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Abstract—We propose pilot reuse (PR) in single cell for massive
multiuser multiple-input multiple-output (MIMO) transmi ssion
to reduce the pilot overhead. For spatially correlated Rayleigh
fading channels, we establish a relationship between channel
spatial correlations and channel power angle spectrum when
the base station antenna number tends to infinity. With this
channel model, we show that sum mean square error (MSE)
of channel estimation can be minimized provided that channel
angle of arrival intervals of the user terminals reusing thepilots
are non-overlapping, which shows feasibility of PR over spatially
correlated massive MIMO channels with constrained channel
angular spreads. Regarding that channel estimation performance
might degrade due to PR, we also develop the closed-form robust
multiuser uplink receiver and downlink precoder that minim ize
sum MSE of signal detection, and reveal a duality between them.
Subsequently, we investigate pilot scheduling, which determines
the PR pattern, under two minimum MSE related criteria, and
propose a low complexity pilot scheduling algorithm which relies
on the channel statistics only. Simulation results show that the
proposed PR scheme provides significant performance gains over
the conventional orthogonal training scheme in terms of net
spectral efficiency.

Index Terms—Pilot reuse, massive MIMO, multiuser MIMO,
pilot scheduling, robust transmission.

I. I NTRODUCTION

M ASSIVE multiple-input multiple-output (MIMO) trans-
mission employs a large number of antennas at the

base station (BS) to serve a relatively smaller number of
user terminals (UTs) simultaneously [2]. With the potential
large gains in spectral efficiency and energy efficiency, massive
MIMO is a promising technology that the next generation of
wireless systems may incorporate, and has received tremen-
dous research interest recently [3], [4].

Channel state information (CSI) at the BS plays an im-
portant role in massive MIMO transmission, and in realistic
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systems it is typically obtained with assistance of the pe-
riodically inserted pilot signals [5]. In time-division duplex
(TDD) massive MIMO transmission, CSI at the BS can be
obtained from uplink (UL) training via leveraging the channel
reciprocity [2], [6]. For the conventional orthogonal training
(OT) scheme [6], the pilot overhead is proportional to the
number of the UT antennas. As the UT antenna number grows,
the heavy pilot overhead decreases the system efficiency
greatly and can become the system bottleneck.

In order to reduce the pilot overhead, we propose pilot reuse
(PR) in single cell for massive MIMO transmission in this
paper. The motivation stems from that, in realistic outdoor
wireless propagation environments where BS is located at
an elevated position, the scattering around the BS is usually
limited, and the MIMO channels are not spatially isotropic
[7], [8], i.e., most of the channel power lies in a finite number
of spatial directions compared with the whole massive MIMO
channel dimension. For UTs with channels lying in almost
orthogonal spatial directions, PR is feasible and beneficial.

In the proposed PR scheme, massive MIMO transmission
consists of the following phases: statistical CSI acquisition for
pilot scheduling, UL training for channel estimation, UL data
transmission, and downlink (DL) data transmission. The pilot
scheduler at the BS determines the PR pattern, and allocates
the available pilot signals to the UTs. Due to the slow-varying
nature of the long term channel statistics, it is reasonable
to exploit the statistical CSI at the BS to perform pilot
scheduling. With the resulting PR pattern, the UTs transmit
the respective assigned pilot signals periodically to enable the
BS to obtain the channel estimates. The channel estimation
performance might degrade due to PR, thus it is natural to
design the UL and DL data transmissions robust to the channel
estimation error.

In this work, we consider the spatially correlated Rayleigh
fading channels, and show that when the BS antenna number
tends to infinity, eigenvectors of the channel covariance matrix
are determined by the BS array response vectors, while eigen-
values depend on the channel power angle spectrum (PAS),
which reveals a relationship between channel spatial correla-
tions and channel power distribution in the angular domain.
For this channel model, we show that sum mean square error of
channel estimation (MSE-CE) can be minimized, provided that
channel angle of arrival (AoA) intervals of the UTs reusing the
pilots are non-overlapping, which shows feasibility of PR over
spatially correlated massive MIMO channels with constrained
channel angular spreads (ASs). Regarding that channel esti-
mation performance might degrade due to PR, we investigate
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robust data transmissions for both UL and DL with channel
estimation error due to PR taken into account. The closed-
form robust multiuser UL receiver and DL precoder which
are applicable to arbitrary PR pattern based on the minimum
MSE of signal detection (MMSE-SD) criterion are developed,
and an interesting MMSE duality between them is revealed.
Subsequently, we study pilot scheduling under two MMSE
related criteria, and in both cases the designs are formulated
as combinatorial optimization problems. We show that both
criteria can be optimized provided that channel AoA intervals
of the UTs reusing the pilots are non-overlapping, and propose
a low complexity pilot scheduling algorithm (called the sta-
tistical greedy pilot scheduling [SGPS] algorithm) motivated
by the channel AoA non-overlapping condition. Simulation
results show that the proposed PR scheme provides significant
performance gains over the conventional OT scheme in terms
of net spectral efficiency.

Related Works and Our Contributions:Most of the previous
works assumed pilot reuse among cells for massive MIMO
transmission, where UTs in the same cell use orthogonal pilots,
while the same set of orthogonal pilots is reused among cells
[2], [9], [10]. It has been shown that pilot contamination [10]
caused by inter-cell pilot reuse can degrade the performance
of massive MIMO transmission. In order to mitigate pilot
contamination, several approaches including, e.g., coordinated
channel estimation [11], time-shifted pilot allocation [12],
eigenvalue decomposition based blind channel estimation [13],
cooperative pilot contamination precoding [14], and distributed
MMSE precoding [10] were proposed, respectively. In contrast
to these existing works where pilot overhead was simply set
to be fixed, our work focuses on reducing the pilot overhead,
and in the meanwhile, balancing the tradeoff between the pilot
overhead and the pilot interference.1 Specifically, we propose
PR among UTs, where the required number of orthogonal
pilots can be much smaller than the number of UTs in a cell,
by allowing that different UTs in a cell share the same pilot.
We investigate pilot scheduling, channel estimation, and robust
UL and DL transmissions under the systematic PR framework,
which, has not been thoroughly addressed in the literature yet.
Compared with existing works which dealt with inter-cell pilot
contamination, our work is more general in the sense that
we deal with both the pilot interference and pilot overhead
under the PR framework. In this paper, our analysis focuses
on the single-cell scenario for the sake of clarity. Regarding
the multi-cell scenario where pilot contamination persists [15],
performances of the proposed PR scheme will depend on
the system configurations. For example, if statistical CSI
coordination among cells is possible, i.e., channel covariance
matrices can be exchanged among cells, pilot scheduling and
pilot interference (as well as pilot contamination) mitigation
can be performed jointly via exploiting statistical CSI of the
intra-cell as well as inter-cell UTs.

Notations:We use̄ =
√
−1 to denote the imaginary unit.

Upper (lower) case boldface letters are used to denote matrices
(column vectors).IN denotes theN ×N dimensional identity

1Pilot interference caused by intra-cell PR is defined in (13), and can be
seen as intra-cell pilot contamination.

matrix, and the subscript is omitted for brevity in some cases
where it is clear.0 denotes the all-zero vector (matrix). The su-
perscripts(·)H , (·)T , and(·)∗ denote the conjugated-transpose,
transpose, and conjugate operations, respectively. The operator
diag {x} denotes the diagonal matrix withx along its main
diagonal, andtr {·} denotes the matrix trace operation. We
employ [a]i and [A]i,j to denote theith element of the vector
a, and the(i, j)th element of the matrixA, respectively, where
the element indices start from1. ‖a‖2 =

√
aHa denotes

the ℓ2-norm of a, and ‖X‖F =
√

tr {XHX} denotes the
Frobenius norm ofX. 〈a,b〉 = aHb denotes the inner product
betweena and b. A ≻ 0 (A � 0) denotes thatA is
Hermitian positive definite (semi-definite), andA � B means
that A − B � 0. CM×N denotes theM × N dimensional
complex vector space.E {·} denotes the expectation operation.
CN (a,B) denotes the circular symmetric complex Gaussian
distribution with meana and covarianceB. δ(·) denotes the
Dirac delta function.⌊x⌋ denotes the largest integer that is not
greater thanx. The notation, is used for definitions, and∼
means “be distributed as”. The superscripts “p”, “u”, and “d”
stand for the expressions related to pilot, UL data, and DL
data, respectively.

