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Distributed Channel Assignment in Cognitive Radio
Networks: Stable Matching and Walrasian
Equilibrium
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Abstract—We consider a set of secondary transmitter-receiver

distributed and less regulated system, we are interested in

pairs in a cognitive radio setting. Based on channel sensing channel assignment mechanisms which are implemented in a

and access performances, we consider the problem of assiggi
channels orthogonally to secondary users through distribted
coordination and cooperation algorithms. Two economic modls
are applied for this purpose: matching markets and competiive
markets. In the matching market model, secondary users and
channels build two agent sets. We implement a stable matchin
algorithm in which each secondary user, based on his achielbbe
rate, proposes to the coordinator to be matched with desirale
channels. The coordinator accepts or rejects the proposalsased
on the channel preferences which depend on interference fro the
secondary user. The coordination algorithm is of low compleity
and can adapt to network dynamics. In the competitive market
model, channels are associated with prices and secondaryars
are endowed with monetary budget. Each secondary user, base
on his utility function and current channel prices, demandsa set
of channels. A Walrasian equilibrium maximizes the sum utiity
and equates the channel demand to their supply. We prove the
existence of Walrasian equilibrium and propose a cooperatie
mechanism to reach it. The performance and complexity of the
proposed solutions are illustrated by numerical simulatims.

Index Terms—cognitive radio; spectrum sensing; resource
allocation; distributed algorithms; stable matching; Walrasian
equilibrium; English auction; combinatorial auctions

I. INTRODUCTION

In cognitive radio settings, secondary users (SUs) are-ca

ble of adapting their transmissions intelligently [1]. ©hgh
the detection of spectrum holes, the SUs can use the uno

pied channels licensed to the primary users for commuwicati

This mechanism is called opportunistic spectrum acdess
and corresponds to the interweave paradigm described in

Generally, there exists a tradeoff between the optimimnati
of the secondary systems’ performance and the primary SYSs
tems’ performance [4]. Our objective is to find an assignme
of the primary channels to the SUs taking into account bof
secondary and primary user performances. For a survey
channel assignment mechanisms in cognitive radio networks

please refer to[]5]. Since a cognitive radio network is
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distributed way. We study such mechanisms using matching
markets and competitive markets with indivisible goods.

Although the applications and solutions of the two market
models are conceptually different, there exist similasitbe-
tween the two market models| [6]. First, both solutions of the
market models lead to an assignment, which is in our case, an
orthogonal assignment of the channels to the SUs. Moreover,
both models assume autonomous and rational agents who are
able to decide locally between different alternatives. sehe
properties are favorable for distributed operation of thésS
Nevertheless, both models, rely on communication based on
binary decisions reflecting a proposal in stable matching or
a demand in competitive markets. Hence, the application of
the two models has practical implementation in cognitive
radio networks in which coordination can be achieved with
low communication overhead. In addition to their distrémulit
and low communication overhead properties, optimalityhef t
solutions of both frameworks within specified performance
regions make the application of these models attractive for
resource allocation in communication networks. We relate t
some of these works, after discussing the differences legtwe
the two frameworks.

The differences between the two models are as follows:

IEfj'Ompetitive markets use prices as means to coordinate the

demands (decisions) of the consumers to buy goods and are
ub'aated by an auction mechanism to reach a solution. In
ble matching, on the other hand, no prices are involved

jTt the two sets of agents, i.e. SUs and channels, exchange

oposals based on preference relations of each agennwithi
e two sets. Through sequences of acceptances and reggctio
stable matching is reached. In the competitive market inode
Flly the consumers’ preferences (utility functions) aredes.

Section[Il, we further discuss the differences of the two
Blutions for our cognitive radio scenario.

A. Application of Matching and Competitive Market Models

In two-sided matching markets][7], two sets of agents are
to be matched, corresponding to the SUs and the primary
channels. Each agent in one set has preferences over this agen
in the other set. A matching of the agents in the two sets is
stable when no pairs of agents prefer each other compared to
their current matching.

Matching market models for resource allocation in wireless
networks have been recently applied in several works. lIn [8]
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the framework of two-sided stable matching is applied fd8. Contributions and Outline
resource allocation in wireless networks and its meriteaéad In this work, we consider a set of transmitter-receiver air
regarding distributed implementation and efficiency. ®abss sys and each user seeks the assignment of a set of
matching for channel assignment in cognitive radio setingrimary channels. Our objective, formulated in Section I
has been applied in [9]=[12]. 1a][9] and [10], one-to-oné&a js (o optimize both the secondary and primary users’ perfor-
matching is considered where the utility of the secondaty ap,ance through coordinated and cooperative distributed-cha
primary users are chosen to be identical due to the facthieat f,¢| assignment. We assume that each primary channel can be
SUs cannot obtain the performance measures of the prim%@éigned to one SU while an SU can be assigned to multiple
users. In this case, the stable matching of SUs to the primaiyannels. However, an SU is restricted to use a maximum
channels is proven to be unique. In addition, in|[10] stablg,mpber of channels calleguotawhich improves the fairness
matching is successfully implemented through opportimist, the channel assignment.
CSMA techniques. Reference [11] applies the modeLin [10] \we propose a coordinated channel assignment (Séction IV )
to interweave cogmtlve radio settlngs with identicalittifor \\hich exploits many-to-one stable matching. Here, we agsum
secondary and primary users. While in[10]. [11], the Wfilityha; 5 coordinator exists which can communicate with the. SUs
of both types of agents are the same, [in! [12] the utility Qfje characterise in worst case the number of bits each SU has
the primary users depend on the interference leakage frgfeychange with the coordinator in order to reach a stable
SUs and the utility of the SUs are their achievable ratesen thyaiching. In addition, we provide conditions under which th
primary channels. In this context, many-to-one stable Mg gaphje matching is unique and primary user optimal. Our rode
is applied. differs from the models used in [10], [11], by the following
Stable matching for channel assignment in a single radiwo aspects: multiple channels are assigned per SU, and the
cell is applied in [[18] where two-sided matching takes intatility functions of the primary channels are differentrirdhe
account the utilities of the users in the uplink and the dawknl utility functions of the SU. One main difference {0 [12] isrou
transmissions. In[]14], the stable matching framework @&pplication of stable matching in interweave cognitiveioad
applied for cross-layer scheduling in the downlink of a #ng For cooperative channel assignment, we study a competitive
cell where the utility of a user is his sum rate and the utilitynarket model with indivisible good$ [25] in Sectiéd V. The
of the resources includes the user queue state of the buftgility function of an SU is the weighted sum of his achieabl
In the context of physical layer security, stable matchifig sate and the utility of the primary users whose channels
transmitter-receiver pairs to friendly jammer is proposed he is assigned to. We prove the existence of a Walrasian
[15]. In [16], uplink user association in small cell netwsrk equilibrium which maximizes the weighted sum-performance
is considered using many-to-one stable matching as well agfsthe secondary and primary systems. To reach the Walrasian
coalitional games. The user utilities are based on quality equilibrium through a cooperative mechanism, we exploit an
service (QoS) and coverage aspects. English auction algorithm froni_[26]. The cooperative mecha

In competitive markets [17], also referred to as one-sid&is™ requires the exchange ofbit information between the
matching markets [18], there exists a set of agents whictt wati’S: [N comparison to auction algorithm studiedlin/ [24], our
to buy quantities of goods. The prices of the goods regme{{gachams_,m is _able to assign mqupIe channels_ to each user.
the quantities bought by the consumers and are adaptedlUmerical simulations are provided in Sectionl VI before
depending on the demand and supply of the goods. TY{§ draw the conclusions in Sectipn VIl.

