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Abstract

In cognitive radio networks, secondary users (SUs) may cooperate with the primary user (PU) so

that the success probability of PU transmissions are improved, while SUs obtain more transmission

opportunities. However, SUs have limited power resources and, therefore, they have to take intelligent

decisions on whether to cooperate or not and at which power level, in order to maximize their throughput.

Cooperation policies in this framework require the solution of a constrained Markov decision problem

with infinite state space. In our work, we restrict attentionto the class of stationary policies that take

randomized decisions of an SU activation and its transmit power in every time slot based only on

spectrum sensing. Assuming infinitely backlogged SUs queues, the proposed class of policies is shown

to achieve the maximum throughput for the SUs, while significantly enlarging the stability region of

PU queue. The structure of the optimal policies remains the same even if the assumption of infinitely

backlogged SU queues is relaxed. Furthermore, the model is extended for the case of imperfect channel

sensing. Finally, a lightweight distributed protocol for the implementation of the proposed policies is

presented, which is applicable to realistic scenarios.
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Index Terms
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I. INTRODUCTION

Cognitive radio networks (CRNs) have received considerable attention due to their potential

for improving spectral efficiency [1], [2], [3]. The main idea behind CRNs is to allow unlicensed

users, also known assecondary users(SU), to identify temporal and/or spatial spectrum “holes”,

i.e., vacant portions of licensed spectrum, and transmit opportunistically, thus gaining access to

the underutilized shared spectrum while maintaining limited interference to the licensed user, also

known asprimary user(PU). This communication paradigm has been referred to as “Dynamic

Spectrum Access” (DSA) in the technical literature [4], [5].

Much prior work on DSA CRNs has been focused on the problem of optimal spectrum

assignment to multiple SUs [6], [7], [8]. Several resource allocation algorithms have been

proposed, based on either the knowledge of PU transmissionsobtained from perfect spectrum

sensing mechanisms [6] or from a probabilistic maximum collision constraint with the PUs [7].

Of particular interest is the opportunistic scheduling policy for SUs suggested in [8], which

maximizes SUs’ throughput utility while guarantees low number of collisions with the PU, as

well. In all these works it is assumed that no interaction between PUs and SUs exists.

Recently, the concept of cooperation between PU and SUs in CRNs emerged, as a means for

providing benefits for both types of users. These benefits stem from the fact that, by exploiting

the transmit power resources of SUs towards improving the effective transmission rate of the

PU, the chances that the PU queue will be empty are increased,and hence the PU channel is

free to use more often.

From an information theoretic perspective, cooperation between SUs and PUs at the physical

layer has been investigated in many works (see [9] and references therein). Queuing theoretic

aspects and spectrum leasing strategies for cooperative CRNs have been investigated in [10],

[11], [12], [13], [14]. Specifically, spectrum leasing strategies where the PU leases a portion

of its spectrum to SUs in return for cooperative relaying were suggested in [10]. A protocol

where a SU relays the PU packets that have not been correctly received by their destination,

was suggested and investigated in terms of SU stable throughput in [11], while similar protocols
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were suggested and compared in [12], considering various physical layer relaying strategies. In

[13], the performance of a specific class of PU-SU cooperation policies was investigated in terms

of PU and SU stable throughput, assuming that SU is allowed totransmit simultaneously with

the PU, even if the PU is busy.

In this work we study optimal cooperative PU-SUs transmission control algorithms with the

objective to make as efficient use of the PU channel as possible, namely maximize a function of

the transmission rates of the SUs, while guaranteeing unobstructed packet transmission for the

PU, and stability of its queue. SUs have limited transmit power resources, therefore intelligent

cooperation decisions must be taken. This is the main idea behind the work in [14], where a

dynamic decision policy for the SUs activities (i.e., whether to relay PU transmissions and at

which power level) is suggested. The proposed policy is proved to be optimal, however, its basic

requirement is that the PU packet arrival rates must be lowerthan a threshold value, which

guarantees that the PU queue is stable even when SUs never cooperate. This regime places

significant restrictions on the achievable PU stability region, since the sustainable arrival rates

of PUs may be much larger than this threshold value.

We present policies that significantly increase the range ofPU arrival rates for which PU-SUs

cooperation can be beneficial. Specifically, we investigatetransmission policies for cooperative

CRNs that can be applied even when PU transmission rates are above the threshold set by [14],

while still permitting the SUs to utilize the channel for their own transmissions. Since the SU

decision options and success probabilities are different during the idle and busy PU periods, while

the PU queue size is in turn affected by the cooperation decisions, such policies require in general

the solution of a non-trivial constrained Markov decision problem with infinite state space, where

the state is the size of the PU queue. The solutions for such Markov decision problems suffer

from large convergence times and their implementation in general requires knowledge of the PU

queue size [15].

The main contributions of this work are summarized as follows.

1) We introduce a class of stationary policies which take random decisions on SU activities

in every time-slot based only on the PU channel spectrum sensing result, i.e., the PU

channel being busy or idle. The proposed class of policies isapplicable when either SUs

are infinitely backlogged or a general SU packet arrival process is assumed. The benefits

of our approach are as follows. First, our approach is provento achieve the same set of
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SU rates as the more general policies in which (i) decision may depend on the PU queue

size, or (ii) a SU packet may be transmitted instead of a PU packet when thePU queue

is non-empty. Hence, the policies in the proposed class of stationary ones are sufficient

for optimality with respect to any utility function. Second, compared to other policies, it

allows for a significantly larger range of PU traffic arrival rates for which the PU queue

is stable, thus increasing the PU throughput. Even more interestingly, the enlargement of

the PU stability region still allows the SUs to utilize slotsthat are unused by the PU, in

order to transmit their own traffic. Finally, as long as the system parameters remain the

same, the decision variables associated with our policy maybe computed offline, through

solving a convex optimization problem via efficient interior point methods, and can be

used to realize the policy in real-time.

2) Since the proposed policies are based solely on the PU channel state sensing result, we

also investigate the effects of imperfect spectrum sensingmechanism in their performance.

Considering this case, we incorporate all possible sourcesof errors and inefficiencies in

our model and describe the new performance space of the proposed policies. However,

when channel sensing errors are introduced, the determination of the associated control

variables requires the solution of a non-convex optimization problem and the optimal

solution becomes hard to determine.

3) A distributed implementation of the proposed cooperation policies, applicable to the case

of concave SU utility functions, is designed, which is basedon a decentralized computation

of the problem control variables via the alternating direction method of multipliers. This

version offers a robust alternative to the centralized implementation and distributes the

computational burden across network nodes without loss in performance.

The remainder of the paper is organized as follows. In Section II, we introduce the system

model. In Section III we describe the mode of operation of theproposed restricted class of

randomized policies and show their optimality. Exogenous packet arrivals to SU queues and the

effects of imperfect spectrum sensing mechanism are investigated in section IV. The distributed

implementation of the proposed class of policies is developed in Section V. Section VI presents

simulation results and finally, concluding remarks are provided in Section VII.
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II. SYSTEM MODEL

We consider the system model with one PU and multiple SUs depicted by Fig. 1. Specifically,

the PU is the licensed owner of the channel and transmits whenever it has data to send. On the

other hand, SUs do not have any licensed spectrum and seek transmission opportunities on the

PU channel. We assume that one1 of the SUs can cooperate with the PU in order to improve

the success probability of PU transmissions. This can be achieved by allocating part of the SU

power resources towards that purpose. In practice, SU cooperation may be realized with various

techniques that span one or more communication layers. For example, the SU may relay PU

traffic (e.g. through decode-and-forward, or amplify-and-forward) [14]. Alternatively, this aid

by the SU can be provided by means of link layer techniques, such as retransmission of the

overheard PU packet by the SU, or even through physical layertechniques (e.g. simultaneous

transmission of the PU packet by the SU, in order to improve the signal-to-interference-plus-

noise ratio at the PU receiver) [12]. The model is transparent to capture the generality of all

these techniques, all of which are factored in the problem interms of the SU consumed transmit

power resources.

Furthermore, after sensing the PU channel, SUs decide on which SU will cooperate so as to

transmit PU data and at which power level (if the PU channel isbusy), or which SU will transmit

its own data and at which power level (if the PU channel is idle). In what follows we describe

the parameters of the system model under consideration as well as the available controls.

