propose6

an algorithm that can deal with general symbol misalignment with cyclic codes. That is, our decoding7

framework can incorporate not just convolutional codes, but all cyclic codes to address the challenges in8

asynchronous PNC.1

1,0x 1,1x 2,1x ,N Nx
1,N Nx 

 R 1,1

2Pr y x R 1,0

1Pr y x  R 2,1

3Pr y x  R ,

2Pr N N

Ny x  R 1,

2 1Pr N N

Ny x 



o e
e

 A B R

1 1Pr ,x x Y  A B RPr ,N Nx x Y

Deinterleaver

0s 1s Ks

1u 2u Ku

Kc1c 2c

1f

 R

1Pr cY

2f Kf

 R

2Pr cY  RPr KcY

Jt-CNC decoder

Codeword-realignemnt 

layer

Symbol-realignment 

layer

Demodulated samples

Fig. 5. Decoding framework for asynchronous convolutional-coded PNC systems. This framework can deal with an integral-

plus-fractional symbol misalignment and is BER-optimal.
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1 1Pr ,x x Y  A B RPr ,N Nx x Y

Fig. 6. Tanner graph of the symbol-realignment layer. xi,j , denotes the joint symbol (xAi , x
B
j ), are the variable nodes; ψo

and ψe are the factor nodes that indicates the compatibility associated with the variable nodes; The likelihood probabilities

Pr(yR2n−1|xn,n−1) and Pr(yR2n|xn,n) are the evidences from observation Y R.

A. Symbol-Realignment Layer: Addressing Fractional Symbol Misalignment2

For simplicity, as in [5], we assume the use of rectangular pulse to carry the modulated signal, and3

the use of the doubling sampling technique to obtain two samples per symbol period. Let us first ignore4

the integral part of symbol misalignment and only consider the fractional part (i.e., τ < 1). Furthermore,5

let us assume |hA| = |hB| =
√
P where P is the transmission power of end nodes.6

With double sampling on the received signal yR(t), the total number of samples obtained per frame7

is 2N + 1, where N is the number of symbols per frame (for both users A and B). The relay uses the8

2N + 1 samples to compute the soft information Pr(xA
n , x

B
n |Y R), where instead of the expression in9

(7), Y R = (yR
1 , y

R
2 , · · · , yR

2N+1) consists of the 2N + 1 samples. Thus, as far as the soft information is10

concerned, the fractional symbol misalignment is removed and the symbols are realigned. We emphasize11

that this realignment of soft information is a key step. Once that is done, the channel decoding algorithm12

for synchronous PNC as proposed in Section IV can be applied.13

We can write the samples obtained at the relay R as follows (after normalization):

yR
2n−1 = xA

n + xB
n−1e

jϕ + wR
2n−1 (19a)

yR
2n = xA

n + xB
ne

jϕ + wR
2n (19b)

where n=1, 2, . . . , N , xB
0 =0 and yR

2N+1=xB
Ne

jϕ + wR
2N+1. The terms wR

2n−1 and wR
2n are zero-mean14

complex Gaussian noise with variances σ2/τP and σ2/(1− τ)P per dimension, respectively.1

We use a BP algorithm to compute soft information of Pr(xA
n , x

B
n |Y R) from the 2N + 1 samples. The
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associated Tanner graph is shown in Fig. 6. In the Tanner graph xi,j ∆
= (xA

i , x
B
j ) are the variable node;

ψo and ψe are the compatibility functions associated with the factor nodes. The compatibility functions

model the correlation between two adjacent symbols and are defined as

ψo

(
xn,n−1, xn,n

)
=


1 if the values of xA

n in xn,n−1 and xn,n are equal

0 otherwise
(20a)

ψe

(
xn,n, xn+1,n

)
=


1 if the values of xB

n in xn,n and xn+1,n are equal

0 otherwise
(20b)

The likelihood probabilities Pr(yR
2n−1|xn,n−1) and Pr(yR

2n|xn,n) are the evidences from observation

Y R. The computation of these evidences is given by

Pr
(
yR

2n−1

∣∣∣xn,n−1
)

