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Abstract

A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight

pointing errors and both types of detection techniques (i.e. intensity modulation/direct detection as well

as heterodyne detection) is addressed in this work. More specifically, an exact closed-form expression for

the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system is

presented in terms of well-known elementary functions. Capitalizing on these new moments expressions,

we present approximate and simple closed-form results for the ergodic capacity at high and low SNR

regimes. All the presented results are verified via computer-based Monte-Carlo simulations.
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I. INTRODUCTION

A. Background

In recent times, radio frequency (RF) spectrum scarcity has become one of the biggest and

prime concern in the arena of wireless communications. Due to this RF spectrum scarcity,

additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution

to fulfill the demand for higher data rates [1]. Of the many other popular solutions, free-space

optical (FSO) systems have gained an increasing interest due to their advantages including higher

bandwidth and higher capacity compared to the traditional RF communication systems.

FSO links are license-free and hence are cost-effective relative to the traditional RF links. FSO

is indeed a promising technology as it offers full-duplex Gigabit Ethernet throughput in certain

applications and environment offering a huge license-free spectrum, immunity to interference,

and high security [2]. These features of FSO communication systems potentially enable solving

the issues that the RF communication systems face due to the expensive and scarce spectrum (see

[3]–[5] and references therein). Additionally, FSO communications does offer bandwidth as the

world record stands at 1.2 Tbps or 1200 Gbps [6]. With the correct setup, much higher speeds

may be possible as the approach utilizes multiple wavelengths acting like separate channels.

Hence, in this concept, the signals are sent down a fiber and launched through the air (known as

fiber over the air) and then they travel through a lens before ending up back in fiber [6]. Besides

these nice characteristic features of FSO communication systems, they span over long distances

of 1Km or longer. However, the atmospheric turbulence may lead to a significant degradation in

the performance of the FSO communication systems [7].

Thermal expansion, dynamic wind loads, and weak earthquakes result in the building sway

phenomenon that causes vibration of the transmitter beam leading to a misalignment between

transmitter and receiver known as pointing error. These pointing errors may lead to significant

performance degradation and are a serious issue in urban areas, where the FSO equipments are

placed on high-rise buildings [8]. It is worthy to learn that intensity modulation/direct detection

(IM/DD) is the main mode of detection in FSO systems but coherent communications have also

been proposed as an alternative detection mode. Among these, heterodyne detection is a more

complicated detection method but has the ability to better overcome the turbulence effects (see

[9] and references cited therein).
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B. Motivation

Over the last couple of decades, a good amount of work has been done on studying the perfor-

mance of a single FSO link operating over weak turbulence channels modeled by lognormal (LN)

distribution (see [10]–[15] and references cited therein), operating over composite turbulence

channels (such as Rician-lognormal (RLN) (see [15]–[19] and references cited therein)), and

operating over generalized turbulence channels modeled by Málaga (M) distribution (see [20]–

[23] and references therein) and Gamma-Gamma (GG) distribution (as a special case to M
distribution) (see [2], [3], [5], [7], [24]–[30] and references therein) under heterodyne detection

as well as IM/DD techniques. However, as per authors’ best knowledge, there are no unified

exact expressions nor asymptotic expressions that capture the ergodic capacity performance of

both these detection techniques with nonzero boresight pointing errors under such turbulence

channels.

C. Contributions

The key contributions of this work are stated as follows.

• The integrals are setup for the ergodic capacity of the LN, the RLN, and the M (also GG

as a special case of M) turbulence models in composition with nonzero boresight pointing

errors. On analyzing these integrals, it is realized that most of these integrals are very

complex to solve and to the authors’ best knowledge, an exact closed-form solution to most

of these integrals is not achievable. Hence, it is required to look into alternative solutions

to analyze the ergodic capacity for such turbulence models.

• A unified approach for the calculation of the moments of a single FSO link is presented

in exact closed-form in terms of simple elementary functions for the LN, the RLN, and

the M (also GG as a special case of M) turbulence models. These unified moments are

then utilized, as an alternative solution, to perform the ergodic capacity analysis for such

turbulence models.

• A general methodology is presented for simplifying the ergodic capacity analysis of com-

posite FSO turbulence models by independently integrating the various constituents of the

composite turbulence model thereby trying to reduce the number of integrals. If succeeded

to reduce to a single integral (that is not solvable further) then various techniques such as

Gauss-Hermite formula can be utilized to obtain the required results.
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• Asymptotic closed-form expressions for the ergodic capacity of the LN, the RLN, and the M
(also GG as a special case of M) FSO turbulence models, applicable to high as well as low

signal-to-noise ratio (SNR) regimes, are derived in terms of simple elementary functions

via utilizing the derived unified moments.

D. Structure

The remainder of the paper is organized as follows. Sections II presents the channel and

system model inclusive of the nonzero boresight pointing error model and the various turbulence

models applicable to both the types of detection techniques (i.e. heterodyne detection and IM/DD)

utilized in this work. Section III presents the derivation of the exact closed-form channel statistic

in terms of the moments in simple elementary functions for the various turbulence models

introduced in Section II under the effects of nonzero boresight effects. Ergodic capacity analysis

in terms of approximate though closed-form expressions is presented along with some simulation

results to validate these analytical results in Section IV for these turbulence channels in terms

of simple elementary functions. Finally Section V makes some concluding remarks.

II. CHANNEL AND SYSTEM MODEL

We consider a FSO system with either of the two types of detection techniques i.e. heterodyne

detection (denoted in our formulas by r = 1) or IM/DD (denoted in our formulas by r = 2).

The transmitted data propagates through an atmospheric turbulence channel in the presence of

pointing errors. The received optical power is converted into an electrical signal through either of

the two types of detection technique (i.e. heterodyne detection or IM/DD) at the photodetector.

Assuming additive white Gaussian noise (AWGN) N for the thermal/shot noise, the received

signal y can be expressed as

y = I x+N, (1)

where x is the transmit intensity and I is the channel gain. Following [19], [31], we assume

that the off-axis scintillation varies slowly near the spot of boresight displacement and uses

a constant value of scintillation index to characterize the atmospheric turbulence. Hence, the

atmospheric turbulence and the pointing error are independent. Subsequently, the channel gain

can be expressed as I = Il Ia Ip, where Il is the path loss that is a constant in a given weather

condition and link distance, Ia is a random variable that signifies the atmospheric turbulence

loss factor, and Ip is another random variable that represents the pointing error loss factor.
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A. Pointing Error Models

1) Nonzero Boresight Pointing Error Model: Pointing error impairments are assumed and

employed to be present for which the probability density function (PDF) of the irradiance Ip

with nonzero boresight effects is given by 1 [19, Eq. (5)]

fp(Ip) = ξ2/Aξ2

0 exp
{

−s2/
(

2 σ2
s

)}

Iξ
2−1

p

× I0

(

s/σs

√

−2 ξ2 ln {Ip/A0}
)

, 0 ≤ Ip ≤ A0,
(2)

where ξ is the ratio between the equivalent beam radius at the receiver and the pointing error

displacement standard deviation (jitter) σs at the receiver, A0 is a constant term that defines the

pointing loss, s is the boresight displacement, and Iv (.) represents the vth-order modified Bessel

functions of an imaginary argument of the first kind [32, Sec. (8.431)].

