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Abstract—We propose pilot reuse (PR) in single cell for massive systems it is typically obtained with assistance of the pe-

multiuser multiple-input multiple-output (MIMO) transmi ssion
to reduce the pilot overhead. For spatially correlated Raykigh
fading channels, we establish a relationship between chaeh

spatial correlations and channel power angle spectrum when

the base station antenna number tends to infinity. With this

riodically inserted pilot signals_[5]. In time-division glex
(TDD) massive MIMO transmission, CSI at the BS can be
obtained from uplink (UL) training via leveraging the chahn
reciprocity [2], [6]. For the conventional orthogonal traig

channel model, we show that sum mean square error (MSE) (OT) scheme[[6], the pilot overhead is proportional to the

of channel estimation can be minimized provided that channle
angle of arrival intervals of the user terminals reusing thepilots
are non-overlapping, which shows feasibility of PR over spially
correlated massive MIMO channels with constrained channel
angular spreads. Regarding that channel estimation perfanance
might degrade due to PR, we also develop the closed-form rokt
multiuser uplink receiver and downlink precoder that minimize
sum MSE of signal detection, and reveal a duality between the.
Subsequently, we investigate pilot scheduling, which det@ines
the PR pattern, under two minimum MSE related criteria, and
propose a low complexity pilot scheduling algorithm which elies
on the channel statistics only. Simulation results show thathe
proposed PR scheme provides significant performance gainver
the conventional orthogonal training scheme in terms of net
spectral efficiency.

Index Terms—Pilot reuse, massive MIMO, multiuser MIMO,
pilot scheduling, robust transmission.

I. INTRODUCTION

number of the UT antennas. As the UT antenna number grows,
the heavy pilot overhead decreases the system efficiency
greatly and can become the system bottleneck.

In order to reduce the pilot overhead, we propose pilot reuse
(PR) in single cell for massive MIMO transmission in this
paper. The motivation stems from that, in realistic outdoor
wireless propagation environments where BS is located at
an elevated position, the scattering around the BS is ysuall
limited, and the MIMO channels are not spatially isotropic
[7], [8, i.e., most of the channel power lies in a finite numbe
of spatial directions compared with the whole massive MIMO
channel dimension. For UTs with channels lying in almost
orthogonal spatial directions, PR is feasible and benéficia

In the proposed PR scheme, massive MIMO transmission
consists of the following phases: statistical CSI acqjgisifor
pilot scheduling, UL training for channel estimation, ULtaa
transmission, and downlink (DL) data transmission. Thetpil

ASSIVE multiple-input multiple-output (MIMO) trans- scheduler at the BS determines the PR pattern, and allocates

mission employs a large number of antennas at tiige available pilot signals to the UTs. Due to the slow-vagyi
base station (BS) to serve a relatively smaller number ghture of the long term channel statistics, it is reasonable
user terminals (UTs) simultaneously [2]. With the poteintiag exploit the statistical CSI at the BS to perform pilot
large gains in spectral efficiency and energy efficiencysiwes scheduling. With the resulting PR pattern, the UTs transmit
MIMO is a promising technology that the next generation ahe respective assigned pilot signals periodically to &ntie
wireless systems may incorporate, and has received tremgg- to obtain the channel estimates. The channel estimation

dous research interest recenfly [3], [4].

performance might degrade due to PR, thus it is natural to

Channel state information (CSI) at the BS plays an inyesign the UL and DL data transmissions robust to the channel
portant role in massive MIMO transmission, and in realistigstimation error.
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In this work, we consider the spatially correlated Rayleigh
fading channels, and show that when the BS antenna number
tends to infinity, eigenvectors of the channel covariancgima

are determined by the BS array response vectors, while eigen
values depend on the channel power angle spectrum (PAS),
which reveals a relationship between channel spatial keorre
tions and channel power distribution in the angular domain.
For this channel model, we show that sum mean square error of
channel estimation (MSE-CE) can be minimized, providetl tha
channel angle of arrival (AoA) intervals of the UTs reusihg t
pilots are non-overlapping, which shows feasibility of Pl
spatially correlated massive MIMO channels with constdin
channel angular spreads (ASs). Regarding that channel esti
mation performance might degrade due to PR, we investigate
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robust data transmissions for both UL and DL with channetatrix, and the subscript is omitted for brevity in some sase
estimation error due to PR taken into account. The closedhere it is clear0 denotes the all-zero vector (matrix). The su-
form robust multiuser UL receiver and DL precoder whiclperscriptg-)?, (-), and(-)* denote the conjugated-transpose,
are applicable to arbitrary PR pattern based on the minimuranspose, and conjugate operations, respectively. Thtmy
MSE of signal detection (MMSE-SD) criterion are developedliag {x} denotes the diagonal matrix witk along its main
and an interesting MMSE duality between them is revealediagonal, andtr {-} denotes the matrix trace operation. We
Subsequently, we study pilot scheduling under two MMSE&mploy [a], and[A]; ; to denote the™ element of the vector
related criteria, and in both cases the designs are foretllag, and the(i, j)" element of the matrixA, respectively, where
as combinatorial optimization problems. We show that bothe element indices start from. ||a], = va”a denotes
criteria can be optimized provided that channel AoA inté&svathe ¢,-norm of a, and |X|lp = tr {X”X} denotes the
of the UTs reusing the pilots are non-overlapping, and psepoFrobenius norm oK. (a, b) = a’’b denotes the inner product
a low complexity pilot scheduling algorithm (called the-stabetweena and b. A = 0 (A > 0) denotes thatA is
tistical greedy pilot scheduling [SGPS] algorithm) mote@& Hermitian positive definite (semi-definite), ard > B means
by the channel AoA non-overlapping condition. Simulatiothat A — B = 0. CM*Y denotes thelM x N dimensional
results show that the proposed PR scheme provides sigtificeémplex vector spac& {-} denotes the expectation operation.
performance gains over the conventional OT scheme in ter®& (a, B) denotes the circular symmetric complex Gaussian
of net spectral efficiency. distribution with meana and covariancé. 4(-) denotes the
Related Works and Our Contributionstost of the previous Dirac delta function] x| denotes the largest integer that is not
works assumed pilot reuse among cells for massive MIM@reater than:. The notation= is used for definitions, and
transmission, where UTs in the same cell use orthogonakpilomeans “be distributed as”. The superscripts “p”, “u”, and “d
while the same set of orthogonal pilots is reused among cediand for the expressions related to pilot, UL data, and DL
[2], [9], [LQ]. It has been shown that pilot contaminatio]1 data, respectively.
caused by inter-cell pilot reuse can degrade the performanc Outline: The rest of the paper is organized as follows.
of massive MIMO transmission. In order to mitigate piloln Section[Il, we investigate the massive MIMO channel
contamination, several approaches including, e.g., éoated model, and establish the relationship between channebépat
channel estimation[[11], time-shifted pilot allocation2]1 correlations and channel PAS. In Secfianh I, we presentd®R f
eigenvalue decomposition based blind channel estimati@h [ UL channel estimation and show how PR affects the channel
cooperative pilot contamination precodingl[14], and distied estimation performance. We also provide a condition under
MMSE precoding[[10] were proposed, respectively. In cattrawhich the MSE-CE can be minimized. In Sectibnl IV, we
to these existing works where pilot overhead was simply s#évelop the robust multiuser UL receiver and DL precoder
to be fixed, our work focuses on reducing the pilot overheaghder the MMSE-SD criterion, and reveal a MMSE duality
and in the meanwhile, balancing the tradeoff between tlw pibetween them. In Sectidn]V, we study pilot scheduling and
overhead and the pilot interfererﬂépecifically, we propose propose a low complexity pilot scheduling algorithm thdies
PR among UTs, where the required number of orthogorah the channel statistics only. Simulation results are iy
pilots can be much smaller than the number of UTs in a ceih Section[ V] and the paper is concluded in Secfion VII.
by allowing that different UTs in a cell share the same pilot.
We investigate pilot scheduling, channel estimation, adist I
UL and DL transmissions under the systematic PR framework,
which, has not been thoroughly addressed in the literatete y We consider massive MIMO transmission in the TDD mode
Compared with existing works which dealt with inter-cellgpi i single-cell scenario, where the BS willf antennas serves
contamination, our work is more general in the sense th&t(< M) single-antenna UTs over frequency-flat fading chan-
we deal with both the pilot interference and pilot overhedels on a narrow-band sub-carrier. We assume that channels
under the PR framework. In this paper, our analysis focused’y in time according to the block fading model, where
on the single-cell scenario for the sake of clarity. Regaydi channel states stay constant over the coherence block with
the multi-cell scenario where pilot contamination pess[@8], @ length ofT" symbols, and evolve from block to block in an
performances of the proposed PR scheme will depend iglependent and identically distributed manner according
the system configurations. For example, if statistical CSPme ergodic process.
coordination among cells is possible, i.e., channel cavaxe  With the ray-tracing based approach [7].[16].][17], the UL
matrices can be exchanged among cells, pilot scheduling &f@nnel between thé/ antennas at the BS and the antenna
pilot interference (as well as pilot contamination) mitiga of the ™ UT can be modeled as