Walrasian equilibrium is a state in which the demand equals’Notations: Vectors are written in boldface letters. Sets are
the goods’ supply. In order to reach a Walrasian equilibriuﬁ’f’”tten, in calligraphic font.|S| is the cardinality of the ;et
a price adjustment process is required. This process iedelaS: €| 1S the absolu}e value of € C. The Q-function is
to auction mechanisms and its advantage is the distribu@en a8sQ(x) = &= [~ exp(—u?/2)du. The inverse of
implementation aspect and the limited amount of informatighe Q-function isQ~"(z). = ~ CN(0,a) is a circularly-

exchange required between the users and the coordinator.Symmetric Gaussian complex random variable with zero mean

Competitive market models have found a few applicatior?ﬁnedS\grznﬁgznzggzi\;z ?ZZI pnrlcj)rt:]a;)tglrléy of an event. Ry is

for resource allocation problems in communication network
Please refer ta [19].[20] for a discussion on these apjidinat
Also, for a recent survey on auction mechanisms for resource
allocation in wireless networks, see [21]. In cognitiveicad Consider a sefC = {1,..., K} of secondary transmitters-
settings, auctions have been applied for distributed oflanneceiver pairs and a set of orthogonal chandets {1,..., L}
assignment in[[22]£[24]. In[[22], repeated auctions in thiécensed to primary users. Each secondary user (SU) wants to
uplink of a secondary cell are proposed for the allocation ake a set of channels for communication. The system model
the primary channel resources to the SUs. Distributed ansti is illustrated in Fig[L.

are studied in[[23] for energy efficient channel assignmentWe assume that the distributed assignment of the channels
in cognitive radios. Moreover, in_[24], a distributed aocti to the SU can be done either using a coordinator or through
mechanism is proposed to find optimal one-to-one chanmitect communication between the SUs. In the stable magchin
assignment to the SUs where CSMA mechanisms are utilizesbdel studied in Section 1V, we assume the existence of a
to implement the solution. coordinator which is connected to the SUs through low-rate

Il. SYSTEM MODEL
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© plll - © The first term in the summation above is the average achiev-
secondary transmittelr € K secondary receivek € K able rate when the PU is idle (also called opportunistic rate
[27]) and the second term corresponds to the achievable rate
Fig. 1: lllustration of the system model. on transmission simultaneously with the PU.

If an SU k is assigned the sd8 C L of channels, his
average sum-rate is then

links. In Section[V, we do not assume the existence of a su-su su

) B) = l 5
coordinator, but require that the SUs can directly commaieic ui " B) ZZGB wi (D), ®)
with each other. wherew3¥(1) is defined in[(#) and:5¥(0) = 0. In this work,

we introduce the following channel assignment constrdihe
maximum number of channels an StJcan be assigned to
A. Secondary System Performance is restricted to a maximum aof;, € N, called quota, and is

) ) assumed to be fixed for each SU.
An SU is allowed to access a set of channels if these are

detected to be idle. We assume a primary user (PU) operates in_ .

a time-slotted fashion and starts transmission at the bagin B. Primary System Performance

and for the duration of a time-slot. Each SU at the beginning If channell is assigned to S&, then the performance of PU
of the time slot is assumed to make a numbeéf sensing [ decreases in botprobability of misdetectiorfl — d%l) and
observations in each channelThe sensing problem of SUinterferenceDk|l7L£€”|2, whereﬁ%] is the channel from secondary
k is the decision between two hypothesis on whether/R4J transmitterk to primary receivel. Accordingly, we formulate
active (H ,[fy]l) or not (H,[f_]o). The two hyposesis correspond tothe utility function of a PUl as:

(k) = du(1 — i) PilRy ), (6)
HY 2ty = we(t), t=1,...,N, (1) ere )’ e £ k /’“ . .

M . _ 0 _ where ¢;(z,y) < ¢i(x’,y’) Tor x > = andy > y'. no
Hyy o aik(t) = VP2 si(t) +wi(t), t=1,....N, (2) gy s active in channdl, the interference-free utility of PW
is ul"(0) = ¢;(1,0). We additionally defineself-matchingof

wheres;(n) ~ CN (0, 1) is the transmitted signal of PUP, is . annell as

the average primary transmission powef,(n) ~ CN(0, 0?)
is additive white Gaussian noise, ang ~ CA(0,1) is up'(l) = uf' < uf'(0), leL, (7)
the quasi-static block flat-fading channel from RUo SU

 assumed constant during the time-slot where the valu@f” reflects a threshold for a QoS requirement

] ] 0 0] 0 0 of PU [. This QoS requirement will be incorporated later in
Let fi" = Pr(H,, | Hyo) andd,’ = Pr(H, | H.,) be the stable matching framework in Section IV.

thefalse alarmanddetection probabilityof the detector at SU  gjnce the utility of a PU is largest without interferencenfro

k, respectively. The access probability of $Un channel is  gys, the region

given astl) = (1 — 9l (1 — £y + 911 (1 — a1, wherey!t . . o

is PU [ transmission probability. R ={(r1,...,re) € RY | <uy (D), 1€ L}, (8)
After spectrum sensing, an SU can be assigned a chan@§itains all jointly achievable performances for the PUs. A

I if he detects that PU is idle. The signal from secondarysypset ofRPY, specified as

transmitterk received at secondary receivieon channel is

RPY = {(uP(ar), ..., uM(ar)) € RP | ay € KU {1},

1] ~[1] ; N A
y,[f] _ hﬁ]\/Pksk + gV Pisi +wg, PUI |s.act|ve, a #0, Z 1<qgu.kek,leLl), (9
hy, v/ Pis + wi, otherwise, ay—k
3) l'eL

where s, ~ CN(0,1) is the transmitted signalP; is the does not contain the performance tuples in which a PU

transmission power assumed to be the same in all chamn%éls,operates alone, i.eq; # 0 for all I, but only the performance

is the channel from secondary transmitteto its receiver, and tuples of the PUs when SUs are assigned to them or when the

wy ~ CN(0,0°) is additive white Gaussian noise. We assumeUs are self-matched as specified[ih (7). Also, the region in

that P, is fixed and equal for all SUs and define the signal-tq@) takes into account the quota restrictions on the SUsrlat

noise ratio (SNR), used in the simulations, as SNRP; /o®.  we utilize the definition ofRP" to relate to existing efficiency
The averagachievable raten bits/s/Hz of SUk in channel results for stable matching.