2) Zero Boresight Pointing Error Model: The PDF of the irradiance Ip with zero boresight

effects (i.e. s = 0 in (2)) is given by 2 [31, Eq. (11)]

fp(Ip) = ξ2 Iξ
2−1

p /Aξ2

0 , 0 ≤ Ip ≤ A0. (3)

B. Atmospheric Turbulence Models

1) Lognormal (LN) Turbulence Scenario: The optical turbulence can be modeled as LN

distribution when the optical channel is considered as a clear-sky atmospheric turbulence channel

[11]. Hence, for weak turbulence conditions, reference [7] suggested a LN PDF to model the

irradiance that is the power density of the optical beam. Employing weak turbulence conditions,

with a log-scale parameter λ, the LN PDF of the irradiance IaL is given by (please refer to [7],

[11] and references therein)

fL(IaL) =
1

IaL
√
2 π σ

exp

{

− [ln {IaL} − λ]2

2 σ2

}

, IaL > 0, (4)

where σ2 = EI [I
2]/E2

I [I]− 1 < 1 is defined as the scintillation index [11, Eq. (1)] or the Rytov

variance σ2
R and is related to the log-amplitude variance by σ2

X = σ2
R/4 = σ2/4, and λ is the

log-scale parameter [11].

1For detailed information on this model of the pointing error and its subsequent derivation, one may refer to [19].

2For detailed information on this model of the pointing error and its subsequent derivation, one may refer to [31].
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Now, the joint distribution of ILN = Il IaL Ip can be derived by utilizing

f(ILN) =

∫ ∞

ILN/A0

fILN |IaL
(ILN |IaL) fL(IaL) dIaL

=

∫ ∞

ILN/A0

1

Il IaL
fp

(

ILN
Il IaL

)

fL(IaL) dIaL.

(5)

On substituting (4) and (2) appropriately into the integral in (5), following PDF under the

influence of nonzero boresight effects is obtained as [19, Eq. (10)]

f(ILN ) = ξ2/
[

2 (Il A0)
ξ2
]

Iξ
2
−1

LN exp
{

ξ2
[

ξ2 σ2/2− λ
]

+ s2/σ2
s

}

× erfc















ξ2 σ2 − λ+ 3 s
2 ξ2 σ2

s
+ ln

{

ILN

Il A0

}

√

2
(

s2

σ2
s ξ4

+ σ2
)















,
(6)

where erfc {.} is the complementary error function [33, Eq. (7.1.2)]. As a special case, for s = 0,

the integral in (5) results into the PDF that is in absence of the boresight effects as

f(ILN) = ξ2/
[

2 (Il A0)
ξ2
]

Iξ
2−1

LN exp
{

ξ2
[

ξ2 σ2/2− λ
]}

× erfc
{

[

ξ2 σ2 − λ+ ln {ILN/ (IlA0)}
]

/
[√

2σ
]}

.
(7)

2) Rician-Lognormal (RLN) Turbulence Scenario: In FSO communication environments, the

received signals can also be modeled as the product of two independent random processes i.e. a

Rician small-scale turbulence process and a lognormal large-scale turbulence process [16], [17].

The Rician PDF (amplitude PDF) of the irradiance IaR is given by [34, Eq. (2.16)]

fR (IaR) =
(

k2 + 1
)

/Ω exp
{

−k2 −
[(

k2 + 1
)

/Ω
]

IaR
}

× I0

(

2 k
√

(k2 + 1) /Ω IaR

)

, IaR > 0,
(8)

where Ω is the mean-square value or the average power of the irradiance being considered and

0 < k < ∞ is the turbulence parameter. This parameter k is related to the Rician K factor

by K = k2 that corresponds to the ratio of the power of the line-of-sight (LOS) (specular)

component to the average power of the scattered component. The LN PDF is as given in (4).

Now, with the presence of the nonzero boresight pointing errors whose PDF is given in (2),

the combined PDF of IRLN = Il IaR IaL Ip is given as

f (IRLN ) =
(

k
2
+ 1

)

ξ
2
/

[

2 (Il A0)
ξ2

]

exp
{

−k
2
}

× exp

{

ξ
2

[

ξ2 σ2

2
− λ

]

+
s2

σ2
s

}

∫

∞

0

1

z ξ2
exp

{

−

k2 + 1

z
IRLN

}

× I
0



2 k

√

k2 + 1

z
IRLN



 erfc























ξ2 σ2
− λ + 3 s

2 ξ2 σ2
s

+ ln
{

z
Il A0

}

√

2

(

s2

σ2
s ξ4

+ σ2

)























dz.

(9)
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Similarly, the combined PDF of IRLN = Il IaR IaL Ip, in presence of zero boresight pointing

errors whose PDF is given in (3), is given as

f (IRLN ) =
(

k2 + 1
)

ξ2/
[

2 (Il A0)
ξ2
]

exp
{

−k2
}

× exp

{

ξ2
[

ξ2 σ2

2
− λ

]}
∫

∞

0

1

z ξ2
exp

{

−k
2 + 1

z
IRLN

}

× I0

(

2 k

√

k2 + 1

z
IRLN

)

erfc







ξ2 σ2 − λ− ln
{

z
Il A0

}

√
2σ







dz.

(10)

The integrals in (9) and (10), to the best of our knowledge, are not easy to solve and hence the

analysis will be resorted based on moments as will be seen in the upcoming sections.

3) Málaga (M) Turbulence Scenario: The optical turbulence can be modeled as M distribu-

tion when the irradiance fluctuating of an unbounded optical wavefront (plane or spherical waves)

propagates through a turbulent medium under all irradiance conditions in homogeneous, isotropic

turbulence [20]. As a special case, the optical turbulence can be modeled as GG distribution when

the optical channel is considered as a cloudy/foggy-sky atmospheric turbulence channel [8], [9],

[35]–[37]. Hence, employing generalized turbulence conditions, the PDF of the irradiance IaM

is given by [20]

fM (IaM
) = A

β
∑

m=1

am IaM
Kα−m

(

2

√

αβ IaM

g β +Ω′

)

, IaM
> 0, (11)

where

A ,
2αα/2

g1+α/2Γ(α)

(

g β

g β + Ω′

)β+α/2

,

am ,

(

β − 1

m− 1

)

(

g β + Ω
′
)1−m/2

(m− 1)!

(

Ω
′

g

)m−1(
α

β

)m/2

,

(12)

α is a positive parameter related to the effective number of large-scale cells of the scattering

process, β is the amount of fading parameter and is a natural number 3, g = E
[

|UG
S |2
]

=

2 b0 (1− ρ) denotes the average power of the scattering component received by off-axis eddies,

2 b0 = E
[

|UC
S |2 + |UG

S |2
]

is the average power of the total scatter components, the parameter

0 ≤ ρ ≤ 1 represents the amount of scattering power coupled to the LOS component, Ω
′

=

Ω+2 b0 ρ+2
√
2 b0 ρΩcos(φA−φB) represents the average power from the coherent contributions,

Ω = E [|UL|2] is the average power of the LOS component, φA and φB are the deterministic

phases of the LOS and the coupled-to-LOS scatter terms, respectively, Γ(.) is the Gamma function

3A generalized expression of (14) is given in [20, Eq. (22)] for β being a real number though it is less interesting due to the

high degree of freedom of the proposed distribution (Sec. III of [20]).
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as defined in [32, Eq. (8.310)], and Kv(.) is the vth-order modified Bessel function of the second

kind [32, Sec. (8.432)]. It is interesting to know here that E
[

|UC
S |2
]

= 2 b0 ρ denotes the average

power of the coupled-to-LOS scattering component and E [Ia] = Ω + 2 b0.4

Now, with the presence of the nonzero boresight pointing errors whose PDF is given in (2),

the combined PDF of IM = Il IaM Ip is given as

f (IM ) =
ξ2AIξ

2
−1

M

Iξ
2

l Aξ2

0

exp

{

−
s2

2σ2
s

} β
∑

m=1

∫

∞

I/A0

I1−ξ2

aM

× I0

(

s

σs

√

−2 ξ2 ln

{

IM
Il IaM A0

}

)

Kα−m

(

2

√

αβ IaM

g β + Ω′

)

dIaM .

