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Abstract—In a mobile ad hoc network (MANET), effective
prediction of time-varying interferences can enable adaptive
transmission designs and therefore improve the communication
performance. This paper investigates interference prediction in
MANETs with a finite number of nodes by proposing and using
a general-order linear model for node mobility. The proposed
mobility model can well approximate node dynamics of practical
MANETs. In contrast to previous studies on interference statis-
tics, we are able through this model to give a best estimate of
the time-varying interference at any time rather than long-term
average effects. Specifically, we propose a compound Gaussian
point process functional as a general framework to obtain
analytical results on the mean value and moment-generating
function of the interference prediction. With a series form of
this functional, we give the necessary and sufficient condition
for when the prediction is essentially equivalent to that from a
Binomial Point Process (BPP) network in the limit as time goes
to infinity. These conditions permit one to rigorously determine
when the commonly used BPP approximations are valid. Finally,
our simulation results corroborate the effectiveness and accuracy
of the analytical results on interference prediction and also show
the advantages of our method in dealing with complex mobilities.

Index Terms—Interference Prediction, General-order Mobility,
Compound Gaussian Point Process Functional, Gaussian BPP,
Mobile Ad hoc Networks.

I. INTRODUCTION

A. Motivation and Related Work

IN MANETs interference plays a pivotal role, through the
Signal to Interference Ratio (SIR), in contributing to the

Quality of Service (QoS). In contrast to static wireless net-
works, the distances between interferers and receiver change
dynamically during the times of communications because of
the mobilities of interferers and receiver. As a result, the re-
ceived signal is affected by fluctuating interferences generated
by these mobile nodes.

Interference analysis can help to discover and exploit the
regularity of these time-vary interferences. For example, it
helps to understand the statistical performance of communi-
cation under such interference, e.g., outage probability. Due
to disturbances on nodes’ movement or our incomplete infor-
mation of the node locations, the trajectories of these nodes
are often accompanied with uncertainties when analyzing
interference in MANETs. Stochastic Geometry [1], [2] is a
powerful tool for describing the random pattern of mobile
nodes as a Point Process (PP) at each time instant. For
mobile networks with high mobility nodes, the authors in [3]
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analyzed the local delay, which is a functional of the inter-
ference Moment Generating Function (MGF), by modeling
node locations as a Poisson Point Process (PPP). Indeed, if
one just focuses on one time instant, the existing results on
interference analysis in static networks can be directly used
in highly mobile networks (e.g., for PPP networks [3]–[6] or
for Binomial Point Process (BPP) networks [7], [8]). Highly
mobile networks imply that the node locations at two different
time instants have almost no correlation, if the node velocities
are sufficiently large. Nevertheless, for most practical cases,
we are more interested in interference analysis in MANETs
with finite nodal velocities.

In order to analyze interference in MANETs with finite
node velocities, mobility models are required to capture the
node locations at each time instant. A summary of mobility
models and their corresponding point processes in prior studies
on interference statistics of MANETs is provided in Table I.
By employing random walk, Brownian motion and random
waypoint models1, the statistics of interference were analyzed
in [16]–[18]. For random walk and Brownian motion models,
the approximate distribution of aggregate interference was
given in [17], [18]. The mean of the aggregate interference
was analyzed in [17], and upper bounds in time-correlation
for aggregate interference and outage probability were given
in [16] and [17]. For the random waypoint model, similarly, the
approximated distribution of aggregate interference was given
in [17], [18], and the mean of the aggregate interference was
analyzed in [17].

However, the existing analysis methods only considered
special or limiting scenarios where statistics of interference
are identical at every time instant. For the random walk
and Brownian motion models in [17], [18], the means or
pdfs (probability density functions) of aggregate interference
at every time instant are the same due to the assumption
that the initial node distribution is uniform. Consequently,
node dynamics do not provide any useful information in the
interference analysis. For the random waypoint model in [17],
[18], the idea was to wait an infinite time for the node
distribution to converge to one limiting distribution that can be
regarded as a PPP with a quadratic polynomial intensity [19].
Based on that kind of PPP, mean, outage and approximated
distribution for aggregate interference were given. As a result,
not only do node dynamics not contribute to the analysis, but
also the results are only valid in infinite time. It should be
noted that in many applications what we would like to know

1The constrained i.i.d. mobility model in [15] is similar to the highly mobile
network, thus we mainly discuss the interference analysis in MANETs under
random walk, Brownian motion and random waypoint.
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TABLE I
SUMMARY OF MOBILITY MODELS AND THEIR CORRESPONDING POINT PROCESSES IN PRIOR STUDIES ON INTERFERENCE

STATISTICS OF MANETS

Reference Mobility Model Point Process

[3]–[6], [9]–[13] Highly mobility networks PPP (time independent)
[14] Highly mobility networks with

randomly actived interferes
PPP (time homogenous for sufficient large time)

[7], [8] Highly mobility networks BPP (time independent)
[15]–[17] Constrained i.i.d. mobility PPP (time homogenous, non-Markov [17])
[16]–[18] Random walk PPP (time homogenous)
[16], [17] Brownian motion PPP (time homogenous)
[16]–[18] Random waypoint PPP (time homogenous) with quadratic polynomial intensity

Time independent: the locations of nodes change independently from one time instant to the next.
Time homogenous: the locations of nodes are correlated between different time instants but have the same pdf.

are the statistics of aggregate interference within a finite time
window rather than an infinite one.

Furthermore, the existing analysis on interference between
multiple time instants typically focused on the time corre-
lation [9]–[11], [16], [17], which provides no further infor-
mation beyond a linear relation. To design a communication
strategy (e.g., transmission power control), we are interested
in knowing and exploiting the statistics of interference at a
future time of interest, which cannot be derived from a simple
time correlation. We assert that interference prediction can
provide us more effective information than time correlation.
Beyond the simple temporal correlation, [14] proposed a joint
temporal characteristic function of interference for multiple
time instants, and [9], [12], [13] investigated the condi-
tional/joint outage/success probabilities over time. Despite the
comprehensive characterizations of the temporal statistics, the
studies in [9], [12], [13] assumed networks with either fixed
or independent node locations from one time slot to the next.
Hence, their results cannot be used for interference prediction
in realistic network with practical mobility models.

In fact, another limitation of current studies on interference
in MANETs is the mobility model. For example, the random
walk, Brownian motion and random waypoint models are often
inadequate to describe many kinds of mobilities in the real
world, like mobilities constrained by the physical laws of
acceleration and velocity [20]. Modelling should include all
kinds of communicating objects that have the ability to move.
With the development of automation, the need for communi-
cation between robots is increasing. For civil use, unmanned
aircrafts offer new ways for commercial enterprises and public
operators to increase operational efficiency, decrease costs, and
enhance safety [21]. The node mobilities in such scenarios
have complex dynamics and cannot be captured by random
walk, Brownian motion, random waypoint mobility models
or even the Gauss-Markov mobility model [20], [22] that
takes acceleration and velocity into account. Therefore, it
is desirable to develop a more general mobility model that
is capable to describe mobile nodes governed by complex
mobility dynamics, and then use it for interference prediction.

B. Our Contributions
In this work, we focus on interference prediction in

MANETs with general mobilities having a finite number of

nodes. Compared to time correlation, interference prediction
can give more effective information, i.e., providing the best
estimate of the interference level at a future time instant based
on the knowledge at the current time. By developing a general
mobility model, the predictions can be used in a wide range
of MANETs.