. MAssIVE MIMO CHANNEL MODEL

can be performed jointly via exploiting statistical CSI bkt omax
|ntra—ce!l as well as inter-cell UTs. o . g = / v (0) gi () do = /V (6) i (6) Ao 1)
Notations:We usej = v/—1 to denote the imaginary unit. A

Upper (lower) case boldface letters are used to denotecuatri u o _
(column vectors)Iy denotes theV x N dimensional identity Wheregy, (6) andv (9) € C**! are the complex channel gain
function and the BS array response vector correspondirgto t

Ipilot interference caused by intra-cell PR is definedId () can be incidence angld, respgctl\{ely. We assume thm (9)”2 =
seen as intra-cell pilot contamination. v M for power normalization. We assume that the channel
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power seen at the BS is constrained to lie in the angle intervaThe result in LemmBa]1 indicates that, when the BS antenna
A = [#™" 9™a] which can be achieved via placing directionahumber)/ is sufficiently large, the channel covariance matrix
antennas at the BS, and thus no power is received at the B can be well approximated by
for incidence angl® ¢ A. .

We assume that the channel phases are uniformly dis- Ry, ~ Vdiag {ri} V. ©)
tributed, thus E{gy} = 0. We assume that chan-Note that the matrixV tends to be unitary when/ is
nels with different incidence angles are uncorrelated, i.gufficiently large. This establishes a relationship betwaean-
E{gx (9) g5 (0")} = BrSk (8) (6 — ¢') where 5, represents nel spatial correlations and channel power distributiohie
the large scale fading, arfi), (¢) represents the channel PASangular domain. Specifically, for massive MIMO channels,
which models the channel power distribution in the angulaigenvector matrices of the channel covariance matrices fo
domain [18]. Then from[{1), the channel covariance matrififferent UTs tend to be the same, and are determined by the
(BS spatial correlation matrix) is given by BS array response vectors, while eigenvalues depend on the

gmax respective channel PASs.

R, =E{gwgl } = B /V(e) vl (0)Sk (0)d8.  (2) Remark 1:When BS is equipped with the ULA, and the
gin M antennas are spaced with a half wavelength distance, the
array response vector can be representedlas [7]
We assume thaf ™ S, ()d¢ = 1, and channel power
normalization should be satisfied as v (0) = [l,exp(—jw sin (6)),. ..,

emax

T
tr{Ry} = B M /Sk (6) dé. 3) exp (—jr(M — 1) sin (9))] . (10)
gmin

e assume that the AoA interval equals= [—7/2,7/2],

A specific property of the massive antenna array is its hi% oo . / .
resolution to the channels in the angular domain [19], and d it IS not _hard _to _ShOV\_’EK4) inAssumptidd 1, i.e.,
Assumption[]L is valid in this case. Let = 9 (¢) =

introduce an assumption about it in the following. . o
Assumption 1:[[20]Array response vectors correspondin@rcsm(w —1), then 9 () = arcsin (W - P for

to distinct angles are asymptotically orthogonal when tige Bn' = 0,1,..., M, and elements oV reduce to[V], ;

antenna number tends to infinity, i.e., fé¢, 9 € A, L exp (_pﬂw for i = 1,2,...,M and

) VM
lim —(v(¢),v(¥)=d(—1). (4)

j=1,2,..., M. This indicates that, for the ULA case, when
M—oo M M is sufficiently large, eigenvector matrix of the channel

Note that Assumptiofil1 is valid for uniform linear arrayfovariance matrix can be well approximated by the unitary
(ULA) as one shall see in Remdrk 1. Based on this assumptiiscrete Fourier transform (DFT) matrix (up to some matrix

we can obtain the following result on massive MIMO chann&lémentary operations). Similar channel covariance matri
covariance matrix. decomposition for the ULA case was derived[in][11] and [21],

however, the result in Lemnid 1 applies to the more general
BS array configurations. In addition, the relationship hestw

Lemma 1:Let
1

V=—[ @), vO@1)),....,v(¥(m-1))] (5) eigenvalues of the channel covariance matrix and chanr®l PA
VM is established in Lemnid 1. [
(], = BM - Sy (9 (Wm—-1)) [0 (¥m) — 9 (Wm—1)], The channel model proposed in Lemfda 1, as well as the

ULA case in RemarK]1, is based on Assumptidn 1, where
angular resolution of the antenna array is assumed to tend to
where,,, = m//M for m’ = 0,1,...,M, andf = 9 (+)) infinity when the antenna number grows to infinity. It is well
over the support0,1] is a strictly increasing continuousknown that angular resolution of an array is proportional to
functiold that satisfiesy (0) = ™" and ¥ (1) = 6™ Then the array size[]7],[[8]. Thus, the channel model in Lemma
under Assumptiori]1, matrice¥”V and R, tend to be [ is applicable for arbitrary antenna array configuratiothwi
the identity matrix andVdiag {r;,} V¥, respectively, when sufficiently large array size. However, in practical wisse

M — oo, in the sense that, for fixed positive integémnd;j, communication systems, the antenna array size is always.fini
Nevertheless, for a fixed array size, a fairly large number of

for m=1,2,....M (6)