A. System Model Parameters

We consider the time-slotted model, where time slott = 0, 1, ... corresponds to time interval

[t, t+ 1); t and t+ 1 are called the “beginning” and “end” of slott respectively. The PU queue

receives new packets in each time slott according to an independent and identically distributed

(i.i.d.) arrival processAp (t) with mean rateE [Ap(t)] = λp packets/slot andE
[

(Ap (t))
2] < ∞.

We assume that the SUs are backlogged so that theyalwayshave packets to transmit.

We denote byS the set of SUs. Each SUs ∈ S can transmit using one ofIs power levels,

Ps (i), i = 1, ..., Is, wherePs(i) < Ps(i + 1). To simplify the description that follows, we set

1The presented analysis can be applied in cases where more than one SUs can cooperate with PU, by replacing the selected

SU by a subset of SUs.
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Fig. 1. The system model under consideration.

Ps(0) = 0. An SU s may use any of these power levels to either transmit its own data or to

assist the PU as discussed above. At each time slot, only a single packet transmission can take

place. Furthermore, when transmission of packets from the PU takes place, at most one of the

SUs can cooperate. There is a constraint on the long-term average powerP̂s consumed by each

s ∈ S. Hence, for everys ∈ S, if i(t) is the power level used bys at slot t, it must hold,

lim sup
t→∞

1

t

t
∑

τ=0

E [Ps (i (τ))] ≤ P̂s, i (τ) ∈ I0
s , (1)

whereE[·] denotes expectation,Is = {1, 2, ..., Is} andI0
s = Is ∪ {0}.

We assume an erasure channel model, i.e., that each transmission (by the PU or one of the

SUs) is either received correctly or erased.

• When SUs transmits one of its own packets withith power level,i ∈ I0
s , the probability

of success isrs(i), wherers(0) = 0, i.e. the success probability is zero if no power is used

for transmission.

• When SUs cooperates with the PU, (namely it assists in the transmission of PU packets

by transmitting withith power level), the success probability of the PU transmitted packet

is rp (s, i) . If i = 0, the SU “cooperates” with zero transmission power, hence ineffect no

cooperation takes place; therefore it is natural to assume that rp(s, 0) = rp(0) ≥ 0 for all

s ∈ S, whererp(0) denotes the probability of successful packet transmissionby the PU

when the SUs do not cooperate. In addition, we assume thatrp (s, i) ≤ rp (s, i+ 1), i.e.,

the probability of successful reception is a non-decreasing function of transmission power.
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B. Available Controls

In the beginning of time slott there are various control options, depending of the status of the

primary queueQp (t). In caseQp (t) > 0 (namely, the PU channel is busy), then the available

controls are:

• A packet from the PU queue is transmitted, and transmission of SU packets is excluded.

We refer to this constraint as thePU priority constraint.

• A SU s is selected for cooperation with the PU in order to assist thetransmission of the

PU packet.

• The ith power level,i ∈ I0
s , is selected, so thats cooperates with the PU using power level

Ps(i). When i (t) = 0 no cooperation takes place.

On the other hand, whenQp (t) = 0 (namely, the PU channel is idle), the available controls are

the following:

• A SU s is selected to transmit its own packet.

• The ith power level,i ∈ I0
s , is selected, so thats transmits its own packets using power

level Ps(i). If i = 0, no transmission takes place in slott.

C. Admissible Policies, Rate Region, Performance Objective and Extended class of Policies

A control policy is calledadmissibleif the following policy constraints are satisfied:

• PU priority constraint is satisfied.

• The PU queue must be mean-rate stable, i.e., the output long-term average rate of the PU

queue should be equal to its long term average input rate [16].

• The average power constraints of (1) are satisfied.

Under an admissible policy, each SUs ∈ S obtains a long-term average transmission rate equal

to

r̄s = lim
t→∞

inf

∑t−1
τ=0E [rs(Ps(i(τ))]

t
(2)

wherePs (i (t)) is the power level at whichs transmits in slott. In the sequel, we denote bȳr

the vector of the long-term average transmission rates of SUs, i.e.,r̄ , {r̄s}s∈S. Theachievable

rate region for the problem under consideration is defined as the set of vectors of SU rates̄r

that can be obtained by all admissible policies.
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The selection of an admissible policy depends on the particular optimization objective, which

is expressed as a function of the vector of achievable long-term average SU transmission rates

r̄. The optimization objective is of the form:

maximize:f (̄r) (3)

wherer̄ belongs to the rate region. In the simplest case,f (·) is a linear function of̄r, however,

fairness considerations may requiref (·) to be a nonlinear (usually separable) function ofr̄, [17],

[18].

The PU queue sizeQp(t) can be seen as the state of a constrained Markov Decision Process

problem [15], where the constraints are imposed by the policy constraints described above. Let

C1 be the class of admissible policies of this Markov Decision Process. This class contains

policies that are based on past history actions and includesthe class of randomized stationary

policies of the following form:

• WhenQp(t) = m, m > 0, select a SUs to cooperate with the PU atith power level with

a certain probability that depends onm.

• WhenQp(t) = 0, select a SUs to transmit its own packets atith power level with a certain

probability.

Consider a subclass of the policies inC1, denoted byC0, which consists of policies whose

decisions are based solely on whether the PU queue is zero or not. In each time slott, a policy

in C0 acts as follows:

• WhenQp(t) > 0, or equivalently the PU channel is sensed busy, select a SUs to cooperate

at ith power level with a probabilityq (s, i |b).

• WhenQp(t) = 0, or equivalently the PU channel is sensed idle, select a SUs to transmit

its own data atith power level with probabilityq (s, i |e).

Since the policies inC0 are not based on the actual value ofQp (t), but only whetherQp (t) is

greater than or equal to zero, it follows thatC0 ⊆ C1.

For the analysis that follows, it is helpful to introduce theextended class of policiesC2 which

follow the policy constraints with the exception the PU priority constraint, i.e., when the PU

queue is non-empty at the beginning of a slot, the policy may select to transmit one of the SU

packets instead of a PU packet. In this case, the available controls at the beginning of each time

slot are of the form(u, s, i), u ∈ {1, 0} , s ∈ S, i ∈ I0
s , where
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Fig. 2. The rate regionsR0, R1 and R2, which coincide, for the system setup scenario withS = {1, 2}, λp = 0.3, and

I0
s = {0, 1, 2, 3, 4}, Ps = {0, 0.25, 0.5, 0.75, 1}, rp (0) = 0.4, rp (s, 1) = 0.5, rp (s, 2) = 0.6, rp (s, 3) = 0.7, rp (s, 4) = 0.8,

rs (1) = 0.3, rs (2) = 0.5, rs (3) = 0.8, rs (4) = 1, P̂s = 0.5, for all s ∈ S .

• Control (1, s, i), dictates transmission of PU traffic and assigns SUs at ith power level

to cooperate with the PU. Note that this control can be assigned even if the PU queue is

empty, in which case no packet is transmitted.

• Control (0, s, i), dictates transmission of only SU traffic, and selects SUs to transmit atith

power level.

Since policies inC2 do not impose the PU priority constraint, and they may include even

non-stationary policies, it follows thatC1 ⊆ C2. Hence, it holds thatC0 ⊆ C1 ⊆ C2 and the

corresponding achievable rate regionsR0, R1, R2, satisfying the policy constraints under the

classes of policiesC0, C1, C2, satisfyR0 ⊆ R1 ⊆ R2.

It might seem at first glance that a policy in classC0 with a restricted control space will

lead to suboptimal performance. However, this is not the case. In the next section we show that

R2 ⊆ R0, thus reaching the interesting key conclusion thatR0 = R1 = R2. The rate regions

R0, R1 andR2 (which coincide) for a particular system setup scenario with 2 SUs are illustrated

in Fig. 2. Hence, under any optimization objective,it suffices to restrict attention to policies in

C0 even if one has the freedom of not adhering to the PU priority constraint.
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III. CHARACTERIZATION OF ACHIEVABLE RATE REGIONSR0, R1, R2

In this section we substantiate our previous claim. Towardsthis end, we first determine the

achievable rate region of policies inC0, namelyR0, in subsection (III-A), as well as the stability

region of the PU queue when policies in classC0 are employed. Second, we determine the

achievable rate region of policies inC2, namelyR2, in subsection (III-B), and finally we prove

thatR0 coincides withR2.

