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Abstract

In cognitive radio networks, secondary users (SUs) may exaip with the primary user (PU) so
that the success probability of PU transmissions are imgatowhile SUs obtain more transmission
opportunities. However, SUs have limited power resources therefore, they have to take intelligent
decisions on whether to cooperate or not and at which powel, e order to maximize their throughput.
Cooperation policies in this framework require the solutaf a constrained Markov decision problem
with infinite state space. In our work, we restrict attenttorthe class of stationary policies that take
randomized decisions of an SU activation and its transmitguan every time slot based only on
spectrum sensing. Assuming infinitely backlogged SUs gsiethe proposed class of policies is shown
to achieve the maximum throughput for the SUs, while sigaiftty enlarging the stability region of
PU queue. The structure of the optimal policies remains #meseven if the assumption of infinitely
backlogged SU queues is relaxed. Furthermore, the modetesded for the case of imperfect channel
sensing. Finally, a lightweight distributed protocol févetimplementation of the proposed policies is

presented, which is applicable to realistic scenarios.
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. INTRODUCTION

Cognitive radio networks (CRNs) have received consideralttention due to their potential
for improving spectral efficiency [1], [2], [3]. The main idéehind CRNs is to allow unlicensed
users, also known asecondary user&SU), to identify temporal and/or spatial spectrum “holes”
i.e., vacant portions of licensed spectrum, and transnpbdpnistically, thus gaining access to
the underutilized shared spectrum while maintaining kaiinterference to the licensed user, also
known asprimary user(PU). This communication paradigm has been referred to amamic
Spectrum Access” (DSA) in the technical literaturée [4],.[5]

Much prior work on DSA CRNs has been focused on the problem ptin@al spectrum
assignment to multiple SUs 1[6],1[7]/[8]. Several resourd®cation algorithms have been
proposed, based on either the knowledge of PU transmissiotasned from perfect spectrum
sensing mechanisms| [6] or from a probabilistic maximumisiolh constraint with the PUS$ [7].
Of particular interest is the opportunistic schedulingipolfor SUs suggested in [8], which
maximizes SUs’ throughput utility while guarantees low rngnof collisions with the PU, as
well. In all these works it is assumed that no interactiooeein PUs and SUs exists.

Recently, the concept of cooperation between PU and SUs MsGinerged, as a means for
providing benefits for both types of users. These benefita ftem the fact that, by exploiting
the transmit power resources of SUs towards improving tfectfe transmission rate of the
PU, the chances that the PU queue will be empty are increaseldhence the PU channel is
free to use more often.

From an information theoretic perspective, cooperatiamben SUs and PUs at the physical
layer has been investigated in many works (see [9] and mefesetherein). Queuing theoretic
aspects and spectrum leasing strategies for cooperatids @GRve been investigated in [10],
[11], [12], [13], |[14]. Specifically, spectrum leasing dtrgies where the PU leases a portion
of its spectrum to SUs in return for cooperative relaying eveuggested in [10]. A protocol
where a SU relays the PU packets that have not been corredéved by their destination,

was suggested and investigated in terms of SU stable thpoigh [11], while similar protocols



were suggested and compared!in/[12], considering varioysigdl layer relaying strategies. In
[13], the performance of a specific class of PU-SU coopengimicies was investigated in terms
of PU and SU stable throughput, assuming that SU is allowddattsmit simultaneously with

the PU, even if the PU is busy.

In this work we study optimal cooperative PU-SUs transmoissiontrol algorithms with the
objective to make as efficient use of the PU channel as pessibBmely maximize a function of
the transmission rates of the SUs, while guaranteeing tnabsd packet transmission for the
PU, and stability of its queue. SUs have limited transmit @ovesources, therefore intelligent
cooperation decisions must be taken. This is the main idemtehe work in [14], where a
dynamic decision policy for the SUs activities (i.e., whethio relay PU transmissions and at
which power level) is suggested. The proposed policy is gude be optimal, however, its basic
requirement is that the PU packet arrival rates must be |ldhan a threshold value, which
guarantees that the PU queue is stable even when SUs neveerateo This regime places
significant restrictions on the achievable PU stabilityimag since the sustainable arrival rates
of PUs may be much larger than this threshold value.

We present policies that significantly increase the rangelfrrival rates for which PU-SUs
cooperation can be beneficial. Specifically, we investigi@esmission policies for cooperative
CRNs that can be applied even when PU transmission ratedave #he threshold set by [14],
while still permitting the SUs to utilize the channel for thewn transmissions. Since the SU
decision options and success probabilities are differenhd the idle and busy PU periods, while
the PU queue size is in turn affected by the cooperation esssuch policies require in general
the solution of a non-trivial constrained Markov decisionldem with infinite state space, where
the state is the size of the PU queue. The solutions for suatkdvadecision problems suffer
from large convergence times and their implementation mega requires knowledge of the PU
gueue size [15].

The main contributions of this work are summarized as fodlow

1) We introduce a class of stationary policies which takedosm decisions on SU activities

in every time-slot based only on the PU channel spectrumirsgnesult, i.e., the PU
channel being busy or idle. The proposed class of policiepicable when either SUs
are infinitely backlogged or a general SU packet arrival @ssds assumed. The benefits

of our approach are as follows. First, our approach is prdeeachieve the same set of



SU rates as the more general policies in whighdgcision may depend on the PU queue
size, or (i) a SU packet may be transmitted instead of a PU packet wheRlhgqueue
is non-empty. Hence, the policies in the proposed classatiostary ones are sufficient
for optimality with respect to any utility function. Secancompared to other policies, it
allows for a significantly larger range of PU traffic arrivaites for which the PU queue
is stable, thus increasing the PU throughput. Even moreesiti@gly, the enlargement of
the PU stability region still allows the SUs to utilize sldtgat are unused by the PU, in
order to transmit their own traffic. Finally, as long as thetsyn parameters remain the
same, the decision variables associated with our policy beagomputed offline, through
solving a convex optimization problem via efficient interjpoint methods, and can be
used to realize the policy in real-time.

2) Since the proposed policies are based solely on the PUnehatate sensing result, we
also investigate the effects of imperfect spectrum sensiaghanism in their performance.
Considering this case, we incorporate all possible soun€esrors and inefficiencies in
our model and describe the new performance space of the ggdpoolicies. However,
when channel sensing errors are introduced, the deteromnef the associated control
variables requires the solution of a non-convex optimiatproblem and the optimal
solution becomes hard to determine.

3) A distributed implementation of the proposed cooperapolicies, applicable to the case
of concave SU utility functions, is designed, which is based decentralized computation
of the problem control variables via the alternating di@ttmethod of multipliers. This
version offers a robust alternative to the centralized enm@ntation and distributes the
computational burden across network nodes without lossifopnance.

The remainder of the paper is organized as follows. In Sedfiiowe introduce the system
model. In Sectiori_Ill we describe the mode of operation of pneposed restricted class of
randomized policies and show their optimality. Exogenoaskpt arrivals to SU queues and the
effects of imperfect spectrum sensing mechanism are iigatetl in sectiofn IV. The distributed
implementation of the proposed class of policies is dewvadap Section V. Section VI presents

simulation results and finally, concluding remarks are mled in Sectior VII.