[1l. PROBLEM DESCRIPTION from primary receiverl to secondary transmittét and can

Our objective is to find an assignment of primary channgf¢ made available at the NSH during channel estimation to
to the SUs through distributed mechanisms. Defineaggign- calculate the interferencg|h;’'|?. Having this information,

ment variable we assume that each StUforwardsw}"(k) for all [ € £ to
. . ] the coordinator in an initialization phase.

(B, k) = { (1)’ ftkirf/vilzeasggned to Sk € K, (10) If the coordinator also knows the utilities of the SW§;(7)

’ ' for all £k € K andl € £, then the Hungarian methdan be

In addition, define the following set of assignment constsai applied at the coordinator to find an assignment which sadisfi
(CI)— (CB). The advantage of stable matching, however, is its

x(B,k) €{0,1}, VBC L,k €K, (C1) flexibility to adapt to network dynamics and also to compiexi
Z Z z(B,k) <1, Vle L (C2) requirements. We discuss these issues in Setfion IV-B.
B3l £~kek = ’
<
ZBCL z(B.k) <1, VEEK, (€3) B. Cooperative Mechanism

|Blz(B, k) < qr, VBC L keK, (C4) The cooperative mechanism relies on direct communication
uf’”(k):c(B,k) zyf”x(B,k), Vie B,VBC L, ke K. (C5) between the SUs and does not require the existence of a
. . coordinator as in the coordination mechanism. We consiaer t
Constraint(CP) ensures that only one SU is aIIocaf[ed pe’r—c-h% imization of both the secondary and primary performance
”?'E] and constraint{d3) ensures that each S_U IS assoc'aﬁéasures which is a multi-objective optimization problem.
with one subset of. The user quota constraint is L{C4) an(bne method for solving multi-objective optimization preivis
constral_nt[(gﬁ) specnﬁe; a QoS threshold fqr each PU. is by optimizing the weighted sum of the objectives|[31] whic
We will utilize the definition of the constraints (C1)(CS) .,y pe formulated for user utilizing resource seB as:
to describe the coordination and cooperation mechanisms we

propose in this work. W (B, k) = Aug*""B) + (1 — ) ZIEB uf'(k),  (11)
with A € [0,1]. Here, X is a parameter which can be used
to increase the priority of one objective to the otherAlfs

Our first objective is to propose a low complexity coordielose to one, the secondary system performance is given more
nation algorithm which matches the SUs to the PU channéfsportance in the optimization above than the primary user
exploiting the existence of a coordinator. The SUs and Rpérformance, while if\ is close to zero, the primary system
channels form two agent sets and each agent has a prefergygzéormance is prioritized. The value afmust be defined in
over each agent in the other set. These preferences arelaca@gard of the network specifications.
ing to the utility functions defined in SectignIllA and Secti  The integer optimization problem we are interested to solve
[I=B] respectively. For this purpose, we use many-to-omblst is stated as follows:
matching (Sectio as an assignment of the channels to the
SUs. 9( ) g maximize Zke/C ser W(B,k)z(B,k) st [C1)>(C3)

Generally, distributed implementation of stable matching (12)
requires communication between one agent set and the othB¢ solution of [(IR) is a Walrasian equilibrium of an asso-
in order to exchange proposa's_ In this Work, we assurﬁ@ted Competitive market with indivisible gOOdS studied |
that the coordinator receives proposals from the SUs afgctiorlVY. The Walrasian equilibrium can be reached through
accepts or rejects them on behalf of the PU channels. In or@eglistributed English auction which we exploit to provide
to implement the coordinated stable matching algorithre, tf@ decentralized and optimal cooperative channel assignmen
information which should be available at SUis «$Y(1) in Mechanism.
@) for all [ € £ and his quotag,, while the coordinator In order to implement the cooperative mechanism to solve
needs the information off(k) in (@) for all I € £ and all (@2), each SW must knowW ({i}, ) for all l € L, i.e., SU
k € K. The informationu? (k) = ¢;(1 — d/%],Pk“ng]P) atsu k must knowu}(k) in (@) for all l € L, his utility fgnctlon
k requires the knowledge of the probability of misdetectiot (1) In @) for all I € £, the weight), and also his quota
1- dg], which is known at the SU, and the interference &t Moreover, all S,US must have knowled_ge ,Of a common
the primary receivet. Assuming time division duplex (TDD) Parameter > 0 which will be used as a price incrementing
systems, the channel gdiia%] |2 from secondary transmittér factor.
to primary receiverl is almost identical to the channel gain

A. Coordination Mechanism

IV. MANY-TO-ONE STABLE MATCHING

1we impose the orthogonality constraint on the channel asségt because We propose assigning SUs to the channels associated with
the frameworks we exploit from stable matching and comipetitnarkets do

not takeexternalities[28] into account which would exist in nonorthogonal the PUs by a framework for which stability serves as solution
assignments. In our context, externalities are the inpndéencies of the

allocation of channels to some users on a given channelressigt to a 2The Hungarian method [30] is an algorithm that solves thed@mnental
specific user. Settings with externalities are generallgimmore complex to one-to-one assignment problem in combinatorial optinomatThe many-to-
analyze, especially regarding the stability of distrillit@source allocation one channel assignment with quotas [[n](12) is a form of thecigdimed
algorithms. Recent application of stable matching withemxdlities for user assignment problem for which the Hungarian method can béeapphen
association in small cell networks can be found[in| [29]. qr-many virtual SUs with a quota of one are introduced for eadhkSe K.



concept instead of optimality. In cognitive radios, whet¢ S Definition 3: The matching M is blocked by the pair
access on channels is opportunistic and complex regulatidnl) € K x £ if (i) u}"(k) > «"(M (1)) and (i) |M (k)| < qx
entities are commonly absent, a stable distributed asgghmand«;'(1) > 0 or u3¥(l) > u3*(l’) for somel’ € M (k).
process is favored. The applied framework involves a twéccordingly, a matching is blocked bgk, ) if these prefer
sided matching market where a coordinator is acting on behahch other to their current matching.
of the PU side to support the decision-making. We assumeDefinition 4: A matching M is stableif it is individually
that one primary channélc £ is matched to one S& ¢ K rational and not blocked by any pdik,!) € K x L.
while the latter can be assigned to upgioprimary channels, There may exist several stable matchings. Let all stable
where g, € N is the maximummatching quotasee Section matchings lead respectively to the SU and PU performance
M This resource allocation is named college admissior] [32egionsRS,, and RY), C RPY, whereRP" is in (9). Next,
or hospitals/residents problerh [33] in the stable matchirge provide an algorithm which reaches a stable matching and
literature. reveal its performance in these regions.

