
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 8, AUGUST 2015 4369
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With Decode-and-Forward Relay Selection
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Abstract—In this paper, we study outage probability (OP) and
diversity order of a M -source and N -relay wireless network
that combines network coding (NC) and relay selection (RS).
More specifically, a decode-and-forward (DF) relaying protocol
is considered and the network-encoding vectors at the relays are
assumed to constitute a maximum distance separable (MDS) code.
Single relay selection (SRS) and multiple relay selection (MRS)
protocols are investigated, where the best relay and the L best
relays forward the network-coded packets to the destination, re-
spectively. An accurate mathematical framework for computing
the OP is provided and from its direct inspection the following
conclusions on the achievable diversity are drawn: 1) the SRS
protocol achieves diversity order equal to two regardless of M
and N and 2) the MRS protocol achieves diversity order equal to
L + 1 if L < M and equal to N + 1 if L ≥ M . These analytical
findings are substantiated with the aid of Monte Carlo simulations,
which also show that RS provides a better OP than NC based on
repetition coding if L ≥ M .

Index Terms—Network coding, cooperative networks, relay se-
lection, outage probability, diversity order.

I. INTRODUCTION

COOPERATIVE diversity is an effective technique for in-
creasing the coverage and for improving the performance

of wireless networks [1]. In cooperative networks, idle nodes,
henceforth called relays, are allowed to overhear the packets
transmitted from the sources and to forward their estimates
to a destination. Since multiple copies of the same signal are
received at the destination, a better end-to-end reliability is, in
general, obtained. If multiple relays are available in the network
and a Relay Selection (RS) protocol is used, in particular, full
diversity order can be achieved [2].

In cooperative networks, in general, several sources may
want to send data to the same destination with the aid of the
same idle nodes. If each source uses the relays in a round-
robin fashion, the price to pay for achieving full diversity may
be an unacceptable reduction of the spectral efficiency [3]. To
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overcome this limitation, Network-Coded Cooperation (NCC)
has recently been introduced, where the relays are capable of
retransmitting all the packets received from the sources in a sin-
gle time-slot, by capitalizing on the concept of Network Coding
(NC) [4]. Recently, several researchers have investigated the
benefits of NC for application to relay-aided networks. In [5],
the capacity region of NCC is derived and it is proved that NCC
is capable of outperforming classical cooperative networks. In
[6] and [7], the advantages of combining NC with Single Relay
Selection (SRS) and Multiple Relay Selection (MRS) protocols
for application to the Two-Way Relay Channel (TWRC) are
investigated, respectively. In [7], a suboptimal RS criterion for
application to the TWRC with Amplify-and-Forward (AF) is
introduced and studied. A similar RS protocol is considered in
[8], where Outage Probability (OP), Bit Error Rate (BER) and
diversity order are studied. These papers, however, are focused
on the analysis of bidirectional networks. The analysis of NCC
with RS for application to unidirectional networks has, on the
other hand, received less attention [9], [10].

Motivated by these considerations, we study the OP and the
diversity order of NCC with RS in a multiple-access relay-
aided network that consists of M sources, N relays, and one
destination. The considered system model may find application
in the uplink of cellular networks, where a base station acts as
the destination, some active mobile terminals act as the sources,
and some idle mobile terminals act as the relays. This network
setup has recently been investigated by other researchers. In
[11], the Diversity Multiplexing Tradeoff (DMT) of NCC is
studied and it is shown that full diversity can be achieved by
using RS, under the assumption that the destination is able
to successfully decode the packets of all the sources. In [12],
the analysis in [11] is generalized by removing the above-
mentioned assumption and by studying SRS and MRS proto-
cols. The correlation of the ordered statistics originating from
the RS protocol is, however, not completely taken into account
[7]. In [13]–[15], the authors study OP, BER, and diversity
order of Analog Network Coding (ANC). In the present paper,
on the other hand, we focus our attention on the analysis of
OP and diversity order of Decode-and-Forward (DF-) based
RS that uses Digital NC (DNC), where the network-encoding
vectors at the relays are assumed to constitute a Maximum
Distance Separable (MDS) code [10]. More specifically, the
present paper provides the following contributions:

• Exact and asymptotic expressions of the OP for SRS and
MRS protocols are derived, which highlight fundamen-
tal performance trends as a function of several system
parameters.
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Fig. 1. M -source and N -relay wireless network combining NC and RS.