Outline: The rest of the paper is organized as follows.
In Section II, we investigate the massive MIMO channel
model, and establish the relationship between channel spatial
correlations and channel PAS. In Section III, we present PR for
UL channel estimation and show how PR affects the channel
estimation performance. We also provide a condition under
which the MSE-CE can be minimized. In Section IV, we
develop the robust multiuser UL receiver and DL precoder
under the MMSE-SD criterion, and reveal a MMSE duality
between them. In Section V, we study pilot scheduling and
propose a low complexity pilot scheduling algorithm that relies
on the channel statistics only. Simulation results are provided
in Section VI and the paper is concluded in Section VII.

II. M ASSIVE MIMO CHANNEL MODEL

We consider massive MIMO transmission in the TDD mode
in single-cell scenario, where the BS withM antennas serves
K(≪M) single-antenna UTs over frequency-flat fading chan-
nels on a narrow-band sub-carrier. We assume that channels
vary in time according to the block fading model, where
channel states stay constant over the coherence block with
a length ofT symbols, and evolve from block to block in an
independent and identically distributed manner accordingto
some ergodic process.

With the ray-tracing based approach [7], [16], [17], the UL
channel between theM antennas at the BS and the antenna
of the kth UT can be modeled as

gk =

∫

A
v (θ) gk (θ) dθ =

θmax
∫

θmin

v (θ) gk (θ) dθ (1)

wheregk (θ) andv (θ) ∈ CM×1 are the complex channel gain
function and the BS array response vector corresponding to the
incidence angleθ, respectively. We assume that‖v (θ)‖2 =√
M for power normalization. We assume that the channel
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power seen at the BS is constrained to lie in the angle interval
A = [θmin, θmax], which can be achieved via placing directional
antennas at the BS, and thus no power is received at the BS
for incidence angleθ /∈ A.

We assume that the channel phases are uniformly dis-
tributed, thus E {gk} = 0. We assume that chan-
nels with different incidence angles are uncorrelated, i.e.,
E {gk (θ) g∗k (θ′)} = βkSk (θ) δ (θ − θ′) whereβk represents
the large scale fading, andSk (θ) represents the channel PAS
which models the channel power distribution in the angular
domain [18]. Then from (1), the channel covariance matrix
(BS spatial correlation matrix) is given by

Rk = E
{
gkg

H
k

}
= βk

θmax
∫

θmin

v (θ)vH (θ)Sk (θ) dθ. (2)

We assume that
∫∞
−∞ Sk (θ) dθ = 1, and channel power

normalization should be satisfied as

tr {Rk} = βkM

θmax
∫

θmin

Sk (θ) dθ. (3)

A specific property of the massive antenna array is its high
resolution to the channels in the angular domain [19], and we
introduce an assumption about it in the following.

Assumption 1: [20]Array response vectors corresponding
to distinct angles are asymptotically orthogonal when the BS
antenna number tends to infinity, i.e., for∀ζ, ϑ ∈ A,

lim
M→∞

1

M
〈v (ζ) ,v (ϑ)〉 = δ (ζ − ϑ) . (4)

Note that Assumption 1 is valid for uniform linear array
(ULA) as one shall see in Remark 1. Based on this assumption,
we can obtain the following result on massive MIMO channel
covariance matrix.

Lemma 1:Let

V =
1√
M

[v (ϑ (ψ0)) ,v (ϑ (ψ1)) , . . . ,v (ϑ (ψM−1))] (5)

[rk]m = βkM · Sk (ϑ (ψm−1)) [ϑ (ψm)− ϑ (ψm−1)] ,

for m = 1, 2, . . . ,M (6)

whereψm′ = m′/M for m′ = 0, 1, . . . ,M , and θ = ϑ (ψ)
over the support[0, 1] is a strictly increasing continuous
function2 that satisfiesϑ (0) = θmin and ϑ (1) = θmax. Then
under Assumption 1, matricesVHV and Rk tend to be
the identity matrix andVdiag {rk}VH , respectively, when
M →∞, in the sense that, for fixed positive integersi andj,

lim
M→∞

[
VHV − IM

]

i,j
= 0 (7)

lim
M→∞

[
Rk −Vdiag {rk}VH

]

i,j
= 0. (8)

Proof: See Appendix A.

2The functionϑ (ψ) can be interpreted as a mapping from the space domain
to the physical angle domain, and it indeed depends on the BS array structure.
We assume the functionϑ (ψ) to be strictly increasing and continuous over
the support to guarantee that the function is a one-to-one mapping.

The result in Lemma 1 indicates that, when the BS antenna
numberM is sufficiently large, the channel covariance matrix
Rk can be well approximated by

Rk ≈ Vdiag {rk}VH . (9)

Note that the matrixV tends to be unitary whenM is
sufficiently large. This establishes a relationship between chan-
nel spatial correlations and channel power distribution inthe
angular domain. Specifically, for massive MIMO channels,
eigenvector matrices of the channel covariance matrices for
different UTs tend to be the same, and are determined by the
BS array response vectors, while eigenvalues depend on the
respective channel PASs.

Remark 1:When BS is equipped with the ULA, and the
M antennas are spaced with a half wavelength distance, the
array response vector can be represented as [7]

v (θ) =

[

1, exp (−̄π sin (θ)) , . . . ,

exp (−̄π(M − 1) sin (θ))

]T

. (10)

We assume that the AoA interval equalsA = [−π/2, π/2],
and it is not hard to show (4) in Assumption 1, i.e.,
Assumption 1 is valid in this case. Letθ = ϑ (ψ) =

arcsin (2ψ − 1), then ϑ (ψm′) = arcsin
(

2m′

M − 1
)

for

m′ = 0, 1, . . . ,M , and elements ofV reduce to[V]i,j =
1√
M

exp
(

−̄2π (i−1)(j−1−M/2)
M

)

for i = 1, 2, . . . ,M and
j = 1, 2, . . . ,M . This indicates that, for the ULA case, when
M is sufficiently large, eigenvector matrix of the channel
covariance matrix can be well approximated by the unitary
discrete Fourier transform (DFT) matrix (up to some matrix
elementary operations). Similar channel covariance matrix
decomposition for the ULA case was derived in [11] and [21],
however, the result in Lemma 1 applies to the more general
BS array configurations. In addition, the relationship between
eigenvalues of the channel covariance matrix and channel PAS
is established in Lemma 1.

The channel model proposed in Lemma 1, as well as the
ULA case in Remark 1, is based on Assumption 1, where
angular resolution of the antenna array is assumed to tend to
infinity when the antenna number grows to infinity. It is well
known that angular resolution of an array is proportional to
the array size [7], [8]. Thus, the channel model in Lemma
1 is applicable for arbitrary antenna array configuration with
sufficiently large array size. However, in practical wireless
communication systems, the antenna array size is always finite.
Nevertheless, for a fixed array size, a fairly large number of
antennas can still be accommodated at the BS if wireless
transmission is performed over higher carrier frequency in,
e.g., millimeter wave massive MIMO systems [22]. For ex-
ample, considering the case where the antenna number equals
128 and the carrier frequency equals30 GHz, which lies in
the millimeter wave spectrum, the size of the ULA with half
wavelength spacing considered in Remark 1 is just0.64 m.
Note that the channel model in Lemma 1 for the ULA case
has been shown as a good approximation with finite but large
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number of antennas [11], [21]. For these reasons, the proposed
channel model is of great importance from both practical and
theoretical perspectives.