The main contributions of this work are:

• We propose a General-order Linear Continuous-time
(GLC) mobility model to describe the dynamics of mov-
ing nodes in practical applications. The random walk,
Brownian motion and Gauss-Markov mobility models
in [17], [18], [20] can be regarded as special cases of
the GLC mobility model with discretizations. In this
framework, the random walk and Brownian motion turn
out to be first-order linear mobility models, and Gauss-
Markov model is a second-order linear mobility model.

• Based on the GLC mobility model, the mean and
Moment-Generating Function (MGF) of interference pre-
diction on a mobile reference point at any finite time into
the future are derived and analyzed. In order to simplify
the expression for mean and MGF under different path
loss functions and multipath fading, a Compound Gaus-
sian Point Process Functional (CGPPF) is defined and
expressed in a series form.

• Apart from interference prediction at finite time into
the future, we also give the necessary and sufficient
condition for when our predictions converge to those
from a Gaussian BPP as time goes to infinity. This result
provides a guideline on when the previous studies on
interference statistics with BPP are relevant.

C. Paper Organization

In Section II, we present the case of Uniform Circular
Motion (UCM) as an example to motivate our general model.
In Section III, we define and analyze the GLC mobility model.
Additionally, the dynamic reference point is defined to study
the relative node locations of interferers relative to the mobile
receiver. In Section IV, the mean and MGF of the interference
prediction are analyzed. The numerical examples are given in
Section V to illustrate the effectiveness of our approach and
corroborate our analytical results.
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Fig. 1. (a) Three UAVs scan a target by using vision sensors and share
information through a wireless network. (b) The received interference UAV
0 versus time t.

D. Notation

E[·] denotes the mean of a random variable or a random
vector, and Ea[·] denotes the expectation operator with respect
to a. Cov[·] denotes the covariance of a random vector, and
ẋ(t) = dx(t)/dt denotes the derivative of stochastic process
x(t) at time t in the mean square sense [23].

II. INTERFERENCES IN MANETS WITH UNIFORM
CIRCULAR MOTIONS

In this section, we investigate the interference that arises in
nodes exhibiting Uniform Circular Motion (UCM) to model
UAVs carrying out a scanning task. This simple model will be
seen to be a special case of the general GLC mobility model
that we develop in Section III.

Consider N ∈ Z+ UAVs carrying out a scanning task for
a target, see Fig. 1(a), which has many applications such
as rescue operations, monitoring applications, etc. This target
(the central pink circle) could be a point or an area. Due to
limitations of their visual fields, each UAV can only acquire
partial information about the target. Therefore, in order to
have a better understanding of the target, they need to share
information using wireless communication.

Even though the dynamic model of the UAVs when scan-
ning a target can be highly nonlinear and possibly complex,

the mobility model can be approximated by UCM in the 2-D
plane as two coupled differential equations{

ẋ
(1)
i (t) = ωix

(2)
i (t) + w

(1)
i (t)

ẋ
(2)
i (t) = −ωix(1)

i (t) + w
(2)
i (t)

(1)

where the subscript i denotes the ith node, and i =
1, 2, . . . , N , where N is the number of nodes in the MANET.
(x

(1)
i (t), x

(2)
i (t)) is the location of node i in the 2D plane at

time t, and ωi is the UCM angular velocity, and the initial
vector xi(t0) = [x

(1)
i (t0), x

(2)
i (t0)]T determines the initial

location and radius of node i. w(1)
i (t) and w

(2)
i (t) stand for

additive disturbance due to airflow.
Consider a duration of time in which UAV 1 and 2 com-

municate with UAV j and k, respectively. For UAV 0, it tries
to receive information from UAV q. Therefore, there are two
interferers that affect the signal reception at UAV 0.

The aggregate interference at UAV 0 is shown in Fig. 1(b),2

from which we see that the received aggregate interference at
UAV 0 is periodically changing and does not converge to a
constant value independent of time t. Interference predictions
should be adaptive to the node dynamics and therefore make
use of the characteristics of mobility models.

III. GENERAL-ORDER LINEAR MOBILITY MODEL

In this section, the General-order Linear Continuous-time
(GLC) Mobility Model is proposed and the corresponding
statistics of node distribution is given.

A. General-order Linear Mobility Model and Node Distribu-
tion

Consider a network having N nodes in d-dimensional space
(e.g., d = 2 means nodes move in a 2D plane). For each node
i, where i ∈ {1, 2, . . . , N}, we model it employing the state-
space model with additive uncertainties given by the stochastic
differential and algebraic equations [24]

ẋi(t) = Aixi(t) + wi(t) (2)
yi(t) = Cixi(t), (3)

where the state vector xi(t) is a random vector in Rn, which
can contain the velocity, acceleration or angular velocity, etc.,
and it depends on the way the mobilities of nodes are mod-
elled. The additive uncertainties wi(t) ∈ Rn (assumed to be
a second-order moment process) can represent the airflow for
aircrafts (see Section II), velocity uncertainty for mobile phone
users, etc. The location of node i in the d-dimensional space is
denoted as yi(t) ∈ Rd. The constant matrices Ai ∈ Rn×n, and
Ci ∈ Rd×n are the model parameters determined by the node
dynamics. The initial vector for the differential equation (2)

2 Simulation Parameters: Signal power is 1 for each UAV, and the mobility
model follows (1) with ω0 = ω2 = 0.1rad/s and ω1 = −0.1rad/s. The
initial locations for UAV 0 − 2 are (500, 500), (−400,−300), (400, 0)
(selecting the target center as the origin), thus according to (1) average radii
are R0 = 500

√
2m, R1 = 500m, and R2 = 400m. The powers of w(1)

i (t)

and w
(2)
i (t) are assumed to be unit. We assume the Path loss function r−2,

where r is the Euclid distance between transmitter (UAV) and the point whose
interference is needed to be calculated.
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is xi(s) at time s and is independent from wi(t), ∀t > s,
because wi(t) only affects the future behavior of xi(t).

For the UCM example in Section II, we have

Ai =
[

0 ωi
−ωi 0

]
, Ci =

[
1 0
0 1

]
, (4)

and indeed yi(t) = xi(t). This shows UCM is a second-order
linear mobility model.

Definition 1 (Homogenous Mobility). If pairs (Ai,Ci) for
all the nodes are equal, i.e.,

Ai = A, Ci = C, i ∈ {1, . . . , N} (5)

and wi(t) for all nodes are i.i.d., then the node mobilities are
homogenous.

Remark 1. The random walk and discrete-time Brownian
motion models given in [17], [18] are homogenous and can be
regarded as a special case when (2) is discretized and A = 0.
Thus, they are homogenous first-order linear mobility models.
The one-dimensional homogenous continuous-time mobility
model with

A =
[
0 1
0 ln(1− α)

]
, C = [1 0] , w(t) =

[
0

w(2)(t)

]
, (6)

can be discretized to recover the Gauss-Markov mobility model
given in [20], where α ∈ (0, 1) and the mean of w(2)(t) is
the asymptotic velocity.