Mh_rfloo [VHV - IML'.,J' =0 (7) antennas can still be accommodated at the BS if wireless
transmission is performed over higher carrier frequengy in
lim [Ry — Vdiag {ry} V7] = =0. (8) e.g., milimeter wave massive MIMO systenis|[22]. For ex-
Moo w7 ample, considering the case where the antenna number equals
Proof: See AppendiXA. B 128 and the carrier frequency equal®é GHz, which lies in

the millimeter wave spectrum, the size of the ULA with half
2The functiond (¢) can be interpreted as a mapping from the space domﬁ\Wavelength spacing considered in Rem@ark 1 is ﬁ.lﬁtl m.

to the physical angle domain, and it indeed depends on thaB§ structure. .
We assume the functiott (¢)) to be strictly increasing and continuous overNC'te that the channel model in Lemriph 1 for the ULA case

the support to guarantee that the function is a one-to-orgping. has been shown as a good approximation with finite but large
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number of antennas [1L1], [21]. For these reasons, the pesposondition thatx?x,, = 7o% - § (1 — ') wheredy is the pilot
channel model is of great importance from both practical asinal transmit power.
theoretical perspectives. We denote an arbitrary PR pattern with UT &&tnd pilot

In this paper, we employ the widely accepted assumptiget 7 as P(K,7) = {(k,m) : k € K,m, € T} where
that channels are wide-sense stationary [8], thus chamnel ¢k, ;) € P(K,T) denotes that ther}ch pilot sequencex,,
variance matrices can be obtained by the BS. However, statis allocated to thek™ UT. We usek, = {k : 7, = 7} to
arity of the realistic wireless channels can only be satisfiea denote the set of the UTs using th# pilot sequence.
local manner, i.e., channel covariance matrices also vaey o With the PR patterr?(K, 7), the UTs transmit their as-
time. Thus, it requires that the channel covariance matricsigned pilots periodically to enable the BS to estimate the
being periodically estimated at the BS. Estimation of massichannels. During the UL training phase of each coherence
MIMO channel covariance matrices is rather challenging amgock, the received pilot signals at the BS can be written as
resource-consuming [23]. However, from the result given by Mr
Lemma 1, only the eigenvalues rather than the whole massive Y=GX+NeC (11)
MIMO channel covariance matrices need to be estimated, thygere G is the UL channel matrix, X —

the number of parameters to estimate can be significantly x = . x. " € CE*7 is the UL pilot sign_al

reduced. In addition, the channel covariance matrices Vaf4trix, N is the independent additive Gaussian noise matrix
much less frequently than the instantaneous CSI, and thyigh elements distributed as independently and identicall
can be estimated via averaging over time. Furthermore, thgs (0705), and o® is the noise power during the training
channel covariance matrices have been shown to stay CONSiHhse. After decorrelation and power normalization of
over a wide frequency interval [24], and thus can be estithatghe received signalsT[2], the BS can obtain the channel
via averaging over frequency in practical wideband systemghservation of all the UTs. Specifically, for the" UT in

Therefore, there will be enough time-frequency resouroes § given coherence block, the BS obtains the UL channel
estimate the channel covariance matrices, and the estimatpservation as

accuracy can be guaranteed in practice. In the rest of therpap K
we will assume that the channel covariance matrices of all th p _ 1 Yx* — 1 T *
= p QU — x. + N | x
UTs are known by the BS. Yo = Gy e TGPy ;g ” i
We assume that the channel elements to be jointly Gaussian K .
from the law of large numbers, i.eg;. ~ CN (0,Ry). We = ng -6 (mg — ) + 5= Nx&,
assume that channels of different UTs are mutually stedittyi — oxT
independent, and denote the UL channels of all the UTs as 1 y
G=lg,...,egx] € CMXK, :e; gf"‘Ewak- (12)
ERR,

With the property of unitary transformation, it is not hard
to show that the noise tersp—Nx, in (I2) is still Gaussian

In this section, we present PR for UL channel traininguith elements distributed ‘as independently and identicall
and investigate how PR affects the channel estimation perfp /() _crpE_ . Let p» = of/0? be the UL channel training

mance. Our following analysis applies to arbitrary PR patte _. IxT /. : :
. o o signal-to-noise ratio (SNR), theh {12) can be rewritten as
while how to form the PR pattern exploiting the statistic&lIC 9 ( ) n{12)

IIl. PRFORUL CHANNEL TRAINING

will be discussed in SectidnlV. po_ Z L »
Yr, — 8¢+ n,
We denote the UT set as = {1,2,..., K} wherek ¢ = VPPT TE
K is the UT index. We assume that the UL training interval ' 1
length equals (< K)E and all the UTs transmit the respective =gk T g g+ nb (13)
: ; : ; VpPT TR
pilot sequences in the length ef simultaneously during the Lekn, \{k}
training intervall Note that the maximum number of available ——~——pilot noise

i pilot interference
orthogonal sequences is equal to the sequence length, and we

assume that the available orthogonal pilot sequence numiere *\” denotes the set subtraction operation, aifg ~

equalsr for simplicity. We denote the available orthogonafV (0,Ix) is the normalized additive noise. Note thidf,
pilot set as7 = {1,2,...,7}, and thex" pilot sequence represents the set of the UTs using the same pilot ag'the

asx, € C™*! wherer € T is the orthogonal pilot index. UT, and the BS has to estimate the channels of all the UTs
Different pilot sequences are assumed to satisfy the ootalg reusing ther} pilot based on the observatigh, . The MMSE
estimate of the channgj, based on the channel observation

31t should be noted that the results obtained in the followang applicable ygk is given by
for arbitrary 7, and can be either set to be a fixed number, or determined gr = RkC;lyﬁ (14)
dynamically by the BS. One example of how to dynamically deiee k< Tk
based on the net spectral efficiency maximization criteridhbe discussed \yhere

in Section[VI-G. N 1
4For the case that one UT sends pilot signals during sevemicylar Cmc = Z R, + _pTI- (15)
channel uses while remains silent during other channel, tisesilot signals LEK A, p

can be seen as a specific pilot sequence with several norengiies at the . o ) .
corresponding channel uses. From the orthogonality principle of MMSE estimation [25],
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channel estimation errg, = g — &« IS independent of,, can be minimized if the UTs reusing the pilots have non-
and the covariance @y, is overlapping channel AoA intervals. This result is very intu
itive, as in such cases, the channels of different UTs ailgtr
Rg, = R — RyC Ry, (16) separated in the angular domain, and the pilot inteerrence
Note thatg; and Rg, are also mean and covariance gf does not take into effect. Moreover, in the high SNR regime
conditioned ony%, , respectively[[25]. where the training SNRP — oo, the pilot noise vanishes,
The estimation error covariance is an important measureafd then the MSE-CEP — 0, which implies that channel

the estimation performance, and we define the MSE-CE agstimations tend to be perfect.
X Although the conditions in Theorel 1 and Corollaly 1 are
P L Ztr Ry, ). 17) des!raple, they cannot alvyays be_ well satisfied. However, in
— realistic outdoor propagation environments where the BS is
_ ! ) located at an elevated position, channel AS seen by the BS
Before we proceed, W_e_f|rst de_zf_lne the_orth_ogonallty_ b(—g usually small [8], [[25], which indicates that most of the
tween two arbitrary Hermitian positive semi-definite megs channel power is concentrated in a narrow angle interval, an

using the angle(< 6 < /2) between them as the channel power outside this angle interval is very sriait.

