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Unified and Distributed QoS-Driven Cell
Association Algorithms in Heterogeneous Networks

H. Boostanimehr, and V. K. Bhargava,

Abstract—This paper addresses the cell association problem HetNets, with their increased diversity in type and number
in the downlink of a multi-tier heterogeneous network (HetNet),  of BSs, re-open the conventional challenges in cellulaewir
where base stations (BSs) have finite number of resource bk& |os5 networks. Among these challenges are cell assogiation

(RBs) available to distribute among their associated usersTwo . . .
problems are defined and treated in this paper: sum utility '€Source allocation, and intercell interference managéme

of long term rate maximization with long term rate qualty (ICIC) [3]. Cell association rules, which are the focus of
of service (QoS) constraints, and global outage probabilit this paper, are a set of rules that determine which BS serves
minimization with outage QoS constraints. The first problem a particular user. The cell association rule in conventiona
is well-suited for low mobility environments, while the seoend | jyjar networks, and up to LTE release-8, has been based
problem provides a framework to deal with environments with . . . .
fast fading. The defined optimization problems in this paper " the strongest signal to |nterferen_ce pll_JS noise ratiiS!
are solved in two phases: cell association phase followed tiye Seen by the user; each user associates itself with the BS that
optional RB distribution phase. We show that the cell assoation  provides the best SINR][5]. Following this rule in HetNetsyma
phase of both problems have the same structure. Based ondeviate the performance from optimality because macro BSs
this similarity, we propose a unified distributed algorithm with 1,56 higher power and attract more users than low tier BSs.
low levels of message passing to for the cell association jsiga Since the resources available at a BS are limited, more users
This distributed algorithm is derived by relaxing the assodation . ) X ’ -
constraints and using Lagrange dual decomposition methodin ~ associated with a BS translates into less resources aleilab
the RB distribution phase, the remaining RBs after the cell for a given user, which in turn reduces the throughput seen
association phase are distributed among the users. Simulah  py that user. Although the users associated with overloaded
results show the superiority of our distributed cell assoation PSS are experiencing high levels of SINR, their throughput
scheme compared to schemes that are based on maximum signa I .
to interference plus naise ratio (SINR). Is reduced. 'I_'hgrefore, achieving load I_Jalancmg among _B_Ss
in cell association phase becomes as important as providing
_Index Terms—Heterogeneous cellular networks, load balanc- high |evels of SINR. Cell association problem, althoughlwel
ing, cell association . .
studied for conventional networks, has not been thoroughly
addressed in the context of HetNets.
Formulating the cell association problem naturally fatigi
the scope of integer or mixed integer programming since each
ONVENTIONAL cellular networks are homogeneousiser is to be mapped to a BS. There are several approaches to
networks composed of similar base stations (BSs) whicepe with these integer programs to achieve load balanaing i
are carefully planned in a given geographical area. The-sirtiie cell association phase. Solving the integer prograecthyr
larity of the BSs in homogeneous networks is in having higby exploiting the structure of the problef [€]] [7], relagithe
transmit power and the number of users they can suppa@ssociation constraints and using Lagrange dual decotigposi
Coverage holes in conventional networks are expected becamnethod [8]-[10], Markov decision process frameworks| [11],
of the random behaviour of wireless channels in urban afit], game theoretic frameworks [13],[14], and stochastic
rural areas. Moreover, the number of mobile subscribers ageometry frameworks [15]=[18] are examples of these ap-
mobile data demand have been showing an unprecedemeehches among others. In the next two paragraphs, we focus
growth in recent year$[1]. In order to cope with this explesi on the first two approaches as they are more relevant to the
growth, 3GPP LTE has been studying heterogeneous netwonkwk presented in this paper.
(HetNet) which are cellular in nature, and increase spectra Authors of [6] focus on flow level cell load balancing and
efficiency per unit areal [2]=[4]. HetNets are composed @fssociation under spatially inhomogeneous traffic distions.
macro BSs overlaid with lower tier BSs (BSs with loweA unified distributed and iterative algorithm is proposedith
powers) such as pico, femto, and relay BSs. Macro BSs wallapts to traffic loads and converges to the optimal poirg. Th
their high transmit power cover large geographical areasiew objective function of the defined optimization problem ifj [6
randomly scattered lower tier BSs serve users in coveragfn be selected from a family of objective functions; each of
holes and hot spots. which directs the solution towards a rate, throughput, \ela
or load balance optimal point. In][7], an online algorithm is
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the online algorithm proposed inl[7]. In these two worksBSs decide based on their local measurements of the wireless
the association constraints are not relaxed and the prdposavironment. We also focus on providing QoS in terms of
algorithms produce binary decision variables. minimum achievable long term rate or maximum outage
In many cases, formulating the cell association probleprobability. Two problems are defined and treated in thisspap
leads to NP-hard assignment problems. Relaxing the assatim utility of long term rate maximization with long term eat
ation constraints and applying Lagrange dual decompositiQoS constraints, and global outage probability minimarati
method is a popular method to cope with these cases. Thisigh outage QoS constraints. The first problem is well-slite
because relaxing the association constraints usuallyeztsv for low mobility environments, while the second problem
the optimization problem into a convex or linear progranprovides a framework to deal with environments with fast
for which efficient algorithms exist. Additionally, dual de fading. In defining the optimization problems in this paper,
composition methods usually lead to distributed algorghmwe consider a general scenario where frequency reuse factor
where the nodes in the network decide based on their locdl1 and no interference coordination schemes are assumed.
information, as opposed to centralized solutions whicluireq Both problems are to be optimized through cell and RB
global information access at one central node or all the siodassociation. The defined optimization problems in this pape
Examples of distributed cell association algorithms can lage solved in two phases: cell association phase followed by
found in [8]-[10]. In all these works, the resources at eathe optional RB distribution phase. We show that the cell
BS is distributed evenly among the users associated with tlagsociation phase for both problems have the same struc-
BS. In [8], with which our paper has the most correlation iture. Based on this similar structure, we design and propose
terms of system model and solution approach, it is proven ttea unified distributed algorithm with low levels of message
distributing the resources equally among the users coadegpassing and complexity for the cell association phase. The
to a given BS is optimal for a logarithmic objective functiondistributed cell association algorithm is derived by ralgx¢he
Based on this observation, a distributed algorithm is psepo association constraints and using Lagrange dual decotiposi
that converges to a near optimal point to improve the lormmgethod. Our distributed cell association algorithm is QoS-
term rate. Range expansion technique by biasing the SINRdsfven since users receive only enough number of RBs to
lightly loaded BSs to make them more attractive to the usesatisfy their QoS constraints while maximizing the sumitytil
is also incorporated in the distributed algorithm [in [8].idt of rate or minimizing the global outage probability. In th& R
worth noting that cell range expansion through cell biasingjstribution phase, the remaining RBs after the cell asdimri
is a simple and effective load balancing scheme that is beipase are distributed among the users for further impromeme
discussed by the 3GPP in the context of LTE-Advan¢éd [3}f the network performance. The RB distribution phase for
Extending over [[B], in [[9], the joint optimization of loadthe rate problem is a convex program with a closed form
balancing and enhanced intercell interference coordinatisolution, while distributing the remaining RBs for the ayga
(referred to as elCIC by 3GPP) via almost blank subframesoblem is a complex non-convex non-linear problem, for
(ABS) is considered. Lastly, [10] is another work in which avhich we propose a sub-optimal greedy algorithm. Extensive
dynamic cell association and cell range expansion algaritrsimulation results that are brought in this paper show tiat o
for load balancing through relaxation of association c@ists  distributed cell association scheme outperforms the mamxim
is proposed. The algorithm presentedini[10] is in a ceriedli SINR scheme. For instance, rate gains of up to 2.4x have
fashion. been observed in the simulations for the cell edge users in
In recent standards such as LTE, the resources at B&s distributed cell association algorithm over maximurNBI|
are distributed among users in the form of resource blocksheme.
(RBs). An RB spans over a certain frequency range and timeThe rest of the paper is organized as follows: In the
duration. Depending on the total channel bandwidth aviglamext section, the chosen system model is described. The cell
at a BS and the scheduling interval of the scheduler, thassociation problem with QoS constraints is formulated in
number of RBs at different BSs can be different. The RBsection Ill. Our distributed solution to the cell asso@ati
based structure in standards such as LTE-Advanced resultptioblem is presented in section IV. Section V will address
more flexible resource allocation schemes, thus highettigecdistributing the remaining RBs after the cell associatibage.
efficiency [19]. RBs are assigned to users to satisfy thdir section VI, we examine the performance of our proposed
quality of service (QoS) requirements. Most of the workalgorithms through numerical simulations, and finally,teec
on cell association problem in the literature, including thVIl concludes the paper.
aforementioned works in this section, have not considdred t
RB-based structure of the BS resource budget in their system Il. SYSTEM MODEL
models. In an attempt to follow the LTE system model, in this The focus of this paper is on a downlink HetNet consisting
paper, we consider finite number of RBs at each BS as aémultiple tiers of BSs, where different tiers represeriten
resource budget. ent types of BSs. As an example, tier 1 BSs can be macro
The accomplished works in this paper are briefly describ&$s with high transmit power and large coverage areas. Tier
here. This paper addresses the cell association problem2imnd 3 BSs (pico and femto BSs) are regarded as smaller
the downlink of a multi-tier HetNet, where BSs have finitd8Ss with lower powers compared to the tier 1 BSs, but with
number of RBs available to distribute among their assodiatbigher deployment density. Finally, tier 4 BSs model indoor
users. We investigate distributed algorithms where useds aaccess points with very small transmit powers.