• From the asymptotic expression of the OP, the diver-
sity order is obtained and the following conclusions are
drawn: 1) the SRS protocol achieves a diversity order
equal to two regardless of M and N and 2) the MRS
protocol achieves a diversity order equal to L+ 1 if L <
M and equal to N + 1 if L ≥ M .
Numerical results show that NCC with RS provides better
performance than NCC with repetition-based transmis-
sion if L ≥ M .

The remainder of the present paper is organized as follows. In
Section II, the system model is introduced. In Section III, SRS
and MRS protocols are described. In Section IV and Section V,
the OP of SRS and MRS protocols is computed, respectively.
In Section VI, the benefits of NCC with RS compared to NCC
with repetition-based relaying are investigated. In Section VII,
mathematical framework and findings are validated with the aid
of Monte Carlo simulations. Finally, Section VIII concludes the
present paper.

II. SYSTEM MODEL

We consider a cooperative network that consists of M
sources denoted by Sm, 1 ≤ m ≤ M, N relays denoted by
Rn, 1 ≤ n ≤ N , and one destination denoted by D, as depicted
in Fig. 1. Perfect time synchronization is assumed and all
channels experience block Rayleigh fading and Additive White
Gaussian Noise (AWGN). All nodes are equipped with a single
antenna and operate in a half-duplex mode. One cooperative
period consists of two phases: broadcasting and relaying.

In the broadcasting phase, the sources transmit their data
symbols to the relays and to the destination in non-overlapping
time-slots. This phase, thus, lasts M time-slots. Let bm denote
the data symbol emitted by source Sm, 1 ≤ m ≤ M . Each bm
symbol contains q data bits. A 2q-order modulator maps bm into
a signal symbol xm. The signal received at relay Rn, 1 ≤ n ≤
N , and at the destination can be formulated as follows:{

ySmRn
=
√

PSmRn
hSmRn

xm + zSmRn

ySmD =
√

PSmDhSmDxm + zSmD

, (1)

where hXY for X ∈ {Sm} and Y ∈ {Rn, D} denotes the chan-
nel fading coefficient of the link X → Y , which is a complex
Gaussian random variable with zero mean and unit variance,
i.e., E{|hXY |2} = 1. All channels are assumed to be mutually
independent; PXY denotes the average received signal power at

node Y from node X , including the path loss; and z(.) denotes
the AWGN with zero mean and variance σ2.

The relaying phase is based on the RS protocol and it is
described in the next section. Let us assume that L ≤ M relays
are selected for relaying the data of the sources to the desti-
nation. These selected relays execute the following operations.
First, they decode the data received from the sources by using a
Maximum Likelihood (ML) detector as follows:

b̂SmRn
= argmax

b̃m

Pr{b̃m|ySmRn
}, (2)

where b̃m denotes the hypothesis of the data symbol transmitted
by source Sm.

Then, they apply NC in GF(2q) to the demodulated data and
the network-coded symbol as follows is obtained:

b̂Rn
= αS1Rn

b̂S1Rn
� . . . � αSMRn

b̂SMRn
, (3)

where α(.) denotes the NC coefficients and � denotes the sum
operation in GF(2q).

Finally, the network-coded symbol b̂Rn
is modulated into a

signal symbol x̂Rn
and forwarded to the destination. Unlike

[12], where only successfully decoded symbols are relayed,
we assume that NC is applied to all, correct and incorrect,
demodulated symbols. At the destination, this error propagation
phenomenon can be mitigated by using appropriate demodula-
tion schemes [10].

Let {i1, . . . , iL} denote the indices of the selected relays. The
signal received at the destination from them can be formulated
as follows (n ∈ {i1, . . . , iL}):

yRnD =
√

PRnDhRnDx̂Rn
+ zRnD, (4)

where hRnD represents the channel fading coefficient of the
link Rn → D, which is a complex Gaussian random variable
with zero mean and unit variance; PRnD denotes the received
signal power at D from Rn; and zRnD denotes the complex
AWGN with zero mean and variance σ2.

III. RELAY SELECTION PROTOCOLS

We assume that RS is implemented based on the sub-
optimal max-min selection criterion [6], which maximizes the
worst end-to-end Signal-to-Noise-Ratio (SNR). In particular,
two case studies are analyzed.