A tr {AHB} tr {AB} UTs located geographically apart in different spatial cli@ns,
0(A,B) = ATCCOS 1R~ = ATCCOS [ S the overlaps of their channel power in the angular domain
" Ffor AB- OF F(18) might be neglected, and thus PR becomes feasible in such

spatially correlated massive MIMO channels.
_Then we present_a_cqndmc_)n under wh|_ch the MSE-CE defined IV. ROBUST UL/DL DATA TRANSMISSIONS
in (I7) can be minimized in the following theorem.

Theorem 1:The minimum value of the MSE-C® is given  In the previous section, we showed feasibility of PR for
by massive MIMO transmission, and presented UL channel train-

X« ) ing with PR. In each coherence block, the BS obtains the
1 B channel estimates of all the UTs after UL channel trainirge T
P_ _ -
° T ; o {Rk Ri (Rk T I) Rk} (19) " conventional data transmission design in massive MIMQtrea
._1. ) ) N the channel estimates as the real channels. However, with PR
and the minimum is achieved under the condition that, fghe channel estimation performance will degrade in mosigas

Vi,j € K andi # j, thus a robust data transmission design with channel estimat
6(R,,R;) = 17 when m = ;. (20) ©rrors taken into account is of paramount importance in the
considered PR based massive MIMO transmission. There are
Proof: See AppendixB. m two main approaches to design a wireless system robust

In the MSE-CE metric defined i (IL7), correlations betwedp the channel uncertainty: the worst-case approach and the
the channel estimation errors seen by different UTs are raatistical approach. In the worst-case approach, thengtan
taken into account. Actually, the correlations between thucertainty is modeled as being within a given set around the
channel estimation errors of the UiTand the UTj (j #4) channel estimate, and a worst-case transmission perfaenan
can be obtained as can be guaranteed[27]. In the statistical approach, thergia

H uncertainty is modeled using the channel statistics, satche
E{gsg]} =E { (gi — R:C'y2) (gj - ch;jlygj) } mean and the covariance, and a statistical average perficama

_ _R/C-'R, - (m — ) (21) can be guaranteed [28]. In this work, we e_mploy the_s_taalstic_

- v T v approach to model the channel uncertainty. Specifically, in
which indicates that channel estimation errors of the UTta wi€ach coherence block, based on the received pilot signals,
orthogonal pilots are independent, while those of the UtBe CSI uncertainty at the BS can be modeled statistically
reusing the pilots are correlated. However, if the conditi!sing its conditional distribution, i.e., the conditionalean
given in Theoreni]l is satisfied, theHRiC;ile — 0, (the MMSE channel estimate) and the conditional covariance
i.e., channel estimation errors seen by different UTs wal bthe covariance of the channel estimation error). Note tnat
uncorrelated no matter whether they reuse the pilots or nefiannel estimation error covarianBg, given in [18) depends
and the condition given in Theordr 1 is still optimal. on the PR patterrP(KC, 7) and the channel covariance, and

To obtain clear insights of Theoref 1, we consider tH&us can be known by the BS. In the following, we will develop
asymptotic antenna number case, and the following coyolldiobust data transmissions for UL and DL, respectively, unde
can be readily obtained from Lemrh 1. the MMSE-SD criterion.

Corollary 1: When the BS antenna numbgf — oo, the

MSE-CE P can be minimized provided that, fofi,j € K
andi # j, During the UL data transmission phase, the signal received

at the BS at a channel use in the given coherence block can
(ri,r;) =0,  when m =m; (22) pe expressed as
wherer; for fixed positive integei is given in Lemmd4ll.m T T oo NNV ST
The result in Corollanf]l indicates that the MSE-GE y =Ga + N (G+G) a’+ N (23)

A. Robust UL Data Transmission
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where G = [&1,82,...,8K] IS the channel estimatdy = CX*! with mean0 and covariancd denotes the DL data
[&1,...,8k] is the channel estimation erret! € C*** with  signal vector wherda?], is the signal for thet™ UT, n® ~
mean0 and covariancd denotes the UL data signal vectolC (0, 1) is the independent additive noigé,is the average
where[a'], is the signal sent by the" UT, n" ~ CA(0,15;) DL data transmission SNR per UT, afl is the DL linear
is the independent additive noise, apt is the UL data precoding matrix which satisfies the power constraint
transmission SNR per UT.

H

We consider the linear receiver at the BS tr {BB } < K. (31)

AU — Wy 24 Then MSE-SD of_ the DL transmission in the given coherence
a Y (24) block can be defined as

and then MSE-SD of the UL transmission in the given da d _d2 32

coherence block can be defined as € {Ho‘y —a Hz} (32)

M LmdaY — aY? 25) where the expectation is with respecta® n?, andG, anda

[ ”2 (25) p p

o is a real scalar parameter corresponding to the potentieépo
where the expectation is with respectto n", and the channel scaling performed at the Uts.

estimation erroiG. . Finding the optimal DL precoder based on the MMSE-SD
Finding the optimal UL receiver based on the MMSE-SRyiterion can be formulated as
criterion can be formulated as . d
réun € (33)
min ! 26 “
W (26) subject to tr {BBH} < K

and we present the solution in the following theorem.
Theorem 2:The optimal solution to the probleni_(26) is
given by

and we present the solution in the following theorem.
Theorem 3:The optimal solution to the probleni {33) is
given by

K -1 -1 9"
. 1 R K
opt I i 1 1 A 1 A
WoPt — (GG +> Rg + puI> G (27) BPt— _—_ (GGH +) Rg + —pdl> G (34)

k=1 ~yOPt P
and the corresponding MSE-SD is given b)i . (0P 0! (35)
_ . K 1 A where~°P' is chosen to satisfy the power normalization con-
M= tr ¢ | T+ GH (; Rg, + _I> G strainttr {B(B°P)} = K, its value is given by
(28) . . K -2
Proof: See AppendiX L. [ | tr {GH (GGH + > Rg, + p—ldl) G}
For the conventional receiver with channel estimates as- opt _ k=1 (36)
sumed to be accurate, the impact of the channel estimation K
error is omitted. While for our robust MMSE receiver desigrhng the corresponding MSE-SD is given by
the channel estimation error due to PR is taken into account.
Specifically, the expectation ii (5) accounts for the chan- R K 1 -1 . o
nel estimation erroiG, which leads to our robust MMSE €™ =tr{ [ T4 G (Z Rz, + —dI> G
receiver. Note that the robust MMSE receiver given[in] (27) k=1 P
exhibits a similar structure to the conventional receiVénen (37)
fo:l Rg, — 0, the robust MMSE receiver in (27) reduces  Proof: See AppendifD. m
to the conventional receiver From Theoreni]3, we can observe that, similarly to the UL
-1 7* case, the robust MMSE precoder [0}(34) also embraces the
Weon — KGGH + —I> G} (29) structure of the conventional precoder.