A. Achievable Rate Region of Policies in ClassC0

For a given policyπ in classC0, the average packet service rate of the PU queue is given by

r̄p =
∑

s∈S

∑

i∈I0
s

rp(s, i)q(s, i |b). (4)

Standard results from queuing theory show that the stability region of the PU queue underπ, that

is, the closure of the set of PU arrival ratesλp for which the PU queue is mean-rate stable [16],

is the set of arrival rates that fall in the interval[0, r̄p]. Assume next thatλp ∈ [0, r̄p) (so that the

PU queue is stable) and letqb be the steady state probability that the PU queue is busy under π.

Viewing the transmitter at the PU as a queuing system holding0 (if the PU queue is empty) or

1 packets (i.e., the packet whose transmission is attemptedif the PU queue is non-empty) and

applying Little’s formula to this system, we have

qb = Pr {PU queue is non-empty} =
λp

r̄p
. (5)

Hence, the steady state probability that the PU queue is empty is qe = 1 − qb. Due to the

imposed PU priority constraint, SUs may transmit their own data only when the PU queue is

empty. Hence, the average packet transmission rate of SUs traffic is equal to

r̄s =

(

∑

i∈Is

rs (i) q (s, i |e)

)

qe. (6)

The average power consumption of SUs ∈ S is

P̄s = qe
∑

i∈Is

Ps (i) q(s, i |e) + qb
∑

i∈Is

Ps (i) q(s, i |b) (7)

and sinceπ ∈ C0, it satisfies the power constraints (1), i.e.,P̄s ≤ P̂s, s ∈ S. The dis-

cussion above shows that the constraints that need to be satisfied by the set of probabilities
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{qb, q (s, i |b) , q (s, i |e) , qe} s ∈ S, according to (1), (5), are given by

qb
∑

s∈S

∑

i∈I0
s

rp(s, i)q(s, i |b) = λp (8)

qe
∑

i∈Is

Ps (i) q(s, i |e) + qb
∑

i∈Is

Ps (i) q(s, i |b) ≤ P̂s, s ∈ S (9)

qb + qe = 1 (10)

∑

s∈S

∑

i∈I0
s

q (s, i |b) = 1 (11)

∑

s∈S

∑

i∈I0
s

q (s, i |e) = 1 (12)

qb ≥ 0, qe ≥ 0, q (s, i |b) ≥ 0, q (s, i |e) ≥ 0, s ∈ S, i ∈ I0
s (13)

Conversely, given the set of probabilities{qb, q (s, i |b) , q (s, i |e) , qe}s∈S, i∈I0
s

that satisfy

the constraints (8)-(13), withqb < 1, an admissible policy inC0 can be defined. Hence, the

performance space of these policies is the set ofr̄ defined by (6), where the set of probabilities

{qb, q (s, i |b) , q (s, i |e) , qe}s∈S, i∈I0
s

satisfy constraints (8)-(13).

While constraints of (8)-(13) are nonlinear with respect toparameters{qb, q (s, i |b) , q (s, i |e) , qe},

they can be easily transformed into linear ones through the transformation

q (b, s, i) = qbq (s, i |b) , q (e, s, i) = qeq (s, i |e) . (14)

Note thatq (b, s, i) is the probability that the PU is busyand SU s is selected for cooperation

at power leveli, while q (e, s, i) is the probability that the PU is idleand SU s packets are

transmitted in a slot at power leveli. With this transformation, the constraints that characterize

the achievable rate region of policies inC0 become,

∑

s∈S

∑

i∈I0
s

rp (s, i) q (b, s, i) = λp (15)

∑

i∈Is

Ps (i) q (e, s, i) +
∑

i∈Is

Ps (i) q (b, s, i) ≤ P̂s, s ∈ S (16)

∑

s∈S

∑

i∈I0
s

q (e, s, i) +
∑

s∈S

∑

i∈I0
s

q (b, s, i) = 1 (17)

q (e, s, i) ≥ 0 q(b, s, i) ≥ 0, s ∈ S, i ∈ I0
s . (18)



12

In addition, the achievable rate of each SUs ∈ S, given by (6), can be rewritten as

r̄s =
∑

i∈Is

rs (i) q (e, s, i) (19)

In fact, it can shown that (6) and (8)-(13), define the same performance space as (15)-(19). This

is described in the following proposition.

Proposition 1. The performance space of{r̄s} which is defined by Eqs. (6) and (8)-(13) is

equivalent with the corresponding performance space defined by Eqs. (15)-(19).

Proof: Please refer to Appendix A.

In the next section, we use the characterization of the achievable rate region of policies in

C0 in terms of constraints (15)-(19) to show that this region coincides with the achievable rate

region of policies inC2.

1) Stability region of PU Queue under the class of policies inC0: Based on the discussion

above, the stability region of the PU queue under the class ofpolicies in C0 is the set ofλp

for which there exists a set of probabilities{q (b, s, i) , q (e, s, i)}s∈S, i∈I0
s

that satisfy (15)-(19).

Based on this observation we have the following corollary.

Corollary 2. The stability region of the PU queue under the class of policies inC0 is the interval

[0, λ̂] whereλ̂ is the resulting value of the objective of the following linear optimization problem

in terms ofx (b, s, i), for all s ∈ S and i ∈ I0
s .

maximize:
∑

s∈S

∑

i∈I0
s
rp(s, i)x(b, s, i) (20)

subject to
∑

i∈Is
Ps (i) x(b, s, i) ≤ P̂s, s ∈ S (21)

∑

s∈S

∑

i∈I0
s
x (b, s, i) ≤ 1 (22)

x (b, s, i) ≥ 0, s ∈ S, i ∈ I0
s (23)

Proof: Please refer to Appendix B.

Remark3. It can be easily seen that the value of optimization problem in Corollary 2 does not

change if inequality in (22) is replaced by equality. This implies what is intuitively expected,

i.e., whenλp = λ̂, no idle slots are left by PU, i.e.,qb = 1 andqe = 0, andthe available power

from any SU is allocated only to the cooperation with the PU.
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2) Implementation of policies in classC0: In order to implement the policies in the proposed

restricted classC0, the probabilities{q (e, s, i) , q (b, s, i)}i∈I0
s , s∈S

need to be determined. These

probabilities are obtained through solving the following optimization problem OPT0

maximize f (r̄) (24)

subject to
∑

s∈S

∑

i∈I0
s
rp (s, i) q (b, s, i) = λp (25)

∑

i∈Is
Ps (i) q (e, s, i) +

∑

i∈Is
Ps (i) q (b, s, i) ≤ P̂s, s ∈ S (26)

∑

s∈S

∑

i∈I0
s
q (e, s, i) +

∑

s∈S

∑

i∈I0
s
q (b, s, i) = 1 (27)

q (e, s, i) ≥ 0 q(b, s, i) ≥ 0, s ∈ S, i ∈ I0
s , (28)

wherer̄ , {r̄s}s∈S, and r̄s =
∑

i∈Is
rs (i) q (e, s, i). In problem OPT0 the optimization variables

are {q (e, s, i) , q (b, s, i)}i∈I0
s , s∈S

, whereasrp (s, i), rs (i), Ps (i), for all i ∈ I0
s , and s ∈ S,

are fixed system model parameters. Specifically,rp (s, i) denotes the probability of successful

transmission of the PU packet when SUs cooperates atith power level, whilers (i) denotes

the probabilty of successful transmission of SUs packet, when SUs transmits atith power

level.Ps (i) denotes the transmit power that corresponds to leveli ∈ I0
s that SUs uses in either

case, andP̂s denotes the maximum average transmit power available for SUs. Constraint (25)

ensures that the average packet service rate of the PU queue equals its average input rate,λp, and,

therefore, guarantees stability of the PU queue. The inequality constraints in (26) are the long-

term average power constraints for all SUs. Finally, constraints (27) and (28) are imposed because

the optimization variables{q (e, s, i) , q (b, s, i)}i∈I0
s , s∈S

represent probabilities. In case where

the selected objective function in (24),f (·), is a concave function of̄r, then, problem OPT0

is a convex optimization problem which can be solved efficiently via interior point methods.