Remark 2. For any second-order moment process, the mean
vector E

[
yi(t)

]
and covariance matrix Cov

[
yi(t)

]
of yi(t)

can be calculated, even though the pdf of yi(t) has no
closed-form expression in general. For a fixed covariance
matrix Cov

[
yi(t)

]
, the entropy is maximized when yi(t)

is Gaussian [25]. It implies that for all kinds of second-
order moment process wi(t), Gaussian process contains the
most uncertainties. Practically, it is difficult to determine
what kind of process wi(t) is, and hence the best choice
is to conservatively (since it contains the most uncertainties)
regard wi(t) as a Gaussian process. Furthermore, wi(t) is
independent on time t in practice, we often consider it as
a white noise. Therefore, wi(t) can be regarded as Gaussian
White Noise (GWN). Actually, GWN is widely used in modeling
uncertainties like disturbances [26]–[28]. In the rest of this
paper, we investigate the statistics of yi(t) when wi(t) is
GWN. It can be proved that, if wi(t) is Gaussian in (2), then
yi(t) in (3) is still Gaussian. Thus, the pdf of yi(t) can be
determined by its mean and variance.

Lemma 1 (PDF of Node Distribution). Assume that wi(t) is
GWN, the pdf of yi(t) at time t is a Gaussian distribution
with parameters

E
[
yi(t)

]
= Cie

Ai(t−s)xi(s), (7)

Cov
[
yi(t)

]
= CiΘxi(t)C

T
i , (8)

where

Θxi(t) =

∫ t

s

eAi(t−τ) Cov[wi(τ)] eA
T
i (t−τ) dτ. (9)

Proof: See Appendix A.

B. Dynamic Reference Point

A static reference point can be used when we investigate
the interference statistics at a fixed point, like at a fixed
base station. However, if we want to analyze the interference
statistics of a mobile node in a MANET, e.g., a moving
robot or a UAV (see Fig. 1(b)), the reference point should
be dynamic with possible uncertainties.

We assume the dynamic reference point, denoted as y0(t),
satisfies

ẋ0(t) = A0x0(t) + w0(t) (10)
y0(t) = C0x0(t), (11)

and the relative location of node i from this reference point is
given by

yi(t) := yi(t)− y0(t). (12)

Let fy (yi(t)) denote the pdf of yi(t). The following Lemma
derives the pdf of yi(t), denoted by fy (yi(t)).

Lemma 2 (Node Distribution w.r.t. a Dynamic Reference
Point). Assuming the mobility model of nodes and reference
point are GLC with GWN, the location of the ith node relative
to the dynamic reference point is Gaussian distributed at time
t with mean

E
[
yi(t)

]
= Cie

Ai(t−s)xi(s)−C0e
A0(t−s)x0(s) (13)

and variance

Cov
[
yi(t)

]
= CiΘxi(t)C

T
i + C0Θx0

(t)CT
0 . (14)

Proof: Lemma 2 follows from Lemma 1 and (12).

IV. INTERFERENCE PREDICTION

The main problem of study in this work is to characterize
the interference received at a reference point at a future time
instant given the interferers’ mobility and location information
at the current time instant, i.e., interference prediction from the
current time into the future. We use the GLC mobility model
defined in the previous section to describe the mobility of the
interferers and the reference node. Specifically, the quantity
yi(t) i ∈ {0, . . . , N} in (3) or (11) is the random variables
that describe the locations of nodes (interferers or reference
node) at time t with a known initial condition at time s, where
t can be viewed as a future time instant and s can be viewed as
the current time instant. To make the time-dependency more
explicit, we rewrite it as yi(t|s) in the remainder of the paper.

A. Problem Description

Suppose reference node 0 is receiving information from its
transmitter. Assume that there are N mobile interferers in this
network whose mobilities are modeled by (2) and (3), and
their interference lasts for time duration [t0, tf ]. The aggregate
interference on the reference node at time t ∈ [t0, tf ],
conditioned on knowing the interferers’ node dynamics and
locations at time s with s ≤ t, can be defined as

I(t|s) =

N∑
i=1

hi g
(
‖yi(t|s)‖

)
, (15)
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where hi is the multipath fading gain with E[hi] = 1, which
is independent of yi(t|s) and time t. g(·) denotes the path
loss function, and ‖ · ‖ is the Euclidean norm. For the general
case of s < t, the quantity I(t|s) represents the interference
prediction at a future time instant t based on the information
available at the current time instant s, and hence, it is a random
variable due to the uncertainty in the mobility over the time
duration from s to t. For the very special case of s = t,
the quantity I(t|t) represents the actual interference received
at time t which is a constant instead of a random variable.
In fact, I(t|t) can be viewed as a realization of the random
variable I(t|s) for s < t. In this paper, we simply refer to
I(t|s) as interference prediction.

We consider the problem of predicting the statistics of
interference received by reference node 0 at time t with the
available information from current time s ≤ t. Denote

S
[
I(t|s)

]
= S

[ N∑
i=1

hig
(
‖yi(t|s)‖

)]
, (16)

where S[·] can be any statistics of the interference prediction,
such as the mean value, and yi(t|s) is a conditioned random
vector which represents the relative location of interferer i
from node 0. In most cases, evaluating S

[
I(t|s)

]
requires the

pdf of yi(t|s), which can be determined by Lemma 2.
In the remainder of this section, the mean value and MGF of

the interference prediction will be considered in Section IV-B
and Section IV-C, respectively. In Section IV-D, we will
propose a compound Gaussian point process functional as a
general framework to study these statistics. In Section IV-E,
the information decay in interference predictions will be
discussed, and the prediction has close ties to BPP modelling
when time goes to infinity.

B. Interference Prediction Mean

The mean of the interference prediction is given by the
following theorem.

Theorem 1 (The Mean of the Interference Prediction). The
mean of the interference prediction E[I(t|s)] is

E
[
I(t|s)

]
=

N∑
i=1

∫
Rd
g
(
‖yi(t|s)‖

)
fy (yi(t|s)) d(yi(t|s)), (17)

where fy
(
yi(t|s)

)
is the pdf of yi(t|s), and can be obtained

from Lemma 2.

Proof: The mean value of interference prediction is

E
[
I(t|s)

]
=

N∑
i=1

E
[
Ii(t|s)

]
. (18)

According to (15), E[hi] = 1 and the independence of hi and
yi(t|s), we can derive

E
[
Ii(t|s)

]
=

∫
Rd
g(‖yi(t|s)‖) fy (yi(t|s)) d (yi(t|s)) . (19)

Thus, (17) can be obtained.
The calculation for the mean of the interference prediction

will be discussed in Section IV-D.

C. Interference Prediction MGF

Similar to the mean interference, the MGF of the interfer-
ence prediction can be derived in the following theorem.

Theorem 2 (The MGF of the Interference Prediction). The
MGF of the interference prediction is

E
[
eβI(t|s)

]
=

N∏
i=1

∫
Rd
Eh
[
eβhig(‖yi(t|s)‖)

]
fy
(
yi(t|s)

)
d
(
yi(t|s)

)
,

(20)
where fy

(
yi(t|s)

)
is the pdf of yi(t|s), and can be obtained

from Lemma 2.

Proof: With (15) and independence of hi and yi(t),
Theorem 2 can be proved.

If the power fading is Nakagami-m (m = 1 gives the
Rayleigh fading), i.e.,

fh(x) =
mmx(m−1)e−mx

Γ(m)
, (21)

then the MGF of the interference prediction can take a more
specific form stated as follows.

Corollary 1 (The MGF of the interference prediction
w.r.t. Nakagami-m Fading). With Nakagami-m Fading (21),
E[eβI(t|s)] in (20) becomes

N∏
i=1

∫
Rd

[ m

m− βg
(
‖yi(t|s)‖

)]mfy (yi(t|s)) d (yi(t|s)) ,

(22)

where β g(‖yi(t)‖) < 1.