A. Single Relay Selection

Let us consider a generic source-to-relay-to-destination link.
The end-to-end reliability of this dual-hop link is determined
by the weakest link between the source-to-relay and the relay-
to-destination links. Likewise, let a generic multi-source-to-
relay link where NC is applied at the relays. The end-to-end
reliability of this multi-point-to-point link is determined by the
weakest source-to-relay link. As a result, each dual-hop multi-
source-to-relay-to-destination link turns out to be equivalent to
a single-hop link with the SNR as follows [10]:

γn = min {γS1Rn
, . . . , γSMRn

, γRnD} , (5)

where γXY � PXY |hXY |2
σ2 denotes the instantaneous SNR of the

link X → Y.
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Since the SNRs γXY in (5) are mutually independent and
exponentially distributed (Rayleigh fading is assumed), the Cu-
mulative Distribution Function (CDF) of γn can be formulated
as follows [16]:

Fγn
(x) = 1− e

− x
γn , (6)

where

1

γn

=
1

γS1Rn

+ . . .+
1

γSMRn

+
1

γRnD

(7)

and γXY = PXY

σ2 denotes the average SNR of the link X → Y .
In SRS, the relay with the highest equivalent SNR γn in

(5) is selected for forwarding the data of the sources, since
this maximizes the end-to-end performance. The SNR of the
selected relay, denoted by gSRS , can be formulated as follows:

gSRS = max{γ1, . . . , γN}. (8)

With the aid of [16], the CDF of gSRS , denoted by FgSRS
(·),

can be formulated as follows:

FgSRS
(x) =

N∏
n=1

Fγn
(x) =

N∏
n=1

(
1− e

− x
γn

)
. (9)

After the relay selection process, the selected relay forwards
the network-coded symbols to the destination.

B. Multiple Relay Selection

The end-to-end reliability of SRS can be improved by allow-
ing more than one relay to forward data of the sources to the
destination. In the MRS protocol, the 1 < L ≤ M relays with
the highest SNRs in (5) are selected for data forwarding. In
practice, the MRS protocol can be implemented in a distributed
fashion as proposed in [2]. It is worth mentioning that the RS
protocol considered in this paper is different from that used in
[12], where a relay might be chosen several times.

With the aid of the same notation as for the SRS protocol,
the SNRs of the L best relays can be formulated as gMRS =
{g1, . . . , gL}, where gl = maxl{γ1, . . . , γN} denotes the lth-
maximum of the set {γ1, . . . , γN}, which can be formally
defined as follows:

Pr{gl � x} = Pr {(N − l + 1 values γn � x)

∩(l − 1 values γn > x)} . (10)

The OP of the MRS protocol depends on the distribution of
gMRS , which in turn depends on the distribution of gl for l =
1, 2, . . . , L. The following two lemmas provide the distribution
of gl, which is used in Section V for studying the end-to-end
outage of MRS.

Lemma 1: The CDF, Fgl(·), of gl = maxl{γ1, . . . , γN} for
1 ≤ l ≤ L, where γn for 1 ≤ l ≤ N is defined in (5) can be
formulated as follows:

Fgl(x) =

l∑
k=1

(−1)k−1CN−l+1
N−l+kΓl(k, x), (11)

where Cn
k = n!

(n−k)!×k! denotes the binomial coefficient and

Γl(k, x) =

N∑
i1=1,...,iN−l+k=1
i1 �=... �=iN−l+k

iN−l+k∏
n=i1

Fγn
(x), (12)

as well as, for notational simplicity, the following shorthand is
introduced:

n∑
i1=1,...,ik=1
i1 �=... �=ik

⎛
⎝ ik∏

j=i1

xj

⎞
⎠=

n−k+1∑
i1=1

. . .

n∑
ik=ik−1+1

(xi1 . . . xik) (13)

Proof: Let i1, . . . , iN−l+1, . . . , iN denote the indices that
satisfy (10), i.e., γn<x for i1≤n≤ iN−l+1 and γn>x for
iN−l+1 < n ≤ iN . Since the SNRs γn are mutually in-
dependent, the probability in (10) is

∏iN−l+1

n=i1
Fγn

(x)×∏iN
n′=iN−l+1

(1− Fγn′ (x)) and there are CN
l−1 combinations of

indices in (10) that possibly satisfy the condition. By applying
polynomial factorization of the probability of each set of indices
and computing the summation, the proof follows. �

Lemma 2: Let the SNRs be independent and identically
distributed (i.i.d.), i.e., γ1 = . . . = γN = γ. The diversity order
of gl is N − l + 1.

Proof: From (11), it follows that the asymptotic behavior
of the CDF of gl depends on the terms Γl(k, x), for 1 ≤ k ≤
l, that decay fastest with the SNR. If the channels are i.i.d.,
we have Γl (1, x) = CN

N−l+1(Fγn
(x))N−l+1. For high-SNR, we

have Fγn
(x) → 1

γ , which leads to Γl (1, x) → CN
N−l+1

1
γN−l+1 .