(13)

The integral in (13), to the best of our knowledge, is not easy to solve in closed-form and

hence the analysis will be resorted based on moments as will be seen in the upcoming sections.

Similarly, the combined PDF of IM = Il IaM Ip, in presence of zero boresight pointing errors

(i.e. s = 0 in (13)) whose PDF is given in (3), is known to be given by [20]

f(IM) =
ξ2A

2 IM

β
∑

m=1

bm G3,0
1,3

[

αβ

(g β + Ω′)

IM
A0

∣

∣

∣

∣

ξ2 + 1

ξ2, α,m

]

, (14)

where bm = am
[

αβ/
(

g β + Ω
′
)]−(α+m)/2

and G[.] is the Meijer’s G function as defined in [32,

Eq. (9.301)].

C. Important Outcomes and Further Motivations

To the best of our knowledge, it is quite tedious to utilize these expressions in (6), (7), (9), (10),

(13), and (14) 5. As will be shown in Section IV, it is in most cases not possible or challenging

to deal with such expressions to obtain some further exact closed-form results for the ergodic

capacity of such a FSO channel. Therefore, the capacity analysis of such FSO link, in a simpler

way, is carried out utilizing moments as will be derived in the following section.

III. EXACT CLOSED-FORM MOMENTS

As we have seen above that it is quite a challenge to obtain closed-form PDF and even if

we are able to find one, the expression(s) are not simple enough to be utilized further for the

analysis of the ergodic capacity as will be seen in the following section. Hence, we resort to

4Detailed information on the M distribution, its formation, and its random generation can be extracted from [20, Eqs. (13-21)].

5Similar results corresponding to (13) and (14) have also been derived for the GG turbulence scenario though those have not

been presented here as GG turbulence is a special case of M turbulence.
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moments based analysis for which the moments for the various turbulence scenarios discussed

in the previous section are derived here.

For the heterodyne detection technique case, the instantaneous SNR γ = ηe I/N0 and the

average SNR 6 develops as µheterdoyne = Eγheterodyne [γ] = γheterodyne = ηe EI [I]/N0, where ηe is

the effective photoelectric conversion ratio, N0 symbolizes the AWGN sample, and E [.] denotes

the expectation operator.

Similarly, for the IM/DD technique, γ = η2e I
2/N0 and the electrical SNR 7 develops as

µIM/DD = EγIM/DD
[γ]E2

I [I]/EI [I
2] = γIM/DD E

2
I [I]/EI [I

2] = η2e E
2
I [I]/N0 [36].

Now, on unifying the SNR expressions above for both the detection types, γr = ηre I
r/N0 and

µr = ηre E
r
I [I]/N0 are obtained. Since, Ia and Ip are independent random variables, the unified

moments are defined as 8, 9

E [γnr ] = ηr ne E [Ir n]/Nn
0 = µn

r E [(Ia Ip)
r n]/Er n[Ia Ip]

= µn
r E [Ir na ]E

[

Ir np

]

/ (Er n[Ia]E
r n[Ip]) .

(15)

A. Lognormal (LN) Turbulence Scenario

The unified moments for this particular scenario are defined as

E [γnr ]LN = ηr n
e E [Ir n]/Nn

0 = µn
r E [(IaL

Ip)
r n

]/Er n[IaL
Ip]

= µn
r E
[

Ir naL

]

E
[

Ir n
p

]

/ (Er n[IaL
]Er n[Ip]) .

(16)

6γheterodyne is the average SNR for coherent/heterodyne FSO systems given by γheterodyne = Cc [38, Eq. (7)], where

Cc = 2R2APLO/ [2 q R∆f PLO + 2∆f (q RA Ib + 2 kb Tk Fn/RL)] ≈ RA/ (q∆f) is a multiplicative constant for a given

heterodyne/coherent system, where R is the photodetector responsivity, A is the photodetector area, PLO is the local oscillator

power, ∆f denotes the noise equivalent bandwidth of a FSO receiver, q is the electronic charge, Ib is the background light

irradiance, kb is Boltzmann’s constant, Tk is the temperature in Kelvin, Fn represents a thermal noise enhancement factor due

to amplifier noise, and RL is the load resistance. It is evident that Cc = µheterodyne in this work.

7γIM/DD is the average SNR for IM/DD FSO systems given by γIM/DD = Cs EI [I
2]/E2

I [I ], where Cs =

(RAξ)2 / [2∆f (q RAIb + 2 kb Tk Fn/RL)] [38] is a multiplicative constant for a given IM/DD system. It is evident that

Cs = µIM/DD in this work.

8Il, A0, and λ cancel out being deterministic parameters.

9γ1 is the first moment (i.e. n = 1) for the heterodyne (r = 1) case as can be seen from (15). Based on this substitution, we

obtain γ1 = µ1 signifying that γ1 and µ1 are the same quantity defined as the average SNR for the heterodyne FSO systems. Simi-

larly, γ2 is the first moment (i.e. n = 1) for the IM/DD (r = 2) case as can be seen from (15). Based on this substitution, we obtain

γ2 = E
[

I2a
]

E
[

I2p
]

/
(

E
2[Ia]E

2[Ip]
)

µ2 = E
[

I2
]

/E2[I ]µ2 or µ2 = E
2[Ia]E

2[Ip]/
(

E
[

I2a
]

E
[

I2p
])

γ2 = E
2[I ]/E

[

I2
]

γ2

signifying that γ2 and µ2 are different quantities defined as the average SNR and the electrical SNR for the IM/DD FSO

systems, respectively [38].

May 16, 2018 DRAFT



10

Utilizing the definition of the moments, E
[

Ir naL

]

and E
[

Ir np

]

for nonzero boresight pointing

errors are easily obtained after some manipulations as E
[

Ir naL

]

= exp
{

r n λ+ (r n σ)2 /2
}

and E
[

Ir np

]

= Ar n
0 ξ2/ (ξ2 + r n) exp {−r n s2/ [2 σ2

s (ξ
2 + r n)]} [19, Eq. (6)], respectively.

Substituting these back into (16), the unified exact closed-form moments for LN atmospheric

turbulence in presence of nonzero boresight pointing errors are obtained as

E [γnr ]LN =
ξ2(1−r n)

(ξ2 + r n) (ξ2 + 1)−r n exp

{

r n σ2

2
(r n− 1)

+ r n s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r n
)]}

µn
r .

(17)

Similarly, when considering zero boresight pointing errors (i.e. special case with s = 0), the

E
[

Ir np

]

= Ar n
0 ξ2/ (ξ2 + r n) and the corresponding unified exact closed-form moments for LN

atmospheric turbulence in presence of zero boresight pointing errors are obtained as

E [γnr ]LN =
ξ2(1−r n)

(ξ2 + r n) (ξ2 + 1)−r n
exp

{

r n σ2

2
(r n− 1)

}

µn
r . (18)

B. Rician-Lognormal (RLN) Turbulence Scenario

Since IaR , IaL , and Ip are independent random variables, the unified moments for RLN

turbulence scenario are defined as

E [γnr ]RLN = ηr n
e E [Ir n]/Nn

0

= µn
r E [(IaR

IaL
Ip)

r n
]/Er n[IaR

IaL
Ip]

= µn
r E
[

Ir n
aR

]

E
[

Ir n
aL

]

E
[

Ir n
p

]

/ (Er n[IaR
]Er n[IaL

]Er n[Ip]) .