Once variables{q (e, s, i) , q (b, s, i)}i∈I0
s , s∈S

are determined, we can obtain the probabilities

{qb, q (s, i |b) , q (s, i |e) , qe}s∈S, i∈I0
s

through the linear transformation in (14). Then, policies in

C0 act as we describe in section II-C.

B. Achievable Rate Region of Policies in ClassC2

Contrary to the available controls when the PU priority constraint is imposed, the set of

available controls for policies inC2 does not obey the PU priority constraint (thus, a slot may
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be allocated to SU packet transmission, even if the PU queue is nonempty). Hence, this class of

policies falls in the framework of policies studied in [16],whose achievable rate region can be

characterized again by the achievable rate region of stationary policies. In the latter framework,

a stationary policy selects at the beginning of each time slot the control(u, s, i) with probability

p (u, s, i). Under such a policy, the probability of successful transmission of SUs packets is

r̄s =
∑

i∈Is

rs (i) p (0, s, i) , (29)

while, the probability of successful transmission of PU packets is

r̄p =
∑

s∈S

∑

i∈I0
s

rp(s, i)p(1, s, i), (30)

and stability of the PU queue requires that

r̄p ≥ λp. (31)

Also, the average power constraint requirement implies that

∑

i∈Is

Ps (i) p(0, s, i) +
∑

i∈Is

Ps (i) p(1, s, i) ≤ P̂s, s ∈ S. (32)

Finally, sincep (u, s, i) are probabilities, we must have

∑

s∈S

∑

i∈I0
s

p (0, s, i) +
∑

s∈S

∑

i∈I0
s

p (1, s, i) = 1 (33)

p(0, s, i) ≥ 0, p(1, s, i) ≥ 0, s∈ S, i ∈ I0
s . (34)

Constraints (31)-(34) together with (29) define the achievable rate regionR2 of policies inC2.

The similarity of these constraints compared to those in (15)-(19) should be noted. From a math

perspective, the only difference is that there exists equality in (15), as opposed to inequality in

(31). However, there is difference in the interpretation ofthese probabilities. Specifically,

• q (b, s, i) is the probability that PU queue is nonemptyand SU s is selected for cooperation

at ith power level, whilep(1, s, i) is the probability that SUs is selected for cooperation at

ith power level and dictating PU transmission as well (irrespective of the PU queue size).

• q (e, s, i) is the probability that PU queue is emptyand secondary users packets are

transmitted in a slot atith power level, whilep(0, s, i) is the probability of selecting

secondary users packet for transmission at theith power level, while PU does not transmit

(irrespective of the PU queue size).
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As discussed earlier, sinceC0 ⊆ C2, R0 ⊆ R2. The next theorem shows thatR2 = R0.

Theorem 4. It holdsR2 ⊆ R0, henceR0 = R1 = R2.

Proof: Please refer to the Appendix C.

IV. EXTENSIONS TO THE BASIC MODEL

In this section, we extend the model that has been investigated so far in two directions. First,

we assume exogenous packet arrivals to the SU queues, instead of infinite queue backlogs.

Second, imperfect channel sensing effects are taken into account.

A. Incorporating Exogenous Packet arrivals to SU queues

In this part, we investigate the scenario where packets arrive exogenously to SU queues.

Specifically, we assume that at the beginning of slott, As(t) packets arrive to the queue of SU.

Furthermore, for a given SUs, As(t), t = 0, 1... are i.i.d random variables withE [As(t)] =

λs, E
[

(As (t))
2] < ∞ and the arrival processes{As(t)}

∞
t=0 , s ∈ S are independent of each

other. Regarding the packet arrival process to the PU queue,Ap (t), we also assume that it

consists of i.i.d. random variables and is independent of the arrival processes to the SU queues.

1) Admissible Policies :As in the case where the SU queues were backlogged, an admissible

policy should satisfy the constraints described in sectionII-C. Regarding SU queues, there are

no constraints on the rates of their arrival processes. Hence, depending on the arrival rates to

these queues, they may be stable or unstable. To deal with theissue of instability, we assume

that flow control is applied to each of the SU queues, which hasthe following form [16]: among

theAs(t) packets that arrive at the queue of SUs, a numberBs(t) ≤ As(t) is accepted by the

system and the rest (if any) are dropped. Thus, theflow control objectiveis that the SU queues

with input theBs(t) packets must be mean rate stable.

In general, the admissible policies in this setup take control actions at time slott, based on the

history of the system up to timet, which includes queue sizes of the PU and SU queues up to

time t. We call this class of policies̃C1. Similar to the previous analysis, we consider a subclass

of policies in C̃1, denoted byC̃0, which consists of policies whose decisions are based solely on

whether the PU queue is empty or not, hence not requiring information about the queue sizes

at the PU and SU queues. In each time slott, a policy in C̃0 acts as follows:
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• Flow control action: Each of theAs(t) packets that arrive to SUs at timet, is admitted with

probabilitypas . The packet admission events are independent of each other and independent

of other processes in the system.

• WhenQp(t) > 0, select a SUs to cooperate atith power level with a probabilityq (s, i |b).

• WhenQp(t) = 0, select a SUs to transmit its own data atith power level with probability

q (s, i |e). If the selected SU has no data to transmit, it loses its transmission opportunity.

For performance comparison, we consider the extended classof policiesC̃2 which employs flow

control at the SU queues and obeys all constraints of policies in C̃1, except the PU priority

constraint. Hence we again havẽC0 ⊆ C̃1 ⊆ C̃2. The performance measure of interest in this

case is the throughput of SU queues, i.e., the long term average number of packets per slot,

Rs, that are delivered to the receiver of SUs, s ∈ S. The set of achievable throughput vectors

R = {Rs}s∈S under class of policies̃Ci, i = 0, 1, 2, is denoted byR̃i. SinceC̃0 ⊆ C̃1 ⊆ C̃2 we

again have,R̃0 ⊆ R̃1 ⊆ R̃2.

2) Throughput Regions of Policies in ClassesC̃0 and C̃2: Similarly to the analysis in Section

III-A, it can be shown thatR̃0 consists of all vectorsR = {Rs}s∈S that satisfy

Rs ≤ min {λs, r̄s} , s ∈ S (35)

where r̄s is defined by (15)-(18) and (19). Note that in the current setup, r̄s represents the

“offered” service rate to SUs queue, i.e., the probability of successful transmission ofan SU

s packet. For maximizing the throughput of each SU queue, we must haveRs = min {λs, r̄s}.

Moreover, since flow control is chosen to stabilize the SU queues, we must haveRs = λsp
a
s ,

with pas =
min{λs,r̄s}

λs
, s ∈ S.

On the other hand, for the stationary policies inC̃2, it can be shown [16] that̃R2 consists of

all vectors that satisfy (35) and
∑

s∈S

∑

i∈I0
s
rp (s, i) q (b, s, i) ≥ λp, with r̄s being defined by

(16)-(18) and (19).

Based on the structure of the throughput regions described above, it follows by a similar

argument as in section III that̃R0 = R̃2, which implies again that policies iñC0 can achieve

any throughput vector achievable by the less restrictive policies in C̃2.

3) Selecting Optimal Policies iñC0: Consider the problem of selecting a policy iñC0 that

maximizesf(R), with R ∈ R̃0. Based on the above, it is then easy to see that this optimization
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problem is equivalent to

maximizef
(

{min (λs, r̄s)}s∈S
)

, (36)

where r̄s is defined by (19) and (15)-(18).

B. Imperfect Sensing

In this part, we investigate the effects of imperfect sensing on the mode of operation and the

performance of policies inC0. For simplicity we assume that the SUs are infinitely backlogged.

The case where packets arrive randomly at the SUs can be handled in a similar fashion as in

section IV-A.

We assume that cooperative sensing takes place, so that all SUs make the same decision

at each slot as to whether the primary channel is busy or idle.We assume that PU channel

sensing events are independent across slots and independent of the transmission choices of the

users. We denote the probabilities of detection and false alarm of the sensing mechanism as

PD = Pr {sense busy|channel is busy} andPF = Pr {sense busy|channel is idle}, respectively.

Two sources of error and inefficiency may occur in this situation:

• The primary channel is busy but sensed idle (an event occurring with probability1−PD).

We distinguish two subcases:

– One of the SUs transmits its own packet at the same slot with the PU, an event with

probability 1 −
∑

s∈S q (s, 0 |e)
2. In this case, collision occurs and both transmissions

fail.

