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Abstract—In the half-duplex single relay selection network,
comprised of a source,M half-duplex relays, and a destination,
only one relay is active at any given time, i.e., only one relay
receives or transmits, and the other relays are inactive, i.e., they
do not receive nor transmit. The capacity of this network, when
all links are affected by independent slow time-continuousfading
and additive white Gaussian noise (AWGN), is still unknown,and
only achievable average rates have been reported in the literature
so far. In this paper, we present new achievable average rates for
this network which are larger than the best known average rates.
These new average rates are achieved with a buffer-aided relaying
protocol. Since the developed buffer-aided protocol introduces
unbounded delay, we also devise a buffer-aided protocol which
limits the delay at the expense of a decrease in rate. Moreover,
we discuss the practical implementation of the proposed buffer-
aided relaying protocols and show that they do not require
more resources for channel state information acquisition than
the existing relay selection protocols.

Index Terms—Buffer-aided relaying, half-duplex, relay selec-
tion, achievable rate.

I. I NTRODUCTION

COOPERATIVE communication has recently gained
much attention due to its ability to increase the through-

put and/or reliability of wireless networks. The basic idea
behind cooperative communication is that each node can
act as a relay and help the other nodes of the network to
forward their information to their respective destinationnodes.
Because of the high complexity inherent to the investigation of
general cooperative networks, and to get insight into the basic
challenges and benefits of cooperative communication, re-
searchers have mainly considered relatively simple cooperative
networks. Although simple, these basic cooperative networks
reveal the gains that can be accomplished by cooperation
among network nodes. Moreover, because of their simplicity,
these basic cooperative networks can be easily integrated into
the current communication infrastructure. One basic network
which has shown great potential in terms of utility and
performance is the half-duplex (HD) single relay selection

Manuscript received August 26, 2014; revised January 18, 2015; accepted
April 1, 2015. This paper has been presented in part at IEEE Globecom 2014,
Austin, TX, December 2014.

N. Zlatanov is with the Department of Electrical and Computer Engineering,
University of British Columbia, Vancouver, BC, V6T 1Z4, Canada, E-mail:
zlatanov@ece.ubc.ca

V. Jamali and R. Schober are with the Institute for Digital Communi-
cation, Friedrich-Alexander University, Erlangen 91054,Germany (e-mail:
jamali@lnt.de; schober@lnt.de).

network proposed in [1]. In this network, only one relay is
active at any given time, i.e., one relay receives or transmits,
and the other relays are inactive, i.e., they do not receive nor
transmit. Because of the large achievable performance gains,
this network has recently attracted considerable interest, see
[1]-[11] and references therein. Although well investigated,
the capacity of this network is still unknown when all links
are affected by independent slow time-continuous fading and
additive white Gaussian noise (AWGN). So far, only achiev-
able average rates1 have been reported in the literature, see
[10], [11]. In fact, to the best of the authors’ knowledge,
the achievable average rates in [10] and [11] are the largest
average rates reported in the literature for this network. These
rates are based on the relay selection protocol in [1], where, in
each time slot, the relay with the strongest minimum source-
to-relay and relay-to-destination channel is selected to forward
the information from the source to the destination. In this
paper, we will show that these rates can be surpassed. In
particular, we develop a buffer-aided relaying protocol which
achieves average rates which are significantly larger than the
rates reported in [10] and [11]. Since the proposed buffer-
aided protocol introduces unbounded delay, we also devise a
second buffer-aided protocol which limits the average delay at
the expense of a decrease in rate. Moreover, we show that the
proposed buffer-aided relaying protocols do not require more
resources for channel state information (CSI) acquisitionthan
the existing relay selection protocols.