This concludes the proof. �
After MRS process, the L selected relays forward the

network-coded symbols to the destination.

IV. OUTAGE PROBABILITY OF SRS

A. Exact Outage Probability of SRS

The mutual information of a generic single-hop link with
instantaneous SNR equal to γ can be formulated as follows:

I(γ) = log2(1 + γ). (14)

As a result, the per-link OP can be formulated as follows:

Pout = Pr{I < R} = Pr{γ < 2R − 1︸ ︷︷ ︸
γth

}, (15)

where γth denotes the reliability threshold corresponding to the
rate R.

As for the SRS protocol, the destination receives M + 1
packets: M from the sources and 1 from the best relay. An
outage occurs if the destination is not able to decode the
packets of all the sources, i.e., fewer than M packets are
correctly decoded. In other words, the system is not in outage
if there is no more than one link whose SNR is below the
threshold γth. Accordingly, the OP of SRS can be formulated as
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OPSRS = 1− OP, where OP is the probability that the system
is not in outage, which can be written as follows:

OP = Pr{0 links <γth}+ Pr{1 link < γth}. (16)

Theorem 1: Consider a cooperative network consisting of M
sources, N relays, and one destination. Let NC be applied at the
relays. The exact OP of SRS is as follows:

OPSRS = 1−
M∏

m=1

(
1− FγSmD

(γth)
)
+ (1− FgSRS

(γth))

×
M∑

m=1

⎛
⎝FγSmD

(γth)

M∏
m �=m′=1

(
1− FγS

m′D (γth)
)⎞⎠ , (17)

where FγSmD
(x) = 1− e

− x
γSmD , FγS

m′D (x) = 1− e
− x

γS
m′D ,

and FgSRS
(·) is given in (9).

Proof: Since the M + 1 channels are mutually indepen-
dent, we have Pr{γS1D ≤ γth, γSRS ≤ γth} = Pr{γS1D ≤
γth} × Pr{γSRS ≤ γth}. The proof follows from (9) with the
aid of some algebraic manipulations. �

Corollary 1: Consider the same assumption as in Theorem
1. If the channels are i.i.d., i.e., γSmRn

= γSmD = γRnD =
γ, ∀n,m, the OP of SRS can be formulated as follows:

OPiid
SRS = 1− e

−Mγth
γ +Me

− (M−1)γth
γ

(
1− e

− γth
γ

)
×
[
1−
(
1− e

− (M+1)γth
γ

)N
]
. (18)

Proof: It follows directly from (17). �

B. Asymptotic Outage Probability of SRS

The OP of SRS in Theorem 1 is a complex function of all
average SNRs in the network, which does not allow one to
get insightful information about the achievable diversity order.
Theorem 2 provides a simpler asymptotic expression of the OP,
which yields direct information on the diversity order.

Theorem 2: Consider a cooperative network consisting of M
sources, N relays, and one destination. Let NC be applied at the
relays. In the high-SNR regime, the asymptotic OP of SRS can
be formulated as follows:

OPAsym
SRS =

M∑
m=1,m′=1

m �=m′

γ2
th

γSmDγSm′D

. (19)

Proof: See Appendix A. �
Theorem 2 highlights that the SRS protocol is capable of

achieving only a diversity order equal to two regardless of
the number of available relays. In particular, the asymptotic
OP depends only on the source-to-destination links and it
is independent of the source-to-relay and relay-to-destination
links. These performance trends are different compared to their
counterparts in single-source relay networks where NC is not
used [2], as well as in TWRC with NC [6]. In these latter cases,
in fact, full diversity order equal to N is achieved.

V. OUTAGE PROBABILITY OF MRS

In this section, we analyze the OP of the MRS protocol.
We assume that the network encoding vectors employed by
the L best selected relays constitute a MDS code, i.e., all
encoding vectors are mutually independent [17]. As a result, the
destination is capable of recovering the data of the sources after
receiving at least M error-free packets, either from the sources
or from the active relays.