(19)

Utilizing the definition of the moments, E
[

Ir naL

]

and E
[

Ir np

]

for nonzero boresight point-

ing errors were easily obtained in previous subsection i.e. Section III.A whereas E
[

Ir naR

]

=

[Ω/ (k2 + 1)]
r n

Γ (r n+ 1) 1F1 [−r n; 1;−k2] [34, Eq. (2.18)], where pFq [.; .; .] represents the

generalized hypergeometric F function [32, Eq. (9.14.1)] and more specifically, 1F1 [.; .; .] rep-

resents the confluent hypergeometric F function [32, Eq. (9.210.1)]. Substituting these back

into (19), the unified exact closed-form moments for RLN turbulence under nonzero boresight

pointing errors are obtained as 10

E [γnr ]RLN = ξ2(1−r n)/
[

(

ξ2 + r n
) (

ξ2 + 1
)−r n

]

× exp

{

r n σ2

2
(r n− 1) +

r n s2

2 σ2
s

(

1

ξ2 + 1
− 1

ξ2 + r n

)}

× Γ (r n+ 1) 1F1

[

−r n; 1;−k2
]

/
(

k2 + 1
)r n

µn
r .

(20)

10It must be noted that 1F1

[

−1; 1;−k2
]

= k2 + 1.
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Similarly, when considering zero boresight pointing errors (i.e. special case with s = 0), the

corresponding unified exact closed-form moments for RLN atmospheric turbulence in presence

of zero boresight pointing errors are obtained as

E [γnr ]RLN = ξ2(1−r n)/
[

(

ξ2 + r n
) (

ξ2 + 1
)−r n

]

× exp

{

r n σ2

2
(r n− 1)

}

1F1 [−r n; 1;−k2]
(k2 + 1)r n Γ (r n+ 1)−1 µ

n
r .

(21)

C. Málaga (M) Turbulence Scenario

Since IaM and Ip are independent random variables, the unified moments for M turbulence

scenario are defined as

E [γnr ]M = ηr n
e E [Ir n]/Nn

0 = µn
r E [(IaM

Ip)
r n]/Er n[IaM

Ip]

= µn
r E
[

Ir n
aM

]

E
[

Ir n
p

]

/ (Er n[IaM
]Er n[Ip]) .

(22)

Utilizing the definition of the moments, E
[

Ir np

]

for nonzero boresight pointing errors was easily

obtained in previous subsection i.e. Section III.A whereas E
[

Ir naM

]

/Er n[IaM ] = r AΓ(r n +

α)
∑β

m=1 bm Γ(r n+m)/ (2rBr n) where B = αβ (g +Ω
′

)/(g β +Ω
′

). Substituting these back

into (22), the unified exact closed-form moments for M turbulence under nonzero boresight

pointing errors are obtained as

E [γnr ]M = ξ2(1−r n)/
[

(

ξ2 + r n
) (

ξ2 + 1
)−r n

]

× exp
{

r n s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r n
)]}

× r AΓ(r n+ α)/ (2rBr n)

β
∑

m=1

bm Γ(r n +m)µn
r .

(23)

As a special case, the unified exact closed-form moments for GG turbulence under nonzero

boresight pointing errors are obtained as

E [γnr ]GG =
ξ2(1−r n) (ξ2 + 1)

r n
Γ (r n+ α) Γ (r n+ β)

(ξ2 + r n) (α β)r n Γ (α) Γ (β)

× exp
{

r n s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r n
)]}

µn
r .

(24)

Similarly, when considering zero boresight pointing errors (i.e. special case with s = 0), the

corresponding unified exact closed-form moments for M atmospheric turbulence in presence of

zero boresight pointing errors are obtained as

E [γnr ]M =
r ξ2AΓ(r n + α)

2r (r n+ ξ2) Br n

β
∑

m=1

bm Γ(r n+m)µn
r . (25)

May 16, 2018 DRAFT



12

As a special case, the corresponding unified exact closed-form moments for GG atmospheric

turbulence in presence of zero boresight pointing errors are obtained as

E [γnr ]GG =
ξ2(1−r n) (ξ2 + 1)

r n
Γ(r n+ α)Γ(r n+ β)

(ξ2 + r n) (αβ)r n Γ(α) Γ(β)
µn
r . (26)

D. Important Outcomes and Further Motivations

• Interestingly enough and expectedly, these expressions in (17), (18), (20), (21), and (23)-

(26) reduce to only µn
1 for r = 1 (heterodyne detection technique) case thereby supporting

the difference between the definitions of average SNR vs. electrical SNR.

• It is worthy to note that these simple results for the moments can be directly plugged into

[39, Eq. (3)] to obtain the nth-order amount of fading for the instantaneous SNR, γ. These

interesting results can be then utilized to parameterize the distribution of the SNR of the

received signal.

• More importantly, these simple results for the moments are useful to conduct asymptotic

analysis of the ergodic capacity as shown in the following section of this work.

IV. ERGODIC CAPACITY

A. General Methodology

The ergodic channel capacity C is defined as [40, Eq. (26)], [41, Eq. (7.43)]

C , E [ln {1 + c γ}], (27)

where c is a constant term such that c = 1 for heterodyne detection giving an exact result and

c = e/ (2 π) for IM/DD giving a lower-bound result [40], [41] 11. Additionally, knowing that Ia

and Ip are independent random variables, we can re-write the definition of the ergodic capacity

as

C = E

[

ln

{

1 +
c (ηe I)

r

N0

}]

=

∫

∞

0

ln

{

1 +
c (ηe I)

r

N0

}

f (I) dI

=

∫

∞

0

∫ A0

0

ln

{

1 +
c (ηe Il Ia Ip)

r

N0

}

fa (Ia) fp (Ip) dIp dIa.

(28)

Since, Ip is the common random variable in all the different atmospheric turbulence scenarios,

we can try to solve (28) for the two types of pointing errors. By placing (2) into (28), to the best

11For readers clarification, to the best of the authors’ knowledge based on the open literature, there does not exists any actual

mathematical formulation for analyzing the ergodic capacity of such FSO channels.
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of our knowledge, it is not possible to find an exact closed-form solution for the inner integral.

On the other hand, if we place (3) into (28), we obtain

C =

∫ ∞

0

∫ A0

0

ln

{

1 +
c (ηe Il Ia Ip)

r

N0

}

ξ2 Iξ
2−1

p /Aξ2

0 dIp

× fa (Ia) dIa =

∫ ∞

0

[

ln

{

c (ηeA0 Il Ia)
r

N0
+ 1

}

−c (ηeA0 Il Ia)
r

N0

Φ

(

−c (ηeA0 Il Ia)
r

N0

, 1,
ξ2 + r

r

)]

× fa (Ia) dIa,

(29)

where Φ (.) is the LerchPhi function [42, Eq. (10.06.02.0001.01)].

If an exact closed-form is not obtainable via either (27) and/or (28) and/or (29), the ergodic

capacity can be analyzed utilizing the moments. At high SNR, an asymptotic analysis can be

done by utilizing the moments yielding an asymptotically tight lower bound given by 12 [39,

Eqs. (8) and (9)]

C ≅
µr >>1

ln(c µr) + ζ, (30)

where

ζ = ∂/∂n (E [γnr ]/E [γr]
n − 1)|n=0 . (31)

The expression in (30) can be simplified to

C ≅
µr >>1

ln(c µr) +
∂

∂n

(

E [γnr ]

E [γr]
n − 1

)∣

∣

∣

∣

n=0

=
∂

∂n
E [γnr ]

∣

∣

∣

∣

n=0

. (32)

Similarly, at low SNR, it can be easily shown that the ergodic capacity can be asymptotically

approximated by the first moment in closed-form.

B. Lognormal (LN) Turbulence Scenario

1) Exact Analysis: For LN atmospheric turbulence scenario under nonzero boresight pointing

errors and zero boresight pointing errors, we respectively substitute (6) and (7) in (27). To the

best of our knowledge, both the above scenarios can not be solved in exact closed-form.