Buffer-aided HD relaying with adaptive switching between
reception and transmission was proposed in [12] for a sim-
ple three-node relay network without source-destination link.
Later, buffer-aided relaying was further analyzed in [13] and
[14] for adaptive and fixed rate transmission, respectively.
Buffer-aided relaying protocols were also proposed for two-
way relaying in [15], [16], the multihop relay network in
[17], two source and two destination pairs sharing a single
relay in [18], secure communication for two-hop relaying and
relay selection in [19] and [20], respectively, and amplify-and-
forward relaying in [21]. For the considered relay selection
network, relaying with buffers was investigated in [8] and
[9]. However, the protocols in [8] and [9] are limited to the
case when all nodes transmit with fixed rates and all source-
to-relay and relay-to-destination links undergo independent
and identically distributed (i.i.d.) fading. These protocols were

1 The “average rate” is also referred to as “expected rate” in the literature.
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developed for improving the outage probability performance
of the network. In order to use the protocols in [8] and [9] as
performance benchmarks, we modify them such that all nodes
transmit with rates equal to their underlying channel capacities.
However, the modified protocols are still only applicable to
the case when all links are affected by i.i.d. fading and will
cause data loss due to buffer overflow for independent non-
identically distributed (i.n.d.) fading. We note however that
this drawback is not caused by our modifications since the
phenomenon of buffer overflow also occurs for the original
protocols in [8] and [9] for fixed rate transmission when the
links of the network are i.n.d.

This paper is organized as follows. In Section II, we
introduce the system model. In Section III, we present the
proposed buffer-aided protocol for transmission without delay
constraints. In Section IV, we discuss the implementation of
the proposed protocol. In Section V, we propose a protocol
for delay-limited transmission. In Section VI, we provide
numerical examples comparing the achievable rates of the
proposed protocols and the benchmark protocols. Finally,
Section VII concludes the paper.

II. SYSTEM MODEL

In the following, we introduce the system model of the
considered relay network. Furthermore, as benchmark scheme,
we briefly review the conventional non-buffer-aided relay
selection protocol in [1].

A. System Model

The HD relay selection network consists of a sourceS,
M HD decode-and-forward relaysRk, k = 1, ...,M , and a
destinationD, as shown in Fig. 1. The source transmits its
information to the destination only through the relays, i.e.,
because of high attenuation there is no direct link between the
source and the destination, and therefore, all the information
that the destination receives is first processed by the relays.
We assume that the transmission is performed inN time
slots, whereN → ∞. The relays in the network are HD
nodes, i.e., they cannot transmit and receive at the same time.
Furthermore, in each time slot, only one relay is active, i.e.,
it receives or transmits, and the other relays are inactive,i.e.,
they do not receive nor transmit. Each relay is equipped with
a buffer of unlimited size in which it stores the information
that it receives from the source and from which it extracts
the information that it transmits to the destination. We assume
that all nodes transmit their codewords with constant powerP
and that the noise at all receivers is independent AWGN with
varianceσ2

n. We assume transmission with capacity achiev-
ing codes. Hence, the transmitted codewords are Gaussian
distributed, comprised ofn → ∞ symbols, and span one
time slot. Moreover, we assume that each source-to-relay and
relay-to-destination channel is affected by independent slow
time-continuous fading such that the fading remains constant
during a single time slot and changes from one time slot
to the next. We assume that the fading is an ergodic and
stationary random process. Let|hSk(i)|2 and|hkD(i)|2 denote
the squared amplitudes of the complex channel gains of the
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Fig. 1. System model for buffer-aided relay selection.

source-to-k-th-relay andk-th-relay-to-destination channels in
the i-th time slot, respectively, and letΩSk = E{|hSk(i)|2}
andΩkD = E{|hkD(i)|2} denote their mean values, respec-
tively, whereE{·} denotes expectation. Then, the signal-to-
noise ratios (SNRs) of the source-to-k-th-relay andk-th-relay-
to-destination channels are given by

γSk(i) =
P

σ2
n

|hSk(i)|2 and γkD(i) =
P

σ2
n

|hkD(i)|2, (1)

respectively. Furthermore, we denote the average SNRs of the
source-to-k-th-relay andk-th-relay-to-destination channels by
γ̄Sk = E{γSk(i)} andγ̄kD = E{γkD(i)}, respectively. Using
(1), the capacities of the source-to-k-th-relay andk-th-relay-
to-destination channels in thei-th time slot, denoted byCSk(i)
andCkD(i), respectively, are given by

CSk(i) = log2
(

1 + γSk(i)
)

(2)

CkD(i) = log2
(

1 + γkD(i)
)

. (3)

B. Conventional Relay Selection Protocol

For comparison purpose, we briefly review the conventional
non-buffer-aided relay selection protocol [1] and its corre-
sponding achievable average rate [10], [11].