A stable matching is produced by a distributed process
that matches together preference relations of the primarf Distributed Implementation of Stable Matching
and the secondaries over the other agents each. The ordeXlgorithm [ implements a distributed coordination mecha-
of preferences is given by the strictly ranked rate utsitienism proposed in[34] to deliver a stable matching. Here, the
in @) and [6). In some cases, matching one agent wigUs start proposing to be matched with their preferred PU
himself (denoted as being unmatched) might be preferred telgannels (Line 2) and a low-complex coordinator responds on
matching with other agents in the stable matching framewottehalf of the PUs (starting Line 3). The information needed
Therefore, we define the matching of SUc K to himself at the SUs and the coordinator prior to the execution of
asup'(k) = uf'(0) = 0 which means that the device doeslgorithm[1 is stated in Section IIIHA. In the given protogol
not transmit on any primary channel. On the other hang8U k proposes to be matched to a chanheby sending
matching a PU with himself should intuitively lead to thea messagel, to the coordinator ifk has not reached its
utility «}"(0) = ¢;(1,0) as in Sectior II-B, since the PU quota and prefers this channel it is not already matched with
occupies its channélalone and no SU transmits inHowever, (condition in Line 1). The messag&; can be of[log,(1)]
we specify the utility of a self-matched primary channel to bits which is the length of the base-2 equivalentiofThe
valueu}", see[(), reflecting a threshold for a QoS requiremesdordinator reacts to the proposal by sending a one bit gessa
of the PU. In doing so, a PU prefers being matched to a Sblan SUk to indicate acceptance or rejection. The coordinator
if its own utility remains higher than the threshold and pref accepts Sk on a channel (Line 7 and 8) only if the QoS
self-matching if matching with a SU does not guarantee Qofquirement of the PU is fulfilled (Line 4). Otherwise, the
The coordinator is in charge of monitoring the QoS issues opordinator rejects SW (Lines 5 and 6). Also, in order to

the PU in the stable matching framework. reduce the total number of iterations of the algorithm, the
) coordinator triggers messages to exclude selected SUs from
A. Stable Matching Model proposing to certain channels (Lines 9 and 10). Includirey th

The stable matching problem is described by the tuple [Bjection information in Line 6, these messages ard. difits
(L, K, (b Y e, {usY ke, {qr }rex), Where £ is the set of and indicate for each SU which channels he need not propose
primary channelsK is the set of SUsu!" and u{" are the to.
utility functions of the PUs and SUs given il (6) and (5). The In Algorithm [, each SU proposes at moshce to be

guotasg;, are associated with the SUs. matched with a specific resource. Thus, the worst case total
Definition 1: A matchingM is from the setCU L into the number of proposals by an SU to the coordinatoF is
set of unordered family of elements &fU £ such thal Proposition 1: The worst case number of bits that is ex-
1) |M(l)| = 1 for every PUl € £ whereM(l) = [ if changed between one SU and the coordinator during Algo-
M(l) ¢ K, rithm [ is L2 + L + 3.1, [log, (1)].
2) 1 <|M(k)| < ¢ for every SUEk € K whereM (k) =k Proof: The term) ", , [log,(1)] is the total number of bits
if M(k)¢ L, needed to indicate the channel indexes inkhgroposals from
3) M(l) =k ifand only ifl € M (k). the SU.L bits are needed in total to indicate the acceptance or

In Definition[d, M (1) denotes the matched SU of RWr self- rejection from the coordinator to thie proposals from the SU.
matching andV/ (k) denotes the subset of PUs matched to SThe termL? is due toL bit messages sent from the coordinator
k or self-matching, respectively. to the SUs in Lines 9 and 10 of Algorithin 1. ]
Definition 2: The matchingM is individually rational if = The actual number of proposals by a single SU depends on his
there exists no PU € £ for which «{"(l) > «{"(M (1)) and quota and also on the matching of the channels to the other
no SUk € K for which w3*(k) > u3“(y), j € M(k) [7]. SUs. If the quota of an SUs is small, then a few proposals
Individually rational matching ensures that no user, prit@a can be sufficient to reach the matching quota limit and stop
secondary, would prefer being matched to himself than withe SU from further proposals. Also, when several SUs are
the current matching. already accepted on some channels, the number of channels
- . . _ which an SU can propose to may decrease due to Lines 9
Definition 1 is adopted fromi_[7] despite the fact that our femvork does . . . . .
not fill an under-subscribed matching set with multiple espbf the self- and 10 in Algorlthnﬂl. In Section VI, we prowde extensive
matched agent. simulations on the average number of proposals from an SU.



Algorithm 1 Distributed SU-proposing stable matching.  previous section, we now do not assume the existence of a
1: while some SUE € K is under-subscribed X/ (k)| < ¢« coordinator. However, we require that the SUs are able to

or M(k) = k) and maxe £ ¢ ar (k) ug (1) > ui'(k) do communicate with each other in order to find an assignment

2: Proposal by SW:  send out index [* = of the channels which solves Problem](12). The mechanism

argmax;e . 1¢ 1 (k) Uy (1) Of most preferred PU exploits the market model studied next.

3: Coordinator Response:

. i i T a,Pu pu

& i QoS is fnsured' Lay. (k) > . Ehen A. Competitive Market Model

5: if PU[* is engaged to any SW* # k then N D _

6 inform &* on releasing engagement with, A competitive market with indivisible goods [25] is com-
giving M (k*) = {k*} if it was |[M(k*)| = 1 Posed of a set of consumers and a set of goods. The consumers
and M (k*) = M(k*) \ {I*} otherwise in our setting are the SUs i and the goods corres%ond to the

. primary channels inC. Here, we define thenit-lesg utility

7: accept engagement temporarily; 3¢11*) = {k} . . o - .

) i »function of consumek using the utility function in[(I11) with

& inform SU & on approving the engagement, 9VING, , additional restriction on his quota as follows

M(k) = {l*} if kK was unmatchedM/ (k) = {k})

and M (k) = M (k) U {I*} otherwise Uk(A) = maximize " "B) + (1= A) Y (k)
o  forall i € K such that'(i) < max{ul’(k),u'} do T 5| <
10: eliminate preference on(u}.'(i) = 0) and disqual- o = k-

(13)

The function above is called thg.-satiation of the weighted
sum-perfromance [25, Section 2].
Each good! has a pricep; > 0 which is in monetary

ify SU ¢ from proposing ta* (u$(*) = 0)