Additionally, we have already reached to a conclusion that it is not possible to solve the inner

integral for nonzero boresight pointing errors in (28) with (2). Alternatively, by substituting (4)

12For readers clarification, it is possible to use SNR moments as an efficient tool for deriving even higher order ergodic

capacity statistics via utilizing [39, Eq. (6)].

May 16, 2018 DRAFT



14

in (28), the outer integral for LN PDF fL (IaL) in (28) does not lead to possible exact closed-

form results. On the other hand, we have been able to solve the inner integral for zero boresight

pointing errors in (28) with (3) to obtain (29) and hence on placing the LN PDF fL (IaL) (4)

into (29), we obtain

C =
1√
2 π σ

∫ ∞

0

1

IaL
exp

{

−
[

ln {IaL} − λ√
2 σ

]2
}

×
[

ln

{

c (ηeA0 Il IaL)
r

N0

+ 1

}

− c (ηeA0 Il IaL)
r

N0

× Φ

(

−c (ηeA0 Il IaL)
r

N0
, 1,

ξ2 + r

r

)]

dIaL .

(33)

On applying simple change of random variable x = (ln {IaL} − λ) /
(√

2σ
)

, we get IaL =

exp
{√

2σ x+ λ
}

and dIaL =
√
2σ exp

{√
2 σ x+ λ

}

dx leading to

C =
1√
π

∫ ∞

−∞

exp
{

−x2
}

fx (x) dx, (34)

where

fx (x) = ln

{

c (ηeA0 Il)
r

N0

exp
{

r
(√

2σ x+ λ
)}

+ 1

}

− c (ηeA0 Il)
r

N0
exp

{

r
(√

2σ x+ λ
)}

× Φ

(

−c (ηeA0 Il)
r

N0
exp

{

r
(√

2σ x+ λ
)}

, 1,
ξ2 + r

r

)

.

(35)

The integral in (34) is solvable with the help of N = 20-point Gauss-Hermite formula [33, Eq.

(25.4.46)] leading to

C ≅
1√
π

N
∑

i=1

wi fx (xi) , (36)

where wi and xi are the weights and the abscissas that can be acquired from [33, Table 25.10].

2) Approximate Analysis: Reverting back to LN atmospheric turbulence under nonzero bore-

sight pointing errors, since it is not feasible to obtain an exact closed-form solution, we utilize

the moments derived earlier to deduce the asymptotic results. Hence, based on (32), the first
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derivative of the moments in (17) is required to be evaluated at n = 0 for high SNR asymptotic

approximation to the ergodic capacity. The first derivative of the moments in (17) is given as

∂/∂nE [γnr ] = ξ2(1−r n)/
[

(

ξ2 + r n
) (

ξ2 + 1
)

−r n
]

× exp

{

r n σ2

2
(r n− 1) +

r n s2

2 σ2
s

(

1

ξ2 + 1
− 1

ξ2 + r n

)}

×
{

r σ2

(

r n− 1

2

)

+
r s2

2 σ2
s

[

r n

(ξ2 + r n)
2 +

1

ξ2 + 1
− 1

ξ2 + r n

]

− r/
(

r n+ ξ2
)

− r ln
{

ξ2/
(

ξ2 + 1
)}

+ ln {c µr}
}

(c µr)
n
,

(37)

and at n = 0, it evaluates to

C ≅
µr >>1

ln {c µr} − r

[

1

ξ2
+
σ2

2
+

s2

2 σ2
s ξ

2 (ξ2 + 1)

+ ln
{

ξ2/
(

ξ2 + 1
)}]

.

(38)

Similarly, for LN atmospheric turbulence under zero boresight pointing errors (i.e. for s = 0)

and under no pointing errors (i.e. for s = 0 and ξ → ∞), the asymptotic approximations to their

respective ergodic capacity’s at high SNR are derived in Table I.

Furthermore, for low SNR asymptotic analysis, it can be easily shown that the ergodic capacity

can be asymptotically approximated by the first moment. Utilizing (17) via placing n = 1 in it,

the ergodic capacity of a single FSO link under LN turbulence effected by nonzero boresight

pointing errors can be approximated at low SNR in closed-form in terms of simple elementary

functions by

C ≅
µr <<1

ξ2(1−r)

(ξ2 + r) (ξ2 + 1)−r exp

{

r σ2

2
(r − 1)

+ r s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r
)]}

c µr.

(39)

Similarly, for LN atmospheric turbulence under zero boresight pointing errors (i.e. for s = 0),

the asymptotic approximation to the ergodic capacity at low SNR is obtained as

C ≅
µr <<1

ξ2(1−r)

(ξ2 + r) (ξ2 + 1)−r exp

{

r σ2

2
(r − 1)

}

c µr. (40)

Similarly, for LN atmospheric turbulence under zero pointing errors (i.e. for s = 0 and ξ → ∞),

the asymptotic approximation to the ergodic capacity at low SNR is obtained as

C ≅
µr <<1

exp
{

r σ2 (r − 1) /2
}

c µr. (41)
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3) Results and Discussion: As an illustration of the mathematical formalism presented above,

simulation and numerical results for the ergodic capacity of a single FSO link transmission system

under LN turbulent channels is presented as follows.

The FSO link is modeled as a LN turbulent channel with nonzero boresight pointing errors.

The dotted lines marked as simulation in the figures represent the Monte-Carlo generation for

the exact results to observe the asymptotic tightness of the approximated results and to prove

their validity. The ergodic capacity of the FSO channel in operation under heterodyne detection

technique as well as IM/DD technique is presented in Fig. 1 and Fig. 2, respectively, for high

SNR scenario. Subsequently, the ergodic capacity of the FSO channel in operation under IM/DD
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Fig. 1. Ergodic capacity results for varying pointing errors at high SNR regime for LN turbulence under heterodyne detection

technique (r = 1).

technique is presented in Fig. 3 for low SNR scenario 13. These figures demonstrate the obtained

results for varying effects of pointing errors with σ = 0.35. 14

Expectedly, for high SNR regime (i.e. Fig. 1 and Fig. 2), as the pointing error gets severe, the

ergodic capacity starts decreasing (i.e. the lower the value of s and/or the higher the value of ξ,

the higher will be the ergodic capacity). On the other hand, for low SNR regime (i.e. Fig. 3),

13For readers clarification, the low SNR asymptote in (39) is actually the average SNR and hence the plot in Fig. 3 is against

the electrical SNR.

14It is important to note here that these values for the parameters were selected from the cited references subject to the

standards to prove the validity of the obtained results and hence other specific values can be used to obtain the required results

by design communication engineers before deployment.
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Fig. 3. Ergodic capacity results for varying pointing errors at low SNR regime for LN turbulence under IM/DD technique

(r = 2).

as the pointing error gets severe, the ergodic capacity starts increasing (i.e. the lower the value

of s and/or the higher the value of ξ, the lower will be the ergodic capacity).

Furthermore, it can be seen that at high SNR, the asymptotic expression derived in (38) via

utilizing moments gives very tight asymptotic results in high SNR regime and the same can be

observed for the low SNR regime too corresponding to (39). Fig. 4 presents the effect of varying

scintillation index parameter σ = 0.1, 0.2, 0.3, 0.4, 0.5. The pointing error effect is fixed at s = 0

and ξ = 1.1, and the ergodic capacity is plotted for the IM/DD technique (i.e. r = 2). It can be

observed that as the scintillation index increases, the ergodic capacity degrades.
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Fig. 4. Ergodic capacity results for IM/DD technique and varying σ at high SNR regime for LN turbulence.

C. Rician-Lognormal (RLN) Turbulence Scenario

1) Exact Analysis: For RLN atmospheric turbulence scenario under nonzero boresight point-

ing errors and zero boresight pointing errors, we respectively substitute (9) and (10) in (27). To

the best of our knowledge, both the above scenarios can not be solved in exact closed-form.