The conventional relay selection protocol selects the relay k
with the maximummin{CSk(i), CkD(i)} for forwarding the
information from the source to the destination in thei-th time
slot [1]. The channel coding scheme adopted for conventional
relaying is as follows. In the first half of time sloti, the source
sends a codeword with ratemin{CSk(i), CkD(i)} to the k-
th relay. Thek-th relay can successfully decode the received
codeword since the rate of the codeword is smaller than or
equal toCSk(i). Then, in the second half of time sloti, the
relay re-encodes the decoded information and sends it to the
destination with ratemin{CSk(i), CkD(i)}. The destination
can successfully decode the received codeword since the rate
of the codeword is smaller than or equal toCkD(i). Hence, the
overall rate transmitted from source to destination duringtime
slot i is 1

2 min{CSk(i), CkD(i)}. Thereby, duringN → ∞



3

time slots, the average rate achieved with conventional relay-
ing, denoted byR̄conv, is obtained as [10], [11]

R̄conv =
1

2
E
{

max
k

min{CSk(i), CkD(i)}
}

. (4)

In the following, we present the proposed buffer-aided pro-
tocols for the considered relay selection network and the
corresponding achievable rates.

III. B UFFER-A IDED RELAYING PROTOCOL WITHOUT

DELAY CONSTRAINT

In this section, we develop a buffer-aided relaying protocol
without delay constraints which maximizes the achievable
average rate for the considered network. To this end, we first
introduce the instantaneous transmission rates at the nodes in
each time slot, and then derive the corresponding achievable
average rate. Next, we maximize the achievable average rate
and derive analytical expressions for the maximum average
rate.

A. Instantaneous Transmission Rates

In the considered HD single relay selection network, in
a given time slot, only one relay is selected to receive or
transmit, i.e., to be active. Without loss of generality, assume
that thek-th relay has been selected to be active in thei-
th time slot2. Then, if the active relay is selected to receive,
the source mapsnRSk(i) bits of information to a Gaussian
distributed codeword comprised ofn → ∞ symbols, where
each symbol is generated independently according to a zero-
mean complex circular-symmetric Gaussian distribution with
varianceP , and transmits this codeword to the selected relay.
The rate of this codewordRSk(i) is set as

RSk(i) = CSk(i), (5)

whereCSk(i) is the capacity of the source-to-k-th-relay chan-
nel given in (2). As a result of (5), the active relay can suc-
cessfully decode this codeword and stores the corresponding
information in its buffer. LetQk(i) denote the number of
bits/symbol in the buffer of thek-th relay at the end of time
slot i. Then, with this transmission,Qk(i) increases as

Qk(i) = Qk(i − 1) + CSk(i). (6)

On the other hand, if the active relay is selected to transmit,
it extractsnRkD(i) bits of information from its buffer, maps
it to a Gaussian distributed codeword comprised ofn → ∞
symbols, where each symbol is generated independently ac-
cording to a zero-mean complex circular-symmetric Gaussian
distribution with varianceP , and transmits it to the destination.
The rate of this codeword isRkD(i), which is set as

RkD(i) = min{Qk(i− 1), CkD(i)}, (7)

whereCkD(i) is the capacity of thek-th-relay-to-destination
channel given in (2). The minimum in the expression for rate
RkD(i) is a consequence of the fact that the relay cannot
transmit more information than what it has stored in its buffer,

2How exactly the active relay is selected is explained in Theorem 1.

i.e., more thanQk(i − 1). The destination can successfully
decode this codeword sinceRkD(i) ≤ CkD(i) holds, and
stores the corresponding information. When the active relay
transmits,Qk(i) decreases as

Qk(i) = Qk(i − 1)−RkD(i). (8)

In the following, we obtain the average rates of buffer-aided
single-relay selection.