Observe in the implementation of stable matching that ite and that hSUi d d with sufficient
if new secondary users arrive to the network and propogg' sand we assume that eac IS endowed with suflicien

to the coordinator to be matched to a set of channels, t ount of monetgry budget_vyhich enablgs him to buy bundies
coordinator can use Algorithfd 1 with the initialization dfet of goods. The unit-lesaet utility of SU & is
current stable matching. In contrast, the application @& th ve(B, p) = Uy(B) _Z L. (14)
Hungarian method necessitates the network wide optinoizati leb
problem to be solved again. Nevertheless, the stable rmatchGiven the prices of the goods (primary channejs) =
algorithm can be terminated at any time instance associatedp:, - ..,pr), the demand correspondenad SU & is the set
a desirable complexity level to retrieve an orthogonal iiatg  of goods which maximizes his net utility:
of resources to the SUs. Such properties of the algorithmemak
it adaptable to changes in the network and also to specifiede(p) ={ACL]uw(Ap)zw(B,p) VBC L}  (15)
complexity or implementation requirements. Later in Algorithm2 in Sectiofi VB, we specify a method to
Initializing Algorithm [1 with unmatched SUs and channelsfficiently calculate the demand for each SU. The outcome of a
asM(l) = {I} V1, M (k) = {k} V k, the terminating state is an competitive market is a Walrasian equilibrium which spesifi
SU-optimal stable matching which is weak Pareto optinial the prices of the channels at which each SU buys the channels
the setR%), according to[[7, Corollary 5.9] but is the worsthe demands and no channel is bought by more than one SU.
stable matching for the PUsI[7, Corollary 5.30]. Next, we Definition 5: [25, Section 2] AWalrasian equilibriumis a
provide conditions under which our stable matching is ueiquuple (p, Xy, X1, . .., Xx), wherep ¢ Ri is a price vector,
and also sum-performance optimal for the PUs. and (Xp, ..., Xx) is a partition ofZ, i.e., Xy N X; = () for
Theorem 1:For g, > L for all k, the stable matching is || 1, -« j, and U?;o X, = £, such that (i) for eaclk € K,
uniqueand leads to the maximum sum performance point if) (X, p) > v, (A, p) for all A C £, and (ii) the price of any
RPY defined in [(9). object in X, is zero.
Proof: The proof is provided in AppendixIA. B A Walrasian equilibriumexists if and only if the utility
The result above generalizes the uniqueness result of®@neftinction U, in (I3) satisfies[[25]:
one matching in([9, Proposition 111.1] to the case of many-to 1) monotonicity for all A © B ¢ £, Uy (A) < Uy (B),

one matching. 2) gross substitutes conditiofor any two price vectorg’
and p such thatp’ > p (the inequality is componen-
V. WALRASIAN EQUILIBRIUM twise), and anyA € Dy (p), there existsB € Dy (p’)

In the previous section, we studied two-sided matching  such that{i € A | p; = p;} C B.
where the SUs on one side are matched to primary channElge gross substitute condition implies that if an SU demands
on the other. In this section, we study a market model wheset of channels, and prices of some channels increase, the SU
only one entity is represented (SUs) but its utility is thevould still demand the channels whose prices did not change.
weighted combination of the utilities of the secondary and
primary users given in({11) in Sectidn]lll. Contrary to the Theorem 2:A Walrasian equilibrium exists in our setting.

4The set of all weak Pareto optimal points in a performanciore® are 5The utility function can be made unit-less by dividing thente with their
defined as[[35, p. 14W(R) = {x € R | there is noy € R with y > x}.  associated unit of measure.



Algorithm 2 Calculate demandi;, of SU k. Algorithm 3 Calculate excess demarstl

1: Input: pricesp = (p1,...,pr); quotag 1: Input: demandA,, ..., Ax
2: Init: I = {my,..., 7} with m, = v ({I},p); A =0 2 Init: Z=10
3: sortII in descending order to obtaifsoed 3:forl=1,...,L do
4: setA; as the firsy, elements inIs°"dwhich are strictly ~ 4: forall k,j=1,...,K and j # k do

larger than zero. 5: if 1 e A,N A, then

6: Z=ZU{l}

Proof: The proof is provided in Appendix]B. ]

There is a direct relation between the solution BfI (12)  pryof: The proof is provided in AppendiXID. -

and the Walrasian equilibrium of the associated competitiv 1o complexity of calculating the demand of SUin

market model with indivisible goods [36]. Treistenceof a  ajqqrithm [ requires a sorting algorithm such as Quick Sort
Walrasian equilibrium ensures that the solution of (12§&nk- which requires on average(Dlog L) comparisons.

tical to the solution of its linear programming relaxati@€[ | ater, in the distributed implementation of the Walrasian

Theorem 1.13] in Whic,h the integer constranf{C1) is repéac equilibrium in Sectiol V=C, it is required that each SU repor

by the convex_constra!rmt(B, k) 2 O’_VB < 5’_]“ € ’C'_ ) his demand set to the other SUs. If an SU knows all other SUs’
_Next, we will describe _the English auction which is th%lemands, he can calculate the excess demand set which is

price adjustment mechanism needed to reach the Walrasigl,osed of the channels simultaneously demanded by more

equilibrium. than one SU. First, we need the following definitions before

defining the excess demand set.

B. English Auction The requirement functiorof consumerk is defined as

In the English auction[[26, Section 5], if a channel is
simultaneously demanded by more than one SU then its price Ki(B,p) := mingcp, (p) AN B, (16)
is increased. The auction terminates when each channel is

demanded by at most one SU. This auction mechanismairs‘d reveals the smallest number of elements in common

within the combinatorial auctions frameworks classified iRetweerB and the demanded channels by Bétt given prices

[21] and has been rarely applied in the context of wirele§’s>': ror(nc é?r?’c;rnheenc;rersneZ%’ewear;'?vj&;r(s’ P ) ng{rkl(&g) flc;r
communication due to their complexity. In the following, wé? =4 P WIS€ inequaiity ~ & < \B.
: ; : L his means thaf(; (B, p) decreases when the prices of the
show that the steps required during the English auction m oub. - )
- objects insideB increase.
model can be calculated efficiently. Si the d df Algorithi 2 is th llest subset of
In order to perform the English auction, we first need to Ince the démand Irom /Algonthim £ 1S the smallest subset o

efficiently calculate the consumer demandnl (15). Aftedgar all demand sets following Theorelnh 3, we have the following

we need to calculate the set of channels which are simultaﬁ%§un:

ously demanded by more than one SU. This set is called theCoroIIary 1: The requirement function_ can be calculated as
(B.p) = |Ax(p) N B|, where Ai(p) is the demand set

aggregate excess demand. These issues are addressed irﬁf : -
sgr%egorder next calﬁculated using Algorithria 2.

The consumer demand iA{15) seems at first sight hard toDefine_the_function which counts the number of times each

solve since a search over alf subsets of is needed. Note channel in5 is demanded as
i . . K

Fhat in [26] no method is provided to calculate the demanq, bu Ki(B,p) == Z  Ki(B,p). 17)
is only assumed that the demand can be calculated efficiently k=1
This assumption is known under tlexistence of a demandFrom [26, Corollary of Theorem 3], a necessary condition tha
oracle. We show that the consumer demand in our case cany channel in seB is not demanded by more than one SU
be solved in polynomial time with the number of channelst the same time i& (B, p) — |B| < 0. Hence, in Walrasian
using a greedy approach. First, we need the following resudiquilibrium with pricespx, it must hold K (B, px) — |B| < 0

Lemma 1:If p, > 0 for all | € L, then A, € Dr(p) forall BC L. Define
satisfies|Ax| < g for all k € K.