II. SYSTEM MODEL

We consider the system model with one PU and multiple SUsctibby Fig[LlL. Specifically,
the PU is the licensed owner of the channel and transmits eveent has data to send. On the
other hand, SUs do not have any licensed spectrum and seeknission opportunities on the
PU channel. We assume that rusf the SUs can cooperate with the PU in order to improve
the success probability of PU transmissions. This can bewasth by allocating part of the SU
power resources towards that purpose. In practice, SU catipe may be realized with various
techniques that span one or more communication layers. Yange, the SU may relay PU
traffic (e.g. through decode-and-forward, or amplify-dodward) [14]. Alternatively, this aid
by the SU can be provided by means of link layer techniquesh s1$ retransmission of the
overheard PU packet by the SU, or even through physical leg@miques (e.g. simultaneous
transmission of the PU packet by the SU, in order to improwe dignal-to-interference-plus-
noise ratio at the PU receiver) [12]. The model is transgatercapture the generality of all
these techniques, all of which are factored in the probleterms of the SU consumed transmit
power resources.

Furthermore, after sensing the PU channel, SUs decide ochv8iJ will cooperate so as to
transmit PU data and at which power level (if the PU channbussy), or which SU will transmit
its own data and at which power level (if the PU channel is)idie what follows we describe

the parameters of the system model under consideration lhsisvihe available controls.

A. System Model Parameters

We consider the time-slotted model, where time slet 0, 1, ... corresponds to time interval
[t,t+1); t andt + 1 are called the “beginning” and “end” of sletrespectively. The PU queue
receives new packets in each time sl@ccording to an independent and identically distributed
(i.i.d.) arrival processd, (t) with mean rateE [4,(t)] = A, packets/slot ani [(4, (¢))*] < occ.

We assume that the SUs are backlogged so thatdlvegryshave packets to transmit.
We denote byS the set of SUs. Each Sk € S can transmit using one af;, power levels,

P (i), i = 1,..., 15, where P,(i) < P,(i + 1). To simplify the description that follows, we set

1The presented analysis can be applied in cases where moretieaSUs can cooperate with PU, by replacing the selected
SU by a subset of SUs.
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Fig. 1. The system model under consideration.

P,(0) = 0. An SU s may use any of these power levels to either transmit its owa dato
assist the PU as discussed above. At each time slot, onlygée gdacket transmission can take
place. Furthermore, when transmission of packets from thaaRes place, at most one of the
SUs can cooperate. There is a constraint on the long-terragegower”, consumed by each

s € S. Hence, for every € S, if i(t) is the power level used by at slott, it must hold,

1o ,
limsup — > "R[P, (i (1))] < P, i(r) € T2, 1)
t—o00 t —0
whereE[-] denotes expectatioff, = {1,2, ..., [,} andZ? = Z, U {0}.
We assume an erasure channel model, i.e., that each tramem{py the PU or one of the

SUs) is either received correctly or erased.

« When SUs transmits one of its own packets witth power level,i € Z?, the probability
of success is;(i), wherer,(0) = 0, i.e. the success probability is zero if no power is used
for transmission.

« When SUs cooperates with the PU, (namely it assists in the transonssf PU packets
by transmitting withith power level), the success probability of the PU transdipacket
is 7, (s,7). If i =0, the SU “cooperates” with zero transmission power, henceffgct no
cooperation takes place; therefore it is natural to assumaerf(s,0) = r,(0) > 0 for all
s € S, wherer,(0) denotes the probability of successful packet transmisbiothe PU
when the SUs do not cooperate. In addition, we assumergiati) < r,(s,i+ 1), i.e.,

the probability of successful reception is a non-decrepfinction of transmission power.



B. Available Controls

In the beginning of time slat there are various control options, depending of the stdttiseo
primary queue), (t). In caseQ, (t) > 0 (namely, the PU channel is busy), then the available
controls are:

« A packet from the PU queue is transmitted, and transmissiddlbpackets is excluded.

We refer to this constraint as th&UJ priority constraint.
« A SU s is selected for cooperation with the PU in order to assisttthesmission of the
PU packet.
« Theith power level; € 77, is selected, so thatcooperates with the PU using power level
P,(i). Wheni (t) = 0 no cooperation takes place.
On the other hand, whe@, (t) = 0 (namely, the PU channel is idle), the available controls are
the following:
« A SU s is selected to transmit its own packet.
« The ith power level,i € 70, is selected, so that transmits its own packets using power

level P,(i). If i = 0, no transmission takes place in stot

C. Admissible Policies, Rate Region, Performance Objeciivd Extended class of Policies

A control policy is calledadmissiblef the following policy constraints are satisfied:

« PU priority constraint is satisfied.
« The PU gueue must be mean-rate stable, i.e., the outputtésngaverage rate of the PU
queue should be equal to its long term average input rate [16]
« The average power constraints bf (1) are satisfied.
Under an admissible policy, each SU= S obtains a long-term average transmission rate equal

to

o= lim inf 2= LE[rs ) .
where P, (i (t)) is the power level at whick transmits in slot. In the sequel, we denote by
the vector of the long-term average transmission rates &, $&l,F = {r,}_s. Theachievable
rate regionfor the problem under consideration is defined as the set abke of SU rates

that can be obtained by all admissible policies.



The selection of an admissible policy depends on the péati@ptimization objective, which
is expressed as a function of the vector of achievable leng-taverage SU transmission rates

r. The optimization objective is of the form:
maximize: f (T) 3)

wherer belongs to the rate region. In the simplest cgsg) is a linear function off, however,
fairness considerations may requjf¢-) to be a nonlinear (usually separable) functiorr of17],
[18].

The PU queue sizé),(t) can be seen as the state of a constrained Markov Decisioed$&oc
problem [15], where the constraints are imposed by the padnstraints described above. Let
C: be the class of admissible policies of this Markov DecisiancBss. This class contains
policies that are based on past history actions and incltlteeglass of randomized stationary

policies of the following form:

« When@,(t) =m, m > 0, select a SUs to cooperate with the PU ath power level with
a certain probability that depends on
« WhenQ),(t) = 0, select a SWs to transmit its own packets @h power level with a certain
probability.
Consider a subclass of the policies @h, denoted byC,, which consists of policies whose
decisions are based solely on whether the PU queue is zerat.oinreach time slot, a policy
in Cy acts as follows:

« WhenQ),(t) > 0, or equivalently the PU channel is sensed busy, select a ®ltooperate

atith power level with a probability (s, |b).

. When(@,(t) = 0, or equivalently the PU channel is sensed idle, select as $&J transmit

its own data atth power level with probability; (s,i|e).
Since the policies i€, are not based on the actual value(@f(¢), but only whetherQ, (¢) is
greater than or equal to zero, it follows th@t C C;.

For the analysis that follows, it is helpful to introduce #ended class of policigs which
follow the policy constraints with the exception the PU pity constraint, i.e., when the PU
gueue is non-empty at the beginning of a slot, the policy nmegcs to transmit one of the SU
packets instead of a PU packet. In this case, the availablieats at the beginning of each time

slot are of the form(u, s,7), v € {1,0}, s € S, i € Z?, where
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Fig. 2. The rate region®o, R1 and R, which coincide, for the system setup scenario with= {1,2}, A\, = 0.3, and
70 ={0,1,2,3,4}, Ps = {0,0.25,0.5,0.75, 1}, rp (0) = 0.4, 7 (5,1) = 0.5, 7 (5,2) = 0.6, 7 (5,3) = 0.7, 7 (5,4) = 0.8,
rs (1) =0.3,75(2) = 0.5, 75 (3) = 0.8, 75 (4) = 1, P, = 0.5, for all s € S.

. Control (1,s,1), dictates transmission of PU traffic and assigns S#t ith power level
to cooperate with the PU. Note that this control can be assigven if the PU queue is
empty, in which case no packet is transmitted.

« Control (0, s, ), dictates transmission of only SU traffic, and selectss30 transmit atith

power level.