A. Exact Outage Probability of MRS

In the MRS protocol, the destination receives M + L pack-
ets: M from the sources and L from the best relays. An outage
occurs if the destination is not able to decode the packets of all
the sources, i.e., fewer than M packets are correctly decoded.
In other words, the system is in outage if fewer than M SNRs
at the destination are above the reliability threshold γth. In
formulas, the OP can be written as follows:

OP = Pr{0 links > γth}+ Pr{1 link > γth}
+ . . .+ Pr{M − 1 links > γth}. (20)

Theorem 3: Consider a cooperative network consisting of M
sources, N relays, and one destination. Let NC be applied at the
relays and the encoding vectors constitute a MDS code. If L <
M , the OP of the MRS protocol can be formulated as follows:

OP(1)
MRS =

(
M−L−1∑
m=0

Ψ(m)

)(
1 +

L−1∑
l=1

Fgl(γth)

)

+
L∑

k=1

(
Ψ(M − k)

k∑
l=1

Fgl(γth)

)
, (21)

otherwise the OP of MRS can be formulated as follows:

OP(2)
MRS =

M∑
k=1

(
Ψ(M − k)

k∑
l=1

Fgl(γth)

)
, (22)

where Fgl(·) is given in Lemma 1 and:

Ψ(k) =
M∑

i1=1,...,ik=1
i1 �=...�=ik

⎧⎪⎪⎨
⎪⎪⎩

ik∏
m=i1

(
1− FγSmD

(γth)
)

×
M∏

m′=1
m′ �={i1,...,ik}

FγS
m′D (γth)

⎫⎪⎪⎬
⎪⎪⎭ . (23)

Proof: See Appendix B. �
Similar to the SRS protocol, the exact OP of the MRS

protocol is a complex function of all the SNRs in the network,
which does not allow an easy checking of the system diversity
order.
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B. Asymptotic Outage Probability of MRS

Theorem 4: Consider a cooperative network consisting of M
sources, N relays, and one destination. Let NC be applied at the
relays and the encoding vectors constitute a MDS code. In the
high-SNR regime, the asymptotic OP of the MRS protocol can
be formulated as follows:

OP(1−Asym)
MRS =

M∑
i1=1,...,iL+1=1
i1 �=...�=iL+1

(
iL+1∏
m=i1

γth
γSmD

)
, (24)

if L < M ; otherwise, the OP is as follows:

OP(2−Asym)
MRS =

M∑
k=1

ΩS(k)ΩR(N − k + 1), (25)

where:

ΩS(k) =

M∑
i1=1,...,ik=1
i1 �=...�=ik

(
ik∏

m=i1

γth
γSmD

)
, (26)

and:

ΩR(k) =
N∑

i1=1,...,ik=1
i1 �=... �=ik

(
ik∏

n=i1

γth
γn

)
. (27)

Proof: From Lemma 2, we know that Fgl(·) has diversity
order equal to N − l + 1. From (23), we note that Ψ(·) has
diversity order equal to M − k. If L < M , the OP of MRS
is given in (21). For high-SNR values, the first addend of

(21), i.e.,

(
M−L−1∑
m=0

Ψ(m)

)(
1 +

L−1∑
l=1

Fgl(γth)

)
, is dominated

by Ψ(M − L− 1). By using the approximation in (40) and
by keeping the dominant elements, we obtain (24). If L ≥ M ,
the OP of MRS is given in (22). For every k, Ψ(M − k)

and
∑k

l=1 Fgl(γth) have a diversity order equal to k and to
N − k + 1, respectively. Therefore, ΩS(k)ΩR(N − k + 1) has
diversity order equal to N + 1 for every k. By still applying the
approximation in (40), we obtain (25). �

Theorem 4 shows that the MRS protocol is capable of
achieving a diversity order equal to L+ 1 if L < M and full
diversity order equal to N + 1 if L ≥ M . It is worth noting that
the diversity order for L ≥ M is different from that obtained in
[12, Theorem. 3]. The reason is that the correlation originating
from the ordered statistics of the SNRs of the selected relays is
ignored in [12].

Theorem 4, in addition, highlights that the asymptotic OP of
the MRS protocol does not depend on the relay channels if L <
M . This implies that the OP is independent of the number of
available relays N and of their spatial locations. The relays may,
for example, be randomly deployed without affecting the OP
[18]. If L ≥ M , on the other hand, the asymptotic OP depends
on N , on the network topology, and on the spatial locations of
the relays. In this case, selecting more relays does not improve
the system performance.

If L = 1, Theorem 3 and Theorem 4 reduce, as expected, to
Theorem 1 and to Theorem 2, respectively.

Fig. 2. Example of MRS-based NCC, time-sharing relaying and refection-
based NCC. Setup: M = 3, N = 4 and L = 2.