Remark 3. As already discussed, I(t|s) is a random variable
that represents the interference prediction at a future time
instant t based on the information available at the current
time instant s. The uncertainty of the random variable can be
computed using its MGF. For instance, one can compute how
much the realizations of I(t|s) deviates from its mean value
using the variance

Var[I(t|s)] = E[I2(t|s)]− (E[I(t|s)])2
, (23)

where the first and second moments of I(t|s) are used. Since
the actual interference received at time t, i.e., I(t|t), is a
realization of the interference prediction I(t|s), the variance
computed above tells on average how much the actual inter-
ference received at time t deviates from the predicted value at
time s using the mean prediction.

The calculation for the MGF of the interference prediction
is discussed in Section IV-D.

Although the expressions of either the mean or MGF of the
interference prediction do not usually admit any closed form
due to the generality of the GLC mobility model, exceptions
are found in some special cases where closed-form expressions
are obtained. These results are discussed in Remark 5 in the
next section.
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D. Compound Gaussian Point Process Functional and its
Series Form

In both Section IV-B and Section IV-C, the mean and MGF
have similar integrals to evaluate. This suggests there may
be some general methods to compute these quantities. Here,
we define the Compound Gaussian Point Process Functional
(CGPPF) as a general framework for computing these statis-
tics. Its series form is also given, which will also be useful
in analyzing a limiting property of interference prediction in
Section IV-E.

Definition 2 (Compound Gaussian Point Process Functional).
The CGPPF is a functional G : V → R of the form

G[ν] = Ey
[
ν
(
‖y‖

)]
=

∫
Rd
ν
(
‖y‖

)
fy
(
y
)

dy, (24)

where ν ∈ V is a Lebesgue Integrable function, and fy
(
y
)

is
a pdf of d-dimensional Gaussian distribution given by

fy
(
y
)

=
1

(2π)
d
2 |Σ| 12

e−
1
2 (y−µ)TΣ−1(y−µ), (25)

where µ ∈ Rd and Σ ∈ Rd×d are mean vector and covariance
matrix of location vector y. For example, µ = E

[
yi(t|s)

]
and

Σ = Cov
[
yi(t|s)

]
are mean and covariance of yi(t|s).

Remark 4. For interferer i and dynamic reference point 0,
the following are derived: If ν(‖·‖) = g(‖yi(t|s)‖), then (24)
returns the mean of the interference prediction from interferer
i. If ν(‖·‖) = Eh

[
eβhi(t)g(‖yi(t|s)‖)

]
, then (24) gives the MGF

of the interference prediction from interferer i. Note that the
path loss function, g(·), can be arbitrary.

Remark 5. In most cases, this functional cannot be simplified
to a closed-form expression, and numerical integration is
needed. Nevertheless, if

µ = 0, Σ = diag{σ, . . . , σ} (26)

is satisfied, we can get closed-form expressions for the first
and second moments of the interference prediction, where
σ > 0 is the std (standard deviation) of all components in
location vector y. These expressions are given in Appendix D.
The usefulness of condition (26) will be further discussed in
Section IV-E.

If the integral in (24) exists, the CGPPF can be expanded
into a series form, which is the cornerstone for analyzing the
limit properties of interference predictions in Section IV-E.

Theorem 3 (Series Form for Compound Gaussian Point
Process Functional). Let P be an orthogonal matrix such that
PTµ = η = [ηi]d×1 and PTΣ−1P = diag{1/σ2

1 , . . . , 1/σ
2
d},

then G[ν] can be written as

1

(2π)
d
2 |Σ| 12

lim
R→∞

∞∑
n=0

(−1)n

2nn!

∑
k1+k2+k3=n

(
n

k1, k2, k3

)
Ω Ψ[ν].

(27)

The parameters of (27) are listed as follows:

Ψ[ν] =

∫ R

0

ν (r) r2k1+k2+d−1dr, (28)

Ω =
[ d∑
a=1

( ηa
σa

)2]k3
·

∑
k
(1)
1 +···+k(d)1 =k1

k
(1)
2 +···+k(d)2 =k2

(
k1

k
(1)
1 , . . . , k

(d)
1

)(
k2

k
(1)
2 , . . . , k

(d)
2

)
Ξ,

(29)

Ξ =
∏

1≤a≤d
1≤b≤d

{( 1

σa

)2k
(a)
1
(
− 2

ηb
σ2
b

)k(b)2

·

∫
Θ

(Φa)2k
(a)
1 (Φb)

k
(b)
2 V (φ) dφ

}
,

(30)

where the integration is with respect to the d− 1 dimensional

vector φ =
[
φ1, φ2, . . . , φd−1

]T
over the domain Θ =

{
φ :

φ ∈ [0, π]× · · · × [0, π]︸ ︷︷ ︸
d−2

×[0, 2π]
}

, and

[Φ1, . . . ,Φd]
T =

[
cosφ1, sinφ1 cosφ2, . . . ,

d−2∏
p=1

sinφp cosφd−1,

d−1∏
p=1

sinφp

]T
,

(31)

V (φ) dφ =

d−1∏
q=1

(sinφl)
d−q−1dφq. (32)

Proof: See Appendix B.

Remark 6. It should be noted that there are two required
integrations in Theorem 3. For (28), it has a closed-form
expression when calculating the mean and MGF of the in-
terference predictions with the widely-used path-loss function
of the form

g
(
‖y‖

)
=

1

ε+ ‖y‖α
(33)

where ε ≥ 0 (here ε = 0 refers to a singular path loss), and
α is the path-loss exponent. The expression of (28) is given
in Appendix C.

To evaluate Ω in (29), we need to compute the integral
in (30), i.e., ∫

Θ

(Φa)2k
(a)
1 (Φb)

k
(b)
2 V (φ) dφ, (34)

the calculation of which is rather complex. However, in the
real world, 1 ≤ d ≤ 3, and it is relatively easy to deal with.
In Appendix C, we give the closed-form expression of (29) for
the cases of d = 1 (e.g., a vehicular network on a highway)
and d = 2 (which is the most common scenario of interest).

E. Gaussian BPP Approximations for Interference Prediction

The interference prediction method discussed in previous
subsections is naturally based on the mobility model of
individual interferers. Although prior work on interference
analysis for MANETs did not explicitly study the interference
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prediction problem, one useful idea from them is to use a
certain point process to approximate the node distribution
in the network from which the time-invariant interference
statistics can be derived. For networks where its node dis-
tribution (in distant future) can be well approximated using a
point process, the information on the initial positions of nodes
and node mobilities becomes unnecessary in determining the
interference statistics. Clearly, not all mobile networks can
have such a nice property. In this subsection, we study the
condition under which the interference prediction at a time of
far future can be well approximated based on a simple point
process. We will see that the series form of the CGPPF will
be useful in determining such a condition.

Firstly we give the definition of Gaussian Binomial Point
Process (Gaussian BPP).

Definition 3 (Gaussian BPP). Let fy be a pdf of Gaussian
distribution with support Rd. A Gaussian BPP with N points
on Rd is a set of i.i.d. random vectors {y1, . . . ,yN}, each
with pdf fy.

Due to the effect of Gaussian white noise, i.e., wi(t) in (2),
the uncertainty of our prediction will increase with time, which
implies the information available for prediction will decay. In
this section, we will focus on the prediction into the far future
with N interferers governed by homogenous mobilities. The
following theorem gives a necessary and sufficient condition
that the statistics of interference predictions can be approxi-
mated as those generated by interferers whose locations follow
a Gaussian BPP when t becomes large enough.