In this paper, we employ the widely accepted assumption
that channels are wide-sense stationary [8], thus channel co-
variance matrices can be obtained by the BS. However, station-
arity of the realistic wireless channels can only be satisfied in a
local manner, i.e., channel covariance matrices also vary over
time. Thus, it requires that the channel covariance matrices
being periodically estimated at the BS. Estimation of massive
MIMO channel covariance matrices is rather challenging and
resource-consuming [23]. However, from the result given by
Lemma 1, only the eigenvalues rather than the whole massive
MIMO channel covariance matrices need to be estimated, thus
the number of parameters to estimate can be significantly
reduced. In addition, the channel covariance matrices vary
much less frequently than the instantaneous CSI, and thus
can be estimated via averaging over time. Furthermore, the
channel covariance matrices have been shown to stay constant
over a wide frequency interval [24], and thus can be estimated
via averaging over frequency in practical wideband systems.
Therefore, there will be enough time-frequency resources to
estimate the channel covariance matrices, and the estimation
accuracy can be guaranteed in practice. In the rest of the paper,
we will assume that the channel covariance matrices of all the
UTs are known by the BS.

We assume that the channel elements to be jointly Gaussian
from the law of large numbers, i.e.,gk ∼ CN (0,Rk). We
assume that channels of different UTs are mutually statistically
independent, and denote the UL channels of all the UTs as
G = [g1, . . . ,gK ] ∈ CM×K .

III. PR FOR UL CHANNEL TRAINING

In this section, we present PR for UL channel training,
and investigate how PR affects the channel estimation perfor-
mance. Our following analysis applies to arbitrary PR pattern,
while how to form the PR pattern exploiting the statistical CSI
will be discussed in Section V.

We denote the UT set asK = {1, 2, . . . ,K} wherek ∈
K is the UT index. We assume that the UL training interval
length equalsτ(< K),3 and all the UTs transmit the respective
pilot sequences in the length ofτ simultaneously during the
training interval.4 Note that the maximum number of available
orthogonal sequences is equal to the sequence length, and we
assume that the available orthogonal pilot sequence number
equalsτ for simplicity. We denote the available orthogonal
pilot set asT = {1, 2, . . . , τ}, and theπth pilot sequence
as xπ ∈ Cτ×1 whereπ ∈ T is the orthogonal pilot index.
Different pilot sequences are assumed to satisfy the orthogonal

3It should be noted that the results obtained in the followingare applicable
for arbitrary τ , andτ can be either set to be a fixed number, or determined
dynamically by the BS. One example of how to dynamically determine τ
based on the net spectral efficiency maximization criterionwill be discussed
in Section VI-C.

4For the case that one UT sends pilot signals during several particular
channel uses while remains silent during other channel uses, the pilot signals
can be seen as a specific pilot sequence with several non-zeroentries at the
corresponding channel uses.

condition thatxHπ xπ′ = τσp
x · δ (π − π′) whereσp

x is the pilot
signal transmit power.

We denote an arbitrary PR pattern with UT setK and pilot
set T as P(K, T ) = {(k, πk) : k ∈ K, πk ∈ T } where
(k, πk) ∈ P(K, T ) denotes that theπth

k pilot sequencexπk

is allocated to thekth UT. We useKπ = {k : πk = π} to
denote the set of the UTs using theπth pilot sequence.

With the PR patternP(K, T ), the UTs transmit their as-
signed pilots periodically to enable the BS to estimate the
channels. During the UL training phase of each coherence
block, the received pilot signals at the BS can be written as

Y = GX+N ∈ C
M×τ (11)

where G is the UL channel matrix, X =
[xπ1

,xπ2
, . . . ,xπK

]T ∈ CK×τ is the UL pilot signal
matrix, N is the independent additive Gaussian noise matrix
with elements distributed as independently and identically
CN

(
0, σp

z
)
, and σp

z is the noise power during the training
phase. After decorrelation and power normalization of
the received signals [2], the BS can obtain the channel
observation of all the UTs. Specifically, for thekth UT in
a given coherence block, the BS obtains the UL channel
observation as

yp
πk

=
1

σp
xτ

Yx∗
πk

=
1

σp
xτ

(
K∑

ℓ=1

gℓx
T
πℓ

+N

)

x∗
πk

=
K∑

ℓ=1

gℓ · δ (πℓ − πk) +
1

σp
xτ

Nx∗
πk

=
∑

ℓ∈Kπk

gℓ +
1

σ
p
xτ

Nx∗
πk
. (12)

With the property of unitary transformation, it is not hard
to show that the noise term1

σp
xτ
Nx∗

πk
in (12) is still Gaussian

with elements distributed as independently and identically
CN

(

0,
σp

z

σp
xτ

)

. Let ρp = σp
x/σ

p
z be the UL channel training

signal-to-noise ratio (SNR), then (12) can be rewritten as

yp
πk

=
∑

ℓ∈Kπk

gℓ +
1√
ρpτ

np
πk

= gk +
∑

ℓ∈Kπk
\{k}

gℓ

︸ ︷︷ ︸

pilot interference

+
1√
ρpτ

np
πk

︸ ︷︷ ︸

pilot noise

(13)

where “\” denotes the set subtraction operation, andn
p
πk ∼

CN (0, IM ) is the normalized additive noise. Note thatKπk

represents the set of the UTs using the same pilot as thekth

UT, and the BS has to estimate the channels of all the UTs
reusing theπth

k pilot based on the observationyp
πk

. The MMSE
estimate of the channelgk based on the channel observation
y

p
πk

is given by
ĝk = RkC

−1
πk

yp
πk

(14)

where
Cπk

,
∑

ℓ∈Kπk

Rℓ +
1

ρpτ
I. (15)

From the orthogonality principle of MMSE estimation [25],
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channel estimation error̃gk = gk − ĝk is independent of̂gk,
and the covariance of̃gk is

Rg̃k
= Rk −RkC

−1
πk

Rk. (16)

Note that ĝk and Rg̃k
are also mean and covariance ofgk

conditioned onyp
πk

, respectively [25].
The estimation error covariance is an important measure of

the estimation performance, and we define the MSE-CE as

ǫp ,

K∑

k=1

tr {Rg̃k
} . (17)

Before we proceed, we first define the orthogonality be-
tween two arbitrary Hermitian positive semi-definite matrices
using the angle (0 ≤ θ ≤ π/2) between them as

θ (A,B) , arccos
tr
{
AHB

}

‖A‖F ‖B‖F
= arccos

tr {AB}
‖A‖F ‖B‖F

,

for A,B � 0. (18)

Then we present a condition under which the MSE-CE defined
in (17) can be minimized in the following theorem.

Theorem 1:The minimum value of the MSE-CEǫp is given
by

εp =

K∑

k=1

tr

{

Rk −Rk

(

Rk +
1

ρpτ
I

)−1

Rk

}

(19)

and the minimum is achieved under the condition that, for
∀i, j ∈ K and i 6= j,

θ (Ri,Rj) =
π

2
, when πi = πj . (20)

Proof: See Appendix B.
In the MSE-CE metric defined in (17), correlations between

the channel estimation errors seen by different UTs are not
taken into account. Actually, the correlations between the
channel estimation errors of the UTi and the UTj (j 6= i)
can be obtained as

E
{
g̃ig̃

H
j

}
= E

{
(
gi −RiC

−1
πi

yp
πi

) (

gj −RjC
−1
πj

yp
πj

)H
}

= −RiC
−1
πi

Rj · δ (πi − πj) (21)

which indicates that channel estimation errors of the UTs with
orthogonal pilots are independent, while those of the UTs
reusing the pilots are correlated. However, if the condition
given in Theorem 1 is satisfied, then−RiC

−1
πi

Rj = 0,
i.e., channel estimation errors seen by different UTs will be
uncorrelated no matter whether they reuse the pilots or not,
and the condition given in Theorem 1 is still optimal.