Since policies inC, do not impose the PU priority constraint, and they may inelwen
non-stationary policies, it follows that; € C,. Hence, it holds that, C C; C C, and the
corresponding achievable rate regioRs, R1, R», satisfying the policy constraints under the
classes of policie§,, C;, Cy, satisfyRy C Ry C Ro.

It might seem at first glance that a policy in clags with a restricted control space will
lead to suboptimal performance. However, this is not the.chisthe next section we show that
Ro C Ry, thus reaching the interesting key conclusion tRagt= R, = R,. The rate regions
Ro, R1 andR, (which coincide) for a particular system setup scenarit®iSUs are illustrated
in Fig.[2. Hence, under any optimization objectiitesuffices to restrict attention to policies in

Co even if one has the freedom of not adhering to the PU priomtystraint.
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1. CHARACTERIZATION OF ACHIEVABLE RATE REGIONS Ry, R1, Ro

In this section we substantiate our previous claim. Towdnis end, we first determine the
achievable rate region of policies 3, namelyR,, in subsection (IlI-A), as well as the stability
region of the PU queue when policies in clagsare employed. Second, we determine the
achievable rate region of policies @B, namelyR,, in subsection[(Il[-B), and finally we prove

that R, coincides withR,.

A. Achievable Rate Region of Policies in Clags

For a given policyr in classCy, the average packet service rate of the PU queue is given by
=D (s, 0)q(s,i[b). (@)
s€S icT0

Standard results from queuing theory show that the staloddgion of the PU queue under that

is, the closure of the set of PU arrival ratgsfor which the PU queue is mean-rate stable [16],
is the set of arrival rates that fall in the interyal 7,]. Assume next thak, € [0,7,) (so that the

PU gueue is stable) and lgf be the steady state probability that the PU queue is busyrunde
Viewing the transmitter at the PU as a queuing system hol@i i the PU queue is empty) or

1 packets (i.e., the packet whose transmission is attempted PU queue is non-empty) and

applying Little’s formula to this system, we have

. A
q, = Pr {PU queue is non-emp}y= f—” (5)
p
Hence, the steady state probability that the PU queue isyempj, = 1 — ¢,. Due to the
imposed PU priority constraint, SUs may transmit their ovatadonly when the PU queue is
empty. Hence, the average packet transmission rate of 8affic is equal to
Fy = (Z ry <z‘>q<s,z’|e>> de. (6)
’ieIs
The average power consumption of Sl S is
Po=q. Y Pu(i)qls,ile) +a Y Pu(i)q(s,ilb) (7)
1€Ls 1€Ls

and sincer € (o, it satisfies the power constraints] (1), i.€?, < P, s € S. The dis-

cussion above shows that the constraints that need to ksfieshtby the set of probabilities
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{@,q(s,i|b),q(s,ile),q.} s€ S, according to[(lL),[(5), are given by

Qv Z Z Tp(sai)Q(sai |b) = )‘p (8)
S€S €70
quPs(i) (s,ile) —i—qbZP q(s,i|b) < <P, seS (9)
iEZs ZGIS

Qb+ qe = 1 (10)
YD alsifp) =1 (11)

€S ieI?
DD alsiile)=1 (12)

S€S €70
B >0,q.>0,q(s,i|b) >0,q(s,ile) >0, s€S8, ieI] (13)

Conversely, given the set of probabiliti€sg;, ¢ (s,i[b),q(s,ile),qe}cs, 10 that satisfy
the constraints[{8)-(13), witly, < 1, an admissible policy irC, can be defined. Hence, the
performance space of these policies is the sat défined by [(6), where the set of probabilities
{a,q(s,i[b),q(s,ile), qe}es, 10 satisfy constraintd {8)-(13).

While constraints of (8)E(13) are nonlinear with respeqidaoametersq,, ¢ (s, 10),q (s,ile), g},
they can be easily transformed into linear ones throughrdrestormation

q(b,s,i) =qq(s,i|b), q(e,s,i) = qeq(s,ile). (24)

Note thatq (b, s, ) is the probability that the PU is busgnd SU s is selected for cooperation
at power leveli, while ¢ (e, s,i) is the probability that the PU is idland SU s packets are
transmitted in a slot at power levéel With this transformation, the constraints that charazeeri

the achievable rate region of policies@y become,

Zersz (b,s,i) = A, (15)

s€S €710
ZPS(Z') e, s, +ZP q(b,s,i)< P, seS8 (16)
1€Ls 1€Ls
D> alesi)+Y > qlbsi)=1 (17)
S€S €70 S€S €70

q(e,s,i) >0 q(b,s,i) >0, s€S, i€I (18)



12

In addition, the achievable rate of each S¢ S, given by [6), can be rewritten as

rs = Z Ts (Z) q (67 S, Z) (19)

1€Ls
In fact, it can shown thaf [6) anf](8)-(13), define the samép®mance space ak (1%)-(19). This

is described in the following proposition.

Proposition 1. The performance space df,} which is defined by Eqsl](6) and] (8)-[13) is
equivalent with the corresponding performance space défineEqgs. [(15)E(19).

Proof: Please refer to Appendix]A. [ |

In the next section, we use the characterization of the waahle rate region of policies in
Co in terms of constraintg (15)-(119) to show that this regioincidles with the achievable rate
region of policies inCs.

1) Stability region of PU Queue under the class of policie€jn Based on the discussion
above, the stability region of the PU queue under the clagsobties inC, is the set of),
for which there exists a set of probabiliti¢g (b, s,i) , ¢ (e, s,7)},cs, ie10 that satisfy [(15)E(119).
Based on this observation we have the following corollary.

Corollary 2. The stability region of the PU queue under the class of pedianC, is the interval
0, 5\] where )\ is the resulting value of the objective of the following &neptimization problem

in terms ofz (b, s,14), for all s € S andi € Z°.

maximize: > s> icro p(s,1)x(b, 5, 9) (20)

subject to >°,.; P (i) (b, s,i) < P, s€S (21)

> ses Ez’ezg z (b,s,i) <1 (22)

z(b,s,i) >0, s€8, i€l (23)

Proof: Please refer to Appendix| B. [ |

Remark3. It can be easily seen that the value of optimization probler€arollary[2 does not
change if inequality in[(22) is replaced by equality. Thisplras what is intuitively expected,
i.e., when), = )\, no idle slots are left by PU, i.eq, = 1 andq. = 0, andthe available power

from any SU is allocated only to the cooperation with the. PU
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2) Implementation of policies in clagy: In order to implement the policies in the proposed
restricted clas€, the probabilities{q (e, s,4) ,q (b, 5,7) },c70 ,cs N€EM t0 be determined. These

probabilities are obtained through solving the followingtimization problem OPTO

maximize f(T) (24)
subject to D ses 2iero Mo (8,4) q (b, 5,4) = A, (25)
Sier P ae,s,0) + Vg, P (i) a (bs.i) < P s €S (26)

D ses 2aiero 4(6,5,8) + 3 cs D iern q (bys,i) =1 (27)
q(e,s,i)>0q(bs,i) >0, s€8, i€l (28)

wherer £ {7} _;, and7, = > icz. s (i) q (e, 5,7). In problem OPTO the optimization variables
are {q (e, s,i),q (b, s, 1) }icq0 50 Whereasr, (s, i), 7 (i), Ps (i), for all i € 7%, ands € S,
are fixed system model parameters. Specificallys, i) denotes the probability of successful
transmission of the PU packet when Sltooperates atth power level, whiler, (i) denotes
the probabilty of successful transmission of Slpacket, when Sk transmits atith power
level. P, (i) denotes the transmit power that corresponds to leeel? that SUs uses in either
case, and?, denotes the maximum average transmit power available fos.SCbnstraint[(Z5)
ensures that the average packet service rate of the PU qgeals &s average input ratg,, and,
therefore, guarantees stability of the PU queue. The irdgguanstraints in[(26) are the long-
term average power constraints for all SUs. Finally, casts (27) and (28) are imposed because
the optimization variablegq (e, s, i), q (b, s,i)}iez?’ses represent probabilities. In case where
the selected objective function ih_(24),-), is a concave function of, then, problem OPTO
is a convex optimization problem which can be solved effityemia interior point methods.
Once variables{q (e, s, 1) ,q(b,s,i)}igg,ses are determined, we can obtain the probabilities
{a.q(s,i[b) . q(s,ile),qe}ycs, sero through the linear transformation in_{14). Then, policies i
Co act as we describe in sectibn 1I-C.