The set of all BSs is denoted = {1,..., Ng}, and the with unit variance. They are exponentially distributedcgin
set of all users is denoted by= {1, ..., Ny, }. The cardinality in Rayleigh fading, the envelope of the signal is assumed
of B is N, and the cardinality ot/ is N;;. Each BS; € to follow a Rayleigh distribution, and in turn the channel
B has a fixed power of?; Watts available. All the BSs are power is exponentially distributed [21F;;s are statistically
assumed to be connected by a high speed backhaul througtependent random variables since they model geogrdphica
which information exchange with negligible delay is possib separated wireless channels which show independent multi-

path fading behaviours. Based on these assumptifiass
A. Notion of Resource Blocks are statistically independent exponentially distributaddom

In recent years, data rate hungry applications have deriviyiables with parametex;;, where

the wireless network researchers and vendors to develop 1 1
OFDMA-based LTE-Advanced networks. OFDMA technol- Aij = E[H,] G’ @
ogy makes possible a flexible resource structure, where the
time-frequency spectrum is divided into orthogonal reseurwhere E:] denotes the expected value. As it is mentioned
blocks (RBs). The RB-based structure in LTE-Advanced adpefore, useri can measuré:;; (and equivalently);;) for all
lows for more flexible resource allocation schemes, thusities the BSsj € B.
in higher spectral efficiency [19]. In such a setting, the instantaneous SINR seen byiusé(

In LTE [20], OFDMA technology is used in the downlink,from BS j € B is
where the channel bandwidth is divided intbkHz OFDM P.H..
subcarriers. The channel bandwidth is intended to be dealab SINR;; = ) ,
in LTE, and the wider the channel bandwidth, the higher 2ken\; PrHir + BNo
number Qf OFDM sgbcarriers are availablg at the BS. Thgq the long term SINR that is measured by user/ from
aggregation ofl2 adjacent OFDM subcarriers an@ or 7 BSjc Bis
OFDM symbols is referred to as a resource block (RB). Each
RB spans over80kHz on the frequency axis an@5ms on SINR,. — P;Gi; 4)
the time axis. An RB is the smallest resource structure tat i “ >reny; PrGir + BNo

given to a user for possible transmission. The number of RBs . ]
available at a given BS depends on the channel bandwidfheguations[(8) and14), the constantlenotes the bandwidth

and scheduling interval duration at that BS. The number 8¥€r which an RB is realizedy, denotes the thermal noise
RBs allocated to each user on the other hand, depends onSPgctral power, an# \ j is the set of all BSs except B
quality of service the user requires. For instance, if a userAccordingly, the instantaneous and long term spectral effi-
requires a high data rate, the number of RBs allocated G¢NnCy at uset, if it is served by BSj, denoted byc;; and
that user is higher than that of a user requiring less daga reti; respectively, can be written as