Theorem 4 (Necessary and Sufficient Condition for Gaussian
BPP Approximation). Assume that all interferers’ mobilities
are homogenous, as defined in Definition 1, and the integral
in (24) exists, ∀ν ∈ V , the predictions satisfy

lim
t→∞

(Gi[ν]−Gj [ν]) = 0, ∀i, j ∈ {1, . . . , N} (35)

if and only if

[
lim
t→∞

η
(i)
a

σ
(i)
a

− lim
t→∞

η
(j)
a

σ
(j)
a

]
= 0,

∀a = {1, . . . , d}, ∀i, j ∈ {1, . . . , N} (36)

holds, where η
(i)
a and σ

(i)
a are defined in Theorem 3 with

superscripts (i) for ith interferer and

Gi[ν] =

∫
Rd
ν(‖yi‖)

1

(2π)
d
2 |Σi|

1
2

e−
1
2 (yi−µi)

TΣ−1
i (yi−µi)dyi.

(37)

In (37), µi, Σi and yi stand for E
[
yi(t|s)

]
, Cov

[
yi(t|s)

]
and

yi(t|s), respectively.

Proof: If the mobilities of all interferers are homogenous,
from Lemma 2, the covariance matrix Σi in (37) for all the
interferers are the same. Thus, if the integral in (24) exists,

lim
t→∞

{
Gi[ν]−Gj [ν]

}
can be written as

1

(2π)
d
2 |Σ1|

1
2

lim
R→∞

∞∑
n=1

{
(−1)n

2nn!
·

∑
k1+k2+k3=n

k3 6=0

(
n

k1, k2, k3

)
lim
t→∞

(Ωi − Ωj) Ψ[ν]

}
.

(38)

Obviously, formula (38) equals 0 if and only if (35) holds.
Necessity. By the contrapositive, if the (36) does not

hold, lim
t→∞

(Ωi − Ωj) 6= 0 (since arbitrary ν determines
arbitrary (34) in (30), if lim

t→∞
(Ωi − Ωj) = 0, (36) must be

satisfied). As a result, the (38) does not equal 0. Therefore,
the contrapositive is established, and the necessity of (36) is
proved.

Sufficiency. If (36) is satisfied, then the (38) equals 0, so as
for (35). Thus the sufficiency of (36) is established.

Remark 7. Theorem 4 tells us the interference predictions,
from interferers with homogenous mobility asymptotically con-
verge to the predictions from a Gaussian BPP. Nevertheless,
if (36) does not hold, we cannot use the BPP approximation.
In Section V, we will see examples in both scenarios. It should
be noted that η(i)

a and σ
(i)
a in (36) can be easily calculated

for a given GLC mobility model (see Section V for examples).

Remark 8. Gaussian BPP approximation implies that the
mean and MGF of the interference prediction become

E
[
I(t|s)

]
≈ N Gi

[
g
(
‖yi(t|s)‖

)]
, ∀i (39)

E
[
eβI(t|s)

]
≈ Gi

[( m

m− βg(‖yi(t|s)‖)

)m]N
, ∀i, (40)

when t � s. Therefore, we can calculate the mean or
MGF of the interference prediction using just one (arbitrary)
interferer’s information instead of all interferers, and the
computation is significantly simplified. Note that (39) and (40)
change with time t, because the distribution of the predicted
location y(t|s) varies with t.

Corollary 2 (Necessary and Sufficient Condition for Gaussian
BPP Approximation with µ = 0). Assume that all interferers’
mobilities are homogenous and the integral in (24) exists, ∀ν ∈
V , the predictions satisfy

lim
t→∞

(Gi[ν]−Go[ν]) = 0, ∀i ∈ {1, . . . , N} (41)

if and only if

lim
t→∞

η
(i)
a

σ
(i)
a

= 0, ∀a ∈ {1, . . . , d}, ∀i ∈ {1, . . . , N} (42)

holds, and

Go[ν] =

∫
Rd
ν(‖y‖) 1

(2π)
d
2 |Σ| 12

e−
1
2yTΣ−1ydy, (43)

where µ = µ1 = . . . = µN (µi = E
[
yi(t|s)

]
) and Σ =

Σ1 = . . . = ΣN (Σi = Cov[yi(t|s)]).

Remark 9. Corollary 2 implies that we can use the Gaussian
BPP with µ = 0 to approximate the mean or MGF of the
interference prediction when condition (42) holds. It should
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be noted that it is easy to test condition (42) by calculating
η

(i)
a and σ

(i)
a for a given GLC mobility model. Furthermore,

if Σ = diag{σ, . . . , σ} also holds, we can use the result
stated in Remark 5 to obtain closed-form expressions for
first and second moments of interference prediction given in
Appendix D. An example of mobility model that has such nice
properties is Brownian motion.

V. SIMULATION EXAMPLES

In order to corroborate our theoretical results, simulations
are presented to illustrate the effectiveness of interference
prediction. We consider three different mobile networks with
the mobility model given by: (1) the basic 2-dimensional
Brownian motion, (2) 2-dimensional Brownian motion with
inertia in the velocity and (3) UCM in 3-dimensional space.
The basic Brownian motion is a simple and commonly-used
mobility model while Brownian motion with inertia is a new
mobility model that has not been considered in the literature.
We will study and compare the interference prediction results
for these two examples. Specifically, we will see that the
existence of inertia completely changes the limiting behavior
of the interference prediction. After that, we move from 2-
dimensional examples to a 3-dimensional example of UCM
which can represent the scenario of UAV target scanning
similar to that in Section II. Note that all three mobility models
are special cases of the GLC mobility model developed in this
work.

To make predictions, the parameters for path loss function
(e.g., the path-loss exponent α) and multipath fading (e.g., the
value of m for the Nakagami-m fading channel) are necessary.
In addition the following parameters are assumed to be known
at time s:
• For 2D Brownian motion (Section V-A), the location for

each node.
• For 2D Brownian motion with inertia (Section V-B), the

location and velocity for each node.
• For UCM (Section V-C), the location and angular velocity

for each node.
Note that the node location and velocity at only one time

instant (not frequently updated) can be obtained in many
practical scenarios [29]–[31]. For mobile users (Section V-A),
their locations can be updated by Global Positioning System
(GPS) [29]. For vehicles (Section V-B) or UAVs (Section V-C),
their locations or velocities can be obtained by Differential
GPS (DGPS), e.g., [30], [31], and the angular velocity can be
calculated by the node location, node velocity and the center
location of UCM.

A. 2D Brownian Motion

We consider a network having 7 nodes with mobility
governed by Brownian motion, which can be used to describe
human mobility [32]. As a special case of our GLC mobility
model, 2D Brownian motion has the parameters

Ai =
[
0 0
0 0

]
, Ci =

[
1 0
0 1

]
, (44)

where i = 0, 1, . . . , 6 (that is, 6 interferers and 1 reference
point). Note that the reference node also does Brownian
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Fig. 2. (a) Node motions. (b) Aggregate interference at reference node
and the corresponding predictions. E[I(t|s = 0)] stands for the mean
value of interference prediction based on information available at s = 0,
and std [I(t|s = 0)] is the standard deviation of prediction. They are both
dependent on time t and s. Each error bar E[I(t|s = 0)]± std [I(t|s = 0)]
is symmetric about E[I(t|s = 0)], and the negative part of E[I(t|s =
0)]− std [I(t|s = 0)] is omitted.

motion. Furthermore, all the nodes (including the reference
node) start moving from the origin at time t0 = 0, i.e.,
yi(0) = xi(0) = 0.