To obtain clear insights of Theorem 1, we consider the
asymptotic antenna number case, and the following corollary
can be readily obtained from Lemma 1.

Corollary 1: When the BS antenna numberM → ∞, the
MSE-CE ǫp can be minimized provided that, for∀i, j ∈ K
and i 6= j,

〈ri, rj〉 = 0, when πi = πj (22)

whereri for fixed positive integeri is given in Lemma 1.
The result in Corollary 1 indicates that the MSE-CEǫp

can be minimized if the UTs reusing the pilots have non-
overlapping channel AoA intervals. This result is very intu-
itive, as in such cases, the channels of different UTs are strictly
separated in the angular domain, and the pilot interference
does not take into effect. Moreover, in the high SNR regime
where the training SNRρp → ∞, the pilot noise vanishes,
and then the MSE-CEεp → 0, which implies that channel
estimations tend to be perfect.

Although the conditions in Theorem 1 and Corollary 1 are
desirable, they cannot always be well satisfied. However, in
realistic outdoor propagation environments where the BS is
located at an elevated position, channel AS seen by the BS
is usually small [8], [26], which indicates that most of the
channel power is concentrated in a narrow angle interval, and
the channel power outside this angle interval is very small.For
UTs located geographically apart in different spatial directions,
the overlaps of their channel power in the angular domain
might be neglected, and thus PR becomes feasible in such
spatially correlated massive MIMO channels.

IV. ROBUST UL/DL DATA TRANSMISSIONS

In the previous section, we showed feasibility of PR for
massive MIMO transmission, and presented UL channel train-
ing with PR. In each coherence block, the BS obtains the
channel estimates of all the UTs after UL channel training. The
conventional data transmission design in massive MIMO treats
the channel estimates as the real channels. However, with PR,
the channel estimation performance will degrade in most cases,
thus a robust data transmission design with channel estimation
errors taken into account is of paramount importance in the
considered PR based massive MIMO transmission. There are
two main approaches to design a wireless system robust
to the channel uncertainty: the worst-case approach and the
statistical approach. In the worst-case approach, the channel
uncertainty is modeled as being within a given set around the
channel estimate, and a worst-case transmission performance
can be guaranteed [27]. In the statistical approach, the channel
uncertainty is modeled using the channel statistics, such as the
mean and the covariance, and a statistical average performance
can be guaranteed [28]. In this work, we employ the statistical
approach to model the channel uncertainty. Specifically, in
each coherence block, based on the received pilot signals,
the CSI uncertainty at the BS can be modeled statistically
using its conditional distribution, i.e., the conditionalmean
(the MMSE channel estimate) and the conditional covariance
(the covariance of the channel estimation error). Note thatthe
channel estimation error covarianceRg̃k

given in (16) depends
on the PR patternP(K, T ) and the channel covariance, and
thus can be known by the BS. In the following, we will develop
robust data transmissions for UL and DL, respectively, under
the MMSE-SD criterion.

A. Robust UL Data Transmission

During the UL data transmission phase, the signal received
at the BS at a channel use in the given coherence block can
be expressed as

yu = Gau +
1√
ρu

nu =
(

Ĝ+ G̃
)

au +
1√
ρu

nu (23)
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where Ĝ = [ĝ1, ĝ2, . . . , ĝK ] is the channel estimate,̃G =
[g̃1, . . . , g̃K ] is the channel estimation error,au ∈ CK×1 with
mean0 and covarianceIK denotes the UL data signal vector
where[au]k is the signal sent by thekth UT, nu ∼ CN (0, IM )
is the independent additive noise, andρu is the UL data
transmission SNR per UT.

We consider the linear receiver at the BS

âu = WTyu (24)

and then MSE-SD of the UL transmission in the given
coherence block can be defined as

ǫu , E

{

‖âu − au‖22
}

(25)

where the expectation is with respect toau, nu, and the channel
estimation errorG̃.

Finding the optimal UL receiver based on the MMSE-SD
criterion can be formulated as

min
W

ǫu (26)

and we present the solution in the following theorem.
Theorem 2:The optimal solution to the problem (26) is

given by

Wopt =





(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρu
I

)−1

Ĝ





∗

(27)

and the corresponding MSE-SD is given by

ǫu,min = tr









I+ ĜH

(
K∑

k=1

Rg̃k
+

1

ρu
I

)−1

Ĝ





−1






.

(28)
Proof: See Appendix C.

For the conventional receiver with channel estimates as-
sumed to be accurate, the impact of the channel estimation
error is omitted. While for our robust MMSE receiver design,
the channel estimation error due to PR is taken into account.
Specifically, the expectation in (25) accounts for the chan-
nel estimation errorG̃, which leads to our robust MMSE
receiver. Note that the robust MMSE receiver given in (27)
exhibits a similar structure to the conventional receiver.When
∑K

n=1 Rg̃n
→ 0, the robust MMSE receiver in (27) reduces

to the conventional receiver

Wcon =

[(

ĜĜH +
1

ρu
I

)−1

Ĝ

]∗

. (29)

B. Robust DL Data Transmission

During the DL data transmission phase, the signal received
at the UTs at a channel use in the given coherence block can
be expressed as

yd = GTBad +
1
√

ρd
nd =

(

Ĝ+ G̃
)T

Bad +
1
√

ρd
nd

(30)

where the DL channelGT is the transpose of the UL channel
due to the channel reciprocity of the TDD systems [2],ad ∈

CK×1 with mean0 and covarianceIK denotes the DL data
signal vector where

[
ad
]

k
is the signal for thekth UT, nd ∼

CN (0, IK) is the independent additive noise,ρd is the average
DL data transmission SNR per UT, andB is the DL linear
precoding matrix which satisfies the power constraint

tr
{
BBH

}
≤ K. (31)

Then MSE-SD of the DL transmission in the given coherence
block can be defined as

ǫd , E

{∥
∥αyd − ad

∥
∥
2

2

}

(32)

where the expectation is with respect toad, nd, andG̃, andα
is a real scalar parameter corresponding to the potential power
scaling performed at the UTs.5

Finding the optimal DL precoder based on the MMSE-SD
criterion can be formulated as

min
B,α

ǫd

subject to tr
{
BBH

}
≤ K

(33)

and we present the solution in the following theorem.
Theorem 3:The optimal solution to the problem (33) is

given by

Bopt =
1

γopt





(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρd
I

)−1

Ĝ





∗

(34)

αopt = γopt (35)

whereγopt is chosen to satisfy the power normalization con-
strainttr

{
Bopt(Bopt)H

}
= K, its value is given by

γopt =

√
√
√
√
√
√

tr

{

ĜH

(

ĜĜH +
K∑

k=1

Rg̃k
+ 1

ρd I

)−2

Ĝ

}

K
(36)

and the corresponding MSE-SD is given by

ǫd,min = tr









I+ ĜH

(
K∑

k=1

Rg̃k
+

1

ρd
I

)−1

Ĝ





−1






.

(37)
Proof: See Appendix D.

From Theorem 3, we can observe that, similarly to the UL
case, the robust MMSE precoder in (34) also embraces the
structure of the conventional precoder.

C. UL-DL Duality

From the results in Theorem 2 and Theorem 3, we can
readily obtain the following UL-DL MMSE duality.

Corollary 2: In each TDD coherence block, ifρu = ρd,
thenBopt = Wopt/γopt, andǫu,min = ǫd,min.