= Pr
(
yR

2n−1

∣∣∣xA
n , x

B
n−1

)
=

1√
2πσ2/τ

exp

−
∣∣∣yR

2n−1 − xA
n − xB

n−1

∣∣∣2
2σ2/τ


(21a)

and

Pr
(
yR

2n

∣∣∣xn,n) = Pr
(
yR

2n

∣∣∣xA
n , x

B
n

)
=

1√
2πσ2/(1− τ)

exp

−
∣∣∣yR

2n − xA
n − xB

n

∣∣∣2
2σ2/(1− τ)

 .
(21b)

Given the evidences computed in (21a) and (21b), the message update equations can be derived using2

the standard sum-product formula of BP [21]. Note that the Tanner graph has a tree structure. This means3

that the BP algorithm can compute the exact APP of xn,n and xn,n−1 for n = 1, · · · , N . Furthermore,4

the solution can be found by passing the messages only once in each direction of the Tanner graph.5

Although we can compute the APP of all variable nodes, we only use the APP of Pr(xA
n , x

B
n |Y R) for6

further decoding.7

B. Codeword-Realignment Layer: Countering Integral Symbol Misalignment8

Since the fractional part of symbol misalignment has been removed in the symbol-realignment layer,9

here we only consider the integral part of symbol misalignment in this subsection. Recall that in Section10

IV we used (16) to compute the message γ(c̄k). Equation (16) requires that the modulated symbols of11

end nodes A and B are symbol-by-symbol aligned (i.e., xA
n must align with xB

n ). However, with integral12

symbol misalignment τI, xA
n will be aligned with xB

n−τI therefore the algorithm proposed in Section IV13

becomes invalid.1
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The codeword-realignment layer addresses this challenge using a specially designed interleaver/deinterleaver2

at the end/relay nodes. At the end nodes, we use the same block interleaver with R rows and M/R3

columns, where r = 1/R is the code rate and M is the number of bits in the codeword. To interleave, the4

channel-coded bits are filled into the interleaver column-wise , and read out row-wise. Then the interleaved5

packets are modulated and transmitted simultaneously to the relay. Upon receiving the overlapped signal6

(with symbol misalignment), the relay first deals with the fractional symbol misalignment with the7

algorithm proposed in Section V-A. Then the relay uses the same block deinterleaver to deinterleave8

the received signal.9

Let us consider an example with code rate 1/3 convolutional code, BPSK modulation, and integral10

symbol misalignment τ = 2 (in this subsection, we only consider the integral part of τ ). As specified11

in Section III, the channel-coded packets of node A and node B are CA and CB, respectively. Then the12

channel-coded packet is bit-interleaved with a block interleaver with M/R rows and R columns. The13

interleaved packets C̃i, i ∈ A,B are BPSK modulated to produce the transmitted signal14

Xi =
(
xi1,1, x

i
2,1, · · · , xiK,1, xi1,2, · · · , xiK,2, xi1,3, · · · , xiK,3

)
, i ∈ {A,B} (22)

where xik,l = 1 − 2cik,l, and cik,lis defined in (2). The received signal samples will be the superposition15

of the following two sequences16

xA
1,1 xA

2,1 xA
3,1 xA

4,1 xA
5,1 · · · xA

K,3

+

xB
1,1 xB

2,1 xB
3,1 · · · xB

K−2,3 xB
K−1,3 xB

K,3.

(23)

The relay first aligns the unoverlapped (clear) part of signal: xA
1,1x

A
2,1 at the head and xB

K−1,3x
B
K,3 at the17

tail. Then the relay deinterleaves this packet to restore node A’s transmission order. After deinterleaving,18

the received packet becomes the superposition of the following sequences19

xA
1,1 xA

1,2 xA
1,3 xA

2,1 xA
2,2 xA

2,3 · · · xA
K,1 xA

K,2 xA
K,3

+

xB
K−1,3 xB

K−1,1 xB
K−1,2 xB

K,3 xB
K,1 xB

K,2 · · · xB
K−2,1 xB

K−2,2 xB
K−2,3.