The uncertainty wi follows

wi(t) =
[
w

(1)
i (t), w

(2)
i (t)

]T
, (45)

where all wi(t) for all i are identical GWNs with unit power.
A realization of Brownian motion is shown in Fig. 2(a).

Considering ε = 1 and α = 4 in the path loss function and
Nakagami fading with m = 2, we can predict the mean and
standard deviation of the aggregate interference at node 0 from
s = 0, i.e., E[I(t|s = 0)] and std[I(t|s = 0)], see Fig. 2(b).
The std[I(t|s = 0)] measures how much the realization of
I(t|s = 0), i.e., I(t|t), deviates from its predicted mean value,
and thus std[I(t|s = 0)] reveals the uncertainty of interference
prediction. In this case, both E[I(t|s = 0)] and std[I(t|s = 0)]
have closed-form expressions (because (26) in Remark 5 is
satisfied), which can be derived by calculating E[Ii(t|s = 0)]
and std[Ii(t|s = 0)], ∀i, from (77) and (78) in Appendix D.

From Fig. 2(b) we can see that the mean of the interference
prediction does not perform well, and the Coefficient of Vari-
ation (CV) std[Ii(t|s = 0)]/E[Ii(t|s = 0)], i.e., normalized
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Fig. 3. Predictions on the mean of aggregate interference based on frequently
updated location information at time s = 0, 4.6, 9.7, 14.8, 19.9, 25.

standard deviation, increases with t. This is due to the fact
that the uncertainties wi(t) in velocities xi(t) dominate the
behavior of the mobilities of nodes. In Fig. 2(a) the node
locations are far away from the origin, while prediction tells
us E[yi(t|s = 0)] = yi(0) = 0 (see Fig. 2(a)).

In Fig. 2(b), s = 0 means the information on node locations
is updated at time 0. If we want a better prediction for near
future, the information on node locations need to be updated
more frequently. Interference prediction is then done with
updated location information until the next update (see Fig. 3).

We end this subsection with a discussion on the Gaussian
BPP approximations for these predictions in Fig. 3. Actually,
these predictions can be approximated by a Gaussian BPP at
origin. This is because the condition (42) in Corollary 2 is
satisfied.

It should be noted that η(i)
a and σ(i)

a can be easily calculated
to test the condition (42): By Lemma 2, the mean and variance
of the location prediction at t from s for ith node are

µ = yi(s)− y0(s), Σ = diag
{

2(t− s), 2(t− s)
}
, (46)

where yi(s)−y0(s) is finite. As Σ is naturally a diagonal ma-
trix (which means the orthogonal transformation PTΣ−1P =
diag{1/σ2

1 , . . . , 1/σ
2
d} is not required), we have

η1 = µ1 = y
(1)
i (s)−y(1)

0 (s), η2 = µ2 = y
(2)
i (s)−y(2)

0 (s),

σ1 = σ2 =
√

2(t− s). (47)

Thus, the condition (36) in Theorem 4 is satisfied, which
implies the predictions made from different s in Fig. 3 can
be approximated by the corresponding prediction from the
Gaussian BPP with 6 nodes whose location pdf has µ = 0
when t − s is large enough. The approximation has the
following close-form expression

E[I(t− s|s)] = 6E[Ii(t− s|s)]

≈
6Ci

( √
ε

2σ2

)
sin

√
ε

2σ2 + 3 cos
√
ε

2σ2

[
π − 2Si

( √
ε

2σ2

)]
2
√
εσ2

, (48)

where E[Ii(t− s|s)] is derived from (77) in Appendix D, and
σ = σ1 = σ2 =

√
2(t− s). Since E[Ii(t − s|s)] is time-

invariant, it is exactly the E[I(t|s = 0)]. Therefore, if we

translate the time-axis by s − t, these prediction E[I(t|s)]
(s = 4.6, 9.7, 14.8, 19.9, 25) will asymptotically converge to
E[I(t|s = 0)] as t− s increases (see Table II).

B. 2D Brownian Motion with Inertia

The basic Brownian motion in Section V-A is dominated by
velocity uncertainty, thus our predictions cannot be expected
to offer great accuracy. In this section, we focus on the
Brownian motion with velocity inertia in 2D space, and it can
be employed to describe the motion for vehicle or pedestrian
with destination.

The mobility model has the parameters

Ai =

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , Ci =
[
1 0 0 0
0 0 1 0

]
, (49)

where i = 0, 1, . . . , 6, and with the initial condition

xi(0) =
[
0, x

(2)
i (0), 0, x

(4)
i (0)

]T
, (50)

where x(1)
i (0) = 0 and x

(3)
i (0) = 0. Note that the ith node

location is given by yi(0) = [x
(1)
i (0), x

(3)
i (0)]T . The non-

zero states, x(2)
i (0) and x(4)

i (0), which represent the ith node
velocity components (i.e., ẏi(0) = [x

(2)
i (0), x

(4)
i (0)]T ), are

randomly generated in [−1, 1] and assumed to be known. The
wi follows

wi(t) =
[
w

(1)
i (t), 0

]T
, (51)

where all w(1)
i (t) are identical GWN with unit power, which

implies the node velocities are fluctuating due to these uncer-
tainties. The parameters of the path loss function and multipath
fading are the same as those in Section V-A (i.e., ε = 1,
α = 4, m = 2). A realization for Brownian motion with
inertia is shown in Fig. 4(a). The mean and standard deviation
of interference prediction from s = 1.8 are shown in Fig. 4(b).

From Fig. 4(b) we can see that the prediction performs much
better than that for Brownian motion without inertia, and the
standard deviation is smaller than that in Brownian motion
without inertia for the same interference level. It also should
be noted that, similar to the Brownian motion without inertia,
the CV becomes larger with increasing t.

In terms of the limiting behavior of the prediction, unfor-
tunately, it cannot be approximated by the prediction from a
Gaussian BPP in Theorem 4 no matter how large t is. It can
be calculated that

η1 = x
(1)
i (s)− x(1)

0 (s) +
[
x

(2)
i (s)− x(2)

0 (s)
]
· (t− s)

η2 = x
(3)
i (s)− x(3)

0 (s) +
[
x

(4)
i (s)− x(4)

0 (s)
]
· (t− s)

σ1 = σ2 =
√

2(t− s).

(52)

Because
[
x

(2)
i (s)− x(2)

0 (s)
]
6=
[
x

(4)
i (s)− x(4)

0 (s)
]

at s = 1.8,
condition (36) in Theorem 4 is not satisfied. The prediction
based on the actual mobility model and that based on BPP
approximation are shown in Table III, and it turns out that
there is a big difference between them.