B. Average Transmission and Reception Rates

In order to derive the average rates of buffer-aided single-
relay selection, we first have to model the reception and
transmission of thek-th relay. To this end, we introduce two
binary indicator variablesrRk (i) ∈ {0, 1} andrTk (i) ∈ {0, 1},
which indicate whether, in thei-th time slot, thek-th relay
receives or transmits, respectively. More precisely,rRk (i) and
rTk (i) are defined as

rRk (i) ,

{

1 if the k-th relay receives
0 if the k-th relay does not receive,

(9)

rTk (i) ,

{

1 if the k-th relay transmits
0 if the k-th relay does not transmit.

(10)

Since exactly one relay is active in each time slot,rRk (i) and
rTk (i) must satisfy

M
∑

k=1

[rRk (i) + rTk (i)] = 1, ∀i. (11)

Using rRk (i) and rTk (i), the average rates received at and
transmitted by thek-th relay, denoted byR̄Sk and R̄kD,
respectively, can be expressed as

R̄Sk = lim
N→∞

1

N

N
∑

i=1

rRk (i)RSk(i)

= lim
N→∞

1

N

N
∑

i=1

rRk (i)CSk(i), (12)

R̄kD = lim
N→∞

1

N

N
∑

i=1

rTk (i)RkD(i)

= lim
N→∞

1

N

N
∑

i=1

rTk (i)min{Qk(i− 1), CkD(i)}. (13)

Using R̄kD, ∀k, the average rate received at the destination,
denoted byR̄SD, can be expressed as

R̄SD =

M
∑

k=1

R̄kD

= lim
N→∞

1

N

N
∑

i=1

M
∑

k=1

rTk (i)min{Qk(i− 1), CkD(i)}.

(14)

In the following, our goal is to maximizēRSD.
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C. Maximization of the Average Rate

In (12) and (13), the only variables with a degree of freedom
arerRk (i) andrTk (i), ∀i, k. Any choice of these variables will
provide an average rate. However, in order for an average rate
to be achievable, i.e., for data loss not to occur, the buffers
at all relays must remain stable3. Moreover, among all the
achievable average rates, there exists one rate which is the
largest. In order to obtain the largest achievable average rate,
we have to find the optimal values ofrRk (i) andrTk (i), ∀i, k,
which maximize the average rate in (14) when constraint (11)
holds and when the buffers at all relays are stable. To this end,
we introduce the following useful lemma.

Lemma 1:The achievable average rate is maximized when
rRk (i) and rTk (i), ∀i, are chosen such that the following
condition is satisfied for allk = 1, ...,M

lim
N→∞

1

N

N
∑

i=1

rRk (i)CSk(i) = lim
N→∞

1

N

N
∑

i=1

rTk (i)CkD(i). (15)

Moreover, when (15) holds for thek-th relay, (13) simplifies
to

R̄kD = lim
N→∞

1

N

N
∑

i=1

rTk (i)CkD(i), (16)

and when (15) holds∀k relays, (14) simplifies to

R̄SD = lim
N→∞

1

N

N
∑

i=1

M
∑

k=1

rTk (i)CkD(i). (17)

Proof: Please refer to Appendix A.
With Lemma 1, we have reduced the search space for the

maximum achievable average rate to only those rates for which
(15) holds∀k. Moreover, we have obtained an expression for
R̄SD which is independent ofQk(i), ∀i, k. Now, in order
to find the maximum achievable average rate, we devise a
maximization problem for the average rate,R̄SD, under the
constraints given in (15) and (11). This maximization problem,
for N → ∞, is given by

Maximize :
rR
k
(i),rT

k
(i),∀i,k

1
N

∑N
i=1

∑M
k=1 r

T
k (i)CkD(i)

Subject to : C1 : 1
N

∑N
i=1 r

R
k (i)CSk(i)

= 1
N

∑N
i=1 r

T
k (i)CkD(i), ∀k

C2 : rRk (i) ∈ {0, 1}, ∀k, i
C3 : rTk (i) ∈ {0, 1}, ∀k, i
C4 :

∑M
k=1[r

R
k (i) + rTk (i)] = 1, ∀i.