VI. COMPARISON WITH STATE-OF-THE-ART RELAYING

In this section, we compare MRS-based NCC against state-
of-the-art relaying protocols, which include time-sharing re-
laying and NCC based on repetition coding. In particular,
time-sharing relaying does not use NC and repetition-based
NCC relies on all the available relays without using RS. For
a fair comparison, the protocols are compared by assuming the
same spectral efficiency. As example is illustrated in Fig. 2.

More specifically, let T be the total transmission time, in-
cluding broadcasting and relaying. It must be the same for
all protocols, to guarantee the same spectral efficiency. As a
consequence, the time-slot duration is different for NCC based
on MRS, time-sharing relaying, and NCC based on repetition
coding. As for NCC based on MRS, the duration of a time slot
is τMRS = T/(M + L). Let R denote the system rate in bit
per channel use. Thus, the rate in (15) for the MRS-based NCC,
RMRS , is equal to

RMRS =
R

M + L
.

Further details about time-sharing relaying and NCC based on
repetition coding are provided in what follows.

A. Time-Sharing Relaying

In time-sharing relaying, each source relies on the help of
the best available relay but NC is not applied. Consequently,
the total time for completing the transmission from M sources
is 2M time-slots.

In particular for the source Sm, the SNR of the best relay is
chosen as follows [2]:

gTS
m = max

n=1,...,N

{
γTS
n

}
, (28)

where:

γTS
n = min {γSmRn

, γRnD} . (29)

This implies that different sources may select different re-
lays. The generic source Sm is in outage if both γSmD and gTS

m

are below the reliability threshold γTS
th . In formulas:

OPm = Pr
{
γSmD ≤ γTS

th , gTS
m ≤ γTS

th

}
=

(
1− e

−
γTS
th

γSmD

)
N∏

n=1

(
1− e

−
γTS
th

γTS
n

)
, (30)
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where

1

γTS
th

=
1

γSmRn

+
1

γRnD

.

In a multi-source network, by definition, an outage occurs if
at least one source is in outage. Let OPm = 1− OPm be the
probability that source Sm is not in outage. The OP of time-
sharing relaying can be formulated as follows:

OPTS = 1−
M∏

m=1

OPm = 1−
M∏

m=1

(1− OPm), (31)

where OPm is given in (30).
By using the same line of thought as Theorem 2, the

asymptotic (in the high-SNR regime) OP can be formulated as
follows:

OPAsym
TS =

M∑
m=1

((
γTS
th

)N+1

γSmD

N∏
n=1

(
1

γSmRn

+
1

γRnD

))
. (32)

From (32), it follows that time-sharing relaying achieves full
diversity order equal to N + 1. Achieving full diversity order,
however, does not guarantee that time-sharing relaying outper-
forms MRS-based NCC, since, by assuming the same spectral
efficiency, the reliability thresholds of the two protocols are,
in general, different, i.e., γTS

th �= γth. Let, in fact, the time-slot
duration of time-sharing relaying be equal to τTS = T/(2M).
Then, the corresponding rate is equal to RTS = R/(2M).
By re-writing it in terms of RMRS = R/(M + L), we have
RTS = ((2M)/(M + L))RMRS . As a result, γTS

th = 2RTS −
1 �= γth = 2RMRS − 1.

B. Repetition-Based (or Classical) NCC

In repetition-based NCC, all the available relays forward
network-coded symbols to the destination without using RS.
The destination receives M +N packets at the end of broad-
casting and relaying phases. Hence, the total time for complet-
ing the transmission from the M sources is M +N time-slots.

In the light of the MDS assumption for the encoding vectors
used at the relays, the destination is capable of retrieving
the data of the M sources if it receives at least M cor-
rect packets out of the M +N received ones. Let gCNC =
{γS1D, . . . , γSMD, γ1, . . . , γN} denote the vector of all the
SNRs, where γn = min{γS1Rn

, . . . , γSMRn
, γRnD} for n =

1, 2, . . . , N . The OP of repetition-based NCC can be formu-
lated as follows:

OPCNC = Pr
{
0 links in gCNC > γCNC

th

}
+ . . .+ Pr

{
M − 1 links in gCNC > γCNC

th

}
, (33)

where γCNC
th denotes the reliability threshold.