C. UL-DL Duality

ec]From the results in Theorefd 2 and TheorEm 3, we can
Crgadily obtain the following UL-DL MMSE duality.
rE:orollary 2: In each TDD coherence block, ¥ = p9,

B. Robust DL Data Transmission

During the DL data transmission phase, the signal receiv
at the UTs at a channel use in the given coherence block
be expressed as

then BOPt = Wopt/,yopt, a‘ndeu,min _ ed,min' u
yd = GTBad + L nd — (G T G)TBad 4 L nd The result in Corollary]2 indicates that, in the same TDD
vl pd coherence block, if the UL data transmission SNR equals the

(30) DL data transmission SNR, then the robust DL precoder in

T :
where the DL Channeﬂ?'. IS t_he transpose of the UL channel syge thata is a real scalar, and the overhead for the UTs to obtain it can
due to the channel reciprocity of the TDD system’s f#],€  be neglected.
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(34) can be achieved by the robust UL receiver[inl (27) witlvhere the expectation is with respect to the channel fading
proper power normalization, and the complexity of compwtinand the noise distributions, and the effective noise cavag
the robust MMSE DL precoder can be reduced. In additiomatrix is defined as

if the robust MMSE receiver and robust MMSE precoder are K 1
used for data transmissions, then the same MMSE-SD can Runef £ Zng + =L (40)
be achieved in both the UL and DL in each TDD coherence k=1 P

block. Note that similar UL-DL duality based on the perfectpg gpjective function if{39) is the average of the MMSE-SD
CSI assumption was provided in the literature suchlas [2@)st can be achieved by the robust MMSE receiver and robust
and [30], however, our result in Corollaly 2 is established q\Sg precoder in each coherence block, and it depends on
the pilot-assisted CSI acquisition assumption. the statistics of the channel fading and pilot noise digtiimns.

In this section, we have investigated the robust UL and Dl shoy|d be noted that here we still use the term MMSE-SD
data transmissions with channel estimation error due to R& brevity, however the meaning of it differs from that when

taken into account. It will be seen in the following sectiofe consider the designs of the receiver and precoder in the
that, PR based massive MIMO transmission, which Comb'”ﬁfevious section.

pilot scheduling and robust data transmission, can achreve

7 Due to the difficulty in obtaining the closed-form expressio
MMSE-SD optimality for both the UL and DL.

of the objective functiorE {"™"} in (39), we first present a
lower bound of it in the following lemma.

V. PILOT SCHEDULING Lemma 2:The average MSE-SDE {¢'™"} is lower

Up to now, we have investigated channel training and dag@unded by

transmission of the massive MIMO transmission with PR, and )
the obtained results are applicable to arbitrary PR pattern E {&MM) > b= ¢ {(IK + Q)_l} (41)
this section, we study pilot scheduling which exploits thied
term statistical CSI to allocate the available pilot sigrnal the
UTs, and we focus on two MMSE related criteria. Q] =tr {C;}Ri (Rt,n,eff)*l R*} SS(m—my) . (42)

J

where for fixed positive integersand 7,

A. MMSE-CE Criterion Proof: See AppendiXE. L

It will be seen in Sectioi_VI-A that, the lower bound
sented in Lemm@ 2 is tight over a wide SNR region. By
replacing the objective functidh { ™"} with its lower bound
presented in Lemnid 2, the pilot scheduling problEn (39) can

CSl is critical to massive MIMO transmission, and it is
natural to design the pilot scheduler based on the MMSE-
criterion, which leads to the following problem

min e (38) be simplified as
P(K,T) N
: t,al
whereeP is defined in [(TI7). Pl e (43)

The pilot scheduling problem in[(B8) is combinatorial
and the optimal PR patterR(/C,7) can be found through
exhaustive search (ES). The complexity of the ES11 (38), |
terms of the (complex) scalar multiplication number whic
dominates the computational complexity, is briefly evatdat
as follows. Recalling[{17), the scalar multiplication nwenb =~ "
required in evaluation of the objective function ih_{38) igriterion IsO(r" M?K?). . )
O(M3K). Thus, the computational complexity of running ES Before we proceed, we present a condition under wHigh

under the MMSE-CE criterion i) (K M3 K). can be minimized in-the following theorem.
Theorem 4:The minimum value of the lower bound aver-

age MSE-SDe4P js given by

The pilot scheduling problem if_(43) is also combinatorial.
e optimal PR patteriP(/C,7) can be found through ES.
ote that the scalar multiplication number required in egal
tion of the objective function in(43) i®(M3K?), thus, the
computational complexity of running ES under the MMSE-SD

B. MMSE-SD Criterion

MSE-SD is an important performance measure of the data K ZK: 1
transmission, and in the sequel we study the pilot scheduler o 1+ [w];
design regarding the MSE-SD metric. Due to the UL-DL

MMSE-SD duality in each coherence block presented Where[w]; for fixed positive integet is given by [45), shown
Corollary [2, we assume that' = 9 for simplicity, and at the top of the next page, and the minimum is achieved under

denote thatp! = p¢ = pt and eumin — (dmin _"ctmin  the condition that, foii, j € K andi # j,

(44)

=1

where th superscript t stands for expression relatecata d 6(R.,R;) = 17 when m = ;. (46)
transmission. We consider pilot scheduling under the MMSE-
SD criterion, which can be formulated as Proof: See AppendiXF. u
min E{Et,min} Recalling Lemmd]l, we can readily obtain the following
PK,T) corollary.

B AH tneffh =1 A) Corollary 3: When the BS antenna numb&f — oo, the
=B {tr { (I + G (R G) }} (39 |ower bound average MSE-S&° can be minimized provided
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—1

—1 K —1
[w]i =tr (Ri + %I) R; [Z (Rk — Ry (Rk + %I) Rk> + itI R; (45)
pPT —~ pPT p
that, forVvi,j € KL andi # j, Algorithm 1 Statistical Greedy Pilot Scheduling (SGPS) Al-
gorithm
(ri,r;) =0, when 7; =m; (47) input. The UT setk — {1,2,...,K} and the channel
wherer; for fixed positive integet is given in Lemmd4ll.m covariance informatioR.(k € K), the orthogonal pilot

Interestingly, conditions for optimal data transmissidn o Set7 with the pilot lengthr(1 < 7 < K)
tained in Theorerl]4 and Corollafy 3 are the same as thd3tput: PR patternP (K, T) = {(k,m) : k € K, 7 € T}
for optimal channel training obtained in Theordth 1 andl: Initialize the unscheduled UT sét*" = K, the unused
Corollary[d. The intuitive interpretation lies in that, fiorassive pilot set 7" =T
MIMO transmission, if channels of the UTs reusing the Step 1)Schedule the UTs with “similar” channel covari-
pilots can be rigorously spatially separated, then not diméy ance matrices and assign them with orthogonal pilots
pilot interference but also the transmission data interffee 2 ™1 = 1, m = 1, Ky = {1}, K* « K"\ {1}, T «
vanishes. Furthermore, in the high SNR regime where both T\ {1}
the training SNRoP and transmission SNR tend to infinity, ~ 3: While 7" 5 & do
the remaining additive noise vanishes, and the average MSE: ~ For the pilot ¢ € 7%, select the UTm, =
SD &t — 0. This result shows that the PR based transmission argmax ;¢ 7w cos 0 (Re, R, )

scheme, which combines pilot scheduling and robust datg. Zeﬁusnsign the pilott to the UTmy, mm, =, K; = {m,}
transmission, can achieve the MMSE-SD optimality. 6: Update/CUn «— KU\ {m,}, T4« 77U\ {¢}
7: end while
Step 2)Each unscheduled UT is assigned with the “best”
C. SGPS Algorithm pilot so that the channel covariance matrices of the UTs