– No SU transmits a packet, an event with probability
∑

s∈S q (s, 0 |e). In this case the

PU transmission is successful with probabilityrp (0) .

The effect of this error on the probability of successful transmission of PU packet is given

by

r̄p = (1− PD)
∑

s∈S

q (s, 0 |e) rp (0) + PD

∑

s∈S

∑

i∈I0
s

rp (s, i) q (s, i |b) (37)

• When the PU channel is idle but it is sensed busy, an SU may be allocated for cooperation

with the PU, thus losing the opportunity to transmit its own data. Hence, the probability of

successful transmission of SU packets is affected by the probability of the event that the

2Recall using power level0 implies no transmission.
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PU channel is idle and sensed idle (equal toqe (1−PF )). For the SUs, this probability

becomes

r̄s = qe (1− PF )
∑

i∈I0
s

rs (s, i) q (s, i |e) . (38)

Regarding the average power consumed by SUs under a policy inC0, we consider the following

events:

1) The event that PU channel is busy and is sensed busy, with probability qbPD. Then, SUs

consumes an average power of
∑

i∈I0
s
Ps (i) q (s, i |b) .

2) The event that PU channel is busy and is sensed idle, with probability qb (1− PD) . Then,

SU s consumes an average power of
∑

i∈I0
s
Ps (i) q (s, i |e) .

3) The event that PU channel is idle and is sensed idle, with probability qe (1− PF ). Then,

SU s consumes an average power of
∑

i∈I0
s
Ps (i) q (s, i |e) .

4) The event that PU channel is idle and is sensed busy, with probability qePF . Then, SUs

consumes an average power of
∑

i∈I0
s
Ps (i) q (s, i |b) .

Based on the above, the new performance space when channel sensing errors are introduced is

determined by (10)-(13) and

qbPD

∑

s∈S

∑

i∈I0
s

rp (s, i) q (s, i |b) + qb (1− PD) rp (0)
∑

s∈S

q (s, 0 |e) = λp. (39)

(qbPD + qePF )
∑

i∈I0
s

Ps (i) q (s, i |b)+(1− qbPD − qePF )
∑

i∈I0
s

Ps (i) q (s, i |e) ≤ P̂s, s ∈ S. (40)

We seek transmission policies that achieve the following objective, OPT1:

maximize f (r̄s) (41)

subject to (10)-(13), (39)-(40) (42)

where r̄s are given by (38).

Due to (39)-(40), OPT1 is a non-convex optimization problemand therefore it is difficult to be

solved optimally. One way to solve OPT1 numerically, is to fixqb, in which case the constraints

become linear and the problem can be easily solved. Letg(qb) be the maximum value of the

objective of OPT1 forqb ∈ [0, 1] (for some values ofqb the problem may be infeasible). We can

then solve the one-dimensional problem:

maximizeg(qb) (43)
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where0 ≤ qb ≤ 1 and the maximum can be specified through exhaustive linear search methods.

However, based on the following remark, we can restrict the region of possibleqb values, where

linear search is performed.

Proposition 5. The probability of PU being busy when imperfect sensing takes place, varies

within
λp

PDrp,max + (1− PD) rp (0)
≤ qb ≤ min

{

λp

PDrp (0)
, 1

}

(44)

whererp,max = maxs,i {rp(s, i)}.

Proof: The proof follows straightforwardly based on (39) and is given in Appendix D.

Solving the one-dimensional problem (43) by exhaustive search may be computationally

expensive. As will be seen in section VI, a large number of numerical investigations suggest that

g(qb) is a concave function ofqb. We have not been able to prove rigorously that this property

holds. However, if it is indeed true, binary search methods can be used instead for the solution

of (43), thus reducing the computational complexity fromM to log2M, whereM stands for

the number of values ofqb investigated in the space given by (44).

V. D ISTRIBUTED IMPLEMENTATION

In this section, we assume perfect PU channel sensing and infinitely backlogged SUs, and

focus on approaches based on policies inC0 that do not rely on central coordination in order to

achieve the following objective, OPT2:

maximize
∑

s∈S fs (r̄s) (45)

subject to (15), (16), (17), (18) and (19)

Functions{fs (·)}s∈S are usually selected so that certain fairness criteria for SU rate allocation are

satisfied, see [17] and [18], and they are assumed to be concave with respect tōrs. Thus, due to

the fact that for alls ∈ S, r̄s is a linear function of variables
{

{q (e, s, i)}i∈I0
s
, {q (b, s, i)}i∈I0

s

}

,

fs (r̄s) is also a concave function of these variables. Hence, OPT2 isa convex optimization

problem and can be solved efficiently via interior point methods.

In an operational environment where parameters may change with time, problem OPT2 will

have to be solved whenever significant changes to such parameters occur. A centralized solu-

tion requires a single node to be responsible for gathering instantaneous parameter values, for
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the solution of OPT2 and for determining the appropriate scheduling of packet transmissions.

While such a solution may be acceptable in certain environments, it creates a “single point of

failure”. Moreover the central node must be continually informing the SUs as to which one

will cooperate or transmit in each time slot and at which power level. There may also be a

scalability issue with this approach since the number of variables is of the order2 |S| I , whereI

is the maximum number of power levels of SU nodes (
∑

i∈S |I
0
s | parameters{q (b, s, i)}s∈S, i∈I0

s

plus
∑

i∈S |I
0
s | parameters{q (e, s, i)}s∈S, i∈I0

s
). Hence, depending on the computing power and

memory availability at the central node, solving problem OPT2 in a centralized location may

become prohibitive for larger number of SUs.

1) Advantages of the Distributed Approach:In this section, we derive a solution to OPT2 in

a distributed fashion. The main features of our approach arethe following.

a) The PU involvement in the algorithm is only to announce itsarrival rateλp at the beginning

of the algorithm - no further participation is required.

b) A SU node does not need to know the parameters (i.e.,rs (i), rp (s, i), i ∈ Is) of other SU

nodes.

c) The distributed solution requires each SU nodes ∈ S to solve optimization problems with

|I0
s | variables, hence the computational complexity per node does not increase with the number

of SU nodes.

d) Two messages are broadcasted by each SU node per iterationof the distributed algorithm.

The number of iterations for convergence depends on the number of SU nodes, but this is

tolerable for the algorithm execution in a real-time setting.

e) Once convergence of the algorithm is reached for a given arrival rate, the SUs need only

observe the state of the PU channel (busy or idle); they can decide autonomously which SU

node is scheduled to either cooperate with the PU, or to transmit its own traffic, without the

need of a scheduler, or the exchange of control messages.

We assume that there is a separate low-rate channel which is used by the SUs for control

message exchanges [19]. In particular we assume that control messages may be broadcasted

among the SUs, either because the low-rate channel is broadcast in nature, or through the

establishment of Broadcast Trees that usually are employedin ad-hoc networks [20], [21].

2) Implementation of the Distributed Optimization Algorithm: Towards a distributed solution

to problem OPT2 we would ideally like to decompose the globalproblem into |S| parallel
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subproblems, each one involving only local variables and parameters of nodes. Among all

alternatives we tried towards this end, the best algorithm in terms of convergence was the one built

upon theAlternating Direction Method of Multipliers(ADMoM), which has superior convergence

properties over the traditional dual ascent method [22], [23], [24]. To apply ADMoM to OPT2,

we first turned the average power inequality constraints (16) into equalities, by introducing

auxiliary variables{ys}s∈S, where ys is associated with the respectivesth constraint, and is

positive-valued. Also, for notational simplicity, we equivalently rewrite problem OPT2 as OPT3

given by

minimize −
∑

s∈S fs (φs (xs)) (46)

subject to
∑

s∈S g1s (zs) = λp (47)

hs (xs, zs, ys) = P̂s, s ∈ S (48)