As an another example, if the QoS is defined on the outage

probability, higher number of RBs increases the throughput cij = logy(1 + SINR;;), ®)
of a user linearly and decreases the likelihood of outage. In Cij = logy(1 + SINR;;). (6)
order to model today’s cellular technology more realidjca = i B

we work with this notion of RBs, and assume that each B&/thout loss of generalityc;; and c;; can be regarded as

j € B has access t&; RBs to distribute among its associate&‘cmevable rate and long term achievable rate on an RB. For
Users ’ example, ifc;; is multiplied by the RB bandwidth and time

duration and divided by the scheduling interval, it will best
B. The channdl model. instant te | ¢ te and achievable rate on one RB.
- 'hechanné Model, Instantaneous rate, 1ong term rate an Given thatn;; RBs are given to usei by BS j, the

outage probability : .
- _ instantaneous and long term data rates seen byiuser
We denote the positive channel power gain between user

i and BSsj by H;;, i.e., the received power at userfrom Tij = NijCij, (7

BS j is H;; P;. FurthermoreH;; embodies the effects of path Fij = nijCij- (8)

loss, log normal shadowing and antenna gains as large scale

fading component (denoted lfy;;), and multi-path Rayleigh ~ We define the outage event of a single usserved by BS

fading as small scale fading component (denoted'hy. By ; to be the event where the instantaneous rate seen by user

adopting these notations we have drops below a certain thresholg. We denote the probability
Hy, = GyFy,  Y(i.j) €U x B, (1) of this event byﬂ%”‘ and formally define it as

where - x - denotes the Cartesian product. The large scale P = Pr{ri; < i} 9)
fading componenty;; is assumed to be constant during one Pj|H;;?

e e . =Prin;ilog, [ 1+ < Vi s
association period, while the small scale fading component Je2 Zkelg\'PIcHik + BN,
F;; fluctuates fast enough so that a mobile user can average it !
out in its channel measurements,s are modelled by statis- where Pr{-} denotes the probability of the input argument.
tically independent exponentially distributed randomiatales This probability of outage is derived in [22], [23] (an easy t

®3)




read proof is available il [22]), which is settingn,; = 1 in (10) and incrementing it until the constraint
is satisfied. We indicate the smallest integer for whichH (%6)

Pfjm = satisfied byﬁg. Therefore, if usef requires outage QoS class
“XijBNo g npih ?k of rate thresholdy; and probability of outag&’;, BS j will be
1- (6 i ”> 11 m , (10) obliged to allocate at least, RBs to that user, i.e.,
keB\j \ P; ij T Py -0 an
where Mg = Mij-
SINR?} —27 1. (11) [1l. PROBLEM FORMULATION

Note thatP2" is measurable by uséssince users can measure Two optimization problems are considered in this paper:

A;; for all the BSs;j € B . Moreover, It can easily be verifiedSUM utility of long term rate maximization with rate QoS
that PO is a strictly decreasing function of;;, i.e., more constraints (referred to @1), and global outage probability
RBs ir%proves the outage behaviour. minimization with outage QoS constraints (referred to as

P2), both through cell association and RB allocation. We
formulate these two problems in the rest of this section.
Before proceeding further, we define binary associatioicexl

In this paper, we define two QoS constraints, namely long; € {0,1}, V(i,j) € U x B, wherex;; = 1 indicates that
term rate QoS and outage QoS constraints. We refer to the larsgr; is associated with BS, and z;; = 0 indicates the
term QoS constraint simply as rate QoS constraint hereafigpposite.
In the case of rate QoS constraint, each user intends to keep
its long term rate above its requested rate threshold. In thﬁ_ Sum utility of long term rate maximization with rate QoS
beginning phase of cell association, each useequests a constraints
certain rate QoS class in terms of minimum required long ) o o .
term ratev;. Therefore, if the usef is associated with BS N this problem, the objective is to maximize a function

j, it is the duty of the BS to satisfy the following rate Q050f long term rate while satisfying the rate QoS constraints.
constraint Since we are working with the notion of long term rate, this

framework is well-suited for environments with users with
Tij 2 Vi (12) low mobility so that the channels remain unchanged in one
resource allocation period. We select the sum utility ofrsise
long term rate to be our objective function. Utility of raterc

C. Rate and outage QoS constraints

By substituting [(B) in the above equation, we have

nij > iy (13) be regarded as a measure of user’s satisfaction with thét rate
Cij gets. A utility function, in general, is a strictly increagiand
We indicate the smallest integer greater than the right hagdncave function. For instance, logarithm function is dahie
side of the above equation b‘;{j as follows candidate. However, in order to preserve generality, theno

of U(-) is used as a general strictly increasing and concave
, (14)  utility function. The sum utility of long term rate maximitian
problem with rate QoS provisiorP(1) is
where[-] represents the ceiling function. Inequalities](12) and

_R Yi
n;; = |—,—
J Cij

[@3) and equality[{14) indicate that if usérequires rate QoS F1: ma)>§7ilr;nize Z foijU(fij) (18)
class of minimum rate;, BS j will be obliged to allocate at €U iEB
leastn/t RBs to that user, i.e., subjectto (RC) > xijni; < Nj, Vj € B
. oR (15) =
Mg = g (AC): Yy <1, Vieu

In the case of outage QoS constraint, each user intends to jeB
kgep itsinsta_mtaneous _rgte above its reqyested rate thrg;hold Z wiFiy > v, Vi €U (19)
with a certain probability. In the beginning of cell assadicia e
phase, each user requests a certain outage QoS class. An o .
outage QoS class is defined in terms of user’s rate threshold 7y € 40,1}, Vi, j) € U'x.B (20)
7:, and probability of user’s rate dropping below that thrégho nij €{0,1,..., N}, V(i,j) € U x B.
T;. Therefore, if usei is associated with BS, it is the duty (21)
of BS j to satisfy the following constraint for that user:  |n the above optimization probleny,andn are matrices con-

(16) taining z;; andn;; elements. Furthermore, the first constraint

is referred to as the resource constraint (RC). This constra
The probability of outage is given in (1L0) as a function oénsures that the number of RBs given to the associated users
n;;. Since this probability is a strictly decreasing functidn odoes not exceed the resource budget of that BS. The second
n;;, a lower bound om;; exists above which the outage Qo&onstraint is referred to as association constraint (AQjis T
constraint is satisfied. Sineg;s can take only positive integerconstraint guarantees that each user is connected to abmest
values, this lower bound can easily be found numerically B8S. The third constrainf{19) is the rate QoS constraint thic