Additionally, we have already reached to a conclusion that it is not possible to solve the

inner integral for nonzero boresight pointing errors in (28) with (2). Hence, we end up with a

three-integral expression involving the IaR and IaL independently. We have already learned from

the previous subsection that the middle integral for LN PDF fL (IaL) in (28) with (4) does not

lead to possible exact closed-form results and similarly the outer integral for the Rician PDF

fR (IaR) in (28) with (8) also does not lead to possible exact closed-form results.

On the other hand, although we have been able to solve the inner integral for zero boresight

pointing errors in (28) with (3) to obtain (29) but on placing the LN PDF fL (IaL) (4) and

the Rician PDF fR (IaR) (8) into (29), we end up having a double integral. To the best of

our knowledge, this double integral does not has an exact closed-form solution nor this double

integral can be reduced further to a single integral for other possible solutions. Therefore, the

ergodic capacity is analyzed utilizing the moments derived in previous section.
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2) Approximate Analysis: Based on (32), the first derivative of the moments derived in (20)

is obtained as
∂

∂n
E [γnr ] =

ξ2(1−r n) Γ (r n+ 1)

(ξ2 + r n) (ξ2 + 1)
−r n

(1 + k2)
r n

× exp

{

r n σ2

2
(r n− 1) +

r n s2

2 σ2
s

(

1

ξ2 + 1
− 1

ξ2 + r n

)}

×
{

1F1

[

−r n; 1;−k2
] [

−r/
(

ξ2 + r n
)

+ r σ2 ( r n− 1/2)

+ r s2/
(

2 σ2
s

)

[

r n/
(

ξ2 + r n
)2

+ 1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r n
)

]

− r ln
{

ξ2/
(

ξ2 + 1
)}

+ r ψ (r n+ 1)− r ln
{

k2 + 1
}

+ ln {c µr}]− r ∂/∂n 1F1

[

−r n; 1;−k2
]}

(c µr)
n
,

(42)

where ψ (.) is the digamma (psi) function [33, Eq. (6.3.1)]. It can be seen from (42) that the

last term is in a form of derivative definition. To the best of the authors’ knowledge, the

derivative of ∂/∂a 1F1 [a; b; z] or ∂/∂b 1F1 [a; b; z] is not available in the open mathematical

literature though this can be solved for the special case when the variable being derived with

respect to, is set to 0 i.e. ∂/∂a 1F1 [a; b; z] |a=0 or ∂/∂b 1F1 [a; b; z] |b=0 [43, App. A]. Hence,

∂/∂n 1F1 [−r n; 1;−k2] |n=0 can be solved as [44, Eq. (38a)]

∂/∂n 1F1

[

−r n; 1;−k2
]

|n=0 = −k2 2F2

[

1, 1; 2, 2;−k2
]

. (43)

Now, substituting (43) into (42) and evaluating (42) at n = 0, following is obtained

C ≅
µr >>1

ln {c µr} − r

[

1

ξ2
+
σ2

2
+

s2

2 σ2
s ξ

2 (ξ2 + 1)

+ ln

{

ξ2

ξ2 + 1

}

+ ln
{

k2 + 1
}

+ γE − k2 2F2

[

1, 1; 2, 2;−k2
]

]

,

(44)

where γE ≅ 0.577216 denotes the Euler-Mascheroni constant/Euler’s Gamma/Euler’s constant

[45]. On further utilizing [45], eq. (44) can be simplified to

C ≅
µr >>1

ln {c µr} − r

[

1

ξ2
+
σ2

2
+

s2

2 σ2
s ξ

2 (ξ2 + 1)

+ ln
{

ξ2/
(

ξ2 + 1
)}

− ln
{

k2/
(

k2 + 1
)}

− Γ
(

0, k2
)]

.

(45)

Equation (45) can be further simplified via utilizing [33, Eq. (6.5.15)] to obtain

C ≅
µr >>1

ln {c µr} − r

[

1

ξ2
+
σ2

2
+

s2

2 σ2
s ξ

2 (ξ2 + 1)

+ ln
{

ξ2/
(

ξ2 + 1
)}

− ln
{

k2/
(

k2 + 1
)}

− E1

(

k2
)]

,

(46)

where En (z) is an exponential integral [33, Sec. 5.1]. Hence, eq. (46) gives the required

expression for the ergodic capacity C at high SNR in terms of simple elementary functions
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for RLN FSO turbulent channels under the effect of boresight pointing errors. Similarly, for

RLN atmospheric turbulence under zero boresight pointing errors (i.e. for s = 0) and under no

pointing errors (i.e. for s = 0 and ξ → ∞), the asymptotic approximations to their respective

ergodic capacity’s at high SNR are derived in Table I.

Furthermore, for low SNR asymptotic analysis, it can be easily shown that the ergodic capacity

can be asymptotically approximated by the first moment. Utilizing (20) via placing n = 1 in

it, the ergodic capacity of a single FSO link under RLN FSO turbulence effected by nonzero

boresight pointing errors can be approximated at low SNR in closed-form in terms of simple

elementary functions by

C ≅
µr <<1

ξ2(1−r)/
[

(

ξ2 + r
) (

ξ2 + 1
)−r
]

× exp

{

r σ2

2
(r − 1) +

r s2

2 σ2
s

(

1

ξ2 + 1
− 1

ξ2 + r

)}

× Γ (r + 1) 1F1

[

−r; 1;−k2
]

/
(

k2 + 1
)r
c µr.

(47)

Similarly, for RLN atmospheric turbulence under zero boresight pointing errors (i.e. for s = 0),

the asymptotic approximation to the ergodic capacity at low SNR is obtained as

C ≅
µr <<1

ξ2(1−r)

(ξ2 + r) (ξ2 + 1)−r exp

{

r σ2

2
(r − 1)

}

× Γ (r + 1) 1F1

[

−r; 1;−k2
]

/
(

1 + k2
)r
c µr.

(48)

Similarly, for RLN atmospheric turbulence under zero pointing errors (i.e. for s = 0 and ξ → ∞),

the asymptotic approximation to the ergodic capacity at low SNR is obtained as

C ≅
µr <<1

exp

{

r σ2

2
(r − 1)

}

Γ (r + 1) 1F1

[

−r; 1;−k2
]

(1 + k2)
r c µr. (49)

3) Results and Discussion: As an illustration of the mathematical formalism presented above,

simulation and numerical results for the ergodic capacity of a single FSO link transmission system

under RLN turbulent channels is presented as follows.

The FSO link is modeled as composite RLN turbulent channel. The ergodic capacity of the

FSO channel in operation under heterodyne detection technique as well as IM/DD technique is

presented in Fig. 5 and Fig. 6, respectively, for high SNR scenario. Subsequently, the ergodic

capacity of the FSO channel in operation under IM/DD technique is presented in Fig. 7 for low

SNR scenario 15. These figures demonstrate the obtained results for varying effects of pointing

15For readers clarification, the low SNR asymptote in (47) is actually the average SNR and hence the plot in Fig. 7 is against

the electrical SNR.
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Fig. 5. Ergodic capacity results for varying pointing errors at high SNR regime for RLN turbulence under heterodyne detection

technique (r = 1).
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Fig. 6. Ergodic capacity results for varying pointing errors at high SNR regime for RLN turbulence under IM/DD technique

(r = 2).

error with k = 5 and σ = 0.35. 16 Similar trend in results can be observed here as were observed

for the LN only scenario in Fig. 1, Fig. 2, and Fig. 3. Fig. 8 presents the effect of varying k

turbulence parameter k → ∞, 4, 2, 1. The pointing error effect is fixed at s = 0 and ξ = 1.1, and

the LN scintillation index is fixed at σ = 0.35. The ergodic capacity is plotted for the IM/DD

technique (i.e. r = 2). It can be observed that as the turbulence parameter k increases, the ergodic

capacity improves and ultimately matches with LN turbulence (signified with a diamond shape

16It is important to note here that these values for the parameters were selected from the cited references subject to the

standards to prove the validity of the obtained results and hence other specific values can be used to obtain the required results

by design communication engineers before deployment.
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Fig. 8. Ergodic capacity results for IM/DD technique and varying k at high SNR regime for RLN turbulence.

symbol in Fig. 8) as k → ∞ (i.e. Rician turbulence becomes negligible).