∑

s∈S g2s (xs) +
∑

s∈S g2s (zs) = 1 (49)

xs ≥ 0, zs ≥ 0, ys ≥ 0, s ∈ S (50)

where we use the variablesxs , {q (e, s, i)}i∈I0
s
, zs , {q (b, s, i)}i∈I0

s
, and we also define

the following functions:φs (xs) ,
∑

i∈Is
rs (i) q (e, s, i), g1s (zs) ,

∑

i∈I0
s
rp (s, i) q (b, s, i),

g2s (xs) , 1
T
xs =

∑

i∈I0
s
q (e, s, i), g2s (zs) , 1

T
zs =

∑

i∈I0
s
q (b, s, i), and

hs (xs, zs, ys) ,
∑

i∈Is

Ps(i)q(e, s, i) +
∑

i∈Is

Ps(i)q(b, s, i) + ys, s ∈ S. (51)

Let ν andξ denote the dual variables associated with the constraints of (47) and (49) respec-

tively, andµs the dual variable associated with thesth constraint of (48). Then, the augmented

Lagrange function corresponding to OPT3 used by ADMoM, parametrized by the penalty pa-

rameterρ > 0, is given by [22], [23]

Lp =
∑

s∈S

Ls − νλp − ξ +
ρ

2







(

∑

s∈S

g1s (zs)− λp

)2

(52)

+
∑

s∈S

(

hs (xs, zs, ys)− P̂s

)2

+

(

∑

s∈S

g2s (xs) +
∑

s∈S

g2s (zs)− 1

)2






with

Ls , −fs (φs (xs))+ νg1s (zs)+µs

(

hs (xs, zs, ys)− P̂s

)

+ ξg2s (xs)+ ξg2s (zs) , s ∈ S. (53)
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Computational complexity:The optimization steps and variables updates that need to becarried

out at each SU nodes ∈ S, according to ADMoM, are given by

x
k+1
s = arg min

xs≥0
Ls

(

xs, z
k
s , y

k
s , v

k, ξk, µk
s

)

+
ρ

2

(

hs

(

xs, z
k
s , y

k
s

)

− P̂s

)2

(54)

+
ρ

2





s−1
∑

m=1

g2m
(

x
k+1
m

)

+

|S|
∑

m=s+1

g2m
(

x
k
m

)

+ g2s (xs) +
∑

s∈S

g2s
(

z
k
s

)

− 1





2

,

z
k+1
s = argmin

zs≥0
Ls

(

x
k+1
s , zs, y

k
s , v

k, ξk, µk
s

)

+
ρ

2

(

hs

(

x
k+1
s , zs, y

k
s

)

− P̂s

)2

(55)

+
ρ

2





s−1
∑

m=1

g1m
(

z
k+1
m

)

+

|S|
∑

m=s+1

g1m
(

z
k
m

)

+ g1s (zs)− λp





2

+
ρ

2





∑

s∈S

g2s
(

x
k+1
s

)

+

s−1
∑

m=1

g2m
(

z
k+1
m

)

+

|S|
∑

m=s+1

g2m
(

z
k
m

)

+ g2s (zs)− 1





2

,

yk+1
s = argmin

ys≥0
Ls

(

x
k+1
s , zk+1

s , ys, v
k, ξk, µk

s

)

+
ρ

2

(

hs

(

x
k+1
s , zk+1

s , ys
)

− P̂s

)2

, (56)

ξk+1 = ξk + ρ

(

∑

s∈S

g2s
(

x
k+1
s

)

+
∑

s∈S

g2s
(

z
k+1
s

)

− 1

)

, (57)

νk+1 = νk + ρ

(

∑

s∈S

g1s
(

z
k+1
s

)

− λp

)

, (58)

µk+1
s = µk

s + ρ
(

hs

(

x
k+1
s , zk+1

s , yk+1
s

)

− P̂s

)

, (59)

wherek denotes the iteration index. Note that the computational burden is distributed across

SU nodes; the computational complexity at each node dependsprimarily on the two quadratic

optimization problems in (54) and (55), each of which has|I0
s | variables, and can be efficiently

solved via interior point methods, or standard methods suchas Newton Method. All the following

steps involve a single variable and are straightforward.

Communication overhead:Each nodes, in order to perform the steps in (54) and (55),

needs to know information concerning the updated local variables of other nodes. This can

be accomplished through message broadcasts by each SU node via the control channel in the

following manner. The nodes update their local variables and broadcast the messages required

sequentially, in a prespecified order. Specifically, for thestep in (54), each nodes ∈ S updates
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its primal variablexk+1
s and broadcasts messageg2s

(

x
k+1
s

)

. Similarly, for the step in (55), each

SU node updates its variablezk+1
s and broadcastsg1s

(

z
k+1
s

)

and g2s
(

z
k+1
s

)

in one message,

according to the prespecified order. Steps dictated by (56)-(59), for each nodes, require only its

local variables and information that is already acquired bys from the previous message broadcasts

and thus can be implemented in parallel by all nodes. Each iteration of the distributed algorithm

consists of one round of these update steps by all|S| nodes. Consequently, the communication

overhead of the algorithm is2 |S| message broadcasts per iteration.

Convergence:For the convergence of the algorithm in decentralized manner, each SU keeps

track of a local metric and determines local convergence with respect to it, within a prespecified

accuracy. This local metric for each nodes ∈ S may be the the successive differences of its

local objective function under optimization, i.e.,fs (xs). Once this local metric drops under the

prespecified accuracy, local convergence is declared, and node s announces it via the control

channel. As soon as all SU nodes reach convergence, the algorithm terminates.

Real-time implementation:We assume that the PU broadcasts its average arrival rateλp at the

beginning of the algorithm. Once convergence of the algorithm for a givenλp is reached, all

SUs have knowledge of the sums of probabilitiesg2s (x
opt
s ) , g2s (z

opt
s ) , ∀s ∈ S. Thus, if the SUs

use the same randomization algorithm and common seed, as long as they observe the state of

the PU channel, they can all independently produce the same result as to who SU is scheduled

to cooperate with the PU or transmit its own data in every timeslot. Then, the scheduled SU

determines its power level for its transmission based on itsown probability parameters. The

system evolves without the need for further coordination among network nodes.

The algorithm runs again only when some of the parameters of the operational environment

change significantly. Thus, when the arrival rate changes within a pre-specified percentage of

its previous value, the PU informs the SUs about the new valueof λp. Also, in case wireless

channel gains change for some SU within a certain percentage, the corresponding SU may

announce the rerun of the algorithm. In such cases the algorithm can adapt to changes in the

operational environment; the problem is not solved from scratch, but the algorithm is initialized

at the optimal point of the previous system state. This speeds up its convergence and reduces

the overall communication overhead, as will be shown in the simulation results that follow.

Exogenous Packet arrivals to SU queues:In case of this scenario, we seek a decentralized

solution to the optimization problem (36) according to subsection IV-A. However, iff(R) is
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separable, i.e.,f(R) =
∑

s∈S fs (RS), then problem in (36) is essentially identical to the one in

(45) where we replacefs(r̄s) with fs (min{λs, r̄s}). We can therefore employ ADMoM using the

same techniques as previously to provide a distributed implementation of the current optimization

problem. Note that the fact that in the distributed implementation only SUs needs to know

fs (min {λs, rs}), implies that each SU needs to know only its arrival rate in order to implement

the distributed algorithm.

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we confirm the optimality claims in terms of performance for the proposed

class of policies through several simulation experiments for different scenarios. First, we as-

sume that SUs are infinitely backlogged and spectrum sensingis perfect. In this scenario, the

performance of an optimal policy inC0 is compared to the transmission algorithm presented in

[14] and an optimal dynamic policy fromC2, constructed through the Lyapunov optimization

techniques [16]. Furthermore, the convergence of the distributed algorithm, as well as its ability

to adapt to changing parameters is studied. Next, we consider exogenous packet arrivals to SUs

queues and the performance of an optimal policy in the proposed classC̃0 is presented. Finally,

imperfect spectrum sensing is assumed and the convexity of the resulting optimization problem

is investigated. In all the above scenarios, we consider a system model with one PU and several

SUs, and as objective optimization functionf (·) the sum of transmission rates of the SUs, i.e.,

f (r̄) =
∑

s∈S r̄s.