(B3 =Pr{ry; <~}) < T



is derived based on inequality_(12). In the end, constrairttee rate QoS constraints iIB1 by n;; = ﬁf? and outage
(20) and [(21) indicate that the association indices arerpinaQoS constraints ifP2 by n;; = ﬁg for all (i,7) € U x B.
variables, anch;;s can take integer values between zero amktcording to inequalities(15) and:ﬂlmﬁ and ﬁg are the
the maximum number of RBs at BS minimum number of RBs required by usérfrom BS j to
satisfy the rate QoS and outage QoS constraints, resplgctive
B. Global outage probability minimization with outage Qos ~ From another perspective, if we replacegs by constant
constraints 1 in the (RC), it could be shown that both problems would

become a two dimensional assignment problem with respect

The motivation behind formulating this problem is to tak? 215, and algorithms such as Hungarian method would
1]~

into account the stochastic behaviour of wireless Cha””%%ﬁve them efficiently([24] in a centralized fashion. Howeve

without adding signalling overhead to the system. Guarag—,[imizing overz,;s is an NP-hard problem because of the
teeing a constant instantaneous rate to users in wirel ) constraintlﬁB] In order to change the combinatorial
environments that suffer from fast fading is not achievabl ature of the problem into a continuous one, and hopefully

HO\:VG.VM’ 'L |sb.|ptossuallehto guaratntefe a <|:etr_ta|nthrateﬂ\;vt;tlh & convex program, we relax the constrairfts] (20) in both
pe::m prct) at ':cy' \iv Ic suggsls:ts lorlt”r;]ualngi tEfp uﬁ optimization problems, i.e., we replace the constrainB) (2
in the context of outage probability. In the context of o agoyogxijglforall (i,7) € U x B.

probability, the eventual goal is to associate the usels B&s Next, we show that by fixing.,,s, problemsP1 and P2

and RBs such that the global outage probability is minimizegecome equivalent optimization problems. After the afaem

In order to achieve this goal, the first step is to define tr}%ned modifications, the problef1 transforms into problem

global outage probability in some sense and evaluate it a%,? as follows
function of system model parameters. We define the global ™

outage event as the event where one or more users experiencqglx . maximize Z Z xijazﬁ; (25)
outage, i.e., if at least one user experiences an instamiane x ey '
data rate below its requested threshold, a global outade wil :

. . L subject to (RC), (AC),
be declared. The outage probability of a single link is giiren ) ( )7(3 ) o
(I0). Considering that the outage events for differentsiaee nij = ngj, V(i,j) €U x B, (26)
statistically independent, it can be argued that the prilibab 0<uazy; <1, V(,j5)eUxB, (27)

i i out) Lij
of no users experiencing outage[ig ., [T,c5 (1 — P .

Therefore, the global outage probability indicated@t is where
R = U(ry) = Unkey).
—— 0 Tij azg ) 1 v
Po=1-J]J] (0 - P3"™. (22)
ieU jeB af; is treated as a constant sinﬁ% is a constant.

Now, we define the global outage probability minimization 't S€éms that the objective function In2 has a different
problem with outage QoS provisio®Pg) as structure compared to the objective functionifi. However,

applying the following changes unifies these two objective

P2 : minimize 1 — H H (1—pyy™ (23) functions. Inspecting the objective functién}23), it candeen
on icU jeB that the first term is a constant and can be removed. Moreover,
subject to (RC), (AC),[{20)[121) removing the negative sign changes the minimization to a

maximization problem. Finally, taking the natural loglant

of the objective function does not change the optimum ar-
gument and transforms multiplication to addition. Afteesle
Comparing the constraints iR2 and P1, the only different modifications, the probler®?2 transforms into probleni 2,
constraint is the QoS constraint; iP2 the outage QoS as follows

constraint has replaced the rate QoS constraiftirfor each

H Pr{nijcij < ’}/1}1” <T;, Viel. (24)
jeB

user. Constrain{{24) is derived based on the inequdlify. (16 P2 : maximize Z injaﬂ (28)
€U jeB
IV. CELL ASSOCIATION PHASE subject to (RC), (AC),
imizati - - =19, Y(i,j) eU x B (29)
Optimization problem®1 andP2 are combinatorial prob- Nij = N5, »J )
lems inx andn which are involved to solve. In order to make 0<umzy; <1, V(i,j)eUxB, (30)

the problem tractable, we solve them in two steps. First, we fi

n;;$ and find association indices;s. This step is equivalentWhere

to solving the association problem. In the next step, given t aioj =log (1 - PZ.OjUt)_

association indices, we solve the optimization problemhwit ' '

respect ton;;s. In this section, we address the associatiar) is also treated as a constant sirfég" is a function ofn;
problem, while optimizing with respect ta,;s is addressed which is set tOﬁg.

in the next section. It should be noted thats can not be By comparingP1, and P2y, it is trivial that these two
fixed at arbitrary values since the QoS constraints need to dygimization problems have the same structure. Therefoee,
satisfied in the cell association phase. Therefore, we eceplaemove the superscript® and O from of, o9, 7%, and

R
ijr Qigr Mg



ﬁ-oj and replace them by;,; and n;; to have the unified whereg;(y) is defined for alli € U as

1,

optimization problenP, as follows

gi(p) = sup Z zij(aij — pjnij) (40)
.. Tij,]€ .
P, : maximize Z Z Tij i (31) i jeB
x icUl jeB subjectto 0 < z;; <1, j€B
subjectto » " xi;ni; < N;, Vj € B, (32) > ay <L

iU jeB
> mi <1, Viel, (33) It can be seen that for fixed;s, g(u) is separable with respect
JjeB to users: as in [40). Therefore, each useneeds to solve the

0<ux; <1,V(i,j) el xB. (34) optimization problem[{40). For a given usgrthe objective

function in [40) is a weighted average @f;; — 11;7:;), where

The objective function oPy is a linear function inz;;S, and the weights are betweeh and 1 and they sum up to unity.