Moreover, it is important to note that these plots are very useful to easily obtain the approx-

imation error of the asymptotic results obtained by the proposed moments-based approximation

method or in other words to find the accuracy of the proposed moments-based approximation

method. For instance, let us refer to the third curve from the top that corresponds to s = 3, σs = 3,

and ξ = 1.1 in Fig. 6. Let us assume that we want to control the approximation error to, lets say,

around 3.9% or less. Now, we can easily deduce the channel performance i.e. at γ2 = 30 dB;

C = {4.66 (exact), 4.482 (simulation)} with approximation error = 3.8197%. Based on this,

we can easily conclude that for an acceptable approximation error of 3.9% or less, our average

SNR must be at least γ2 = 30 dB or more. Similarly, if we want to look at this in another way
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i.e. our system is operating at a certain average SNR and we would like find out the accuracy

of our approximation then this can also be obtained easily as follows. We can easily deduce that

at γ2 = 30 dB, C = {4.66 (exact), 4.482 (simulation)} that leads to an approximation error

= 3.8197%. Similarly, at γ2 = 35 dB; C = {5.741 (exact), 5.633 (simulation)} leads to an

approximation error = 1.8812%, and at γ2 = 40 dB; C = {6.849 (exact), 6.784 (simulation)}
leads to an approximation error = 0.949%.

D. Málaga (M) Turbulence Scenario

1) Exact Analysis: For M atmospheric turbulence scenario under nonzero boresight pointing

errors, we respectively substitute (13) and (14) in (27). To the best of our knowledge, both the

above scenarios can not be solved in exact closed-form.

Additionally, we have already reached to a conclusion that it is not possible to solve the

inner integral for nonzero boresight pointing errors in (28) with (2). Hence, we end up with a

double-integral expression involving the IaM . The integral with respect to IaM can be solved in

exact closed-form to obtain

C =

∫ A0

0

∫ ∞

0

ln

{

1 +
c (ηe Il IaM Ip)

r

N0

}

fM (IaM ) fp (Ip)

× dIaM dIp = ξ2Ar3/
[

2Aξ2

0 (2 π)r−1
]

×
[(

g β + Ω
′

)

/ (αβ)
]2

exp
{

−s2/
(

2 σ2
s

)}

×
β
∑

m=1

am

∫ A0

0

Iξ
2−1

p I0

(

s/σs

√

−2/ξ−2 ln {Ip/A0}
)

×G1,2 r+2
2 r+2,2

[

c (ηe Il Ip)
r (g β + Ω

′
)r

r−2 rN0 (αβ)r

∣

∣

∣

∣

1, 1, κ0
1, 0

]

dIp,

(50)

where κ0 =
−1−(α−m)/2

r
, . . . , −2−(α−m)/2+r

r
, −1−(m−α)/2

r
, . . . , −2−(m−α)/2+r

r
comprises of 2r terms.

To the best of our knowledge, this single integral in (50) does not have an exact closed-form

solution 17.

On the other hand, for M atmospheric turbulence under zero boresight pointing errors, utilizing

(27) by placing (14) in it results into an exact closed-form result as [23, Eq. (20)]

C =
D

ln(2)

β
∑

m=1

cmG3r+2,1
r+2,3r+2

[

E

cµr

∣

∣

∣

∣

0, 1, κ1
κ2, 0, 0

]

, (51)

17Please note that similar integral results/outcomes were obtained for GG turbulence scenario under nonzero boresight pointing

errors.
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where D = ξ2A/ [2r(2 π)r−1], cm = am bm r
α+m−1, E = (B ξ2)

r
/
[

(ξ2 + 1)
r
r2 r
]

, κ1 =
ξ2+1
r
, . . . , ξ

2+r
r

comprises of r terms, and κ2 = ξ2

r
, . . . , ξ

2+r−1
r

, α
r
, . . . , α+r−1

r
, m

r
, . . . , m+r−1

r
comprises of 3r

terms. Similarly, as a special case, an exact closed-form result for the moments of GG atmo-

spheric turbulence under zero boresight pointing errors is obtained as [30, Eq. (13)]

C =
J

ln(2)
G3r+2,1

r+2,3r+2

[

K

cµr

∣

∣

∣

∣

0, 1, κ1
κ3, 0, 0

]

, (52)

where J = rα+β−2 ξ2/ [(2 π)r−1 Γ(α) Γ(β)], K = (ξ2α β)r/
[

(ξ2 + 1)
r
r2 r
]

, and κ3 =
ξ2

r
, . . . , ξ

2+r−1
r

, α
r
, . . . , α+r−1

r
, β
r
, . . . , β+r−1

r

comprises of 3r terms.

2) Approximate Analysis: Reverting back to M atmospheric turbulence under nonzero bore-

sight pointing errors, since it is not feasible to obtain an exact closed-form solution, we utilize

the moments derived earlier to deduce the asymptotic results. Hence, based on (32), the first

derivative of the moments in (23) is required to be evaluated at n = 0 for high SNR asymptotic

approximation to the ergodic capacity. The first derivative of the moments in (23) is given as

∂

∂n
E [γnr ] =

ξ2(1−r n) r AΓ (r n+ α)

(ξ2 + r n) (ξ2 + 1)−r n 2r Br n

β
∑

m=1

bm Γ (r n+m)

× exp
{

r n s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r n
)]}

×
[

−r/
(

ξ2 + r n
)

− r ln
{

ξ2/
(

ξ2 + 1
)}

− r ln {B}

+ r s2/
(

2 σ2
s

)

[

r n/
(

ξ2 + r n
)2

+ 1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r n
)

]

+r ψ (r n+ α) + r ψ (r n+m) + ln {c µr}] (c µr)
n ,

(53)

and at n = 0, it evaluates to

C ≅
µr >>1

r AΓ(α)

2r

β
∑

m=1

bm Γ(m)
{

r
[

−1/ξ2 − ln(B) + ψ(α)

− s2 σ−2
s

2 ξ2 (ξ2 + 1)
− ln

{

ξ2

ξ2 + 1

}

+ ψ(m)

]

+ ln(c µr)

}

.

(54)

For GG atmospheric turbulence, as a special case to M turbulence, the first derivative, evaluated

at n = 0, of the moments in (24) is derived in Table I. Now, for M and GG atmospheric

turbulences under zero boresight pointing errors (i.e. for s = 0) and under zero pointing errors

(i.e. for s = 0 and ξ → ∞), the asymptotic approximations to the respective ergodic capacity’s

at high SNR are derived in Table I. Alternatively, for M and GG atmospheric turbulences under
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zero boresight pointing errors (i.e. for s = 0), the ergodic capacity’s in (51) and (52) can be

expressed asymptotically via utilizing the Meijer’s G function expansion as [30, Eq. (17)]

C ≅
µr >>1

D

ln(2)

β
∑

m=1

cm

3r+2
∑

k=1

(c µr

E

)−κ2,k

×
Γ(1 + κ2,k)

∏3r+2
l=1; l 6=k Γ(κ2,l − κ2,k)

Γ(1− κ2,k)
∏r

l=1 Γ(κ1,l − κ2,k)
,

(55)

and

C ≅
µr >>1

A

ln(2)

3r+2
∑

k=1

(c µr

B

)−κ3,k

×
Γ(1 + κ3,k)

∏3r+2
l=1; l 6=k Γ(κ3,l − κ3,k)

Γ(1− κ3,k)
∏r

l=1 Γ(κ1,l − κ3,k)
,

(56)

respectively, where κu,v represents the vth-term of κu.