B. Achievable Rate Region of Policies in Class

Contrary to the available controls when the PU priority ¢oaist is imposed, the set of

available controls for policies i@, does not obey the PU priority constraint (thus, a slot may
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be allocated to SU packet transmission, even if the PU quenenempty). Hence, this class of
policies falls in the framework of policies studied in [18Jhose achievable rate region can be
characterized again by the achievable rate region of setyopolicies. In the latter framework,
a stationary policy selects at the beginning of each timetk control(w, s, 7) with probability
p(u, s,i). Under such a policy, the probability of successful trarssioin of SUs packets is

= er p(0,s,1) (29)

i€Ls
while, the probability of successful transmission of PU keds is

o= Y (s, i)p(L,s,9), (30)

s€S €710

and stability of the PU queue requires that
Tp = Ap. (31)
Also, the average power constraint requirement implies tha

ZP p(0,s,1) +ZP p(1,s,1) <P, seS. (32)

ZEI@ ZEI.s

%)

Finally, sincep (u, s,i) are probabilities, we must have
D 0,50 +> ) p(lysi)=1 (33)
SES €Z? SES €Il

p(0,s,4) >0, p(1,s,i) >0, s€ S,i €I’ (34)

Constraints[(31):(34) together with (29) define the achitvaate regiornk, of policies inCs.
The similarity of these constraints compared to thosé i-(19) should be noted. From a math
perspective, the only difference is that there exists éyual (15), as opposed to inequality in
(31). However, there is difference in the interpretatiorthase probabilities. Specifically,

« q(b,s,1) is the probability that PU queue is nonempiyd SU s is selected for cooperation
at ith power level, whilep(1, s,7) is the probability that SU is selected for cooperation at
ith power level and dictating PU transmission as well (ireztppe of the PU queue size).

« q(e,s,1) is the probability that PU queue is empand secondary uses packets are
transmitted in a slot aith power level, whilep(0,s,i) is the probability of selecting
secondary user packet for transmission at thigh power level, while PU does not transmit

(irrespective of the PU queue size).
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As discussed earlier, sin€g C Cy, Ro € R,. The next theorem shows th&, = R,.
Theorem 4.1t holds R, C Ry, henceRy = R = Ra.

Proof: Please refer to the AppendiX C. [ |

V. EXTENSIONS TO THE BASIC MODEL

In this section, we extend the model that has been investigad far in two directions. First,
we assume exogenous packet arrivals to the SU queues, dngtaafinite queue backlogs.

Second, imperfect channel sensing effects are taken immuac.

A. Incorporating Exogenous Packet arrivals to SU queues

In this part, we investigate the scenario where packetseagkogenously to SU queues.
Specifically, we assume that at the beginning of slot,(¢) packets arrive to the queue of SU.
Furthermore, for a given SU, A,(t), t = 0, 1... are i.i.d random variables witl [A(t)] =
As, E[(A, (t))z} < oo and the arrival processgsi,(t)},-,, s € S are independent of each
other. Regarding the packet arrival process to the PU quayé,), we also assume that it
consists of i.i.d. random variables and is independent efattival processes to the SU queues.

1) Admissible Policies As in the case where the SU queues were backlogged, an ablimissi
policy should satisfy the constraints described in sedlig€dl Regarding SU queues, there are
no constraints on the rates of their arrival processes. &letiepending on the arrival rates to
these queues, they may be stable or unstable. To deal wittsghe of instability, we assume
that flow control is applied to each of the SU queues, whichthadollowing form [16]: among
the A,(t) packets that arrive at the queue of SUa numberB;(t) < A,(t) is accepted by the
system and the rest (if any) are dropped. Thus,flin control objectivas that the SU queues
with input the B,(t) packets must be mean rate stable.

In general, the admissible policies in this setup take obmaictions at time slot, based on the
history of the system up to time which includes queue sizes of the PU and SU queues up to
time t. We call this class of policie§;. Similar to the previous analysis, we consider a subclass
of policies inC;, denoted byC,, which consists of policies whose decisions are basedysotel
whether the PU queue is empty or not, hence not requiringrmdtion about the queue sizes

at the PU and SU queues. In each time s)a policy inC, acts as follows:
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« Flow control action Each of theA,(t) packets that arrive to SWat timet, is admitted with
probability p?. The packet admission events are independent of each atiendependent
of other processes in the system.

« WhenQ),(t) > 0, select a SUs to cooperate aith power level with a probability (s, ().

« WhenQ,(t) =0, select a SUs to transmit its own data ath power level with probability

q(s,ile). If the selected SU has no data to transmit, it loses its tné&®on opportunity.

For performance comparison, we consider the extended efgssiiciesC, which employs flow
control at the SU queues and obeys all constraints of pelitieC;, except the PU priority
constraint. Hence we again hadg C C, C C,. The performance measure of interest in this
case is the throughput of SU queues, i.e., the long term geenamber of packets per slot,
R, that are delivered to the receiver of SU s € S. The set of achievable throughput vectors
R = {R,},.¢ under class of policie§;, i = 0,1,2, is denoted byR;. SinceC, C C; C C, we
again haveRy C R; C Ro.

2) Throughput Regions of Policies in ClassgsandC,: Similarly to the analysis in Section

[M=A] it can be shown thatR, consists of all vector®® = {R,},_ that satisfy

Ry <min{\,, 75}, s€S (35)

where 7, is defined by [(I5)E(18) and_(119). Note that in the current gety represents the
“offered” service rate to SUW queue, i.e., the probability of successful transmissioroiSU
s packet. For maximizing the throughput of each SU queue, wstaveR, = min {\,, 7,}.
Moreover, since flow control is chosen to stabilize the SUugse we must havé, = \,p?,
with po = MAelel g e S,

On the other hand, for the stationary policiesCin it can be shown [16] thak, consists of
all vectors that satisfyL(35) and_ s> ;c707y (5,4) ¢ (b,5,9) > A, with 7, being defined by
(16)-(18) and((19).

Based on the structure of the throughput regions describedea it follows by a similar
argument as in sectidnlll thak, = R,, which implies again that policies ifi, can achieve
any throughput vector achievable by the less restrictivicies in Co.

3) Selecting Optimal Policies id,: Consider the problem of selecting a policy @g that

maximizesf(R), with R € R,. Based on the above, it is then easy to see that this optimizati
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problem is equivalent to
maximize f ({min (A, 7s)},cs) - (36)

wherer, is defined by[(19) and_(15)-(1.8).

B. Imperfect Sensing

In this part, we investigate the effects of imperfect segpgin the mode of operation and the
performance of policies if,. For simplicity we assume that the SUs are infinitely bacgtx
The case where packets arrive randomly at the SUs can bedgaimdh similar fashion as in
section 1V-A.