all the constraints are linear and affineaifys. ThereforePx  Therefore, [(4D)’s unique solution is yielded by keeping the

is a convex optimization problem with respectigs [26]. maximum argument ofa;; — 1;7;;) overjs and diminishing
the contribution of other elements. We call the tefm; —
w;n;;) the qualification index of B from user’si point of

A. Cell association solution view and indicate it by QJ; as follows

In order to devise a distributed solution to tRg, we use Ql;j = aij — pjnij. (41)
a similar to the approach suggested[ih [8], that is employing _ , ) _ L
the Lagrange dual decomposition method| [27]. Note that gheordingly, (40)'s unique solution for each uskis

strong duality property holds fd?,, that is the optimum value 1 if j=4*
of P, is equal to the optimum value of its Lagrange dual U PR Vielu, (42)
function. According to Slater’s theorem, strong dualityldso it #

for a convex optimization problem if Slater’s condition &8l \yhere
for the constraints of that problem. Moreover, if the probls
convex and all the equality and inequality constraints iealr j* =argmaxQl;;), Vi € U. (43)
and affine, Slater's condition reduces to feasibility cdiodi jeb
[26]. As discussed in the previous subsecti®h, is a con- After finding z;;s for fixed n;S, we update the vectqr by
vex optimization problem with linear and affine constraintsising gradient descent methdd[26]. The partial derivabive
Therefore, if a set ofy;;s exists for whichPy is feasible, the Lagrange dual function with respect/ig is
then the strong duality holds. For instanag; = 0, for all OL(x, 1)
(i,j) € U x B is always a feasible point iy, thus, strong IR H) N; — injnij, Vj e B. (44)
duality always holds foP.. O ey

We d_efine the !_agrangia_n df‘x by tgking the_z resource Therefore, the updating rule for is
constraint[(3P) inside the objective function and indidatey

L(x, ). The Lagrangian oPy is T
G grang pi(t+1) = [uj(t) — B(t)(N; — inj”ij)] ,Vj € B,

Llx,p) =Y > wijag — > (Y wijny — N;), (35) - (45)

ieU jeB jeB ieu
where the operatof|™ indicates the maximum of the argu-

where ;s are Lagrange multipliers associated with resourggent of the operator ar@l We applied the operatdit onpu;s

constraints at BSs. Then, the Lagrange dual function reptgecause the Lagrange multipliers are non-negative paeasnet

sented byg(p) is [26]. Furthermore, thed() is some step size that satisfies the
following two conditions
g(p) = sup Z Z ij(aij — pjnij) + Z piN; - (36) 0
¥ ieujes ieB lim B(t) =0 , and Y A(t) = cc. (46)
subjectto 0 < z;; < 1, V(i,5) €U x B, (37) froo et
Zmij <1, Viel. (38) According to proposition 6.3.4 if_[28], if the step siz&t)
jeB satisfies the above conditions, the convergence of thegradi

) ) o descent method will be guaranteed assuming that the associa
The strong duality holds, therefore, we can first maximizeroviiq, indices are continuous variables of the fobre @;; < 1.

x and then minimize ovey. In order to findg(u) for fixed These conditions do not guarantee the convergence for the bi

11;S, we rewrite the Lagrange dual function as nary association indices. However, we have uséd = 0.5/t
in our simulations, and in all cases the distributed altomit
g(p) = Zgi(ﬂ) + ZH;‘NJ, (39) converged in less thadb iterations; most of the times the

icu jeB convergence was reached in less thanterations.



We iteratively update the association variables accortbingthe BSs. Based on these measurements and the desired QoS,
(@2), and the Lagrange multipliers according [g1(45), untilser: calculates the number of RBs it needs from each BS.
the convergence is reached. Note that updating rule for tiiken, usei calculates the Q) in equation[(4ll) for all the BSs
association variables automatically generates binaryegal in its range and sorts the BSs in descending order. A request

Consequently, no further approximations is required. containing this sorted list along with the required numbkr o
RBs from the BSs in the list is sent to the BS with the best
B. Feasihility problem and admission control Qly;-

L . . . Step3: User admissiorBSs process the requests they have
In the cell association procedure described in the previous_ . , .
. i . . eceived. If BSj can accommodate all the requests it has
subsection, the users find their desired BS throligh (43). The . g . .
._[eceived, an admission message is sent to all those users find
users are not aware of how many other users are associatin

. . ng’ BS j to be the best candidate. Otherwise, B®rwards
themselves with the desire BS and how much resources t . .
e requests from users consuming the highest amount of
BS has access to. As a result, many users may assoc|

e .
themselves with a BS and exhaust its resources, Ieadingr%:)Sources o the next best BS the users have requested. This

N ; : - procedure continues until the solution is feasible.
violating the resource constranﬂSZ)._Tms condition anly Step 4: BS Lagrange multiplier updateAfter all the users
affects the convergence of the algorithm, but also takes tﬁ

. . o . fe accommodated, BSs update their Lagrange multipliers
solution out of the feasible set. As it is described [in][26 ﬁ:cording to [45) and broadcast the new multipliers. The

the ITagrapge dualllfunctmln '.Sf an upper b?#n(: on_tbr}e or'({‘:]m:S\gorithm continues by going back to step 2.
maximization probiem only it we are in the teasibie Set ol ;g algorithm solves the cell association problem in a

th? proltaleml d(:‘:neg by the cgns’ltra;intsi_ Beyond thet fEaSi%I%tributed fashion for either of the rate maximization rwit
sel, not only fhe Lagrange duat function may not be i?&te QoS constraints problem, or global outage probability

upper bound on the original prob!em, but also |Ferat|ng Withinimization with outage QoS constraints proble®1( or
gradient descent method may divert the solution from t 2,0)
%)-

desired optimal point. Therefore, once an iteration is dut o

the feasible set, it needs to be projected back to the feasibl V. RB DISTRIBUTION PHASE

set, i.e., gradient projection me?“@?gl should be used. After the cell association phase is completed, some of the
In the context of cell association in HetNets, we USe @gq may have extra RBs not allocated to any users. In this

huristic to project the lteration t.’a(?k to the feasible Se‘teonsection, in order to allocate the remaining RBs, given the

one or more BSs receive assomatpn requests from t00 Mafy., ciation indices:;;s we solve the optimization problems

users. First, we require all the usars: Uf 1o sort the BSS py 5nqpy for n;; with fixed z;;s, . Before addressing either

in their range in descending order based on their qualiﬁnatiof P1 and P2. we defineld; as the set of users associated
index Ql;; given in [41), and send this sorted list to the B%vith BS j ’ !