In the above subsections, we have investigated pilot s¢thedu reu_smgutnhe pilots are as orthogonal as possible
. . 8: while £"" # @ do
ing under two MMSE related criteria. In both cases, the un .
. ) . L : For the UT &k € K", select the pilotn;, =
designs are formulated as combinatorial optimization prob in 3 8 Ry, R.)
lems, and the optimal PR patterns can be formed through ES. arfﬁm sek, 08 ko Ths
However, due to the exponential complexity, ES becomes hata Assign the pilotn; to the UT &, m;, = ng, Ky, <
to implement in practice as the UT number grows. Kn, U{k}

In this subsection, we propose a low complexity pilofl:  UpdateX!" < K™ {k}
scheduling algorithm called the statistical greedy pitdtesiul-  12: end while
ing (SGPS) algorithm which is motivated by the conditions
for optimal channel estimation and data transmission gimen
Theorenfll and Theorel 4, and the main idea is that channel VI. NUMERICAL RESULTS
covariance matrices of the UTs reusing the pilots should be
as orthogonal as possible. Detailed description of the SGP3n this section, we present numerical simulations to evalu-
algorithm is summarized in Algorithra] 1. Coordinated piloate performances of the proposed PR based massive MIMO
allocation algorithm for mitigating the inter-cell pilobatam- transmission. We assume that the BS is equipped with2Re
ination using similar idea was proposed inl[11], howeveg, thantenna ULA, and the antennas are spaced with a half wave-
above SGPS algorithm is dedicated for the single-cell so@nalength distance. We set the AoA interval ds= [—7/2, 7/2].

We evaluate the complexity of the SGPS algorithm aafe consider the typical outdoor wireless propagation emvir
follows. In the process of the SGPS algorithm, no more thaments where the channel PAS can be modeled as the truncated
Zﬁ;} m(K —m) = (K — 1)K(K + 1)/6 orthogonality Laplacian distribution[[18],[[31] given by (48), shown atth
calculations defined i {18) are needed. Note that the scaiap of the next page, wherg, andd;, represent the AS and the
multiplication number needed in each orthogonality caleulmean AoA of thek™ UT’s channel, respectively. We assume
tion is O(M?), thus, the computational complexity of runninghat channel ASs are the same for all the UTs so #hat o
the SGPS algorithm i©(M2K?). In above subsections, we(Vk). We assume that all the UTs are of equal distance from
have shown that the ES complexity under the MMSE-Cthe BS, and set the large scale fading coefficientgas- 1
and MMSE-SD criteria aré(75X M3 K) and O(r5X M?K?), (Vk). We assume that the UTs uniformly locate in120°
respectively. This indicates that the SGPS algorithm ga&essector, i.e., the mean channel A@A is uniformly distributed
significant computational complexity reduction comparéthw in the angle interval|—=/3,7/3] in radian. The channel
ES. Meanwhile, simulation results in Section MI-B will showcovariance matrices of the UTs are generated according to
that performances of the low complexity SGPS algorithm cahe model given by RemaiK 1, and we impose the constraint
closely approach those of ES. in @) for channel power normalization. We assume that the
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Sy ()

= ! ey [ Y210 = Oi] o
" Va0 (1= exp (—Var /o)) eXp( ) for¢ e O =m b7l 48)

Ok

channel training SNR and the data transmission SNR are eq
such thatpP = pt = pd = p.

A. Performance of Robust Transmission

In this subsection, we employ the average MSE-SD meti
to evaluate performances of the robust receiver and preco
developed in Section V. Due to the UL-DL MMSE duality
given in Corollary[2, we only consider the UL transmissiol
case for brevity.

We compare performances of the robust MMSE receiv

Average MSE-SD

given in [27) with those of the conventional receiver givan i 102} Conventional _ BT
(29). We consider the case witli = 10, ¢ = 10°, and the E Robust, Tve
mean channel AoAs of the UTs from UT 1 to UT 10 are . Robust, Lower bound
10 ‘ ‘ : ; ; ; ;
0.6592, 0.8499, —0.7812, 0.8658, 0.2772, om0 s R

—0.8429, —0.4639,0.0982,0.9582, 0.9737]

. . . Fig. 1. Comparison of the average MSE-SD performances leetvibe
in radian. We assume that the pilot length equals 5, and robust MMSE receiver (using the true and the estimated Harovariance

consider two PR patterns. Specifically, the pilot indicex the matrices that are obtained via averaging oved samples, respectively) and
UTS use from UT 110 UT 10 ardl, 1.2,2,3,3.4,1,5.5]and [ convenions eceher, Resuls e showt e e o st
[1,2,3,4,3,5,4,5,5, 3] for PR patterns A and B, respectlvly. average MSE-SD achieved by the robust MMSE receiver is apictid.

In Fig. [, we plot the average MSE-SD performances of
the robust MMSE receiver (using the true and the estimat
channel covariance matrices that are obtained via avegag
over 100 samples, respectively) and the conventional receiv:
The lower bound of the average MSE-SD achieved by tl
robust MMSE receiver given in Lemnfid 2 is also shown. W
can have the following observations: 1) the average MS
SD performance loss using the estimated channel covaria
matrices compared with true channel covariance matrices ¢
be almost neglected; 2) the robust MMSE receiver outpergort
the conventional receiver, especially in high SNR regirr
where pilot interference dominates; 3) compared with tt
robust MMSE receiver, the conventional receiver is quit
sensitive to the channel estimation error, and increadieg |
SNR may result in additional MSE-SD for the conventione
receiver; 4) the closed-form lower bound of the average MS

MSE-CE

SD given in Lemmd12 is tight over a wide SNR region fo Pilot length
different PR patterns; 5) pilot scheduling is crucial to tiata
transmission performance. Fig. 2. Comparison of the MSE-CE performances between th®SSG

algorithm and ES. Results are shown versus the pilot lengthdifferent
values of SNRp with K = 10 ando = 10°.

B. Performance of SGPS Algorithm

In this subsection, we evaluate performances of the SGg

algorithm, and compare them with those of ES. In Eig. 2 arg%

Fig.[3, we plot the MSE-CE metric if (IL7) and the average

MSE-SD metric in [(4ll) versus the pilot length for different o .

values of SNR withk = 10 and o = 10°, respectively. It C. Net Spectral Efficiency Comparison

can be observed that, in both cases the performances of thin this subsection, we compare thet spectral efficiency
performance between the proposed PR scheme and the con-

SPR pattern B is determined by the SGPS algorithm proposeceatic® ; i i ; ;
Tl and we arbitrarily set a PR pattem as patter A for caispe. We ventional OT scheme. The net spectral efficiency is given by
employ such setting to exemplify that pilot scheduling isicial to the Rnet (1 T) RaCh
B T

transmission performance.

PS algorithm closely approach those of ES over a wide
R region for different values of pilot length.