The result in Corollary 2 indicates that, in the same TDD
coherence block, if the UL data transmission SNR equals the
DL data transmission SNR, then the robust DL precoder in

5Note thatα is a real scalar, and the overhead for the UTs to obtain it can
be neglected.
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(34) can be achieved by the robust UL receiver in (27) with
proper power normalization, and the complexity of computing
the robust MMSE DL precoder can be reduced. In addition,
if the robust MMSE receiver and robust MMSE precoder are
used for data transmissions, then the same MMSE-SD can
be achieved in both the UL and DL in each TDD coherence
block. Note that similar UL-DL duality based on the perfect
CSI assumption was provided in the literature such as [29]
and [30], however, our result in Corollary 2 is established on
the pilot-assisted CSI acquisition assumption.

In this section, we have investigated the robust UL and DL
data transmissions with channel estimation error due to PR
taken into account. It will be seen in the following section
that, PR based massive MIMO transmission, which combines
pilot scheduling and robust data transmission, can achievethe
MMSE-SD optimality for both the UL and DL.

V. PILOT SCHEDULING

Up to now, we have investigated channel training and data
transmission of the massive MIMO transmission with PR, and
the obtained results are applicable to arbitrary PR pattern. In
this section, we study pilot scheduling which exploits the long
term statistical CSI to allocate the available pilot signals to the
UTs, and we focus on two MMSE related criteria.

A. MMSE-CE Criterion

CSI is critical to massive MIMO transmission, and it is
natural to design the pilot scheduler based on the MMSE-CE
criterion, which leads to the following problem

min
P(K,T )

ǫp (38)

whereǫp is defined in (17).
The pilot scheduling problem in (38) is combinatorial,

and the optimal PR patternP(K, T ) can be found through
exhaustive search (ES). The complexity of the ES in (38), in
terms of the (complex) scalar multiplication number which
dominates the computational complexity, is briefly evaluated
as follows. Recalling (17), the scalar multiplication number
required in evaluation of the objective function in (38) is
O(M3K). Thus, the computational complexity of running ES
under the MMSE-CE criterion isO(τKM3K).

B. MMSE-SD Criterion

MSE-SD is an important performance measure of the data
transmission, and in the sequel we study the pilot scheduler
design regarding the MSE-SD metric. Due to the UL-DL
MMSE-SD duality in each coherence block presented in
Corollary 2, we assume thatρu = ρd for simplicity, and
denote thatρu = ρd = ρt and ǫu,min = ǫd,min = ǫt,min,
where the superscript “t” stands for expression related to data
transmission. We consider pilot scheduling under the MMSE-
SD criterion, which can be formulated as

min
P(K,T )

E
{
ǫt,min

}

= E

{

tr

{(

I+ ĜH
(
Rt,n,eff

)−1
Ĝ
)−1

}}

(39)

where the expectation is with respect to the channel fading
and the noise distributions, and the effective noise covariance
matrix is defined as

Rt,n,eff ,

K∑

k=1

Rg̃k
+

1

ρt
I. (40)

The objective function in (39) is the average of the MMSE-SD
that can be achieved by the robust MMSE receiver and robust
MMSE precoder in each coherence block, and it depends on
the statistics of the channel fading and pilot noise distributions.
It should be noted that here we still use the term MMSE-SD
for brevity, however the meaning of it differs from that when
we consider the designs of the receiver and precoder in the
previous section.

Due to the difficulty in obtaining the closed-form expression
of the objective functionE

{
ǫt,min

}
in (39), we first present a

lower bound of it in the following lemma.
Lemma 2:The average MSE-SDE

{
ǫt,min

}
is lower

bounded by

E
{
ǫt,min

}
≥ ǫt,alb = tr

{

(IK +Ω)
−1
}

(41)

where for fixed positive integersi andj,

[Ω]i,j = tr
{

C−1
πi

Ri

(
Rt,n,eff

)−1
Rj

}

· δ (πi − πj) . (42)

Proof: See Appendix E.
It will be seen in Section VI-A that, the lower bound

presented in Lemma 2 is tight over a wide SNR region. By
replacing the objective functionE

{
ǫt,min

}
with its lower bound

presented in Lemma 2, the pilot scheduling problem (39) can
be simplified as

min
P(K,T )

ǫt,alb. (43)

The pilot scheduling problem in (43) is also combinatorial.
The optimal PR patternP(K, T ) can be found through ES.
Note that the scalar multiplication number required in evalua-
tion of the objective function in (43) isO(M3K2), thus, the
computational complexity of running ES under the MMSE-SD
criterion isO(τKM3K2).

Before we proceed, we present a condition under whichǫt,alb

can be minimized in the following theorem.
Theorem 4:The minimum value of the lower bound aver-

age MSE-SDǫt,alb is given by

εt =

K∑

i=1

1

1 + [ω]i
(44)

where[ω]i for fixed positive integeri is given by (45), shown
at the top of the next page, and the minimum is achieved under
the condition that, for∀i, j ∈ K and i 6= j,

θ (Ri,Rj) =
π

2
, when πi = πj . (46)

Proof: See Appendix F.
Recalling Lemma 1, we can readily obtain the following

corollary.
Corollary 3: When the BS antenna numberM → ∞, the

lower bound average MSE-SDǫt,alb can be minimized provided
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[ω]i = tr







(

Ri +
1

ρpτ
I

)−1

Ri

[
K∑

k=1

(

Rk −Rk

(

Rk +
1

ρpτ
I

)−1

Rk

)

+
1

ρt
I

]−1

Ri






(45)

that, for∀i, j ∈ K and i 6= j,

〈ri, rj〉 = 0, when πi = πj (47)

whereri for fixed positive integeri is given in Lemma 1.
Interestingly, conditions for optimal data transmission ob-

tained in Theorem 4 and Corollary 3 are the same as those
for optimal channel training obtained in Theorem 1 and
Corollary 1. The intuitive interpretation lies in that, formassive
MIMO transmission, if channels of the UTs reusing the
pilots can be rigorously spatially separated, then not onlythe
pilot interference but also the transmission data interference
vanishes. Furthermore, in the high SNR regime where both
the training SNRρp and transmission SNRρt tend to infinity,
the remaining additive noise vanishes, and the average MSE-
SD εt → 0. This result shows that the PR based transmission
scheme, which combines pilot scheduling and robust data
transmission, can achieve the MMSE-SD optimality.

C. SGPS Algorithm

In the above subsections, we have investigated pilot schedul-
ing under two MMSE related criteria. In both cases, the
designs are formulated as combinatorial optimization prob-
lems, and the optimal PR patterns can be formed through ES.
However, due to the exponential complexity, ES becomes hard
to implement in practice as the UT number grows.

In this subsection, we propose a low complexity pilot
scheduling algorithm called the statistical greedy pilot schedul-
ing (SGPS) algorithm which is motivated by the conditions
for optimal channel estimation and data transmission givenin
Theorem 1 and Theorem 4, and the main idea is that channel
covariance matrices of the UTs reusing the pilots should be
as orthogonal as possible. Detailed description of the SGPS
algorithm is summarized in Algorithm 1. Coordinated pilot
allocation algorithm for mitigating the inter-cell pilot contam-
ination using similar idea was proposed in [11], however, the
above SGPS algorithm is dedicated for the single-cell scenario.

We evaluate the complexity of the SGPS algorithm as
follows. In the process of the SGPS algorithm, no more than
∑K−1

m=1m(K − m) = (K − 1)K(K + 1)/6 orthogonality
calculations defined in (18) are needed. Note that the scalar
multiplication number needed in each orthogonality calcula-
tion isO(M2), thus, the computational complexity of running
the SGPS algorithm isO(M2K3). In above subsections, we
have shown that the ES complexity under the MMSE-CE
and MMSE-SD criteria areO(τKM3K) andO(τKM3K2),
respectively. This indicates that the SGPS algorithm givesa
significant computational complexity reduction compared with
ES. Meanwhile, simulation results in Section VI-B will show
that performances of the low complexity SGPS algorithm can
closely approach those of ES.