We assume that cooperative sensing takes place, so thatUallntake the same decision
at each slot as to whether the primary channel is busy or ie.assume that PU channel
sensing events are independent across slots and indeperidee transmission choices of the
users. We denote the probabilities of detection and falaemabf the sensing mechanism as
Pp = Pr{sense bugghannel is busy andPr = Pr {sense bugghannel is idlé, respectively.
Two sources of error and inefficiency may occur in this sitrat

« The primary channel is busy but sensed idle (an event ooguwith probabilityl — Pp).

We distinguish two subcases:

— One of the SUs transmits its own packet at the same slot wéhPtl, an event with
probability 1 — > ¢ (s,0e)a. In this case, collision occurs and both transmissions
fail.

— No SU transmits a packet, an event with probability . ¢ (s,0]e). In this case the
PU transmission is successful with probability(0) .

The effect of this error on the probability of successfuhsiaission of PU packet is given
by
= (1=Pn)Y als,00e)r,(0)+Pp Y > r,(s,i)q(s,ilb) (37)

sES s€S €70
« When the PU channel is idle but it is sensed busy, an SU mayldeatdd for cooperation
with the PU, thus losing the opportunity to transmit its owatad Hence, the probability of

successful transmission of SU packets is affected by thbatibty of the event that the

’Recall using power leved implies no transmission.
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PU channel is idle and sensed idle (equaktdl — Pr)). For the SUs, this probability
becomes

7 :qe(l—PF)er (s,i)q(s,ile). (38)

i€zl
Regarding the average power consumed bysSihder a policy inCy, we consider the following

events:
1) The event that PU channel is busy and is sensed busy, vatiability ¢,”,. Then, SUs
consumes an average powerxf, o Fs (i) ¢ (s, [b) .
2) The event that PU channel is busy and is sensed idle, withapility ¢, (1 — Pp) . Then,
SU s consumes an average powerf, ;o P (i) ¢ (s, ile).
3) The event that PU channel is idle and is sensed idle, withaility ¢. (1 — Pg). Then,
SU s consumes an average powerf, ;o Ps (i) ¢ (s, ile).
4) The event that PU channel is idle and is sensed busy, withapility ¢.”. Then, SUs
consumes an average power@‘iezg P (1) q(s,i|b).
Based on the above, the new performance space when chanseigerrors are introduced is
determined by[(10)-(13) and

C]bPDZZTp (s,7)q(s,i]b) +q (1 —Pp)r, (0 qu0|6 =\ (39)
s€S €710 SES
(QbPD +QePF) ZPS (Z)Q(Svl |b)+(1 - QbPD - QePF) ZPS (Z)Q(Svl |6) S psv S S. (40)
1€Z? i€zl

We seek transmission policies that achieve the followingaive, OPT1:
maximize f(7s) (42)
subject to [(ID)E(T3),(39]-(40) (42)

where7, are given by[(3B).

Due to [39){(40), OPT1 is a non-convex optimization probkamd therefore it is difficult to be
solved optimally. One way to solve OPT1 numerically, is togiixin which case the constraints
become linear and the problem can be easily solved.glgt be the maximum value of the
objective of OPT1 fory, € [0, 1] (for some values of, the problem may be infeasible). We can

then solve the one-dimensional problem:

maximize g(qs,) (43)
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where( < ¢, < 1 and the maximum can be specified through exhaustive lineaclsenethods.
However, based on the following remark, we can restrict #ggon of possibley, values, where

linear search is performed.

Proposition 5. The probability of PU being busy when imperfect sensingstgiace, varies

within

A , { A }
< <min¢ —-—-,1 44
Potymm £ (1= Py, (0) = =™\ By (0) (44)

wherer, jq. = maxs; {r,(s,i)}.

Proof: The proof follows straightforwardly based dn [39) and isegivin AppendiXD. m
Solving the one-dimensional problern_{43) by exhaustiverckeanay be computationally
expensive. As will be seen in section| VI, a large number of ewcal investigations suggest that
g(qy) is a concave function af,. We have not been able to prove rigorously that this property
holds. However, if it is indeed true, binary search methaals lse used instead for the solution
of (43), thus reducing the computational complexity frowt to log, M, where M stands for
the number of values af, investigated in the space given ly (44).

V. DISTRIBUTED IMPLEMENTATION

In this section, we assume perfect PU channel sensing amndtehfi backlogged SUs, and
focus on approaches based on policiegjrithat do not rely on central coordination in order to

achieve the following objective, OPT2:

maximize >ses fs (7s) (45)
subject to  [(1b),[(16),[(17)[(18) and_(19)

Functions{ f; () },.s are usually selected so that certain fairness criteriattbrefe allocation are
satisfied, see [17] and [18], and they are assumed to be cemd#lv respect to,. Thus, due to
the fact that for alls € S, 75 is a linear function of variable%{q (€, 8:0) biero, {a (b, s, i)}iezg}’
fs (7s) is also a concave function of these variables. Hence, OPT& denvex optimization
problem and can be solved efficiently via interior point noeth

In an operational environment where parameters may chaitgetime, problem OPT2 will
have to be solved whenever significant changes to such pteesmacur. A centralized solu-

tion requires a single node to be responsible for gathenstantaneous parameter values, for
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the solution of OPT2 and for determining the appropriateedaling of packet transmissions.
While such a solution may be acceptable in certain environgyet creates a “single point of
failure”. Moreover the central node must be continuallyonnfiing the SUs as to which one
will cooperate or transmit in each time slot and at which polesel. There may also be a
scalability issue with this approach since the number ofaées is of the orde? |S| I, wherel

is the maximum number of power levels of SU nod®s, (s |Z7| parametergq (b, s,i)},cs. ie10
plus . s |Z7| parametergq (e, s,)},cs. ic0)- Hence, depending on the computing power and
memory availability at the central node, solving problemT@Rn a centralized location may
become prohibitive for larger number of SUs.

1) Advantages of the Distributed Approachn this section, we derive a solution to OPT2 in
a distributed fashion. The main features of our approachhedollowing.

a) The PU involvement in the algorithm is only to announceits/al rate), at the beginning
of the algorithm - no further participation is required.

b) A SU node does not need to know the parameters (i,.€i), r, (s, %), i« € Z;) of other SU
nodes.

c) The distributed solution requires each SU nede S to solve optimization problems with
|Z°| variables, hence the computational complexity per node dot increase with the number
of SU nodes.

d) Two messages are broadcasted by each SU node per itevatioa distributed algorithm.
The number of iterations for convergence depends on the eumb SU nodes, but this is
tolerable for the algorithm execution in a real-time settin

e) Once convergence of the algorithm is reached for a givewvaarate, the SUs need only
observe the state of the PU channel (busy or idle); they caideeutonomously which SU
node is scheduled to either cooperate with the PU, or to mméanss own traffic, without the
need of a scheduler, or the exchange of control messages.

We assume that there is a separate low-rate channel whickei$ ly the SUs for control
message exchanges [19]. In particular we assume that tongssages may be broadcasted
among the SUs, either because the low-rate channel is lasadt nature, or through the
establishment of Broadcast Trees that usually are employad-hoc networks [20]/[21].