(24)

The signal in (24) is equivalent to the superposition of modulated signals of CA and CB
(6), where CB

(6)20

denotes the 6 bits right circular-shifted version of CB. Since tail biting convolutional code with code21

rate 1/R is quasi-cyclic with period R , CB
(τR), the τR bit circular-shifted version of CB, is also a valid22

codeword [16], [22], [23]. Hence we can apply the Jt-CNC decoding algorithm proposed in Section IV.23

Furthermore, as we prove in the Appendix, a very good property of convolutional code is: the source1
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packet corresponding to CB
(τR) is UB

(τ), the τ -bit right circular-shifted version of node B’s source packet2

UB.3

As a result, in the presence of integral symbol misalignment, our bit-optimal decoding algorithm will4

output UR = UA ⊕ UB
(τ). However, node A (B) can still restore the information of node B (A). Node A5

can first XOR UR with its own packet to obtain UB
(τ), then left shift it τ bits to restore UB. Node B can6

first right shift its own packet to obtain UB
(τ) and then XOR it with UR to obtain UA.7

C. Asynchronous PNC with Linear Cyclic Codes8

In our discussion above, the quasi-cyclic property of convolutional code plays a key role in countering9

asynchrony. Can other codes that have this property be used to tackle asynchrony? To answer this question,10

we propose a more general scheme that uses linear cyclic codes to cope with larger-than-one symbol11

misalignment.12

Let C(·) and C−1(·) denote the encoding function and decoding function of a particular linear cyclic13

code (e.g., BCH code), respectively. Then the encoding process in the end nodes is Ci = C(U i), i ∈ A,B.14

To ease presentation, we assume BPSK modulation and a symbol misalignment of τ . The received signal15

at the relay is the overlap of the following two signals:16

xA
1 · · · xA

τ xA
τ+1 · · · · · · xA

N

xB
1 xB

2 · · · xB
N−τ xB

N−τ+1 · · · xB
N .

(25)

Upon receiving the overlapped signal, the relay first aligns the last τ symbols with the first τ symbols17

to obtain a new overlapped signal18

xA
1 xA

2 · · · xA
τ xA

τ+1 · · · · · · xA
N

xB
N−τ+1 · · · · · · xB

N xB
1 xB

2 · · · xB
N−τ .

(26)

The result in (26) is actually the signal XA +XB
(τ), where XB

(τ) is the τ -symbol right circular-shifted19

version of node B’s signal. Then the relay can map the signal of (26) to CA ⊕ CB
(τ), where CB

(τ) is the20

τ -bit right circular-shifted version of CB. Note that CB
(τ) is also a valid codeword due to the property21

of cyclic code. We assume the source packet corresponding to CB
(τ) is ŨB such that ŨB = C−1(CB

(τ)).22

Because the XOR operator preserves the linearity of codes, the relay first decode the XORed packet by1

UR = C−1
(
CA ⊕ CB

(τ)

)
= C−1

(
CA
)
⊕ C−1

(
CB

(τ)

)
= UA ⊕ ŨB (27)
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and then broadcasts this packet to both the end nodes. After decoding UR node A first XORs UR with2

its own information UA to obtain ŨB; then node A re-encodes ŨB to obtain CB
(τ) = C(ŨB), and left3

circular-shifts CB
(τ) to obtain CB; finally from CB node A can decode UB. For node B, it first right4

circular-shifts its codeword CB to produce CB
(τ) and decodes CB

(τ) to obtain ŨB; then it XORs UR with5

ŨB to obtain UA.6

VI. NUMERICAL RESULTS7

We evaluate the performance of the proposed PNC decoding framework under AWGN channel by8

extensive simulation. First, we compare the BER performances of Jt-CNC, XOR-CD Viterbi, and full-9

state Viterbi algorithms in synchronous PNC. Second, we demonstrate the effect of phase offset on our10

Jt-CNC decoder. Third, we show the performance of Jt-CNC algorithm in the presence of symbol and11

phase asynchrony. Furthermore, we implement the three algorithms in a practical PNC system built on12