By using a line of thought similar to NCC based on MRS, the
OP can be formulated as follows:

OPCNC =
M−1∑
k=1

ΨCNC(k), (34)

where

ΨCNC(k) =
M+N∑

i1=1,...,ik=1
i1 �=...�=ik

[
ik∏

n=i1

(
1− FgCNC

n

(
γCNC
th

))

×
M+N∏

1=n′ �={i1,...,ik}
FgCNC

n′

(
γCNC
th

)⎤⎦ . (35)

Likewise, the asymptotic OP is as follows:

OP1−Asymp
CNC =ΩS(N+1)+

N∑
k=1

ΩS(k)ΩCNC(N−k+1), (36)

if N < M ; otherwise it is equal to:

OP2−Asymp
CNC =

M∑
k=1

ΩS(k)ΩCNC(N − k + 1), (37)

where

ΩS(k) =

M∑
i1=1,...,ik=1
i1 �=... �=ik

(
ik∏

m=i1

γCNC
th

γSmD

)
, (38)

and

ΩCNC(k) =
N∑

i1=1,...,ik=1
i1 �=...�=ik

(
ik∏

n=i1

γCNC
th

γn

)
. (39)

From (36) and (37), we observe that repetition-based NCC
achieves full diversity order equal to N + 1. Similar to the time-
sharing case, this does not necessarily imply that repetition-
based NCC outperforms MRS-based NCC. The respective
reliability thresholds, in fact, are, in general, different, i.e.,
γCNC
th �= γth. Let, in fact, the time-slot duration of repetition-

based NCC be equal to τCNC = T/(M +N). Then, the corre-
sponding rate is equal to RCNC = R/(M +N). By re-writing
it in terms of RMRS = R/(M + L), we have RCNC =
((M +N)/(M + L))RMRS ≥ RMRS . As a result, γCNC

th =
2RCNC − 1 ≥ γth = 2RMRS − 1.

When the number of the selected relays exceeds the number
of the sources, i.e., L ≥ M , by comparing (25) and (37) we
conclude that MRS-based NCC always outperforms repetition-
based NCC because γCNC

th ≥ γMRS
th .

VII. NUMERICAL RESULTS

In this section, selected numerical results are illustrated to
substantiate our findings. For ease of illustration, a symmet-
ric network topology is considered, where γSmD=γSD, ∀m,
γRnD=γRD, ∀n, and γSmRn

=γSR, ∀m,n. For a given rate
R, the reliability thresholds are computed as discussed in
Section VI.
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Fig. 3. OP of SRS as a function of N . Setup: M = 3 and R = 3/4. (a) γSD = γSR = γRD . (b) (γSD, γSR, γRD) = (γ, γ + 9 dB, γ + 9 dB).

Fig. 4. OP of MRS as a function of L. Setup: M=3, N=5 and R=M/(M+L). (a) γSD=γSR=γRD . (b) (γSD, γSR, γRD)=(γ, γ+9 dB, γ+9 dB).

Fig. 3 shows the OP of SRS-based NCC as a function of
N . If N=1, no RS is applied. It is shown that the proposed
mathematical framework closely overlaps with Monte Carlo
simulations and that SRS achieves second-order diversity. If the
number of available relays N>1 increases, SRS provides a bet-
ter OP in the low-SNR but the same OP in the high-SNR. This is
in agreement with Theorem 2, which states that the asymptotic
OP of SRS only depends on the source-to-destination links. The
gain of RS compared to the baseline setup with N=1, i.e., no
RS, is equal to 3 dB in Fig. 3(a) and to 1 dB in Fig. 3(b).

Fig. 4 shows the OP of MRS-based NCC as a function
of L. Monte Carlo simulations confirm the accuracy of the
proposed mathematical framework and the correctness of the
diversity analysis. If L < M , in particular, MRS is not capable
of achieving full diversity. The diversity order increases with L.
If L ≥ M , on the other hand, MRS achieves full diversity and
almost the same OP is obtained for all values of L ≥ M , as a
result from Theorem 4.

Fig. 5 compares the OP of MRS-based NCC and repetition-
based NCC as a function of L. It confirms the findings of
Section VI. In particular, MRS-based NCC outperforms
repetition-based NCC if L≥M . If L<M , on the other hand,
MRS-based NCC outperforms repetition-based NCC in the low-
SNR regime but it provides a worse OP in the high-SNR regime
because of the lower diversity order (L+1 instead of N+1).

Fig. 6 compares the OP of MRS-based NCC and time-
sharing relaying. It is shown, in particular, that MRS-based
NCC outperforms time-sharing relaying if the average SNR of
the source-to-destination links is better than that of the relay-
to-destination links.