Algorithm 1 Statistical Greedy Pilot Scheduling (SGPS) Al-
gorithm

Input: The UT setK = {1, 2, . . . ,K} and the channel
covariance informationRk(k ∈ K), the orthogonal pilot
setT with the pilot lengthτ(1 < τ < K)

Output: PR patternP(K, T ) = {(k, πk) : k ∈ K, πk ∈ T }
1: Initialize the unscheduled UT setKun = K, the unused

pilot setT un = T
Step 1)Schedule the UTs with “similar” channel covari-
ance matrices and assign them with orthogonal pilots

2: m1 = 1, π1 = 1, K1 = {1}, Kun ← Kun\ {1}, T un ←
T un\ {1}

3: while T un 6= ∅ do
4: For the pilot t ∈ T un, select the UTmt =

argmax
ℓ∈Kun

∑

j∈T \T un cos θ
(
Rℓ,Rmj

)

5: Assign the pilott to the UTmt, πmt
= t, Kt = {mt}

6: UpdateKun← Kun\ {mt}, T un← T un\ {t}
7: end while

Step 2)Each unscheduled UT is assigned with the “best”
pilot so that the channel covariance matrices of the UTs
reusing the pilots are as orthogonal as possible

8: while Kun 6= ∅ do
9: For the UT k ∈ Kun, select the pilotnk =

argmin
q∈T

∑

s∈Kq
cos θ (Rk,Rs)

10: Assign the pilotnk to the UT k, πk = nk, Knk
←

Knk
∪ {k}

11: UpdateKun← Kun\ {k}
12: end while

VI. N UMERICAL RESULTS

In this section, we present numerical simulations to evalu-
ate performances of the proposed PR based massive MIMO
transmission. We assume that the BS is equipped with the128-
antenna ULA, and the antennas are spaced with a half wave-
length distance. We set the AoA interval asA = [−π/2, π/2].
We consider the typical outdoor wireless propagation environ-
ments where the channel PAS can be modeled as the truncated
Laplacian distribution [18], [31] given by (48), shown at the
top of the next page, whereσk andθk represent the AS and the
mean AoA of thekth UT’s channel, respectively. We assume
that channel ASs are the same for all the UTs so thatσk = σ
(∀k). We assume that all the UTs are of equal distance from
the BS, and set the large scale fading coefficients asβk = 1
(∀k). We assume that the UTs uniformly locate in a120◦

sector, i.e., the mean channel AoAθk is uniformly distributed
in the angle interval[−π/3, π/3] in radian. The channel
covariance matrices of the UTs are generated according to
the model given by Remark 1, and we impose the constraint
in (3) for channel power normalization. We assume that the
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S
Lap
k (θ) =

1√
2σk

(
1− exp

(
−
√
2π/σk

)) · exp
(

−
√
2 |θ − θk|
σk

)

, for θ ∈ [θk − π, θk + π] (48)

channel training SNR and the data transmission SNR are equal
such thatρp = ρu = ρd = ρ.

A. Performance of Robust Transmission

In this subsection, we employ the average MSE-SD metric
to evaluate performances of the robust receiver and precoder
developed in Section IV. Due to the UL-DL MMSE duality
given in Corollary 2, we only consider the UL transmission
case for brevity.

We compare performances of the robust MMSE receiver
given in (27) with those of the conventional receiver given in
(29). We consider the case withK = 10, σ = 10◦, and the
mean channel AoAs of the UTs from UT 1 to UT 10 are

[0.6592, 0.8499,−0.7812, 0.8658, 0.2772,
− 0.8429,−0.4639, 0.0982, 0.9582, 0.9737]

in radian. We assume that the pilot length equalsτ = 5, and
consider two PR patterns. Specifically, the pilot indices that the
UTs use from UT 1 to UT 10 are[1, 1, 2, 2, 3, 3, 4, 4, 5, 5] and
[1, 2, 3, 4, 3, 5, 4, 5, 5, 3] for PR patterns A and B, respectively.6

In Fig. 1, we plot the average MSE-SD performances of
the robust MMSE receiver (using the true and the estimated
channel covariance matrices that are obtained via averaging
over100 samples, respectively) and the conventional receiver.
The lower bound of the average MSE-SD achieved by the
robust MMSE receiver given in Lemma 2 is also shown. We
can have the following observations: 1) the average MSE-
SD performance loss using the estimated channel covariance
matrices compared with true channel covariance matrices can
be almost neglected; 2) the robust MMSE receiver outperforms
the conventional receiver, especially in high SNR regime
where pilot interference dominates; 3) compared with the
robust MMSE receiver, the conventional receiver is quite
sensitive to the channel estimation error, and increasing the
SNR may result in additional MSE-SD for the conventional
receiver; 4) the closed-form lower bound of the average MSE-
SD given in Lemma 2 is tight over a wide SNR region for
different PR patterns; 5) pilot scheduling is crucial to thedata
transmission performance.

B. Performance of SGPS Algorithm

In this subsection, we evaluate performances of the SGPS
algorithm, and compare them with those of ES. In Fig. 2 and
Fig. 3, we plot the MSE-CE metric in (17) and the average
MSE-SD metric in (41) versus the pilot length for different
values of SNR withK = 10 and σ = 10◦, respectively. It
can be observed that, in both cases the performances of the

6PR pattern B is determined by the SGPS algorithm proposed in Section
V-C, and we arbitrarily set a PR pattern as pattern A for comparison. We
employ such setting to exemplify that pilot scheduling is crucial to the
transmission performance.
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Fig. 1. Comparison of the average MSE-SD performances between the
robust MMSE receiver (using the true and the estimated channel covariance
matrices that are obtained via averaging over100 samples, respectively) and
the conventional receiver. Results are shown versus the SNRfor two specific
PR patterns withK = 10, τ = 5 and σ = 10◦. The lower bound of the
average MSE-SD achieved by the robust MMSE receiver is also depicted.
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Fig. 2. Comparison of the MSE-CE performances between the SGPS
algorithm and ES. Results are shown versus the pilot length for different
values of SNRρ with K = 10 andσ = 10◦.

SGPS algorithm closely approach those of ES over a wide
SNR region for different values of pilot length.

C. Net Spectral Efficiency Comparison

In this subsection, we compare thenet spectral efficiency
performance between the proposed PR scheme and the con-
ventional OT scheme. The net spectral efficiency is given by

Rnet =
(

1− τ

T

)

Rach (49)
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Fig. 3. Comparison of the average MSE-SD performances between the SGPS
algorithm and ES. Results are shown versus the pilot length for different values
of SNR ρ with K = 10 andσ = 10◦.

and the achievable rateRach can be set as the UL sum
achievable rateRu,sum, or the DL sum achievable rateRd,sum,
or the weighted summation ofRu,sum andRd,sum. The UL sum
achievable rateRu,sum [9], [32] is given by (50), shown at the
top of the next page, wherewk is thekth column of the UL
receiver matrixW given in (27). The DL sum achievable rate
Rd,sum [9], [10] is given by (51), shown at the top of the next
page, wherebk is thekth column of the DL precoding matrix
B given in (34), andα is the power scaling performed at the
UTs given in (35).

For the PR scheme, we consider a dynamic pilot length
strategy. Specifically, for a given UT set, the achievable rates in
(50) and (51) can be obtained for arbitrary pilot lengthτ(< K)
with pilot scheduling performed by the SGPS algorithm, and
then the optimal pilot length and the net spectral efficiency
can be obtained. While for the OT scheme, the pilot length
τ is set asτ = K if K ≤ T/2, or τ = ⌊T/2⌋ if K > T/2
where only⌊T/2⌋ UTs are serviced simultaneously [6].