(49)
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120

100
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=
I
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Q
& 5
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< g 40+
2 ¥ —H—PR,0=2
- —©—PR,0=5 ||
-A-0oT16=2
-V -0T,0=5
0 ; ; ; ; ; n n
0 5 10 15 20 25 30 35 40
Block length

Pilot length

Fig. 3. Comparison of the average MSE-SD performances keettre SGPS Fig. 4. Comparison of the UL spectral efficiency performanbetween the
algorithm and ES. Results are shown versus the pilot lergttiifferent values PR Scheme and the OT scheme. Results are shown versus thenughblock

of SNR p with K = 10 ando = 10°. length T" for different values of ASs with K = 10 andp = 20 dB.

and the achievable rat®®" can be set as the UL sum 140
achievable rateR"s'"™ or the DL sum achievable ratg%s'™
or the weighted summation @t“s“™and R%sY™ The UL sum
achievable rate?"sU'M [9], [B2] is given by [50), shown at the
top of the next page, where;, is the k" column of the UL
receiver matrixW given in [27). The DL sum achievable rate
RYsum[g], [A0] is given by [B1), shown at the top of the nex
page, wherd, is thek™ column of the DL precoding matrix
B given in [33), andx is the power scaling performed at the
UTs given in [3b).

For the PR scheme, we consider a dynamic pilot leng |
strategy. Specifically, for a given UT set, the achievabiesan 20¢
(50) and[(51L) can be obtained for arbitrary pilot length: K)
with pilot scheduling performed by the SGPS algorithm, ar % = 0 5 10 15 20 25 30
then the optimal pilot length and the net spectral efficienc SNR (dB)
can be obtained. While for the OT scheme, the pilot length
rTissetasr = K if K <T/2,or7T = |T/2]if K >T/2 Fig. 5. Comparison of the UL spectral efficiency performantetween

. . the PR scheme and the OT scheme. Results are shown versuslfhéoS
where only|T/2| UTs are serviced simultaneously [6]. different values of ASs with K — 10 and T — 20,

The UL net spectral efficiency performances of the PR

scheme and the OT scheme are compared in [Hig. 4 and

Fig.[H, while the DL net spectral efficiency performances agploited the fact that, in realistic outdoor wireless gation

compared in Figl6 and Fid] 7, witi = 10. It can be environments where the BS is located at an elevated position
observed that, the proposed PR scheme shows performagmggt of the channel power lies in a limited number of spatial
gains over the conventional OT scheme in terms of the n@itections compared with the whole massive MIMO channel
spectral efficiency, and the gains become larger as the ehartdimension, and thus PR among UTs of spatial localization
AS becomes smaller. Moreover, in the high SNR regime whegcomes feasible and beneficial. We first established the rel
the pilot interference dominates, and in the small coherengonship between the channel covariance matrix and the-chan
block length regime where the pilot overhead dominates, thg| PAS for the massive MIMO channels. Then we showed
proposed PR scheme provides significant performance gaigt, if channel AoA intervals of the UTs reusing the pilots
Specifically, for the case with’ = 10,0 = 2°, p = 20dBand are non-overlapping, then MSE of the channel estimation
T = 20, the proposed PR scheme provides approxima&tly can be minimized. We also developed the robust multiuser
bits/s/Hz net spectral efficiency gains over the conventiongJ|_ receiver and DL precoder with the channel estimation
OT scheme for both the UL and DL data transmissions.  error due to PR taken into account, and revealed the UL-DL
MMSE duality between them. Moreover, we presented pilot
VII. CONCLUSION scheduling under two MMSE related criteria, and proposed

In this paper, we proposed pilot reuse (PR) in single cell far low complexity pilot scheduling algorithm motivated by
massive MIMO transmission to reduce the pilot overhead. Wae channel AoA non-overlapping condition. The simulation

[y

N

o
T

[

o

o
T

o]
o
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40t

UL spectral efficiency (bits/s/Hz)
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S [whe|”
Ru,sum: E 1Og2 1 + k % (50)
k=1 wi (Zm;ﬁk &m&i + 21 Re, + %I) Wi
K T 2
EJag:b
RS gy (14— | 2{ gl b }| — (51)
k=1 o1 E{0? (g7 bu[*} — |E {aglbi}|* + 1E {2}
120 APPENDIXA
PrROOF OFLEMMA[T]
100} From the definition ofV in (5), we have
3 lim [VEV —1y].
2 sof M—00 vJ
< . 1 H o
gl = Jim =7 (v (9 (%i-1)))" v (9 (%-1)) =6 (i =)
g @ ¢ S
% =0(i—j)—=0(i—j)=0 (52)
% or @ — where (a) follows from Assumptionl 1 ant(+)) is a strictly
2 S Esz;g increasing function. This concludes the proof[gf (7).
20r —~A-org-7|| The proof of [8) can be obtained as
o [E¥roress lim [Ry — Vdiag {r} V7]
0 5 10 15 20 25 30 35 40 M—o0 4

Block length

Fig. 6. Comparison of the DL spectral efficiency performanbetween the
PR scheme and the OT scheme. Results are shown versus thenmehblock
length 7" for different values of ASs with K = 10 andp = 20 dB.

140 ‘ ‘
—B—PR,0=2
|| —©—PR,0=5
-A-0o16=2
|-V -0T,0=5

[y
N
o

[
o
o

[es]
o
T

60

40

DL spectral efficiency (bits/s/Hz)

0
-10 -5 0 5 10 15 20 25 30
SNR (dB)

Fig. 7. Comparison of the DL spectral efficiency performantetween
the PR scheme and the OT scheme. Results are shown versublfhéoS
different values of AS with K = 10 andT" = 20.

= . [Ryl; ;
M
im_ [M > 1y ¥ (0 (o) ¥ 0 im0
(b) M N
= Jim [Ry]; ;= i lim 2 [V (0 (m))];
[ (0 W) Sk (9 (1)) [0 () — D (1))
Dbi [ v O v (6] ()0
emmﬁ(dJM)
B / v (0 ()]; [v (9 ()] Sk (9 (4)) 49 ()
9 (o)
emax
9D s, / v (6)]; [v (O)] Sk (6) dO
9m'n0max
By / v (O)): [ (0)] S (6)do = 0 (53)
gmin

where (a) follows from[{5), (b) follows fron{{6), (c) follows
from (2) and the integral definition, (d) follows from that
9 (o) = ¥ (0) = 0™ and ¥ () = ¥ (1) = M

APPENDIXB
PrROOF OFTHEOREM[I

We start by presenting a lemma that is required in the

results showed significant performance gains of the prapodellowing proof.
PR scheme over the conventional OT scheme in terms of netemma 3:For A > 0 andB > 0, 0 (A,B) = /2 is

spectral efficiency.

equivalent toAB = 0.
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Proof: Recalling [18),0 (A,B) = ©/2 is equivalent to
tr {AB} = 0. Furthermoretr {AB} = 0 is equivalent to
AB = 0 for A = 0 and B = 0 [33, Prop. 4.26]. This
concludes the proof. [ |

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

A, we can obtain

K —1
i A 1 N
WPt — <GGH +) Rg, + E1) G
k=1

(60)

Now we proceed with the proof of the theorem. Due to the o ] ] )
positive semi-definiteness of the covariance matrix, we canSubstituting[(8D) into[(58), we can obtain the correspogdin

obtain

tr {Rg, } = tr {Ry — ReC 'Ry}
—1

1
=tr{R;—R E R,+—1 R
r k k e—f—ppT k
ZEIka

-1
Ztr{Rk — Ry (Rk—i-il) Rk} . (54)
pPT

From Lemma[B which states th&t(R;,, R;) = 7/2 is
equivalent toR;R; = 0, we can obtain

1
Crrk Rk - Z R[ + TTI Rk
EGIC,,k P

1 1
pPT pPT
which indicates that

1\ 1\
C;le =R, <Rk + —I) = <Rk + —I) R..
k pPT pPT
Substituting [(5b) into[(116), we can obtain

1
tr {ng} =tr {Rk — Ry (Rk + %I) Rk} (57)
pPT

which achieves the minimum i {b4). This concludes the proo

APPENDIXC
PROOF OFTHEOREM[Z

The MSE-SD defined if{25) can be simplified as
. K 1
U= tr{WT (GGH +) Rg + EI) W

k=1
+I1-WTG - GHW*}. (58)
Note thate" is convex with respect toV.