Furthermore, for low SNR asymptotic analysis, it can be easily shown that the ergodic capacity

can be asymptotically approximated by the first moment. Utilizing (23) and (24) via placing

n = 1 in them, the ergodic capacity’s of a single FSO link under M and GG FSO turbulences

effected by nonzero boresight pointing errors can be approximated at low SNR in closed-form

in terms of simple elementary functions by

C ≅
µr <<1

ξ2(1−r)/
[

(

ξ2 + r
) (

ξ2 + 1
)−r
]

× exp
{

r s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r
)]}

× r AΓ(r + α)/ (2rBr)

β
∑

m=1

bm Γ(r +m) c µr,

(57)

and

C ≅
µr <<1

ξ2(1−r) (ξ2 + 1)
r
Γ (r + α) Γ (r + β)

(ξ2 + r) (αβ)r Γ (α) Γ (β)

× exp
{

r s2/
(

2 σ2
s

) [

1/
(

ξ2 + 1
)

− 1/
(

ξ2 + r
)]}

c µr,

(58)

respectively. Similarly, for M and GG atmospheric turbulences under zero boresight pointing

errors (i.e. for s = 0), the asymptotic approximations to the ergodic capacity’s at low SNR are

obtained, respectively, as

C ≅
µr <<1

ξ2(1−r)/
[

(

ξ2 + r
) (

ξ2 + 1
)−r
]

× r AΓ(r + α)/ (2r Br)

β
∑

m=1

bm Γ(r +m) c µr,

(59)
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and

C ≅
µr <<1

ξ2(1−r) (ξ2 + 1)
r
Γ (r + α) Γ (r + β)

(ξ2 + r) (αβ)r Γ (α) Γ (β)
c µr. (60)

Similarly, for M and GG atmospheric turbulences under zero pointing errors (i.e. for s = 0

and ξ → ∞), the asymptotic approximations to the ergodic capacity’s at low SNR are obtained,

respectively, as

C ≅
µr <<1

r AΓ(r + α)/ (2rBr)

β
∑

m=1

bm Γ(r +m) c µr, (61)

and

C ≅
µr <<1

Γ (r + α) Γ (r + β)

(α β)r Γ (α) Γ (β)
c µr. (62)

3) Results and Discussion: As an illustration of the mathematical formalism presented above,

simulation and numerical results for the ergodic capacity of a single FSO link transmission system

under M turbulence channels is presented as follows. The FSO link is modeled as M turbulence

channel with the effects of atmosphere as (α = 2.296; β = 2), (α = 4.2; β = 3) and (α = 8;

β = 4), (Ω = 1.3265, b0 = 0.1079), ρ = 0.596, and φA − φB = π/2 unless stated otherwise. 18

In MATLAB, a M turbulent channel random variable was generated via squaring the absolute

value of a Rician-shadowed random variable [20].

The ergodic capacity of the FSO channel in operation under heterodyne detection technique as

well as IM/DD technique is presented in Fig. 9 and Fig. 10, respectively, for high SNR scenario.

Subsequently, the ergodic capacity of the FSO channel in operation under IM/DD technique

is presented in Fig. 11 for low SNR scenario 19. These figures demonstrate the obtained results

for varying effects of pointing error with α = 2.296 and β = 2. Similar trend in results can be

observed here as were observed for the LN only and the RLN scenarios in Fig. 1, Fig. 2, Fig. 3,

Fig. 5, Fig. 6, and Fig. 7. Additionally, we have plotted in Fig. 9 and Fig. 10 the new Meijer’s

G function expansion based ergodic capacity approximate for the zero boresight pointing error

case under the M turbulence scenario where the exact closed-form ergodic capacity involves

the Meijer’s G function that is given in (55). The plots confirm that both the approaches i.e. the

18It is important to note here that these values for the parameters were selected from [20] subject to the standards to prove the

validity of the obtained results and hence other specific values can be used to obtain the required results by design communication

engineers before deployment. Also, for all cases, 106 realizations of the random variable were generated to perform the Monte-

Carlo simulations in MATLAB.

19For readers clarification, the low SNR asymptote in (57) is actually the average SNR and hence the plot in Fig. 11 is against

the electrical SNR.
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Fig. 9. Ergodic capacity results for varying pointing errors at high SNR regime for M turbulence under heterodyne detection

technique (r = 1).
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Fig. 10. Ergodic capacity results for varying pointing errors at high SNR regime for M turbulence under IM/DD technique

(r = 2).

moments-based approach and the Meijer’s G function expansion based approach provide similar

results for the ergodic capacity of such FSO atmospheric turbulence channel as the curves from

both these approaches overlap simultaneously with the simulation curves nearly at a similar

average SNR. Fig. 12 presents the effect of varying atmospheric turbulences (i.e. varying α’s

and β’s). The pointing error effect is fixed at s = 3, σs = 1.5, and ξ = 1.1. The ergodic capacity

is plotted for the IM/DD technique (i.e. r = 2). It can be observed that as the turbulence gets

severs, the ergodic capacity degrades and vice versa. An important observation is that we can

observe that once we apply ρ → 1 and Ω
′

= 1, the M turbulence matches exactly the special

case of Gamma-Gamma turbulence. This can be depicted from the case wherein (α = 8; β = 4).
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Fig. 11. Ergodic capacity results for varying pointing errors at low SNR regime for M turbulence under IM/DD technique

(r = 2).
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Fig. 12. Ergodic capacity results for IM/DD technique and varying atmospheric turbulence effects at high SNR regime for M

turbulence.

E. Important Outcomes and Further Motivations

• Hence, eqs. (38), (46), and (54) give the required expressions for the ergodic capacity C at

high SNR in terms of simple elementary functions.

• Some special cases of these ergodic capacity results are presented in Table I.

• Furthermore, at high SNR, the ergodic capacity for the optimal rate adaptation (ORA) policy

and the optimal joint power and rate adaptation (OPRA) policy perform similarly. Therefore,

these ergodic capacity results are applicable to both the ergodic capacity policies (i.e. ORA

as well as OPRA).

• Interestingly, the low SNR asymptotic ergodic capacity for the heterodyne detection tech-
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nique (i.e. r = 1 case) in (39)-(41), (47)-(49), and (57)-(62) is actually the average SNR

i.e. C ≅
µ1 <<1

γ1 = µ1.

V. CONCLUDING REMARKS

Unified expression for the moments of the average SNR of a FSO link operating over the

LN, the RLN, and the M atmospheric turbulences under nonzero and zero boresight pointing

errors were derived. Capitalizing on these expressions, we presented new unified asymptotic

formulas applicable in high and low SNR regimes for the ergodic capacity in terms of simple

elementary functions for the respective turbulence models. Subsequently, some special cases were

also summarized in Table I. In addition, this work presented simulation examples to validate

and illustrate the mathematical formulations developed in this work and to show the effect of

the scintillation index, the pointing errors, and the respective turbulence parameters severity on

the system performance.
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TABLE I

SPECIAL CASES FOR LN, RLN, AND M ATMOSPHERIC TURBULENT HIGH SNR ERGODIC CAPACITIES

Turbulence Model With Nonzero Boresight Pointing Errors With Zero Boresight Pointing Errors (s = 0) Without Pointing Errors (s = 0; ξ → ∞)
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