The UL net spectral efficiency performances of the PR
scheme and the OT scheme are compared in Fig. 4 and
Fig. 5, while the DL net spectral efficiency performances are
compared in Fig. 6 and Fig. 7, withK = 10. It can be
observed that, the proposed PR scheme shows performance
gains over the conventional OT scheme in terms of the net
spectral efficiency, and the gains become larger as the channel
AS becomes smaller. Moreover, in the high SNR regime where
the pilot interference dominates, and in the small coherence
block length regime where the pilot overhead dominates, the
proposed PR scheme provides significant performance gains.
Specifically, for the case withK = 10, σ = 2◦, ρ = 20 dB and
T = 20, the proposed PR scheme provides approximately35
bits/s/Hz net spectral efficiency gains over the conventional
OT scheme for both the UL and DL data transmissions.

VII. C ONCLUSION

In this paper, we proposed pilot reuse (PR) in single cell for
massive MIMO transmission to reduce the pilot overhead. We
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Fig. 5. Comparison of the UL spectral efficiency performances between
the PR scheme and the OT scheme. Results are shown versus the SNR for
different values of ASσ with K = 10 andT = 20.

exploited the fact that, in realistic outdoor wireless propagation
environments where the BS is located at an elevated position,
most of the channel power lies in a limited number of spatial
directions compared with the whole massive MIMO channel
dimension, and thus PR among UTs of spatial localization
becomes feasible and beneficial. We first established the rela-
tionship between the channel covariance matrix and the chan-
nel PAS for the massive MIMO channels. Then we showed
that, if channel AoA intervals of the UTs reusing the pilots
are non-overlapping, then MSE of the channel estimation
can be minimized. We also developed the robust multiuser
UL receiver and DL precoder with the channel estimation
error due to PR taken into account, and revealed the UL-DL
MMSE duality between them. Moreover, we presented pilot
scheduling under two MMSE related criteria, and proposed
a low complexity pilot scheduling algorithm motivated by
the channel AoA non-overlapping condition. The simulation
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Ru,sum=

K∑

k=1

E






log2



1 +

∣
∣wT

k ĝk
∣
∣
2

wT
k

(
∑

m 6=k ĝmĝHm +
∑K

n=1 Rg̃n
+ 1

ρI
)

w∗
k










(50)

Rd,sum=

K∑

k=1

log2



1 +

∣
∣E
{
αgTk bk

}∣
∣
2

∑K
m=1 E

{

α2
∣
∣gTk bm

∣
∣
2
}

−
∣
∣E
{
αgTk bk

}∣
∣
2
+ 1

ρE {α2}



 (51)
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Fig. 6. Comparison of the DL spectral efficiency performances between the
PR scheme and the OT scheme. Results are shown versus the coherence block
lengthT for different values of ASσ with K = 10 andρ = 20 dB.
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Fig. 7. Comparison of the DL spectral efficiency performances between
the PR scheme and the OT scheme. Results are shown versus the SNR for
different values of ASσ with K = 10 andT = 20.

results showed significant performance gains of the proposed
PR scheme over the conventional OT scheme in terms of net
spectral efficiency.

APPENDIX A
PROOF OFLEMMA 1

From the definition ofV in (5), we have

lim
M→∞

[
VHV − IM

]

i,j

= lim
M→∞

1

M
(v (ϑ (ψi−1)))

H
v (ϑ (ψj−1))− δ (i− j)

(a)
= δ (i− j)− δ (i− j) = 0 (52)

where (a) follows from Assumption 1 andϑ(ψ) is a strictly
increasing function. This concludes the proof of (7).

The proof of (8) can be obtained as

lim
M→∞

[
Rk −Vdiag {rk}VH

]

i,j

(a)
= lim
M→∞

[Rk]i,j −

lim
M→∞

[

1

M

M∑

m=1

[rk]m v (ϑ (ψm−1))v
H (ϑ (ψm−1))

]

i,j

(b)
= lim
M→∞

[Rk]i,j − βk lim
M→∞

M∑

m=1

[v (ϑ (ψm−1))]i

· [v (ϑ (ψm−1))]
∗
j Sk (ϑ (ψm−1)) [ϑ (ψm)− ϑ (ψm−1)]

(c)
= βk

θmax
∫

θmin

[v (θ)]i [v (θ)]
∗
j Sk (θ) dθ

− βk
ϑ(ψM )∫

ϑ(ψ0)

[v (ϑ (ψ))]i [v (ϑ (ψ))]
∗
j Sk (ϑ (ψ)) dϑ (ψ)

(d)
= βk

θmax
∫

θmin

[v (θ)]i [v (θ)]
∗
j Sk (θ) dθ

− βk
θmax
∫

θmin

[v (θ)]i [v (θ)]
∗
j Sk (θ) dθ = 0 (53)

where (a) follows from (5), (b) follows from (6), (c) follows
from (2) and the integral definition, (d) follows from that
ϑ (ψ0) = ϑ (0) = θmin andϑ (ψM ) = ϑ (1) = θmax.

APPENDIX B
PROOF OFTHEOREM 1

We start by presenting a lemma that is required in the
following proof.

Lemma 3:For A � 0 and B � 0, θ (A,B) = π/2 is
equivalent toAB = 0.
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Proof: Recalling (18),θ (A,B) = π/2 is equivalent to
tr {AB} = 0. Furthermore,tr {AB} = 0 is equivalent to
AB = 0 for A � 0 and B � 0 [33, Prop. 4.26]. This
concludes the proof.

Now we proceed with the proof of the theorem. Due to the
positive semi-definiteness of the covariance matrix, we can
obtain

tr {Rg̃k
} = tr

{
Rk −RkC

−1
πk

Rk

}

= tr







Rk −Rk




∑

ℓ∈Kπk

Rℓ +
1

ρpτ
I





−1

Rk







≥ tr

{

Rk −Rk

(

Rk +
1

ρpτ
I

)−1

Rk

}

. (54)

From Lemma 3 which states thatθ (Ri,Rj) = π/2 is
equivalent toRiRj = 0, we can obtain

Cπk
Rk =




∑

ℓ∈Kπk

Rℓ +
1

ρpτ
I



Rk

=

(

Rk +
1

ρpτ
I

)

Rk = Rk

(

Rk +
1

ρpτ
I

)

(55)

which indicates that

C−1
πk

Rk = Rk

(

Rk +
1

ρpτ
I

)−1

=

(

Rk +
1

ρpτ
I

)−1

Rk.

(56)

Substituting (56) into (16), we can obtain

tr {Rg̃k
} = tr

{

Rk −Rk

(

Rk +
1

ρpτ
I

)−1

Rk

}

(57)

which achieves the minimum in (54). This concludes the proof.

APPENDIX C
PROOF OFTHEOREM 2

The MSE-SD defined in (25) can be simplified as

ǫu = tr

{

WT

(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρu
I

)

W∗

+ I−WT Ĝ− ĜHW∗
}

. (58)

Note thatǫu is convex with respect toW.
By setting the derivative ofǫu with respect toW∗ [34] to

zero,

∂

∂W∗ ǫ
u =

(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρu
I

)T

W − Ĝ∗

(a)
=

(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρu
I

)∗

W − Ĝ∗ = 0 (59)

where (a) follows fromAT = A∗ for the Hermitian matrix

A, we can obtain

Wopt =





(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρu
I

)−1

Ĝ





∗

. (60)

Substituting (60) into (58), we can obtain the corresponding
MSE-SD as

ǫu,min = tr






I− ĜH

(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρu
I

)−1

Ĝ







(a)
= tr









I+ ĜH

(
K∑

k=1

Rg̃k
+

1

ρu
I

)−1

Ĝ





−1






(61)

where (a) follows from the Woodbury matrix inversion identity
[33, Prop. 15.3]. This concludes the proof.