they want to connect to (BS* in (43)). Let us say BSj

receives too many association requests, i.e., upon aceEpta Uj = {ilzi; = 1},Vj € B. (47)
of all those requests the resource constraint aj BSviolated. . o

Then, BS; finds the users who are consuming the highef Sum utility of rate maximization

number of RBs (highest number af;), and removes them Assuming fixedr;;s, problemP1 is reduced to the follow-
until its resource constraint is satisfied. BSsends those ing optimization problem at each BS

removed users’ requests to the second best BSs the users have Pl . maximize Z Unisés) (48)
requested. If the resource constraints are satisfied atSsl B e, R

now, the projection is accomplished. Otherwise, this pdoce N et

continues until the solution is back to the feasible set. &s w subjectto Y ni; = N, (49)
have mentioned before, it is assumed that BSs are connected i€U;

through a high speed back-haul, and the message passings nij = T—LZ +n;j, (50)
required for projecting the solution back to the feasible se R ,
takes place in negligible time period. Moreover, the adiaiss Where;; is the number of already allocated RBs to user
control described here achieves load balancing in the metw®Y BS j satisfying the rate QoS constraint of userandn,;
since it avoids over populating the BSs. is the share of userfrom the remaining RBs available at BS

4. The above problem is a convex problem that can be solved
through Karush-Kuhn-Tucker (KKT) condition5s [26]. Using

C. Distributed cell r?lss?uatlon protc?col design o the Lagrange multiplier for the resource constrairit (49), the
The proposed distributed algorithm of cell association dgg|ution is

scribed in previous sections is summarized here:

JF
Step 1. Initialization All BSs j € B initialize their nw _ {i(U')l(i) —ﬁg} Vi e U, (51)
associated Lagrange multiplier; and broadcast them in the Cij Cij
network. wherev is the unique solution of the following equation
Step 2: User requestin this step, all users € U/ listen to 1 v o
the pilot signals broadcasted by BSs and measure the SINR Z max{g_j(U ) 1(53-’)’715} = Nj, (52)

from each BS and channel gains between themselves and all 1€U;



and (U’)~1(.) is the inverse of the derivative df (-) with
respect ton;;. The solution of the above equation is unigu
sinceU(+) is a concave and strictly increasing function, henc
(U")~1(-) is a strictly increasing (monotonic) function of osf
This equation can be solved efficiently through a numeric
search method. In the end, the optimal solution of B, ;
is rounded to the closest integer value since the the proeed
described here does not necessarily produce integer Vialues
1;5S. 0af
In our simulations, we chos¥& (x) = log(1l + z). In this

0.3
case;n;; = [1/v—1/e;; — ﬁf}]Jr.

Probability
o
@
T

-0- Max SINR, rmmzl
o— Distributed, r_. =1
-q- Max SINR, 1. =2

—<— Distributed, r_, =2

-b- Max SINR, r_. =3
min
— Distributed, r . =3

B. Global outage probability minimization

Assuming fixedz;;s, removing the constant 1 in the objec gEEEE L i & ° 5w
tive function of P2, flipping the negative sign to positive sign,
and taking the logarithm of the remaining terfid2 reduces

to the following optimization problem at each BS E(ie%inlg The CDFs of users’ long term rate for the rate problana istatic
. i out
P2, ; : maximize Z log (1 — P (53)
nig A€ eu;
1
: ==
subject to Z ni; = Nj, (54) ool oo T )
i€U; . P,P
0 , 0.8 L 5 >
Nij = Ny + g5 (55) o o B’
7 . /d/
wheren) is the number of already allocated RBs to usby o6l /5
BS j satisfying the outage QoS constraint of us;eandn;j E:os— / 5
is the share of userfrom the remaining RBs available at BS 2 E
j. The optimization problen2,, ; is a non-convex problem, o4r /5
. A ) L. ) _e_MaxSINR,rmmZI
and finding the closed form solution to it is involved. Howeve X O o Distrbuted, . =1
it can be shown that the objective functioni2,, ; is strictly ol A - - MaxSINR. 1, =2
. . . . . - Y Distributed, r_. =2
increasing inn;;s. In other words, increasing each of;s g __:__Maxs.m,,”‘“:a
or a subset ofy;;s increases the objective function. As thit . —q— Distrbuted, 1, =3
problem is a monotonic combinatorial optimization probjen @

Rate (bits/s)

applying a greedy algorithm is a natural approach to solvir
it [30]. We propose a greedy algorithm where in each itematio
one RB is given to the user that benefits the most in termsm@§. 2. The CDFs of users’ instantaneous rate for the ratélgm in a
the outage probability (the user that has the highest demmemstochastic setting

in RF}”‘ given in [10)) until the RBs at B$ are exhausted. At
BS j, given that there ar&; = (N; — 3_,,, 7if;) RBs left,

the algorithm terminates i ; iterations modelled by statistically independent exponentiallyrdisited
j .

random variables with unit variance. The noise power at all
the receivers is set te-111.45 dBm, which corresponds to
thermal noise at room temperature and bandwidth86fkHz

In this section, we evaluate the performance of our diggandwidth of an RB in LTE standard). The mobile users
tributed cell association algorithm and the effects of d|$n their SINR and channel gain measurements average out
tributing the remaining RBs through numerical simulationghe Rayleigh multi-paths fading and see the effects of large
Three tiers of BSs are considered to exist in the HetNet. Thgale path loss, while their instantaneous rate dependstbn b
transmitting powers of macro, micro and femto BSs are setfge large scale and small scale fading. The number of RBs
46,35 and 20 dBm, respectively. The macro BSs’ locationgyailable at macro, micro and femto BSs a¥@acro = 200,
are assumed to be fixed and for each macro BS, 5 mickQ, ... = 100, and Niemo = 50. Without loss of generality,
BSs, 10 femto BSs, and 200 users are randomly locatedifiz scheduling interval oft second is considered in the
a square area of000 mx1000 m, unless stated otherwise.simulations.
Regarding the channel model, large scale path loss and small
scale Rayleigh multi-paths fading are considered. Thelpath
between the macro or micro BSs, and the users is modelled’a
L(d) = 34+401log;,(d), and the pass loss between femto BSs Fig. 1 shows the cumulative distribution function (CDF) of
and users id.(d) = 37 + 301og,,(d), whered is the distance the long term rate for the Max-SINR and the distributed cell
between users and BSs in meters. The small scale fadingssociation algorithms for the rate problem in a static fmu