2) Implementation of the Distributed Optimization Algbrit: Towards a distributed solution

to problem OPT2 we would ideally like to decompose the glgablem into|S| parallel
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subproblems, each one involving only local variables andapaters of nodes. Among all
alternatives we tried towards this end, the best algorithterims of convergence was the one built
upon theAlternating Direction Method of MultiplierADMoM), which has superior convergence
properties over the traditional dual ascent method [223],[[24]. To apply ADMoM to OPT2,
we first turned the average power inequality constrainty (@& equalities, by introducing
auxiliary variables{y,},_s, wherey, is associated with the respecti¥¢ constraint, and is
positive-valued. Also, for notational simplicity, we egaiently rewrite problem OPT2 as OPT3

given by
minimize = ses [s (05 (25)) (46)
subject to Y oses 91s (25) = Ay 47)
he (@5, 20,y) = P, s €S (48)
D ses 925 (Bs) + D es 925 (25) = 1 (49)
x; >0,2,>0,y,>0,s€S (50)

where we use the variables, = {q(e,s,9)};c00, zs = {q(b,5,4)},c70, and we also define
the following functions:o, () £ Y. 7 (i) q (e, s,7), g1s (25) = D ieq07p (5,4) q (b, 5,7),
gas () 17, = Zz’eIQ q(e,s,1), g2s (2s) 217z, = ZieZQ q(b,s,i), and

hs (s, Zs, Ys) ZP (e,s,i +ZP q(b,s,i) +ys, s€S. (51)

ZEI.s ZEI.s
Let v and¢ denote the dual variables associated with the constrafr{&Zp and [(49) respec-

tively, and 11, the dual variable associated with thé constraint of [(4B). Then, the augmented
Lagrange function corresponding to OPT3 used by ADMoM, pextaized by the penalty pa-
rameterp > 0, is given by [22], [23]

2
Z Ls - V)\p g (Z 91s (zs> - )\p> (52)
seS seS
2
+ Z( ws,zs,ys _ps>2+ (Zg% (ws)_'_zg?s (zs)_1> }
s€S seS seS

with

Ly £ _fs (¢s (ms>> +V31s (Zs) + s <h8 (wm Zs, y8> - ps) +§g23 (.’ES) +§g23 (ZS) 8 € S. (53)
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Computational complexityfhe optimization steps and variables updates that needdarbed
out at each SU node € S, according to ADMoM, are given by

z" = argmin L, (., 25yl 0", €8 ) +g (h (s, 25, 95) — 135)2 (54)
1 S| ’
Z 9om (m]:n+1) + Z 9om (m]:n) + 925 (ws) + 2928 (zl;) —1 )
m=1 m=s+1 sES
2t = argmin Ly (21, 208 0% €6, ) + g (h (x5 2, y8) — 138>2 (55)
i g ’
+ g Z 9im (zﬁj_l) + Z 9im (zfn) + Jis (zs) - )\p
m=1 m=s+1
S ’
+ g 2923 ISH_l + Z g2m ]:n,—‘rl Z 9om (Zf:n) + 92s (zs) —1 )
seS m=s+1

A\ 2
yf“—argrm%L (@b 250y, of, Ms)+g<hs (@b, 25 y) — s> ,  (56)
ys

el =gk g p (Z goe (@) 43 oy (251) - 1) , (57)

seS seS

=k g (Z s (257) = Ap> , (58)

seS

~

Pt = b p (B (271, 2570 ) = By (59)

where k denotes the iteration index. Note that the computationatidn is distributed across
SU nodes; the computational complexity at each node depemaisrily on the two quadratic

optimization problems in(34) an@ (55), each of which H&Y variables, and can be efficiently
solved via interior point methods, or standard methods asdidewton Method. All the following

steps involve a single variable and are straightforward.

Communication overheadEach nodes, in order to perform the steps in_(54) and |(55),
needs to know information concerning the updated localatées of other nodes. This can
be accomplished through message broadcasts by each SU iaottee\control channel in the
following manner. The nodes update their local variabled larmadcast the messages required

sequentially, in a prespecified order. Specifically, for $hep in [54), each nodee S updates
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its primal variablex®™ and broadcasts messagg (). Similarly, for the step in[{55), each

s

SU node updates its variablef™'and broadcastg;, (2¥™) and g., (2%*') in one message,
according to the prespecified order. Steps dictated by @®)-for each nods, require only its
local variables and information that is already acquired bpm the previous message broadcasts
and thus can be implemented in parallel by all nodes. Eacdttibe of the distributed algorithm
consists of one round of these update steps bySalhodes. Consequently, the communication
overhead of the algorithm 8|S| message broadcasts per iteration.

ConvergenceFor the convergence of the algorithm in decentralized mareseh SU keeps
track of a local metric and determines local convergench vespect to it, within a prespecified
accuracy. This local metric for each nodec S may be the the successive differences of its
local objective function under optimization, i.¢, (). Once this local metric drops under the
prespecified accuracy, local convergence is declared, add nannounces it via the control
channel. As soon as all SU nodes reach convergence, thetlatgderminates.

Real-time implementatio’tWe assume that the PU broadcasts its average arrivahjaethe
beginning of the algorithm. Once convergence of the algorifor a given), is reached, all
SUs have knowledge of the sums of probabilitigs(x%") , go, (2%°") ,Vs € S. Thus, if the SUs
use the same randomization algorithm and common seed, gsakithey observe the state of
the PU channel, they can all independently produce the sasudtras to who SU is scheduled
to cooperate with the PU or transmit its own data in every tsied. Then, the scheduled SU
determines its power level for its transmission based orowia probability parameters. The
system evolves without the need for further coordinatiormagnnetwork nodes.

The algorithm runs again only when some of the parameterheobperational environment
change significantly. Thus, when the arrival rate changebkinva pre-specified percentage of
its previous value, the PU informs the SUs about the new vafuk,. Also, in case wireless
channel gains change for some SU within a certain percenthgecorresponding SU may
announce the rerun of the algorithm. In such cases the #igorcan adapt to changes in the
operational environment; the problem is not solved fronatetr, but the algorithm is initialized
at the optimal point of the previous system state. This spegdits convergence and reduces
the overall communication overhead, as will be shown in iheukation results that follow.

Exogenous Packet arrivals to SU queués:case of this scenario, we seek a decentralized

solution to the optimization problenh (36) according to sdi®n[IV-A. However, if f(R) is
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separable, i.e.f(R) = Y s fs (Rg), then problem in[(36) is essentially identical to the one in
(45) where we replacé; (7s) with f, (min{\,, 7s}). We can therefore employ ADMoM using the
same techniques as previously to provide a distributedamphtation of the current optimization
problem. Note that the fact that in the distributed impletagaon only SUs needs to know
fs (min { X, 75}), implies that each SU needs to know only its arrival rate sheotto implement

the distributed algorithm.

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we confirm the optimality claims in terms @rformance for the proposed
class of policies through several simulation experimentsdifferent scenarios. First, we as-
sume that SUs are infinitely backlogged and spectrum sensipgrfect. In this scenario, the
performance of an optimal policy ifi, is compared to the transmission algorithm presented in
[14] and an optimal dynamic policy fror@,, constructed through the Lyapunov optimization
techniques/[16]. Furthermore, the convergence of theiloiged algorithm, as well as its ability
to adapt to changing parameters is studied. Next, we caneid®genous packet arrivals to SUs
queues and the performance of an optimal policy in the pepatas<, is presented. Finally,
imperfect spectrum sensing is assumed and the convexityeofetsulting optimization problem
is investigated. In all the above scenarios, we considesstesymodel with one PU and several
SUs, and as objective optimization functigri-) the sum of transmission rates of the SUs, i.e.,
f(P) =2 s Ts