USRP software radio platform, and test them in real indoor environment.13

A. BER Performance Comparison14

We compare the BER performances of Jt-CNC, XOR-CD Viterbi (XOR-CDV), and full-state Viterbi15

(FSV) in synchronous PNC. The XOR-CD Viterbi algorithm and full-state Viterbi algorithm were intro-16

duced in Section II. In the simulations, we adopt convolutional codes of two different code rates: code17

rate 1/2 (5, 7) code and code rate 1/3 (13, 15, 17) code. We first consider BPSK modulation, assuming18

AWGN channel.19

We plot the BER curve of the full-state Viterbi algorithm as a benchmark for the reduced-state Viterbi20

algorithm in [13]. In our attempt to replicate the reduced-state Viterbi algorithm, we cannot get the same21

simulation results in [13] even though we follow the exact specification as described in the paper2. Our22

simulation results are somewhat better than those presented in [13]. To avoid misrepresenting their results,23

here we just compare the results of full-state Viterbi with Jt-CNC. In [13], a performance gap of 2 dB24

was observed between the reduced-state Viterbi and full-state Viterbi. As shown in Fig. 7, Jt-CNC has25

better BER performance than full-state Viterbi. If the gap between full-state Viterbi and reduced-state26

Viterbi is 2 dB, then the gap between Jt-CNC and reduced-state Viterbi is at least 2 dB.1

2We believe that there are errors in equation (12) and Fig. 3 in [13]. We suspect that in [13], the SNR was not normalized

correctly. Our attempt to contact the authors of [13] by email received no reply.
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Fig. 7. BER performance of Jt-CNC, XOR-CD Viterbi (XOR-CDV), and full-state Viterbi (FSV) algorithms with PNC. The

channel codes are (5, 7) and (13, 15, 17) convolutional code. We use BPSK modulation and assume AWGN channel.

Fig. 7 also shows that Jt-CNC outperforms XOR-CD Viterbi by 2 dB for both rate 1/2 and 1/32

convolutional codes. As described previously, XOR-CD loses information in the XOR-mapping, hence3

this 2 dB gap is as expected.4

B. Effects of Phase Offset5

We next evaluate the effect of phase offset on Jt-CNC decoder assuming QPSK modulation (higher6

order QAM can also be used)—phase offset does not present a challenge to BPSK systems [4], [5]. First,7

we compare the BER performances of the aforementioned three decoding algorithms with phase offset8

φ=0 (phase synchronous) and φ=π/4 (worst case for QPSK) [5].9

As shown in Fig. 8a, when the phase offset is π/4, the BER performances of Jt-CNC, FSV, and XOR-10

CDV are degraded by 2 dB, 3 dB, and 5 dB, respectively. The severe phase penalty is due to the poor11

confidence of the messages as calculated in (16) when the phase offset is π/4. One method to improve12

the confidence is to make the phase offset random so that the symbols with small phase offset can help13

the symbols with large phase offset during the BP process.1
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(b) with random-phase precoding

Fig. 8. Effects of phase offset on Jt-CNC, XOR-CD Viterbi (XOR-CDV), and full-state Viterbi (FSV). QPSK modulation and

(13, 15, 17) convolutional code are used in the simulation. We assume the symbols are aligned and the relative phase offset is

π/4. In (a), both nodes transmit their signals directly; in (b), node B precodes its transmit signal with a pseudo-random phase

sequence.

As shown in Fig. 8, phase offset degrades the performances of all the three algorithms. Jt-CNC is2

more resistant to phase penalty because the joint processing makes better use of the soft information. We3

note the performance of Jt-CNC under the worst phase offset of π/4 is still better than the performance4

of XOR-CDV with no phase offset.5

To improve our system’s resilience against phase offset, we adopt the random-phase precoding at the6

transmitter of one end node. Specifically, node B rotates the phase of its transmitted signal with a pseudo-7

random phase sequence ΦB=(φB
1 , · · · , φB

N ) where φB
n is randomly chosen from zero to π/4. We assume8

that this pseudo-random phase sequence is known at the relay so that it can incorporate this knowledge9

into the decoding process. As shown in Fig. 8b with the random-phase precoding algorithm, the phase10

penalty is reduced to 1 dB, 1 dB, and 3 dB for Jt-CNC, FSV, and XOR-CDV, respectively.11