VI. NUMERICAL RESULTS

SRate cumulative distribution functions
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Fig. 3. The CDFs of users’ instantaneous rate for the outagklgm and Fig. 4. The rate gain of the optimal linear program algoritihe rounding
outage probability of’ = 10% in a stochastic setting algorithm, and our distributed algorithm over maximum Slisgorithm for
the rate problem in a stochastic setting

tion environment. The simulation environment is statiche t

sense that the Rayleigh multi-path fading is not considered The CDFs of the instantaneous rate for the Max-SINR
and only large scale path loss is taken into account. Fig.22d the distributed cell association algorithms for theagat
shows the CDFs of instantaneous rate for the Max-SINR aRtPblem is shown in Fig. 3. Only a stochastic setting is
the distributed cell association algorithms for the ratebfgm considered for the outage problem since outage probability
in a stochastic setting where both large scale and smalk scggnnot be defined in a static setting. The maximum outage
fading are taken into account. In both figures, the resuftthie probability is set tol" = 10% for all the users. By zooming
rate threshold ofy = 1,2, and3 bits/s are shown. In the caseln this figure, it can be seen that the outage probability for
of Max-SINR scheme, some of the BSs may get overload#ite distributed algorithm and the cases)of 0.8,1, and 1.2
when users associated with a BS require more RBs than ®its/s isT = 7.9%,8.4%, and 8.1%, respectively, which are
BS budget; thus, those users are needed to be schedulete$g than the required outage probability™f= 10%; thus,

the next scheduling interval. The rate reduction causedby the outage constraints are always satisfied. This is whee th
over-loaded BSs is taken into account in the simulations. A4ax-SINR algorithm does not necessarily satisfy the outage
it can be seen in Fig. 1, the long term rate of the users ne@@nstraints. Moreover, similar to the rate problem, the €DF
drops below the rate threshold in the case of the distributetirate resulted by the distributed algorithm always lieoel
algorithm, while Max-SINR algorithm is not able to satisfithe CDFs of rate from the Max-SINR algorithm. The rate gain
the rate QoS constraints in a static setting. Furthermbwe, for the cell edge users is = 1.4,1.23, and 1.1 for minimum

rate CDFs of the distributed algorithm always lie below théresholds ofy = 1.2,1, and0.8 bits/s, respectively.
corresponding CDFs resulted by employing the Max-SINR Fig. 4 demonstrates the effectiveness of the distributdld ce
algorithm, especially for the cell edge users (wadst users). association algorithm for the rate problem in a stochastic s
The rate gain for the cell edge users obtained by using tiieg. The cell association probleR introduced in section IV
distributed algorithm over the Max-SINR algorithm increas can be solved by three different methods. First one is sglvin
by increasing the rate threshold. To be more specific, ratesgathe problem directly as a linear program using the simplex
of @ = 2.4,1.6, and1.1 are observed for minimum thresholdgnethod[31]. This method does not necessarily produce yinar
of v = 3,2, and 1 bits/s, respectively, in a static settingvalues for the association indices, however, provides geup
Likewise, in a stochastic setting, as it can be seen in Fithe2, bound to all the other methods. We call this method the
rate CDFs of the distributed algorithm always lie below theptimal method. The second method is obtained by rounding
corresponding CDFs obtained by employing the Max-SINfRe solution of the optimal linear program method to the
algorithm. In this case, the rate gains for the cell edgesuser closest integer value, produciig andls for the association

a = 1.75,1.3, and 1.08 are observed for minimum thresholdgndices. We call this method the rounding method. Finallg, w
of v = 3,2, and1 bits/s. However, the instantaneous rate sedwave the distributed algorithm introduced in this papei=ig

by the users can go below the rate threshold since the usdrsthe rate gainy, = % is plotted against the
measurements are based on the average channel gains, vgndéability, wherea € {Optimal RoundingDistributed. For

the instantaneous rate is dictated by both the average ehannstance, at probabilitg.2, o of the optimal algorithm is the
gain and the small scale Rayleigh fading. Since lower rategtio of the rate for which 20% of the users experience rates
than the rate threshold are also achievable, the average raelow that rate when the problem is solved by the optimal
and the rate gain of the cell-edge users drop in the stochasiigorithm, over the rate for which 20% of the users expegenc
setting compared to the static setting. rates below that rate when the problem is solved by the Max-
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SINR algorithm. It can be seen that the rate gains for tt

15

optimal and rounding methods are close, meaning that t o Dmbud. 1
solution of the optimal Iinear program i§ mpstly compqsed ¢ el j;iﬁ'?i?m 12 |
0s andls. Also, the rate gains of the distributed algorithm i B4 _MaxsnRr s eS8 g5 5558 B854
close to the rounding algorithm, which proves the effectess pol| T 2

S - g —Max  Tmin™

of our distributed algorithm. We have observed similar dien
for the rate problem in a static setting, and outage problem
a stochastic setting.

Average sum utility of rate

B. The effect of number of femto BSs

The effects of number of femto BSs per macro BS on tt
performance of the distributed and Max-SINR algorithms a
demonstrated in Figures 5 and 6. In a stochastic setting 5Fi¢
shows the average sum utility of instantaneous rate fordtee r 5 10 15 2 2
problem (problemP1,) and rate thresholds of = 1,2, and pumeretiemo 8s
3 bits/s, while Fig. 6 shows the logarithm of the probability
of no users experiencing outalye;; (1 _ﬁ(.)\ut) for the outage Fig. 5. The average sum utility of instantaneous rate ayainmber of
problem (problemP2,) and rate thresholds of = 0.8, 1, femto BSs for the rate problem in a stochastic setting
and 1.2 bits/s and outage probability ¢f = 10%. It can
be seen that the distributed algorithm outperforms the Mav-
SINR algorithm in all the cases. It is also observed that tt s
performance of the distributed algorithm slightly worsdays
increasing the number of femto BSs, which is attributed !
introducing more interference in the network.