10

TABLE II
CONVERGENCE BEHAVIOR FOR THE MEAN OF THE INTERFERENCE PREDICTION IN NETWORKS WITH BROWNIAN MOTION MOBILITY MODELS

t− s = 10 t− s = 50 t− s = 100 t− s = 500

E[I(t|s = 0)] 0.2201 0.0463 0.0233 0.0047
E[I(t|s = 4.6)] 0.2115 0.0459 0.0232 0.0047
E[I(t|s = 9.7)] 0.2032 0.0455 0.0231 0.0047
E[I(t|s = 14.8)] 0.1772 0.0442 0.0228 0.0047
E[I(t|s = 19.9)] 0.1768 0.0441 0.0228 0.0047
E[I(t|s = 25)] 0.1850 0.0446 0.0229 0.0047

TABLE III
COMPARISON OF THE MEAN OF THE INTERFERENCE PREDICTION IN NETWORKS WITH BPP APPROXIMATION

t− s = 10 t− s = 50 t− s = 100 t− s = 500

E[I(t|s = 1.8)] 2.679× 10−2 1.837× 10−4 3.025× 10−5 8.665× 10−7

BPP Approximation 0.2201 0.0463 0.0233 0.0047
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Fig. 4. (a) Node motions. (b) Aggregate interference at reference node and
the mean of the interference prediction.

C. Uniform Circular Motion in 3D Space

In this section, we revisit the UAV target scanning problem
discussed in Section II. In the real world, UAVs that execute
the scanning task seldom hover in the same 2D plane (their
flight altitudes differ) for collision avoidance. Thus, UCM
should be modeled in 3D rather than 2D. Assume there is one
receiver (reference node, UAV 0) and two interferers (UAVs

1 and 2), whose parameters of mobility models are

A0 = A2 =

[
0 −0.1 0

0.1 0 0
0 0 0

]
, C0 = C2 =

[
1 0 0
0 1 0
0 0 1

]

A1 =

[
0 0.1 0
−0.1 0 0

0 0 0

]
, C1 =

[
1 0 0
0 1 0
0 0 1

]
,

(53)

which implies the hover angular velocities for UAVs 0 and
2 are both −0.1rad/s, and for node 1 is 0.1rad/s. The initial
locations yi(0) = xi(0), i = 0, 1, 2 are

y0(0) =

[
500
500
500

]
, y1(0) =

[
−400
−300
700

]
, y0(0) =

[
400
0

300

]
, (54)

where y(3)
0 (0) = 500, y(3)

1 (0) = 700 and y
(3)
2 (0) = 300 are

the initial altitudes for UAVs 0, 1, and 2. The wi follows

wi(t) =
[
w

(1)
i (t), w

(2)
i (t), w

(3)
i (t)

]T
, (55)

where all w(j)
i (t), j = 1, 2, 3 are identical GWN with power

σ2 = 100. The parameters of path loss function are the same
as those in Sections V-A and V-B (i.e., ε = 1, α = 2). Because
there are few obstacles in airspace, we assume that there is no
multipath fading. The UAVs’ motion-trajectories are shown in
Fig. 5(a). The aggregate interference and E

[
I(t|s = 17)

]
are

shown in Fig. 5(b). We see that the interference prediction
is very close to the actual interference. It is interesting to
see that the CV is not always increasing with t. However,
if we consider the interference at the same level, the CV does
increase with time, e.g., t = 30 and t = 60.

VI. CONCLUSION

In this paper, the interference prediction problem in
MANETs has been investigated. The GLC mobility model
has been proposed to describe or approximate a large class
of mobilities in the real world. The statistics of interference
prediction with respect to a dynamic reference point have been
analyzed, including mean value and the MGF. We have defined
the CGPPF as a general framework to compute the mean and
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Fig. 5. (a) UAV locations versus time t, starting from the triangular marks
and ending at the circular marks. (b) Aggregate interference at reference node
and the mean of the interference prediction.

MGF, and discussed important special cases where closed-
form expressions can be obtained. With expressing the CGPPF
in series form, we have analyzed the limiting behavior of the
statistics of the interference prediction, and given the necessary
and sufficient for when the node locations can be regarded as
a Gaussian BPP when analyzing the statistics of interference
prediction.

The presented work serves as the first step to develop
more comprehensive results in interference predictions. Even
though the CGPPF provides a general framework for calcu-
lating the statistics of interference prediction, the closed-form
expressions exist only in some special cases. It is possible to
derive closed-form approximations for these statistics using a
cumulant-based approach (e.g., similar to [33], [34]). Further-
more, for the limiting behavior of interference prediction with
homogenous mobilities, it would be desirable to obtain a more
direct link between the mobility model and the condition for
the BPP approximations stated in Theorem 4. For example,
we observed from our numerical results that if the matrix A
of the mobility model is Lyapunov-stable [24], the condition
for Gaussian BPP approximation holds, and vise versa. On
the other hand, it would be interesting to extend the results
on finite number of nodes to infinite number of nodes and
study the condition under which the limiting behavior of the

interference prediction converges to that from a PPP. Another
interesting direction for future research is to generalize the
assumption for wi(t) beyond Gaussian. Last but not least, the
results on interference prediction obtained in this work can
also been used to predict the outage probability at a future
time instant.

APPENDIX A
PDF OF NODE DISTRIBUTION

A more general proof can be found in [26]. For complete-
ness, we provide a proof of Lemma 1 here:

The solution of (2) is

xi(t) = eAi(t−t0)xi(t0) +

∫ t

t0

eAi(t−τ)wi(τ)dτ (56)

and then the mean of xi(t) can be derived as

E[xi(t)] = eAi(t−t0)xi(t0) +

∫ t

t0

eAi(t−τ) E[wi(τ)] dτ

(a)
= eAi(t−t0)xi(t0),

(57)

where (a) is established by E
[
wi(τ)

]
= 0. Then we can get (7)

from (3).
The covariance of xi(t) is given by

Cov
[
xi(t)

] (a)
= Cov

[
eAi(t−t0)xi(t0)

]
+ Cov

[∫ t

t0

eAi(t−τ)wi(τ) dτ
]

= 0 + Cov
[∫ t

t0

eAi(t−τ)wi(τ) dτ
]
,

(58)

where (a) follows from the independence of xi(t0) and
wi(τ) (τ ∈ [t0, t]). Additionally,

Cov
[∫ t

t0

eAi(t−τ)wi(τ) dτ
]

= Cov
(∫ t

t0

eAi(t−τ)wi(τ) dτ,

∫ t

t0

eAi(t−ψ)wi(ψ) dψ
)

=

∫ t

t0

∫ t

t0

Cov
(
eAi(t−τ)wi(τ), eAi(t−ψ)wi(ψ)

)
dτ dψ

=

∫ t

t0

∫ t

t0

eAi(t−τ) Cov
(
wi(τ),wi(ψ)

)
eA

T
i (t−ψ) dτ dψ

(a)
= Θxi(t),

where (a) follows the properties of GWN. Then (8) can be
derived from (3).

APPENDIX B
PROOF OF CGPPF SERIES FORM

With the orthogonal transform z = PTy such that PTµ =
η = [ηa]d×1 and PTΣ−1P = diag{1/σ2

1 , . . . , 1/σ
2
d} = Λ,
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equation (24) can be rewritten as

G[ν] =

∫
Rd
ν(‖y‖) 1

(2π)
d
2 |Σ| 12

e−
1
2 (y−µ)TΣ−1(y−µ) dy

=

∫
Rd
ν(‖z‖) 1

(2π)
d
2 |Σ| 12

e−
1
2 (z−η)TΛ(z−η) dz

(a)
=

1

(2π)
d
2 |Σ| 12

∫ ∞
0

[
ν(r)·

e−
1
2 (rΦ−η)TΛ(rΦ−η)rd−1

]
dr

∫
Θ

V (φ) dφ,

(59)

where (a) follows a d-dimensional spherical transform. Φ =
[Φa]d×1 and V (φ)dφ are shown in (31) and (32), respectively.