APPENDIX D
PROOF OFTHEOREM 3

We start by simplifying the MSE-SD defined in (32) as

ǫd = E







∥
∥
∥
∥
∥
α

(

GTBad +
1
√

ρd
nd

)

− ad

∥
∥
∥
∥
∥

2

2







= E

{∥
∥
(
αGTB− I

)
ad
∥
∥
2

2

}

+
α2K

ρd

= tr

{

α2BH

(

Ĝ∗ĜT +

K∑

k=1

R∗
g̃k

)

B

− αĜTB− αBHĜ∗
}

+

(
α2

ρd
+ 1

)

K. (62)

The simplified objective function in (62) is non-convex with
respect to(B, α). We first show that there exists a global
minimum for the problem (33) in the following lemma.

Lemma 4:For the problem (33), there exists a global opti-
mal solution.

Proof: The problem in (33) is equivalent to

min
B

min
α(B)

ǫd (B, α)

subject to tr
{
BBH

}
≤ K

(63)

and the optimalα for the inner unconstrained optimization
problem can be readily obtained as

α =
tr
{

ĜTB+BHĜ∗
}

2
[

K/ρd + tr
{

BH
(

Ĝ∗ĜT +
∑K

k=1 R
∗
g̃k

)

B
}] . (64)

Then the problem (63) is equivalent to

min
B

ǫd (B)

= K −

[

tr
{

ĜTB+BHĜ∗
}]2

4
[

K/ρd + tr
{

BH
(

Ĝ∗ĜT +
∑K

k=1 R
∗
g̃k

)

B
}]

subject to tr
{
BBH

}
≤ K. (65)

The feasible set of (65) given by{B : tr
{
BBH

}
≤ K}

is compact (closed and bounded), and the objective function



YOU et al.: PILOT REUSE FOR MASSIVE MIMO TRANSMISSION OVER SPATIALLY CORRELATED RAYLEIGH FADING CHANNELS 13

of (65) is continuous over the feasible set. Thus, according
to Weierstrass extreme value theorem [35, Appx. E], there
exists a global minimum for the problem (65), and so does
the equivalent problem (33).

Lemma 4 shows that there exists a global optimum for the
problem (33). Note that the global optimal solution should
satisfy the Karush-Kuhn-Tucker (KKT) necessary conditions
[36]. In the following we will seek out all the solutions that
satisfy the KKT conditions and identify the optimal solution
among them.

The Lagrangian associated with the problem (33) is

L (B, α, λ) = ǫd + λ
(
tr
{
BBH

}
−K

)
(66)

where ǫd is given in (62), andλ is the Lagrange multiplier
associated with the inequality constraint.

The KKT necessary conditions for the problem (33) can be
obtained as [34]

∂

∂B∗L (B, α, λ) = α2

(

Ĝ∗ĜT +

K∑

k=1

R∗
g̃k

)

B

− αĜ∗ + λB = 0 (67)

∂

∂α
L (B, α, λ) = 2αtr

{

BH

(

Ĝ∗ĜT +

K∑

k=1

R∗
g̃k

)

B

}

− tr
{

ĜTB+BHĜ∗
}

+
2αK

ρd
= 0 (68)

λ ≥ 0, tr
{
BBH

}
≤ K (69)

λ
(
tr
{
BBH

}
−K

)
= 0. (70)

An obvious solution that satisfies the above KKT conditions
is (α = 0,B = 0, λ = 0), and the correspondingǫd equalsK.
For the case withα 6= 0, (67) is equivalent to

Ĝ∗ = α

(

Ĝ∗ĜT +
K∑

k=1

R∗
g̃k

+
λ

α2
I

)

B (71)

which leads to

ĜTB = BHĜ∗

= αBH

(

Ĝ∗ĜT +
K∑

k=1

R∗
g̃k

+
λ

α2
I

)

B. (72)

Combining (72) with (68) yields

α2K

ρd
= λtr

{
BBH

}
. (73)

Substituting (73) into (70), we can obtain

λ =
α2

ρd
> 0, tr

{
BBH

}
= K. (74)

Substituting (74) into (71) yields

B =
1

α

(

Ĝ∗ĜT +

K∑

k=1

R∗
g̃k

+
1

ρd
I

)−1

Ĝ∗

=
1

α





(

ĜĜH +
K∑

k=1

Rg̃k
+

1

ρd
I

)−1

Ĝ





∗

(75)

whereα is chosen to satisfy the constrainttr
{
BBH

}
= K.

Substituting (75) into (62), we can obtain the corresponding
MSE-SD as

ǫd = tr






I− ĜT

(

Ĝ∗ĜT +

K∑

k=1

R∗
g̃k

+
1

ρd
I

)−1

Ĝ∗







= tr






I− ĜH

(

ĜĜH +

K∑

k=1

Rg̃k
+

1

ρd
I

)−1

Ĝ







(76a)

= tr









I+ ĜH

(
K∑

k=1

Rg̃k
+

1

ρd
I

)−1

Ĝ





−1






(76b)

where (76a) follows from the trace identitytr {A} = tr
{
AT
}

[34, Eq. (2.95)] andRg̃k
is Hermitian, (76b) follows from

the Woodbury matrix inversion identity [33, Prop. 15.3]. Note
that the MSE-SD in (76a) is smaller thanK that previously
obtained from the solution(α = 0,B = 0, λ = 0). Therefore,
we obtain that the precoder given by (75) is optimal. This
concludes the proof.

APPENDIX E
PROOF OFLEMMA 2

Via invoking the matrix-valued Jensen’s inequality which
states thatE

{
A−1

}
� (E {A})−1 for A ≻ 0 [33, Prop.

21.64], we can obtain

E
{
ǫt,min

}
≥ tr

{(

IK + E

{

ĜH
(
Rt,n,eff

)−1
Ĝ
})−1

}

= tr
{

(IK +Ω)
−1
}

(77)

andΩ satisfies that

[Ω]i,j =
[

E

{

ĜH
(
Rt,n,eff

)−1
Ĝ
}]

i,j

= E

{

ĝHi
(
Rt,n,eff

)−1
ĝj

}

(a)
= E

{(
yp
πi

)H
C−1
πi

Ri

(
Rt,n,eff

)−1
RjC

−1
πj

yp
πj

}

(b)
= tr

{

C−1
πi

Ri

(
Rt,n,eff

)−1
Rj

}

δ (πi − πj) (78)

where (a) follows from (14), and (b) follows from (13). This
concludes the proof.

APPENDIX F
PROOF OFTHEOREM 4

Via invoking the Schwartz inequality as in [37, Lemma 1],
we can obtain

ǫt,alb = tr
{

(IK +Ω)−1
}

≥
K∑

i=1

1

1 + [Ω]i,i
(79)

where the equality is attained if and only ifΩ is diagonal.
Recalling Lemma 3 which states thatRiRj = 0 is equiv-

alent to θ (Ri,Rj) = π/2, we only have to show that if
RiRj = 0 for ∀i 6= j and πi = πj , then Ω is diagonal,
i.e., [Ω]i,j = 0 for ∀i 6= j andπi = πj .
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For ∀i 6= j andπi = πj , if RiRj = 0, then

[Ω]i,j = tr
{

C−1
πi

Ri

(
Rt,n,eff

)−1
Rj

}

(a)
= tr

{

Ri

(

Ri +
1

ρpτ
I

)−1
(
Rt,n,eff

)−1
Rj

}

= tr

{

RjRi

(

Ri +
1

ρpτ
I

)−1
(
Rt,n,eff

)−1

}

= 0 (80)

where (a) follows from (56).
Furthermore, ifRiRj = 0 for ∀i 6= j andπi = πj , then

diagonal elements ofΩ reduces to

[Ω]i,i = tr

{(

Ri +
1

ρpτ
I

)−1

Ri

·
[
K∑

k=1

(

Rk −Rk

(

Rk +
1

ρpτ
I

)−1

Rk

)

+
1

ρt
I

]−1

Ri

}

(81)

via invoking (56). This concludes the proof.
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