Moreover, for the rate problem in Fig. 5, the performanc
of the Max-SINR algorithm first improves as the number c
femto BSs increases, which is because more resources bec
available per unit area and the likelihood of having ovedkxh
BSs decreases. As the number of femto BSs surpasses a thr
old, the performance of Max-SINR saturates then worser
similar to the distributed algorithm, since the effect of nmo
interference dominates the more availability of resourées

T
o Distributed, T in=0-8
—@ -Max SINR, rmm:o.s
—<«—Distributed, r =1

-4 _Max SINR, r . =1
min
—g— Distributed, r_. =1.2
—@ -MaxSINR, 1. =1.2
min

IoglU(Prabab\Iity of no users experiencing outage)

for the outage problem in Fig. 6, the performance of the Ma B A S |
SINR algorithm for the cases of = 1 and1.2 bits/s shows a -k oo 2-8-2 i - - -
decreasing trend since the effect of more available RBsrner Number of ferto BSs

dominates the interference. However, in the case ef 0.8
bits/s, first the interference worsens the performance @l t rig. 6. The probability of no users being in outage againstiver of femto
the availability of more resources boosts the performance. BSs for the outage problem and outage probabilityl'ot= 10%

C. The effect of number of users

The effects of nu_mb_er of users per macro BS on tnfsers, and increases with increasing the rate thresholébrAs
performance of the distributed and Max-SINR algorithms affie outage problem in Fig. 8¢, (1 _P(.)\ut) decreases almost

- ) Qinearly. This trend occurs because the distributed atlyari
shows the average sum utility of instantaneous rate foratee rprovides users with only enough number of RBs to keep the
problem (problemP1,) and rate thresholds of = 1,2, and outage probability of each link slightly below the required

3 bits/s, while Fig. 8 shows the logarithm of the probability, 46 probability. Besides, more users translates intce mo
of no users experiencing outagge, (1 — Pou) for the outage multiplicative terms inl — Poy — Mooy oo (1 - Plolut)f“'f
1 J ) !

problem (problemP2,) and threshold rates of = 0.8, 1, ina the | ithm of — P to d | i V|

and 1.2 bits/s and outage probability & = 10%. It can be cau_5|tngt_ efogr?n mh -~ tﬁ”‘ 0 decrease aimost '?ﬁar Y- tn

seen that the distributed algorithm outperforms the MaXslI an INIItvVe fasnion, when Iere are more USers in the system
the likelihood of at least one user going into outage inesas

algorithm in all the cases. - oY
For the rate problem, as it can be seen in Fig. 7, t%f:g;ifs’ the probability of no users experiencing outage

distributed algorithm keeps the average sum utility arou
a constant value, which is because of the load balancing itAs for the performance of the Max-SINR algorithm, in-
achieves. The distributed algorithm provides each usehn witreasing the number of users leads to less availability of
only enough number of RBs to satisfy the rate constraint®sources and decline of the performance in both rate and
This is why the performance does not vary with the number ofitage problems.
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Fig. 7. The average sum utility of instantaneous rate againsiber of users Fig. 9. The average sum utility of instantaneous rate agamsimum rate
for the rate problem in a stochastic setting for the rate problem showing the effect of distributing tleenaining RBs in
a stochastic setting

P ———
—o— Distributed, [ n:0.8

o MaxSINR, 08 figures is that the distributed algorithm with the remaining
- - Disbued 1y -1 I RBs significantly outperforms the results obtained through
-ast T e s | the distributed cell association algorithm only. Secondligh

-5 MEXSINR 12 lower number of users, the performance of the distributed

algorithm with the remaining RBs improves. This is because
for a given rate threshold, the cell association algorithst fi
provides users with only enough number of RBs to satisfy
the QoS constraints. Therefore, less users require lesalbve
number of RBs to have their QoS constraints satisfied, Igavin
more RBs unused. More unused RBs trivially translates into

IoglO(ProbabiIily of no users experiencing outage)

R ! a stronger boost in the performance after distributing them
o E‘\f among the users. Finally, by increasing the rate threstioéd,
e performance of the distributed cell association only &tar
Number of users gets close to the performance of the distributed algorittith w

the remanning RBs. This trend is seen since more RBs are
Fig. 8. The probability of no users being in outage againsbiver of users required to satisfy QoS constraints with higher rate thoks)
for the outage problem and outage probabilityZot= 10% leaving less overall unused RBs in the network. Distribgitin
less unused RBs among users leads to a less improvement over

distributed cell association algorithm.
D. The effect of distributing the remaining RBs

By far, in all our simulations we have considered only the VII. CONCLUSIONS

distributed cell association algorithm solving the optiation This paper addressed the cell association problem in the
problem P,. The effect of distributing the remaining RBsdownlink of a multi-tier HetNet, where BSs have finite number
after the cell association phase for the rate (solity, ; of RBs available to distribute among their associated u¥tes

on top of the cell association probled®1,) and outage proposed a QoS-driven distributed cell association algari
(solving P2,, ; on top of the cell association probleRP2,) where users receive only enough number of RBs to satisfy
problems is demonstrated in figures 9 and 10, respectively.their QoS constraints while maximizing the sum utility of
Fig. 9, we can see the average sum utility of instantanedosg term rate or minimizing the global outage probability.
rate for the distributed algorithm solving the cell asstioia The option of distributing the remaining RBs is also given
problem, and the distributed algorithm with the remainintp the BSs after the cell association phase. The algorithms
RBs, against the rate threshold in a stochastic settingign Fderived in this paper are of low complexity, and low levels
10, we can see the logarithm of the probability of no usecd message passing is required to render them distributed.
experiencing outage for the distributed algorithm , and thHextensive simulation results that are brought in this paper
distributed algorithm with the remaining RBs, against theer show the superiority of our distributed cell associationesne
threshold and link outage probability @ = 10%. In both compared to maximum SINR scheme. For instance, rate gains
figures, the curves corresponding to 150 and 200 users péup to 2.4x have been observed in the simulations for the
macro BS are plotted. The first observation on these twell edge users in our distributed cell association alporit
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Fig. 10. The probability of no users being in outage againsimum rate
for the outage problem and outage probability Bf = 10% showing the
effect of distributing the remaining RBs
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over maximum SINR scheme. Most importantly, we provided

a general framework for jointly associating users to BSs a
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