By setting the derivative of" with respect toW* [34] to
zero,

*

iI) W —G* =0 (59)

u

K
(i) (GGH + Zng +
k=1

where (a) follows fromA” = A* for the Hermitian matrix

MSE-SD as

K -1
omin — ¢y {I -G <GGH +> Ry + %I) G}
k=1
—1

(61)

-1
K
(a) ~ 1 A
= tr I+GH<§:ng+EI> G

k=1

where (@) follows from the Woodbury matrix inversion idémti
[33, Prop. 15.3]. This concludes the proof.

APPENDIXD
PROOF OFTHEOREMI[3
We start by simplifying the MSE-SD defined in {32) as
2
d=FE

a (GTBad +

I g d
—1n —a
)

2 o?K
E{||(aGTB ~1) ad||2} e

2

K
= tr{aQBH (GGT + Zng> B
k=1
2
—aGTB - aBHG*} + <O‘—d + 1> K. (62)
P

The simplified objective function if(62) is non-convex with
respect to(B, «). We first show that there exists a global
minimum for the problem{33) in the following lemma.
Lemma 4:For the problem[{33), there exists a global opti-
mal solution.
Proof: The problem in[(3B) is equivalent to

min  min ¢ (B, a)
B a(B) (63)
subject to tr {BBH} <K

and the optimaln for the inner unconstrained optimization
problem can be readily obtained as

B tr{GTB+BIG"| o
" (B (GGT xRy ) BY
Then the problen{83) is equivalent to
min ¢ (B)
B
r {GTB+ BHG*H2
- K —
4 [K/pd +tr {BH (GGT Y, ng) BH
subject to tr {BBH} < K. (65)

The feasible set of ((5) given byB : tr {BB”} < K}
is compact (closed and bounded), and the objective function
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of (€5) is continuous over the feasible set. Thus, accordimdherea is chosen to satisfy the constraim{BBH} = K.
to Weierstrass extreme value theorédm][35, Appx. E], thereSubstituting[(7b) into[{62), we can obtain the correspogdin
exists a global minimum for the problem{65), and so do@dSE-SD as
the equivalent probleni(B3). [ | K —1
Lemmal4 shows that there exists a global optimum for the d — ¢ { 1 — G7 [ G*GT + Z R: + iI G
problem [38). Note that the global optimal solution should 1 g pd
satisfy the Karush-Kuhn-Tucker (KKT) necessary cond#ion

K —1
[36]. In the following we will seek out all the solutions that - _AH [ o, 1 A
satisfy the KKT conditions and identify the optimal solutio S I-GT{GET I;ng * de G
among them. B (76a)
The Lagrangian associated with the problén (33) is . o
« _
LB.aN = A {BBY) - K) (66 g (I e (z Ry, + %I) G) (76b)
whereed is given in [62), and\ is the Lagrange multiplier k=1 P

associated with the inequality constraint.
The KKT necessary conditions for the probldml(33) can
obtained as[[34]

where [76h) follows from the trace identity{A} = tr { AT}
, Eq. (2.95)] andR;, is Hermitian, [76b) follows from
the Woodbury matrix inversion identity [33, Prop. 15.3].tho

9 o cvir K . that the MSE-SD in[(76a) is smaller thdi that previously
spr L (Bad) =a” [ G'GT + > R; |B obtained from the solutiofi = 0, B = 0, A\ = 0). Therefore,
A k=1 we obtain that the precoder given Hy {75) is optimal. This
—aG"+AB =0 (67) concludes the proof.
0 H Ak T = *
£E(B,o¢,/\) —2atr{B (G G +Zng B APPENDIX E
) ;21 PROOF OFLEMMA [2
A Ak - . . . . . .
—tr {GTB +BYG } + v 0 (68)  Via invoking the matnx—valued1 Jensen’s inequality which
H states thaff {A~'} = (E{A})"" for A - 0 [33, Prop.
AZ0, tr {BB } sk (69) 21.64], we can obtain
A(tr{BB"} — K) =0. (70)

-1
t,min > ~NH t,n,eff -1 A
An obvious solution that satisfies the above KKT conditions B{e™) > { (IK T {G (R) G})

is (a =0,B =0, = 0), and the corresponding equalsk . -1
’ . . . =trq(I Q 77
For the case withy # 0, (64) is equivalent to ' {( K+®) } (77)
and Q satisfies that

K
. A A
G'=a|G*GT R: + =I|B 71 A -1 4
«@ < + ; g T o2 ) (71) [Q]l}j _ [E {GH (Rt,n,eff) GH B
= 2¥)
which leads to —E {gf (Rtnefy ! gj}
GTB = B‘HCA';'>k (:a)E{(yp )H CflRi (Rt,n,eff)_l R_Cflyp }
K A T T )y Iy
_ H Ak T * b _ -1
=aoB <G GT + ;;ng + §1> B. (72) ©,. {leRi (REne Rj} Sl —m)  (78)
. . . where (a) follows from , and (b) follows frorh_(I13). This
Combining [72) with [6B) yields concluée)s the proof. o ® e
a’K "
P APPENDIXF
Substituting [[7B) into[{70), we can obtain PROOF OFTHEOREMI[4]
2 Via invoking the Schwartz inequality as in [37, Lemma 1
_ HY _ g quality n |37, 1,
A= o >0, tr {BB"} = K. (74)  we can obtain

Substituting [(7¥) into[{A1) yields

K
0 = tr {(IK + Q)_l} >> — L (79

K -1 — 1+ [Q],;
_ 1 Nx  NT * 1 A4k =1 .’
B= o GG+ Zng + EI G where the equality is attained if and onlySf is diagonal.
=1 Recalling Lemmd&13 which states thRt;R; = 0 is equiv-
alent to 0 (R;,R;) = /2, we only have to show that if
(75) R;R; = 0 for Vi # j andm; = =;, thenQ is diagonal,
i.e., [, , =0forVi#jandm = m;.

*

1

«

K —1
A 1 A
<GGH +) Rg + FI> G
k=1
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For Vi # j andm; = 7;, if R;R; = 0, then [15]
-1
€, = tr { IRy (R "R, |
-1 [16]
(:a) tr< R; <Rl + %I) (Rt,n,eff) 1 Rj
T
’ L [17]
=tr{ R;R; <R1- + iI) (REef) "L —0 (80)
pPT [18]
where (a) follows from[(56).
Furthermore, ifR;R; = 0 for Vi # j andn; = =;, then 19
diagonal elements df2 reduces to 19
1 -1
[9]11 =tr (Rz + EI) Rz [20]
K 1\ 1]
> [Re— R <Rk - —1> R, | +=I| R,y
pPT ot
k=1
(81) (22
via invoking [56). This concludes the proof.
[23]
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