Assuming perfect sensing and infinitely backlogged SUs, theperformance of a setup which

consists of5 SUs and a set of5 available transmit power levels is investigated in Figs. 3-4,

in terms off (r̄) and average backlog of PU queue. Specifically, we assume for this setup that

I0
s = {0, 1, 2, 3, 4}, Ps = {0, 0.25, 0.5, 0.75, 1}, rp (0) = 0.4, rp (s, 1) = 0.5, rp (s, 2) = 0.6,

rp (s, 3) = 0.7, rp (s, 4) = 0.8, rs (1) = 0.3, rs (2) = 0.5, rs (3) = 0.8, rs (4) = 1, and the

average power constraint iŝPs = 0.15, for all s ∈ S. It can be seen in Fig. 3 that the sum

rate achieved by SUs that employ an optimal policy from the restricted class of policiesC0 is

identical to the sum rate achieved under the optimal policy in C2. This is in accordance with the

main result of Theorem 1. Additionally, as it is illustratedby Fig. 4, the average backlog of the

PU queue remains very low under the optimal policy inC0.

On the contrary, the dynamic policy fromC2 induces large sizes to PU queue even for small
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arrival rates. Moreover, when compared to the control algorithm presented in [14], the class

C0 of policies extends the range ofλp that can be supported by the system,providing mutual

benefits to both PU and SUs out of their cooperation. In particular, transmission rates higher

than the PU queue service rate without SU cooperation can be supported for the PU through the

class of policiesC0, while transmission opportunities are provided to SUs to transmit their own

data. It should be noted that the policy in [14] was shown to beoptimal for λp < 0.4, and this

is confirmed in Fig. 3, where it is shown that all three policies achieve the same sum-rate for

λp < 0.4. However, the policy in [14] renders the PU queue unstable for λp > 0.4 and reduces

the SU sum rates to zero. The reason is the following. In [14],decisions are taken at the end

of busy periods of the PU queue. Ifλp > 0.4, whenever a decision not to cooperate is taken,

there is a nonzero probability that the primary queue never becomes empty, and hence there is

no possibility for the SUs to take corrective actions.

For the same scenario and system setup, we also evaluate the performance of the proposed

distributed algorithm. Regarding the distributed implementation parameters, we set the desired

accuracy for convergence equal toǫ = 10−5, while the penalty parameter is taken to beρ = 0.1.

For the arbitrary initialization of the algorithm, we used
{

q (e, s, i)0
}

i∈I0
s

= 0.01, ∀s ∈ S,
{

q (b, s, i)0
}

i∈I0
s

= 0.03, ∀s ∈ S, {µ0
s}s∈S = 1, ξ0 = 1, ν0 = 1. The distributed algorithm was

tested against the centralized solution to problem OPT2, interms of the value of the objective, and
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for various values of the PU arrival rateλp. It was observed that the numerical results obtained

from both centralized and distributed implementations were identical (equal with those provided

by Fig. 3); this shows that our proposed algorithm keeps up with its centralized counterpart,

which can be justified by the convergence properties of ADMoM. Regarding the convergence

speed, the number of iterations required for convergence within the given accuracy are given in

Table I, when the arrival rateλp is varied inside the stability region and the proposed algorithm

begins from scratch (arbitrary initialization). Obviously the algorithm is efficient enough, since

it converges within a tolerable number of iterations for lowPU transmission rates, while the

convergence is even faster at higher ones. This can be explained by the fact that asλp increases,

the constraints in (47)-(50) get tighter, restricting the feasibility set of the problem variables

{xs, zs, ys}s∈S . Consequently, since the distributed algorithm searches for the optimal solution

within the feasibility set in each case ofλp, it needs more iterations to converge when searching

within a wider set than when searching within a narrower set.Finally, the adaptivity of the

distributed algorithm to changes in the arrival rateλp, is investigated in Table II. In particular,

we begin with an initial rate equal toλ0
p = 0.5, and run the algorithm from scratch, as described

above. For all values ofλp different fromλ0
p, we use as initialization for the algorithm the optimal

point found atλ0
p, and write down the number of iterations required for convergence within the

given accuracy. Clearly, there is a remarkable reduction inthe total number of iterations required
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TABLE I

NUMBER OF ITERATIONS FOR THE DISTRIBUTED ALGORITHM.

λp 0.2 0.3 0.4 0.5 0.6 0.7

♯ of iterations 263 172 129 119 105 74

TABLE II

NUMBER OF ITERATIONS ASPU RATE CHANGES FROMλ0
p = 0.5 TO λp.

λp 0.35 0.4 0.45 0.52 0.55 0.6 0.7

♯ of iterations 44 34 39 29 39 45 16

for convergence compared with the arbitrary initialization.

Next, we additionally consider exogenous SU packet arrivals to the to the system setup

described above. For this scenario, the throughput performance of the optimal policies in class

C̃0 is investigated for the cases where
∑

s∈S λs is either well within or outside the achievable

rate regionR0, for both centralized and distributed implementations. Specifically, we initially

fix
∑

s∈S λs inside the achievable rate region for each case ofλp considered;λp varies in the

range [0.2, . . . , 0.7], while
∑

s∈S λs is fixed equal to0.05, whereλs = 0.01, for all s ∈ S.

It was observed that the optimization objective values attained from both implementations are

identical and equal to
∑

s∈S λs, for each value ofλp. Secondly, we consider
∑

s∈S λs outside

the achievable rate regionR0 for each value of the PU arrival rateλp; λp varies in the range

[0.2, . . . , 0.7], while
∑

s∈S λs is fixed and equal to1, whereλs = 0.2, for all s ∈ S. It was

observed that the respective throughput utility that results from both centralized and distributed

implementations coincide and are equal with the corresponding results when the SU queues

are infinitely backlogged (provided by Fig. 3). Hence, the optimal policies in classC̃0 achieve

the maximum possible value for the SU throughput utility function. The number of iterations

required for the convergence of the distributed algorithm is shown in Tables III and IV. For the

derivation of these results, an accuracy ofǫ = 10−5 is assumed and the distributed algorithm

runs from scratch for each value ofλp considered, while using the same initialization values

for its variables as those used in the simulation experiments concerning the first scenario. The

distributed algorithm converges again within a tolerable number of iterations.
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TABLE III

NUMBER OF ITERATIONS FOR THE DISTRIBUTED ALGORITHM,
∑

s∈S
λs = 0.05.

λp 0.2 0.3 0.4 0.5 0.6 0.7

♯ of iterations 93 89 95 137 301 227

TABLE IV

NUMBER OF ITERATIONS FOR THE DISTRIBUTED ALGORITHM,
∑

s∈S
λs = 1.

λp 0.2 0.3 0.4 0.5 0.6 0.7

♯ of iterations 268 127 136 116 103 72

Finally, the effects of imperfect spectrum sensing are investigated in Fig. 5. Specifically,

assuming the same system setup andλp = 0.3, we solve numerically OPT1, by fixingqb and

calculating the maximum value of the objective of OPT1g(qb) when qb ∈ [0, 1], for various

values ofPD andPF . It can be observed thatqb takes values only on the interval specified by

the proposition 5, for all values ofPD andPF considered; thus, restricting the region ofqb where

exhaustive linear search methods have to search. Furthermore, when investigating the concavity

of g(qb), simulation results indicate thatg(qb) is concave with respect toqb, irrespective of the

values ofPD andPF considered. As discussed in section IV-B, if this property is true in general,

then the computational complexity of the centralized solution, as well as the computational

complexity and overhead of a potential distributed implementation, can be significantly reduced.

VII. CONCLUSIONS

In this work we propose and investigate novel primary-secondary user cooperation policies for

cognitive radio networks that orchestrate a PU and co-existing SUs in a wireless channel. The key

idea is that SUs increase the service rate of the PU queue and therefore they increase the range of

arrival rate of the PU for which its queue is stable. At the same time, the PU queue empties more

often, and therefore the channel becomes idle more often, thus giving to SUs more transmission

opportunities. Our major contribution to the state of the art is the proposition of policies that

require only the state of PU channel (busy or empty) for theirimplementation, yet: 1) they

achieve substantial augmentation of the stability region of the PU queue, and 2) they can obtain
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any long term SU rates achievable by policies for which the restriction of always giving priority

to PU traffic is removed. The mode of operation, the performance space and the optimality of the

proposed policies is investigated in models where SUs are either infinitely backlogged, or finite

exogenous packet arrivals to SU queues occur. An important feature of the proposed transmission

algorithm is that the optimal transmit probabilities can becomputed offline, through solving a

convex optimization problem, and can be communicated to users. A centralized and a distributed

version of the algorithm are presented, both of which are applicable depending on the setup.