Proof: The proof is provided in Appendix]C. ] O(p) :={AC L| Kx(A,p) — |A| > Kx(B,p) — |B|,

From LemmadL, if the prices of each good are strictly larger forall BC £}, (18)
than zero, then a user demands at most as many resources as N
his quota. In order to calculate the demand of an SU, we ugBich collects the set of channets ¢ O(p) that maximize
the following assumption to ensure that the bgsthannels Kix(B,p) — |B|. Theexcess demand sét(p) is the smallest
of a userk are unique. element ofO(p) and can be calculated using Algoritiitn 3 by

Assumption 1:For any price vectorp > 0, and for all checking whether each channel is simultaneously demanded
consumersk, the net utilities satisfyy, ({I},p) # vx({I'},p) by more than one SU. Algorithd 3 requires in worst cégé
for any two goodd,!’ € L. calculations.

Theorem 3:For given pricegp > 0, Algorithm[2 finds the =~ Theorem 4:For given pricesp, Algorithm [3 finds the
consumer demand set which is the smallest subset of all sextsess demand sé&t(p).
in Dy (p) defined in [I5). Proof: The proof is provided in AppendxIE. [ ]
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Algorithm 4 Implementation of Walrasian Equilibrium by -
modified English Auction. % 13 % 13
1: Input: price incrementing factow > 0 ﬁ £
! ) - 12 - 12
22 Init:p; ' =6 l€L;t=0 g g
3: repeat gl ‘ gl
4: Each SUk calculatesA,(f) using Algorithm[2 and 3 10 - | S 10 .
broadcasts it to all SUs & | | ~ ’
5. Each SU calculateg€ (p®) using Algorithm[3 % 10 20 % 0 20
6: Each SU updates the prices as SU sum rate [bits/s/Hz] SU sum rate [bits/s/Hz]
a)qr, =1,Vke K b) g =2,Vk e K
P — p® 1 ag(p™) (19) 14( )a (b) q
1 iz () i~ X stable matching
with §; (p(t)) = { » 1€ (p ); < & random matching
0’ otherwise E @) maximum PU sum rate
7 t=t+1 % X Walrasian equilibrium
8: until Z(p(tfl)) =0 E maximum rate bound
g | quoted rate bound
& I
9 |
C. Distributed Implementation of Walrasian Equilibrium 0 10 20

SU sum rate [bit/s/Hz]
The English auction, proposed in [26] and proven to reach ©) qn=L,Vkek
a Walrasian equilibrium, can be implemented by an auctionee
(coordinator) which, upon collecting the demands from ke t F_ig. 2 Comparison of stable matching and Wal_rasian equilib
users, updates the prices and broadcasts them to the SUs. H§# in the PU and SU sum rate regions for different quotas
ever, since we do not assume the existence of a coordindtbP dB SNR.
in this section, we formulate a cooperative implementation
based on the SUs exchanging the channel demands between
themselves. Instead of updating the prices at the auctipnéd probability of detection of the energy detector are re-

. . A . 1 _ Ng2 l
each SU can updatg the prices Ioca!ly knovylng the demarquect,vew approximated bY;E] =Q W(I;WW > anddL] =
of all SUs. In Algorithm[#, we provide an implementation

of this mechanism. As in the stable matching coordination iR [ ~!"-~N(s2+P|2"?) el
Sectior{1V, the SUs need only communicate the indices of the\ | /2n o2 (o2+2p; 15[ 2) [37]. We fix f," = 0.05 and choose
channels they demand. Thus, giverchannels, each SU needsV = 20 sensing obseérvations. By calculating the threshold
to sendL bits of information to the other SUs to reveal hisyl[j], we can determine the detection probability. The probabil-
demand. Specifically, SW sends the. bit messagel, to the ity of primary transmission of all PUs is set ! = 0.75.
other SUs with[W,], = 1 if € A, and[¥,]; = 0 otherwise.  For simulations, we adopt the primary utility functign to
Given the demand sets from all SUs, each SU calculates #i¢the average achievable rate:
excess demand set and updates the prices by incrementing the o
prices of the channels in excess demand by a fagtddote I -1 . Pg
that only in case the demand set of an SU has changed it (1 - dy, Pelhy! ) = 9 d] g, (1 + |0.2 )
necessary that the SU broadcasts this update to the other SUs pgll 2

The choice of the price incrementing facteffor the prices +901 - d%]) log, <1 + Lﬂ]) , (20)
influences the speed of convergence of the algorithm. For o + Pylhy [?

sufficiently smalla, i.e., a — 0, Algorithm[4 converges to g3nq assume no specific QoS requirements of the PUSs.

the Walrasian equilibrium (Definitidd 5). For relativelydge o, In Fig. 2, we plot the average performance region of the
some channels may not be demanded by any SUs. The reagmary (y-axis) and secondary systems (x-axis), where the
for this is that for ac_hannel which h_as been demanded by MOfEmber of SUs isk = 10 and number of primary channels
than one SU, the price update of this channel does nottase it ;1 _ 9. All channels are independently and identically

account the SUs’ utilities such that a high price incren@nti g,y jeigh distributed and the simulations are averaged tver
factor can make the channel suddenly unattractive to all SYsnqdom instances.

Algorithm [4 is guaranteed to converge since prices of the, Fig.[2, the region inside the quoted rate bound includes

channels can only be incremented and the SU utilities %Rly the performance of the SUs and PUs in the channels

finite valued. in which the SUs are assigned to. This region is included in
the region marked as maximum rate bound which includes all
channel assignment possibilities to the SUs without queta r
strictions. The quoted rate bound includes the stable riragjch
We assume an energy detector is used at eachkSUand Walrasian equilibrium channel assignments. We gemerat
with a detection threshold/,[j]. The false alarm probability both boundaries using the Hungarian optimization meth6¢l [3

VI. NUMERICAL RESULTS
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Fig. 5: Average number of proposals from each SU to the

coordinator for different quotas and increasing SNR odngrr
Fig. 3: Average sum-rate of the PUs for increasing SNR awfiiring Algorithm[31.

quotasg, = 2 for all k.

signal—-to—noise ratio [dB]

50 7 and is sum-rate optimal in the quoted region.
_ stable matching . In comparison to stable matching for different quota val-
% 40F random matching P 1 ues in Fig.[2(a-c), random matching chosen to satisfy the
i — — — maximum SU sum raie e associated quota constraints does not show preference in
% 30 s - 1 performance to neither PUs nor SUs. In our random matching
© -7 scheme, we first introducg,-many virtual SUs with a quota
E 205 Pl 1 of one for each SW € K. Then, we apply random one-to-one
2 e matching achieving a number afin(L, ), . gx) matching
¢ 10t - 41 pairs.

e
=" ‘ : : .
-20 -10 0 10 20 30 A. Performance of Stable Matching

ignal-to-noise ratio [dB . .
signal-to=noise ratio [dB} In Fig. 3 and Fig.[[}4, the average sum rate of the PUs