C. Effects of Symbol Misalignment12

A major advantage of the proposed decoding framework is that it can deal with general symbol13

misalignment. We evaluate the performance of Jt-CNC under varying degrees of symbol misalignment1
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and phase offset. In the simulation, both end nodes transmit 1000-bit source packets (corresponding to2

1500 QPSK symbols for channel code rate of 1/3).3
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τ=0.5, φ=0
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τ=0.5, φ=π/8
τ=100.5, φ=π/8

Fig. 9. BER performance of Jt-CNC decoder under general symbol misalignment, with (13, 15, 17) convolutional code and

QPSK modulation.

From Fig. 9 we see that although the fractional symbol misalignment (the curve with τ = 0.5, φ = 0)4

degrades the BER performance by 0.5dB, the integral symbol misalignment (the curve with τ=100.5, φ=0)5

improves the BER performance slightly. That is because when there are integral symbol misalignments,6

the head and tail of the signals are non-overlapping and thus yield cleaner information without the mutual7

interference.8

D. Software Radio Experiment9

To evaluate the proposed algorithm in a real communication system, we implemented a PNC system10

using USRP N210, embedded with the three decoding algorithms. The PNC system adopts OFDM11

modulation with 1MHz bandwidth and 2.48 GHz carrier frequency. We use the (5, 7) convolutional code12

and follow the frame format design in [8]. We conduct our experiments in the indoor office environment13

and evaluated the BER performance of Jt-CNC, XOR-CD, and full-state Viterbi algorithms under different14

SNRs. In the experiment, we balanced the powers of the end nodes and let both nodes transmit 500 frames1
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to the relay. Each frame consisted of 204 OFDM symbols (4 symbols of preambles and 200 symbols of2

data).3
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Fig. 10. BER performance of Jt-CNC, FSV, and XOR-CD in an indoor environment. We tested the three algorithms on a

practical PNC system implemented on USRP N210. The PNC system adopts OFDM modulation and (5, 7) convolutional code.

As shown in Fig. 10 the BER performances of Jt-CNC and full-state Viterbi are nearly the same in4

real indoor environment. XOR-CD, however, is worse by about 2 dB at 10−4 BER. Compared with the5

simulation results in Fig. 7, the BER performance of all the three algorithms in the real system are6

degraded by 4 dB due to imperfections in the real systems, such as imperfect channel estimation, carrier-7

frequency offsets, and frequency-selective channels. We also note that XOR-CD has an error floor even8

in the high SNR regime while the other two algorithms do not.9

VII. CONCLUSION10

We have proposed a three-layer decoding framework for asynchronous convolutional-coded PNC sys-11

tems. This framework can deal with general (integral plus fractional) symbol misalignment in convolutional-12

coded PNC systems. Furthermore, we design a Jt-CNC algorithm to achieve the BER-optimal decoding13

of convolutional code in synchronous PNC. For asynchronous PNC, the performance degradation is1
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within 1 dB. Building on the study of convolutional codes, we further generalize the Jt-CNC decoding2

algorithm to all cyclic codes, providing a new angle to counter symbol asynchrony. Simulation shows3

that our Jt-CNC algorithm outperforms the previous decoding algorithm (XOR-CD, reduced-state Viterbi)4

by 2 dB. With random-phase precoding, the proposed Jt-CNC algorithm is more resilient to phase offset5

than XOR-CD and full-state Viterbi. Importantly, we have implemented the proposed Jt-CNC decoder6

in a real PNC system built on software radio platform. Our experiment shows that the Jt-CNC decoder7

works well in practice.8

APPENDIX9

Theorem 1: For a tail biting convolutional code with code rate 1/R, R ∈ N+, let U denote the source10

packet of the channel-coded packet C, and C(kR) denote the kR-bit right circular-shifted version of C.11

The source packet corresponding to C(kR) is U(k), the k-bit right circular-shifted version of U .12

 

DD D





ku

,1kc

,2kc

Fig. 11. Convolutional encoder of (5, 7) convolutional code. uk is the input source bit at time k; ck,1 and ck,2 are the first

and second output bit of the encoder at time k, respectively.