Simulation results verify the benefits of our approach, as well as the consistency of the proposed

distributed algorithm with its centralized counterpart performance-wise. A possible extension to

this work is the design of a dynamic, online version of the proposed algorithm. Furthermore,

the uncoordinated interaction of multiple PUs and SUs givesrise to game-theoretic models that

warrant further investigation.

APPENDIX A

PROOF OFPROPOSITION1

Let us define asR0 the performance space of̄rs defined by (6) whereqb, qe, {q (s, i |e)},

{q (s, i |b)} satisfy (8)-(13) and̂R0 the performance space ofr̄s defined by (19) where{q (e, s, i)},

{q (b, s, i)} satisfy (15)-(18). Due to the transformation, it holds thatany r̄s ∈ R0 is also inR̂0,
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i.e., R0 ⊆ R̂0.

Conversely, we consider anȳrs ∈ R̂0. Assuming thatqe 6= 0 and qb 6= 0, we make the

transformationqe =
∑

s∈S

∑

i∈I0
s
q (e, s, i) , qb =

∑

s∈S

∑

i∈I0
s
q (b, s, i) , q (s, i |e) = q(e,s,i)

qe
and

q(s, i |b) = q(b,s,i)
qb

. Since the parameters{q (e, s, i)} and{q (b, s, i)} satisfy (15)-(18), it can be

shown after some basic algebraic manipulations thatqb, qe, {q (s, i |e)} and {q(s, i |b)} satisfy

(8)-(13). Hence,̄rs ∈ R0, i.e., R̂0 ⊆ R0.

In case thatqb = 0, we defineq(s, i |b) = 0 for s ∈ S and i ∈ I0
s . Again after some basic

algebraic manipulations, it can be shown thatR̂0 ⊆ R0. Similarly, whenqe = 0, we define

q(s, i |e) = 0 for s ∈ S and i ∈ I0
s and it can be shown that̂R0 ⊆ R0.

Based on the above, it can be concluded thatR0 = R̂0.

APPENDIX B

PROOF OFCORROLARY 2

The optimization problem defined in the corollary has alwaysa feasible solution, which can be

obtained through settingx (b, s, i) = 0 for s ∈ S, i ∈ Is and selecting arbitrarilyx(b, s, 0) ≥ 0, so

that
∑

s x(b, s, 0) = 1, resulting to
∑

s∈S

∑

i∈I0
s
rp(s, i)x(b, s, i) = rp(0). Sinceλ̂ is the optimal

value of its objective, it follows thatrp (0) ≤ λ̂ as expected. Physically, this choice of parameters,

corresponds to the case where SUs never cooperate.

If λp belongs to the stability region of the system, then (15)-(18) are satisfied. But then, Eqs.

(20)-(23) are also satisfied by choosingx(b, s, i) = q(b, s, i), which implies thatλp ≤ λ̂.

Conversely, given anyλp ≤ λ̂, the choice ofq(b, s, i) =
(

λp/λ̂
)

x̂ (b, s, i) for s ∈ S andi ∈ I0
s ,

q(e, s, i) = 0 for s ∈ S andi ∈ Is, andq(e, s, 0) ≥ 0 arbitrarily chosen so that
∑

s∈S q(e, s, 0) =

1 −
∑

s∈S

∑

i∈I0
s
q(b, s, i) satisfies (16)-(18). In addition,

∑

s∈S

∑

i∈I0
s
rp(s, i)q(b, s, i) = λp,

proving that theλp belongs to the stability region of the PU queue. This concludes the proof.

APPENDIX C

PROOF OFTHEOREM 4

Let r̄ ∈ R2. If λp =
∑

s∈S

∑

i∈I0
s
rp(s, i)p(1, s, i), then clearlyr̄ ∈ R0. Assume next that

λp <
∑

s∈S

∑

i∈I0
s
rp(s, i)p(1, s, i). We distinguish the following cases:

Case 1. λp ≥ rp (0) p(1), wherep (1) ,
∑

s∈S

∑

i∈I0
s
p(1, s, i) denotes the total probability

that PU transmits, summed over all SUs and transmit power levels.



31

Note that sincerp (0) p (1) ≤ λp <
∑

s∈S

∑

i∈I0
s
rp(s, i)p(1, s, i), for eachλp in the interval

above, there exists a parameterα, with 0 ≤ α < 1, such that it holds

λp = α

(

∑

s∈S

∑

i∈Is

rp(s, i)p(1, s, i)

)

+ (1− α) rp (0) p (1) . (60)

We define now the new set of parametersq (b, s, i) andq (e, s, i)) by settingq (e, s, i) = p (0, s, i)

for all s ∈ S and i ∈ I0
s and

q(b, s, i) =







αp(1, s, i) if i ∈ Is

αp(1, s, 0) + (1− α)p (1, s) if i = 0,
(61)

for all s ∈ S, where p (1, s) ,
∑

j∈I0
s

p(1, s, j). Since 0 ≤ α < 1, parametersq (e, s, i) and

q (b, s, i), for all s ∈ S and i ∈ I0
s , are non-negative. Furthermore, note that

∑

i∈I0
s
q(b, s, i) =

∑

i∈I0
s
p(1, s, i). Hence the new set of parameters satisfies (17). Also, sincePs (0) = 0, it can

be shown that the new set of parameters satisfy (32). Finally, due to (60), it follows that (15) is

satisfied. Hence the new set of parameters satisfy (15)-(18). Also since the SU rates computed

according to (19) (whereq (e, s, i) = p (0, s, i) for all s ∈ S and i ∈ I0
s ) are the same as the

ones given by (29), it follows that̄r ∈ R0.

Case 2.λp < rp (0) p(1). Define the new set of parameters as follows

q (b, s, i) =







0 if i ∈ Is

λp

rp(0)p(1)
p (1, s) i = 0,

(62)

and

q (e, s, i) =











p (0, s, i) if i ∈ Is

β
∑

i∈I0
s

p (0, s, i) + p (0, s, 0) if i = 0,
(63)

for all s ∈ S, whereβ =
1−

λp

rp(0)

1−p(1)
− 1. Sinceλp < rp (0) p(1), and p (1) ≤ 1, it follows that

β > 0, hence, all the defined parameters are non-negative. Also, due to (33), (17) is satisfied.

Next, it can be easily shown that (15) is satisfied. Furthermore, due to (32), (16) is also satisfied.

Finally, sincePs (0) = 0, it follows that the SU rates computed according to (19) and (63), are

the same as the ones given by (29). Hence we conclude thatr̄ ∈ R0.
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APPENDIX D

PROOF OFPROPOSITION5

We assume first that there existqb, {q (s, i |b)} and{q (s, i |e)} that satisfy the constraints of

OPT1. In this case, due to (39), it follows that

qbrp(0)PD ≤ λp ≤ rp,maxqbPD + qb (1− PD) rp (0) ,

and, consequently,
λp

PDrp,max + (1− PD) rp (0)
≤ qb ≤

λp

PDrp (0)
.

Taking into account thatqb ≤ 1, (44) follows. Conversely, it is assumed that (44) holds. By

choosing the vectors

q1(1, 0 |b) = 1, q1 (s, i |b) = 0 otherwise,

and
∑

s∈S

q1(s, 0 |e) = 0,
∑

s∈S

∑

i∈Is

q1 (s, i |e) = 1,

Eq. (39) results toλ1
p = qbPDrp(0). Similarly, if (s∗, i∗) satisfiesrp (s∗, i∗) = maxs,i {rp (s, i)} ,

by choosing the vectors

q2(s∗, i∗ |b) = 1, q2 (s, i |b) = 0 otherwise

and
∑

s∈S

q2(s, 0 |e) = 1,
∑

s∈S

∑

i∈Is

q2 (s, i |e) = 0

results to

λ2
p = qbPDrp,max + qb (1− PD) rp (0) .

Since by (39) it holdsλ1
p ≤ λp ≤ λ2

p there is anα such thatαλ1
p + (1 − α)λ2

p = λp with

0 ≤ α ≤ 1. Hence, the vectors

q(s, i |b) = αq1 (s, i |b) + (1− α)q2(s∗, i∗ |b)

and

q(s, i |e) = αq1 (s, i |e) + (1− α)q2(s, i |e)

satify the constraints of OPT1.
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