Fig. 4: Average sum-rate of the SUs for increasing SNR arghd SUs are plotted respectively for increasing SNR and for
quotasg = 2 for all k. gr = 2, for all & € K. The number of SUs i = 10
and number of primary channels 5 = 20. All channels
are independently and identically Rayleigh distributed an

which finds the optimal channel assignment by maximizing tivee generate agaih0® random instances for averaging in the
weighted sum rate of SUs and PUs in a centralized way, semulations. In Fig[[B, it is shown that the performance loss
SectiorTIl. of the PUs is very low in stable matching compared to the

In Fig.[d(a), we plot the performance of stable matchingetting without the operation of SUs. Hence, the coexigenc
following Algorithm[d for g, = 1, for all k € K. The outcome with the SUs does not lead to much performance degradations
favours the SUs and is near the quoted boundary showittgthe PUs. In Fig[4, the average sum rate of the SUs is
that the sum performance of the SUs from stable matchingsBown to be always larger with Algorithfd 1 than with the
near optimal. Note, that in this setting not all channelslsan random matching scheme but does show a significant gap to
assigned to the SUs due to the quota restriction. In[Hig., 2(the maximum possible sum rate of the SUs. Note, that the
we setq, = 2, for all k € K. In this setting, the outcomes ofmaximum SU sum rate is obtained at the point where the PU
stable matching do not reach the boundary but are closerstom rate is lowest which is an unsatisfying operating pant f
it than the random matching scheme discussed further belawcognitive radio network, where primary user communicatio
Note, that our proposed quick terminating algorithm leaws ts prioritized. Hence, the SU sum rate reached by stable
the best stable matching for the SUs but there may exist otimeatching comes at an acceptable level. Since Algorithm 1
stable matchings. Nevertheless, our stable matching mecois SU-optimal, outcomes of other stable matching schemes
shows a fair trade-off in terms of giving an acceptable PU pewould perform worse for the SUs. At high SNR, the sum rate
formance. In Figl R(b), we also plot the Walrasian equilibri performance of the SUs grows linearly. Note that in this SNR
using Algorithm[4 with price incrementing facter = 0.005 regime the detection probability of each SU approaches zero
and weightA = 0.5. By choosingX = 0.5, we achieve in since the noise is much smaller compared to the primary kigna
Walrasian equilibrium the maximum sum performance of thgower. Accordingly, the achievable rate of an SU is not ladit
PUs and SUs in the quoted region. Note, that all points on thg the interference from a PU.
boundary of the quoted region can be obtained as Walrasiarin Fig. [3, the complexity of Algorithni]l is revealed by
equilibria for different values of\. In Fig.[2(c), the quotas counting the number of matching proposals per secondary use
are specified such that any SU can be assigned all primaner SNR in the simulation scenario described above. The
channels. Following Theorem 1, the stable matching is wiqaverage number of SU proposals increases for larger quotas
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number of SUs, and the quotas of the SUs are equal 0 yqrithm[2 and the distributed auction algorithm [n1[24] for
different values oty with L = K = 10 and g, = 1 for all k.
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during Algorithm[4 and the average number of bids from tr. _ signal-to—noise ratio [dB]
distributed auction algorithm in_[24] for different valueS«  Fig. 9: Comparison of average number of demands per user
with L = K =10 andg, = 1 for all k. SNR is 0 dB. required for the auction algorithms for different SNR value

with = 0.01 andL = K = 10 and g, = 1 for all &.

qr = q,forallk € K. Forg, = 1, forall k € K, where the SUs

require only one channel, the stable matching algorithrdgen,
to match each SU with its first preference of the channelsy O
few re-matchings occur. Hence, a very low average number
SU proposals (slightly above one) is needed for terminati
the protocol. Re-matchings occur when a user, engaged t

channel, is released due to a proposal from another usehwhjc — K = 10. We average the performance at SNR0 dB

gives the channel_ a higher utility. For Igrgg requirements, over10? channel realizations. In Fif] 7, it can be seen that the
frequent re-matchings lead to a much higher proposal numl&%r

in th ted stabl tchi lqorithm. G v k ction algorithm in[[24] requires on average larger nursber
In the presented stable matching aigorithm. enerally Newe ¢ ;¢ per SU compared to the number of demands per user in

it is shown that only a fgw number of proposals are requir(? English auction. However, according to Fily. 8, the Esig
to reach a stable matching. In FIg. 6, the average numbera(ﬁfction is shown to be more sensitive over the choice.ok

proposals during Algorithill1 is plotted for increasing nunb largera increases the convergence rate of the English auction,

of SUs. The number of PU channels is set to be doubftleads to high performance loss. The low sensitivity &f th

the numlbedr O.f SLtJhS Itt |sl;|showtn r;[_hat t?e ?‘t‘;]erage ””’T‘ﬂ*;eré’. tributed auction in[[24] to the price incrementing faci®
proposals duning the stable matching aigorthm INCreasks Wy, o 1 the fact that this auction method makes use of thegrice

Increasing quotas. of both the best and second best object a user would demand
to determine his bid. This cannot be exploited in the English
B. Performance of English Auction auction since the demand of a user isetof channels.

In Fig.[@ and Fig[ B, we compare the average number ofin Fig. [@ and Fig.[ 10, we plot the average number of
demands/bids and the performance loss from optimal chandemands and the SU sum rate for different SNR values. The
assignment by Hungarian method approaches, respectivelypsen price increment factor for the auction algorithms is
with respect to the price incrementing factar used in « = 0.01. It can be seen that the distributed auction requires
Algorithm [4 and also required in the distributed auctiomore average number of bids for larger SNR values than the
mechanism in[[24, Section IV]. Note that in |24, Section V]English auction requires number of demands. Both algosthm

n implementation of the distributed auction mechanism is
erided using opportunistic CSMA which needs no exchange
of information between the users. In order to compare the
rformance to the algorithm in_[24] which assigns a single
Hannel per user, we se = 1, for all £ € K and choose
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English auction stable matching is guaranteed, then we can do the following
N 25f o , 4  two-case study: 1) IfM (k)| < ¢, for all £ € K, then the
5 — — — Distributed auction = . . .
2 1. Centralized ontimal assianmeit — |  stable matching is unique Theoréin 5 holds for all users. 2) If
5 P 9 P |M (k)| = qi for some usek € K then |M(j)] = 0 for all
£ 15} , /\/‘/ | j # k. Following Theoreni b all userg # k are unmatched
= : in all other stable matchings. What is left is to consider
3 101 1 stable matchings in which the uskris assigned strictly less
3 5 channels than his quota. However, since a matchifigwith
|M’(k)| < qx is not individually rational for usek according
_020 10 o 0 0 0 © Definition[2, thenM’ is not a stable matching. Henc{

signal-to-noise ratio [dB] is unique.
Considering Algorithm[11, each S proposes to every

Fig. 10: Comparison of average SU sum rate for different SN 5 yne| since his quota, > L. The coordinator then accepts
values. The price incrementing facteris 0.01 andL = K = the proposal of an SU: in a channell if he gives the