VIII CONCLUSION

In this paper, we have studied outage probability and di-
versity order of a cooperative protocol that combines relay
selection and network coding. A mathematical framework has
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Fig. 5. OP of MRS-based NCC and repetition-based NCC: Comparison as a function of L. Setup: M = 3, N = 5, R = 3/5 if L = 2 and R = 1/2 if L = 3.
(a) γSD = γSR = γRD . (b) (γSD, γSR, γRD) = (γ, γ + 9 dB, γ + 9 dB).

Fig. 6. OP of MRS-based NCC and time-sharing relaying. Setup: M = 3, N = 3, L = 2 and R = 3/5. Case 1: γSR = γRD = γSD . Case 2: γSR = γSD,
γRD = γSD − 20 dB. Case 3: γSR = γSD + 20 dB, γRD = γSD . Case 4: γSR = γSD + 20 dB, γRD = γSD − 20 dB.

been provided for analyzing the system diversity order. Our
analysis has shown that full diversity can be achieved if the
number of active relays is at least equal to the number of
sources. Otherwise, the diversity order is equal to the number
of active relays plus one.

APPENDIX A
PROOF OF THEOREM 2

The proof is based on the second-order approximation of
e−x, ∀x > 0, as follows:

e−x ≈ 1− x+
x2

2
+O[x3]. (40)

Let am= γth

γSmD
>0, A=

M∑
m=1

am, and A∼m=
∑M

m �=m′=1 am′.

Then, we have:

M∏
m=1

(
1−FγSmD

(γth)
)
=

M∏
m=1

e−am =e−A≈1−A+
A2

2
, (41)

and

M∑
m=1

FγSmD
(γth)

M∏
m′=1,m′ �=m

(
1− FγSjD

(γth)
)

≈
M∑

m=1

(
am − a2m

2

)(
1−A∼m +

A2
∼m

2

)

=

M∑
m=1

am − 1

2

M∑
m=1

a2m −
M∑

m=1

amA∼m

= A− A2

2
−

M∑
m=1,m′=1

m �=m′

amam′ . (42)

Let bn = γth

γn
with 1 ≤ n ≤ N and B =

∏N
n=1 bn. Then:

FgSRS
(γth) ≈

N∏
n=1

(
bn − b2n

2

)
≈ B. (43)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ(0)Fg1(γth)
Ψ(1)Fg1(γth) Ψ(0)Fg2(γth)
. . .
Ψ(L− 1)Fg1(γth) . . . Ψ(0)FgL(γth)
Ψ(L)Fg1(γth) . . . Ψ(1)FgL(γth) Ψ(0) (1− FgL(γth))
. . .
Ψ(M − 1)Fg1(γth) . . . Ψ(M − L)FgL(γth) Ψ(M − L− 1) (1− FgL(γth))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

⎡
⎢⎢⎣
Ψ(0)Fg1(γth)
Ψ(1)Fg1(γth) Ψ(0)Fg2(γth)
. . .
Ψ(M − 1)Fg1(γth) . . . . . . Ψ(0)FgM (γth)

⎤
⎥⎥⎦ (45)

The proof follows by inserting (41), (42), and (43) in (17)
and by keeping the dominant elements.

APPENDIX B
PROOF OF THEOREM 3

Let divide the packets received at the destination in two
groups. The first group consists of the M packets received from
the sources. The second group consists of the L packets re-
ceived from the selected relays. The probability that the destina-
tion is capable of decoding P packets is equal to the probability
that the SNRs of P links are above the reliability threshold γth.
Since these links are uniformly distributed in the two groups,
this probability is given by the summation of CP

2 terms.
Let Ψ(k) be the probability that there are k source-to-

destination links whose SNR is above the reliability threshold
γth, while the SNRs of the other M − k links are below γth.
Since these SNRs are all independent, we obtain (23). The
probability that the SNRs of l < L links in gMRS are above the
threshold is given in Lemma 2, which is equal to Fgl+1

(γth).
The probability that the SNRs of all L channels in gMRS are
above the threshold is equal to 1− FgL(γth).

Let consider the probabilities in (20). If M > L, the matrix
of size (M + 1)× (L+ 1) shown in (44), shown at the top of
the page, can be obtained. If L ≥ M , the matrix in (45), shown
at the top of the page. canbe obtained, instead. We note that
the entries in the diagonals have the same Ψ(k). By summing
the first L diagonals in (44), we obtain the first factor in (21).
By summing the other diagonals in (44), we obtain the second
factor in (21). If L ≥ M , summing the diagonals in (45) and
grouping the elements with the same common part yields (22).
This concludes the proof.
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