Proof: Let m denote the memory length of this convolutional encoder. The generator matrix of the13

convolutional code is1

G =



g0 g1 g2 · · · gm

g0 g1 · · · gm−1 gm
. . . . . .

g0 g1 g2 · · · gm

gm g0 g1 · · · gm−1

gm−1 gm g0 · · · gm−2

...
. . . . . .

g1 g2 · · · gm g0



(28)
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where gb = [g0 g1 · · · gm] is the basis generator matrix of the convolutional code; each entry gi is an2

R-bit vector3

gi =

[
g

(1)
i g

(2)
i · · · g

(R)
i

]
(29)

where g(r)
i is equal to 1 or 0, corresponding to whether the ith stage of the shift register contributes4

(connects) to the rth output. Therefore, the basis generator matrix gb can be regarded as the “impulse5

response” of the convolutional encoder. For example, the basis generator matrix of (5, 7) convolutional6

code shown in Fig. 11 is [11 01 11]. The encoding process is simply7

C = UG. (30)

The right circular-shifted codeword can be represented by8

C(kR) = UG(k) (31)

where G(k) is obtained by right circular-shift matrix G by k×R columns. Since G is a circulant matrix,9

we have10

C(kR) = UG(k) = U(k)G. (32)

Therefore the source packet of C(kR) is U(k), the k-bit circular-shifted version of U .11

Remark 1: Theorem 1 is also valid for the tail biting convolutional code with a general code rate12

L/R L,R ∈ N+, but the resulting source packet will be U(kL), the kL-bit right circular-shifted version13

of U . The proof is the same except that the entry of the basis generator matrix gb is an L×R matrix:14

gi =



g
(1)
1,i g

(2)
1,i · · · g

(R)
1,i

g
(1)
2,i g

(2)
2,i · · · g

(R)
2,i

...
...

...

g
(1)
L,i g

(2)
L,i · · · g

(R)
L,i


(33)

where g(r)
l,i is equal to 1 or 0, depending on whether the ith stage of the shift register for the lth input15

contributes (connects) to the rth output.16

Theorem 2: If the initial state and terminal state of a convolutional code are the same, then the decoding17

output of C(kR), the kR-bit right circular-shifted version of C, is the k-bit right circular-shifted version18

of U .19

Proof: The encoding and decoding process of a convolutional code can be represented by the Tanner20

graph in Fig. 2. Since the code has the same initial and terminal state, we can merge the Tanner graph1
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Fig. 12. Tanner graph of a convolutional code that has the same initial state S0 and terminal state SK . We merge the initial

state and terminal state, hence the Tanner graph in Fig. 2 becomes a ring.

as shown in Fig. 12. For a general convolutional code with code rate L/R, the source message ūk is an2

L-bit tuple and the coded message c̄k is an R-bit tuple.3

Let C(kR) = (c̄K−k+1, c̄K−k+2, · · · , c̄K , c̄1, · · · , c̄K−k) be the kR-bit right circular-shifted version4

of codeword C. To decode C(kR), the decoding algorithm starts with the first tuple c̄K−k+1 and ends5

with the last tuple c̄K−k. Because the Tanner graph has a ring structure, the decode output is U(k) =6

(ūK−k+1, ūK−k+2, · · · , ūK , ū1, · · · , ūK−k), which is the k-bit right circular-shifted version of U .7

Remark 2: Zero tailing convolutional codes also have the property in Theorem 2, because zero tailing8

convolutional code has zero initial state and zero terminal state.9

Remark 3: For a recursive convolutional code, we can append zero-tailing bits to the input packet to10

make the terminal state zero state. Then recursive convolutional codes can also be used with the proposed11

Jt-CNC decoder.12
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