Assuming perfect sensing and infinitely backlogged SUs,piirdormance of a setup which
consists of5 SUs and a set of available transmit power levels is investigated in Fig#l, 3-
in terms of f (t) and average backlog of PU queue. Specifically, we assuméifoseétup that
70 = {0,1,2,3,4}, P, = {0,0.25,0.5,0.75,1}, 7, (0) = 0.4, 7, (s,1) = 0.5, r, (5,2) = 0.6,
rp(s,3) = 0.7, r,(s,4) = 0.8, (1) = 0.3, r5(2) = 0.5, 5 (3) = 0.8, r5(4) = 1, and the
average power constraint 8, = 0.15, for all s € S. It can be seen in FigJ3 that the sum
rate achieved by SUs that employ an optimal policy from therieted class of policie§, is
identical to the sum rate achieved under the optimal poha§,i This is in accordance with the
main result of Theorer] 1. Additionally, as it is illustratby Fig.[4, the average backlog of the
PU queue remains very low under the optimal policyCin

On the contrary, the dynamic policy frofl} induces large sizes to PU queue even for small
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Fig. 3. The SU throughput utility function.

arrival rates. Moreover, when compared to the control dgaor presented in [14], the class
Co of policies extends the range af that can be supported by the systgmmviding mutual
benefits to both PU and SUs out of their cooperatibn particular, transmission rates higher
than the PU queue service rate without SU cooperation canfggosted for the PU through the
class of policie<,, while transmission opportunities are provided to SUs amgmit their own
data. It should be noted that the policy in[14] was shown tmpemal for A\, < 0.4, and this

is confirmed in Fig[ B, where it is shown that all three pobcachieve the same sum-rate for
Ap < 0.4. However, the policy in[[14] renders the PU queue unstable\fo> 0.4 and reduces
the SU sum rates to zero. The reason is the followingl In [@iétisions are taken at the end
of busy periods of the PU queue. X, > 0.4, whenever a decision not to cooperate is taken,
there is a nonzero probability that the primary queue neeepimes empty, and hence there is
no possibility for the SUs to take corrective actions.

For the same scenario and system setup, we also evaluatefioenpance of the proposed
distributed algorithm. Regarding the distributed impleta¢ion parameters, we set the desired
accuracy for convergence equalete- 10~°, while the penalty parameter is taken tobe- 0.1.

For the arbitrary initialization of the algorithm, we use{d (e, s,z’)o}ielg = 0.01,Vs € S,
{q (b, s,z’)o}iezg =0.03,Vs € S, {},cs = 1, £&" = 1, v* = 1. The distributed algorithm was

tested against the centralized solution to problem OPT&rms of the value of the objective, and
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for various values of the PU arrival ratg. It was observed that the numerical results obtained
from both centralized and distributed implementationsendentical (equal with those provided
by Fig.[3); this shows that our proposed algorithm keeps up s centralized counterpart,
which can be justified by the convergence properties of ADMd&¥garding the convergence
speed, the number of iterations required for convergentamihe given accuracy are given in
Tablell, when the arrival ratg, is varied inside the stability region and the proposed algor
begins from scratch (arbitrary initialization). Obvioyshe algorithm is efficient enough, since
it converges within a tolerable number of iterations for I8 transmission rates, while the
convergence is even faster at higher ones. This can be egglay the fact that as, increases,
the constraints in[(47)-(50) get tighter, restricting tleadibility set of the problem variables
{zs, 25,95} ,c5- Consequently, since the distributed algorithm searcheshe optimal solution
within the feasibility set in each case &f, it needs more iterations to converge when searching
within a wider set than when searching within a narrower Betally, the adaptivity of the
distributed algorithm to changes in the arrival ratg is investigated in Tablelll. In particular,
we begin with an initial rate equal tlsf, = 0.5, and run the algorithm from scratch, as described
above. For all values of, different from)\g, we use as initialization for the algorithm the optimal
point found at\?, and write down the number of iterations required for cogeace within the

given accuracy. Clearly, there is a remarkable reductidhentotal number of iterations required
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TABLE |
NUMBER OF ITERATIONS FOR THE DISTRIBUTED ALGORITHM

| Ay | 02| 03] 04]05]06]07]

| 4 of iterations| 263 | 172 | 120 ] 119 | 105 [ 74 |

TABLE Il
NUMBER OF ITERATIONS ASPU RATE CHANGES FROMA) = 0.5 TO A,.

| A | 035] 04 045] 052] 055] 06 07|

| totiterations| 44 [ 34| 30 | 20 | 30 | 45| 16|

for convergence compared with the arbitrary initializatio

Next, we additionally consider exogenous SU packet agital the to the system setup
described above. For this scenario, the throughput pedooa of the optimal policies in class
C, is investigated for the cases wheye,_g A, is either well within or outside the achievable
rate regionRR,, for both centralized and distributed implementationsecically, we initially
fix Y ..sAs inside the achievable rate region for each case otonsidered;\, varies in the
range[0.2,...,0.7], while >

It was observed that the optimization objective valuesiragth from both implementations are

A Is fixed equal t00.05, where A, = 0.01, for all s € S.

seS

identical and equal t®___ As, for each value of\,. Secondly, we considey_ _ \; outside

sES SES

the achievable rate regioR, for each value of the PU arrival ratg,; A, varies in the range
[0.2,...,0.7], while Y~ _¢ ), is fixed and equal td, where A\, = 0.2, for all s € S. It was
observed that the respective throughput utility that tssiubm both centralized and distributed
implementations coincide and are equal with the correspgncesults when the SU queues
are infinitely backlogged (provided by Figl 3). Hence, théiropl policies in clasg’, achieve
the maximum possible value for the SU throughput utility diion. The number of iterations
required for the convergence of the distributed algoritsrshown in Tables 1ll and IV. For the
derivation of these results, an accuracyeof 107° is assumed and the distributed algorithm
runs from scratch for each value af considered, while using the same initialization values
for its variables as those used in the simulation experismeahcerning the first scenario. The

distributed algorithm converges again within a tolerahlenber of iterations.
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TABLE 11l

NUMBER OF ITERATIONS FOR THE DISTRIBUTED ALGORITHMZ As = 0.05.

seES

| A |02] 03] 04| 05]06]07]

| ¢ of iterations| 93 | 89 | 95 | 137 [ 301 227 |

TABLE IV

NUMBER OF ITERATIONS FOR THE DISTRIBUTED ALGORITHMizseS As = 1.

| Ay | 02| 03] 04]05]06]07]

| 4 of iterations| 268 | 127 | 136 | 116 | 103 [ 72 |

Finally, the effects of imperfect spectrum sensing are stigated in Fig[ 5. Specifically,
assuming the same system setup apd= 0.3, we solve numerically OPT1, by fixing, and
calculating the maximum value of the objective of OPJy,) when g, € [0, 1], for various
values of P, and Pr. It can be observed that takes values only on the interval specified by
the proposition b, for all values 6%, and Py considered; thus, restricting the regionggfvhere
exhaustive linear search methods have to search. Furthermben investigating the concavity
of g(¢»), simulation results indicate tha{g,) is concave with respect t@, irrespective of the
values ofPp andPr considered. As discussed in section IV-B, if this propestyriie in general,
then the computational complexity of the centralized sofytas well as the computational

complexity and overhead of a potential distributed implatagon, can be significantly reduced.