10 andgj, = 1 for all k. highest performance for PU Accordingly, the unique stable
matching is sum performance optimal for the PUs within the

i , i performance regiorﬁpu defined in [(9).
achieve very close performance to the optimum as is shown

in Fig.[I0. The optimum is reached centralized by means of
the Hungarian method. Note that the performance loss of b%h

algorithms is due to the non-infinitesimal chosen value ef th Proof of Theorer]2

price incrementing factor. We have to show that the utility function ib_(13) satisfies
the monotonicity property and the gross substitutes ciamdit
VIl. CONCLUSION The monotonicity property is obviously satisfied because if

We considered the problem of assigning primary channé’@}gd'tlonaI channels are provided to an $Uthe utility U .
to SUs for communication in a cognitive radio. For thi n @.3) dpes not de:\cr.ease. In order to prove that th? utility
problem, we proposed two solution concepts, stable magchi nc:ulzn ':n (13) tshatlsﬁes the gross substitutes conditioe,
and Walrasian equilibrium, and provided coordination angust ISt prove tha
cooperation algorithms to reach them in a distributed manne | susu pu
Both concepts lead to different performances for the semgnd ok (B) = Mup"MB) + (1 - ) ZleB w(k), (21)

and primary users. We relate both solutions utilizing the

achievable sum performance regions. While stable matchi#@fisfies the gross substitute property. Afterwards, the op
relies on stability of the assigned secondary and prima®yation in [1B) on¢(B) is called theg-satiation of ¢

users, the Walrasian equilibrium maximizes the weighted si2Nd Preserves the gross substitutes property accordirZBto |
utilities. In contrast to the stable matching frameworkicgs S€ction 2]. The functiom,,(B) satisfies the gross substitutes
are required in the competitive market model in order to defi?"OPerty because it additively separablg2s, Section 2], i.e.,
the Walrasian equilibrium. ¢x(B) in (1) can be expressed a(B) = >_;c 5 o1 ({1})-

The complexity of SU-optimal stable matching algorithms
in terms of the average number of proposals is shown to
be very low by extensive simulation. The complexity of th&. Proof of Lemmall
English auction to reach a Walrasian equilibrium depends,-l-he proof is by contradiction. Givep, > 0 for all [ € £,

however, on the choice of the price incrementing parametgts ,me for some S a demand setd € Dy(p) satisfies
Future works may devise a mechanism which adapts the prigﬂ > gi. Then, according to his utility function ifi{L3), a set

incrementing parameter intelligently. of channelsR C A with |R| > | A| — g, give no additional
performance to SU since the maximization i (13) is over

APPENDIX at mostg, channels and we can writg (A) = Ui(A\ R).

A. Proof of Theorer]l The net utility of SU% in (14) satisfies

The proof is based on the result in_[38] (also given in
[7, Theorem 5.13]) which we restate here in relation to our k(A p) = Ur(A) = sz (22a)
cognitive radio setting. leA

Theorem 5 ([[38]): Let k be a secondary user with quota =Ur(A\R) —- Z L — Zl,eRPl’ (22b)
qx, and letM be a stable matching such thaf (k) N £| < gy. lEA\R
Then for any stable matchindy’, M’(k) = M (k). = u(A\ R, p) — Z Dy, (22¢)

Thus, if a stable matching does not strictly satisfy the guot
of a secondary user with equality, then this user is assigned
the same set of primary channels in any other stable matchiiignce, v, (A, p) < vi(A\ R, p) which contradicts tha# is
Sinceq, = L for all k € K, and the existence of at least on@ demand for SU.

I'eER



D. Proof of Theoreml3

The consumer utility function irL.(13) is proven in Theorem Kx(ZU{a},p) — |2 U{a}|

to satisfy the gross substitutes condition. We will use an
equivalent property to the gross substitutes conditiotedal
the single improvement property [25] in the proof.

Definition 6: The utility functionUy(A) satisfies theingle
improvement propertyf for any price vectorp and set of
channelsA # Di(p), i.e., A is not a demand set for SW,
there exists another sBtsuch thatwy (A, p) < vi(B,p) with
either|A\ B| <1,o0r|B\ Al <1

Let A, be the output of Algorithn{]2 and assuméy

12

according to Algorithm[13. Then we can write

(23a)

S N2 u{a) - 12U e (23b)

K

- Zk:l,k;&j AN 2|+ [A;NZ0{a}| - [Z2] -1 (23¢)
K

- Zk:l,k;ﬁj AN Z]+[A;NZ[+1-]2[ -1 (23d)

BNz -z
_ S ez -z,

In order to prove (ii), leth € Z be demanded by SUs and

(23e)

is not a demand set, i.ed; ¢ Di(p). Then in order to ¢ je pe A; andb € Ay. Then,

strictly improve vi(Ag, p) we can, according to the single
improvement property in Definitiol] 6, do either of three
possibilities:

0] adding an element tol, i.e., finda € £\ A s.t.
vg(Ag U {a},p) > v (Ag, p)

(i)  removing one element fromly, i.e., findb € £\ Ay,
s.tovg(Ag \ {b}, p) > vk (Ag, p)

(i)  or do both (i) and (ii).

Case (i): If|.Ax| = qx, then adding an elemente £\ A
requires removing another elemén& A following Lemma
[@. Since the elements id,, are the firsiy, best channels, then
removing one element to add the elemendoes not lead to
strict performance improvement having that the net waiti

in the resources are distinct according to Assumplibn 1. 'f'fnus ZcO

D).

| Akl < qx, then the net utility with channel € £\ Ay is o(
nonpositive, i.e.,ux(a,p,) < 0 because otherwise it would
be a member of4; from Algorithm [@. Hence, no strict

performance improvement can be made by adding an element

to Ay.
Case (ii): Sincev (b, py) > 0 for all b € Ay, then removing
one element from4;, leads to strict performance degradation.
Since both (i) and (ii) lead to no strict performance im-
provement, then (iii) cannot be satisfied. Accordingly, is a
demand set, i.e., belongs to the #&t(p). From (ii), the A
is the smallest demand setT(p) and is contained in other [4]
demand sets irDy(p). Specifically, another demand set can
be constructed fromi;, when|.Ax| < g, by adding a resource
le L\ Ay to A, which satisfies, ({1}, p) = 0.

(1]

(2]

(3]

(5]

E. Proof of Theorerhl4 [6]

Following Theoreni3, the demand is the smallest elemeril
in Di(p) in (@3). Then, for an S, the intersection of his
demand setd,, from Algorithm[2 with the aggregate excessig]
demandZ from Algorithm[3 is smallest compared to other
demand sets i (p). I

K
Kx(2,p)— 2] =) AN 2| —|Z2] (24a)
k=1
K
= > JANZ|[+]ANZ]+]A4NZ| |2 (24b)
K00
K
DO VI EAR GIEAFAREAR ()]
+ AN Z\{b}+2—|Z\{b}| -1 (24c)
=3 AN 2\ ()]~ |2\ {5} + 1 (240)
> Kx(2)\ {b).p) — |2\ {0} (24e)

(p) and from (ii), Z is the smallest element in
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