Labeling

ν(r,Φ) =

∫ ∞
0

ν(r) e−
1
2 (rΦ−η)TΛ(rΦ−η)rd−1 dr, (60)

we expand it into the Taylor Series

ν(r,Φ) =
∞∑
n=0

(−1)n

2nn!

∫ ∞
0

{
ν(r)rd−1·

[
(rΦ− η)TΛ(rΦ− η)

]n }
dr.

(61)

By employing the multinomial theorem,

[
(rΦ− η)TΛ(rΦ− η)

]n
=

∑
k1+k2+k3=n

[(
n

k1, k2, k3

)
·

(
d∑
a=1

Φ2
a

σ2
a

)k1( d∑
b=1

−2Φbηb
σ2
b

)k2( d∑
q=1

η2
q

σ2
q

)k3
r2k1+k2

]
, (62)

where (
d∑
a=1

Φ2
a

σ2
a

)k1
=

∑
k
(1)
1 +···+k(d)1 =k1

[(
k1

k
(1)
1 , . . . , k

(d)
1

)
·

d∏
a=1

(
Φa
σa

)2k1 ]
,

(63)(
d∑
b=1

−2Φbηb
σ2
b

)k2
=

∑
k
(1)
2 +···+k(d)2 =k2

[(
k2

k
(1)
2 , . . . , k

(d)
2

)
·

d∏
b=1

(
−2Φbηb

σ2
b

)k2 ]
.

(64)

Thus, (59) can be written as (27).

APPENDIX C
INTEGRATIONS IN CGPPF SERIES FORM

A. Derivation for Ψ[ν] in (28)

In order to calculate the interference prediction mean, we
set ν (r) = 1

ε+rα , thus Ψ[ν] is

Ψ[ν]=

{
Rc+1H2F1(1, c+1

α , c+1+α
α ,−Rαε )

(1+c)ε ε > 0
Rc−α+1

c+α−1 ε = 0, c− α+ 1 > 0,
(65)

where c = 2k1 +k2 +d−1 and H2F1(·) is the hypergeometric
function [35]. When ε = 0, the condition c−α+1 > 0 should
be satisfied, this is because the singularity at 0.

In order to calculate the MGF of interference prediction, we
set ν (r) =

[
m

m−β 1
ε+rα

]m
, thus Ψ[ν] is

Ψ[ν] = Rc+1 (ε− β +Rα)
−m

[
ε (ε− β +Rα)

(1 + c)(ε− β)
·

H2F1

(
1,

1 + c+ α(1−m)

α
,

1 + c+ α

α
,
Rα

β − ε

)
+

Rα
(

1− Rα

β−ε

)m
H2F1

(
1+c+α
α ,m, 1+c+2α

α , R
α

β−ε

)
1 + c+ α

]
, (66)

where ε 6= β.

B. Derivation for Ω in (29)
For d = 1,

Ω =
(−2)k2ηk2+2k3

σ2(k1+k2+k3)
. (67)

In order to simplified the discussions for the cas d = 2, we
define two functions

I[0,π](m,n) =
∑m

2

l=0

(
m/2
l

)
(−1)l

√
πΓ( 2l+n+1

2 )

Γ( 2l+n+2
2 )

m is even,m > 0, n ≥ 0

0 m is odd,m > 0, n ≥ 0
√
πΓ(n+1

2 )

Γ(n+2
2 )

m = 0, n ≥ 0

(68)

and

I[0,2π](m,n) =
Υ(m,n) n is even,m ≥ 0, n > 0

0 n is odd,m ≥ 0, n > 0
√
πΓ(n+1

2 )

Γ(n+2
2 )

m ≥ 0, n = 0

, (69)

where

Υ(m,n) =

n
2∑
l=0

(
n/2

l

)
(−1)l

[
1 + (−1)2l+m

]√
πΓ( 2l+m+1

2 )

Γ( 2l+m+2
2 )

.

Therefore, with d = 2, we have

Ω =

[
2∑
i=1

(
ηi
σi

)2
]k3 ∑
k
(1)
1 +k

(2)
1 =k1

k
(1)
2 +k

(2)
2 =k2

(
k1

k
(1)
1 , k

(2)
1

)(
k2

k
(1)
2 , k

(2)
2

)
Ξ,

(70)

where

Ξ =

[ ∏
1≤i≤2
1≤j≤2

(
1

σi

)2k
(i)
1

(
−2

ηj
σ2
j

)k(j)2 ]
·

[
I[0,2π]

(
2k

(1)
1 + k

(1)
2 , 0

)
I[0,2π]

(
2k

(1)
1 , k

(2)
2

)
·

I[0,2π]

(
k

(1)
2 , 2k

(2)
1

)
I[0,2π]

(
0, 2k

(2)
1 + k

(2)
2

)]
. (71)
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APPENDIX D
SOME CLOSED FORMS FOR CGPPF

If condition (26) is satisfied, some closed-form expressions
for E[Ii(t|s)] and E[I2

i (t|s)] can be derived. Please refer
to (33) for the definition of α and ε.

Firstly, if ε = 0, which implies a singular path loss, we can
derive the closed-form expressions for first and second order
statistics as

E
[
Ii(t|s)

]
=

∫ ∞
0

vdr
d−1

(2π)
d
2 σdrα

e−
r2

2σ2 dr =
vdΓ
[
d−α

2

]
2
α
2 +1π

d
2 σα

(72)

E
[
I2
i (t|s)

]
=
m+ 1

m

∫ ∞
0

vdr
d−1

(2π)
d
2 σdr2α

e−
r2

2σ2 dr

=
(m+ 1)vdΓ

[
d−2α

2

]
m2α+1π

d
2 σ2α

,

(73)

when gamma function Γ(·) has finite value. vd is the volume
of the d-dimensional ball of radius 1, i.e.,

vd =
2πd/2

Γ(d/2)
. (74)

However, if ε > 0, closed-forms are difficult to derive for
general α > 0. We just give the results for α = 2 and α = 4.
When α = 2

E
[
Ii(t|s)

]
=
vde

ε
2σ2 ε

α−2
2 Γ(d/2)Γ( 2−d

2 , ε
2σ2 )

2(2π)
d
2 |Σ| 12

(75)

E
[
I2
i (t|s)

]
=

(m+ 1)vd(d− 4)Γ
(
d−4

2

)
16m(2π)

d
2 |Σ| 12 ε2σ4

·{
2σ2e

ε
2σ2 ε

d
2

[
ε+ σ2(d− 2)

]
Γ

(
4− d

2
,
ε

2σ2

)
− 2

d
2 σdε2

}
.

(76)

For α = 4 and d = 2,

E
[
Ii(t|s)

]
=

2Ci
( √

ε
2σ2

)
sin

√
ε

2σ2 + cos
√
ε

2σ2

[
π − 2Si

( √
ε

2σ2

)]
4
√
εσ2

(77)

E
[
I2
i (t|s)

]
=

(m+ 1)G1,3
1,3

(
1/2

0,1/2,3/2

∣∣ ε
16σ4

)
4mε

3
2
√
πσ2

, (78)

where Si(·) and Ci(·) are sine/cosine integral function with
the form

Si(z) =

∫ z

0

sinx

x
dx, and Ci(z) = −

∫ ∞
z

cosx

x
dx,

and Gp,qm,n
(
a1,...,ap
b1,...,bq

|z
)

is the Meijer-G function [35].
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