VIlI. CONCLUSIONS

In this work we propose and investigate novel primary-sdeoynuser cooperation policies for
cognitive radio networks that orchestrate a PU and co4iegi€Us in a wireless channel. The key
idea is that SUs increase the service rate of the PU queudarefdre they increase the range of
arrival rate of the PU for which its queue is stable. At the sdime, the PU queue empties more
often, and therefore the channel becomes idle more oftes,dlving to SUs more transmission
opportunities. Our major contribution to the state of theisrthe proposition of policies that
require only the state of PU channel (busy or empty) for timiplementation, yet: 1) they

achieve substantial augmentation of the stability regibthe PU queue, and 2) they can obtain
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Probability of PU being busy, q,

Fig. 5. Imperfect sensing effects.

any long term SU rates achievable by policies for which tistrigion of always giving priority
to PU traffic is removed. The mode of operation, the perforeaspace and the optimality of the
proposed policies is investigated in models where SUs dhereinfinitely backlogged, or finite
exogenous packet arrivals to SU queues occur. An imporéatiife of the proposed transmission
algorithm is that the optimal transmit probabilities candmnputed offline, through solving a
convex optimization problem, and can be communicated tosugecentralized and a distributed
version of the algorithm are presented, both of which ardiegige depending on the setup.
Simulation results verify the benefits of our approach, ak agethe consistency of the proposed
distributed algorithm with its centralized counterpartfpamance-wise. A possible extension to
this work is the design of a dynamic, online version of thepmsed algorithm. Furthermore,
the uncoordinated interaction of multiple PUs and SUs ginssto game-theoretic models that

warrant further investigation.

APPENDIX A

PROOF OFPROPOSITIONI

Let us define ask, the performance space of defined by [(6) wherey, q., {q¢(s,ile)},
{q(s,i|b)} satisfy [8)4IB) andk, the performance space afdefined by[(IB) wheréq (e, s, i)},
{q (b, s,i)} satisfy [I5)4IB). Due to the transformation, it holds thay 7, € R, is also inR,,
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i.e., Ro C Ro.

Conversely, we consider any, € R,. Assuming thatg. # 0 and ¢, # 0, we make the
transformationge = > s> icz0q(€,5,%), @b = D e D icro a (b, s,1), q(s,ile) = @ and
q(s,i|b) = % Since the parametefs; (e, s,i)} and {q (b, s,4)} satisfy [15)4(18), it can be
shown after some basic algebraic manipulations #hat., {q(s,i|e)} and{q(s,i|b)} satisfy
@)-(I3). Hencef, € Ry, i.e., Ry C Ro.

In case thaty, = 0, we defineq(s,i|b) = 0 for s € S andi € Z°. Again after some basic
algebraic manipulations, it can be shown thaf C R,. Similarly, wheng, = 0, we define
q(s,ile) =0 for s € S andi € Z° and it can be shown that, C R,.

Based on the above, it can be concluded Rat= R,.

APPENDIX B

PROOF OFCORROLARY 2]

The optimization problem defined in the corollary has alwaysasible solution, which can be
obtained through setting(b, s,i) = 0 for s € S, i € Z, and selecting arbitrarily(b, s,0) > 0, so
thaty " z(b,s,0) =1, resulting to} - s >~,c70 (s, 9)z(b, 5,4) = 1,(0). Since\ is the optimal
value of its objective, it follows that, (0) < ) as expected. Physically, this choice of parameters,
corresponds to the case where SUs never cooperate.

If A\, belongs to the stability region of the system, thien (L5)-@® satisfied. But then, Egs.
(20)-(23) are also satisfied by choosin@, s, i) = ¢(b, s, ), which implies that\, < .

Conversely, given any, < A, the choice of(b, s,4) = ()\p/ﬁ\> i (b, s,i) for s € S andi € 77,
q(e,s,1) = 0 for s € S andi € Z;, andq(e, s,0) > 0 arbitrarily chosen so thdt’ s q(e, s, 0) =
1 =3 cs 2 iero (b, s,i) satisfies [(IB)E(DB). In additiony > s> cz07p(s,)q(b, 5,7) = Ay,
proving that the\, belongs to the stability region of the PU queue. This coreduthe proof.

APPENDIX C

PROOF OFTHEOREM[4

LetT € Ry. If A, = > oD icromn(s,0)p(1,5,7), then clearlyr € R,. Assume next that
Ap < D ses Diero To(8,1)p(1, s,7). We distinguish the following cases:
A

Case 1\, > 1, (0)p(1), wherep (1) = >° s> ic0p(1,s,4) denotes the total probability

that PU transmits, summed over all SUand transmit power levels.
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Note that sincer, (0)p (1) < A, < D cs D ieo Tp(s:9)p(1, 5,1), for each ), in the interval
above, there exists a parameterwith 0 < « < 1, such that it holds

Ap:a<§:§:%@JWQJJO%ﬂl—aﬂﬁmpﬂ) (60)

SES ’iezs
We define now the new set of paramete(8, s, i) andgq (e, s, 7)) by settingg (e, s,7) = p (0, s, 1)

for all s € S andi € Z? and

q&&@{ ap(1, 5, ) ﬁ%eL -
ap(l,s,0)+ (1 —a)p(l,s) ifi=0,

for all s € S, wherep(1,5) £ 3 p(1,s,7). Since0 < a < 1, parametersy (e, s, i) and
q(b,s,i), forall s € S andi € Igj,efre non-negative. Furthermore, note t@;ezgq(b,s,i) =

> iero p(1,5,4). Hence the new set of parameters satisfies (17). Also, sih¢e) = 0, it can
be shown that the new set of parameters satisfy (32). Firguig to [60), it follows that’ (15) is
satisfied. Hence the new set of parameters safisfy (15)-&I8) since the SU rates computed
according to[(I0) (whereg (e, s,i) = p(0,s,4) for all s € S andi € ZI°) are the same as the
ones given by[(29), it follows that € R,.

Case 2.\, <1, (0)p(1). Define the new set of parameters as follows

q&&@{ A 0 if i 7, )
Wf;(l)p(l,s) 1=0,
and
p(0,5,17) if i € Z,
a(e,s,1) = B p(0,s,4) +p(0,5,0) if i=0, (63)

i€eZ?
1- b : ,
for all s € S, where§ = =& — 1. Since ), < 1, (0)p(1), andp (1) < 1, it follows that

B > 0, hence, all the defined parameters are non-negative. Alsotal(33), [1¥) is satisfied.
Next, it can be easily shown that {15) is satisfied. Furtheemndue to[(3R),[(16) is also satisfied.
Finally, sinceP;, (0) = 0, it follows that the SU rates computed according[tal (19) arR),(ére

the same as the ones given byl(29). Hence we conclude thak,.
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APPENDIX D

PROOF OFPROPOSITIONE

We assume first that there exigt {¢(s,i|b)} and{q(s,i|e)} that satisfy the constraints of
OPTL1. In this case, due tb_(39), it follows that

Qbrp(O)PD S )\p S Tp,mabePD + Gy (1 - PD) Tp (0) )

and, consequently,

)‘p < < L
Porpmar + (L—Po) 1y (0) ~ = Ppry (0)°

Taking into account that, < 1, (44) follows. Conversely, it is assumed that](44) holds. By
choosing the vectors
¢ (1,0|b) =1, ¢' (s,i|b) = 0 otherwise

and

S 5.00e) =0, S5 g (ssife) = 1,

seS seS 1€ls
Eq. (39) results to\) = ¢,Ppr,(0). Similarly, if (s*,i*) satisfiesr,, (s*,1*) = max; {r, (s,)},

by choosing the vectors
¢(s*,i*|b) =1, ¢*(s,i|b) = 0 otherwise

and

S As.00e) =1, 33 P (sife) =0

seS s€S i€y

results to
)\12, = QbPDTp,ma:v + @ (1 - PD) Tp (0) .

Since by [(39) it holds\, < A\, < A2 there is ana such thata), + (1 — a)\2 = X, with

0 < a < 1. Hence, the vectors
q(s,ib) = aq' (s,i]b) + (1 — a)g*(s*, i |b)

and

q(s,ile) = aq' (s,ile) + (1 — a)g*(s,ile)

satify the constraints of OPT1.
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