(18)

In (18), the restrictions in (15) and (11) are reflected in
constraints C1 and C4, respectively. Fortunately, (18) canbe
solved analytically. The solution reveals how the values of
rRk (i) andrTk (i) are to be chosen optimally in each time slot
i such that the maximum average rate of the buffer-aided
protocol is achieved. Before providing the solution to (18), we
first introduce some notations. Letµk, k = 1, ...,M , denote
constants which are independent of the time sloti and the

3By a stable buffer we mean that there is no information loss inthe buffer
and the information that enters the buffer eventually leaves the buffer, i.e., no
information is trapped inside the buffer.

instantaneous CSI. The values of these constants depend on
the fading statistics and will be determined later, cf. Lemma 2.
Then, for a given time sloti, we multiply eachCSk(i) with
µk and eachCkD(i) with (1−µk), and collect these products
in setA(i). Hence,A(i) is given by

A(i) =
{

µ1CS1(i), µ2CS2(i), ..., µMCSM (i),

(1− µ1)C1D(i), (1 − µ2)C2D(i), ..., (1− µM )CMD(i)
}

.
(19)

We are now ready to present the solution to (18) in the
following theorem, which represents the proposed protocolfor
transmission without delay constraints.

Theorem 1:The optimal values ofrTk (i) and rRk (i), ∀k, i
which maximize the achievable average rate of the proposed
protocol are given by










rTk (i) = 1 if (1− µk)CkD(i) = maxA(i)

rRk (i) = 1 if µkCSk(i) = maxA(i)

rTk (i) = rRk (i) = 0 otherwise,

(20)

where theµk, ∀k, are chosen such that constraint C1 in (18)
is satisfied∀k. The maximum achievable average rate of the
proposed protocol is given by (17) whenrRk (i) andrTk (i) are
set as in (20),∀i, k.

Proof: Please see Appendix B.
Remark 1:Theorem 1 reveals that the optimal values of

rRk (i) andrTk (i) depend only on the instantaneous CSI of the
i-th time slot, and are independent of the instantaneous CSIs
of past and future time slots.

D. Analytical Characterization of the Maximum Achievable
Rate

By inserting (20) into (14), we obtain the maximum achiev-
able rate of the proposed protocol as an average overN → ∞
time slots, which may not be convenient from an analytical
point of view. Furthermore, Theorem 1 does not provide an
expression for obtaining constantsµk, ∀k. In order to obtain
useful analytical expressions for the maximum achievable
average rate and constantsµk, ∀k, we exploit the assumed
ergodicity and stationarity of the fading, and write (15) (i.e.,
constraint C1 in (18)) and (17) equivalently as


















E{log2(1 + ΓS1(i))} = E{log2(1 + Γ1D(i))}
E{log2(1 + ΓS2(i))} = E{log2(1 + Γ2D(i))}

...
E{log2(1 + ΓSM (i))} = E{log2(1 + ΓMD(i))}

(21)

and

R̄SD =

M
∑

k=1

E{log2(1 + ΓkD(i))}, (22)

respectively, whereΓSk(i) = rRk (i)γSk(i) and ΓkD(i) =
rTk (i)γkD(i), with rRk (i) andrTk (i) as in (20). In the following
two lemmas, we provide simplified expressions for the max-
imum average ratēRSD and constantsµk, ∀k. Thereby, we
drop indexi since, due to the stationarity and ergodicity of the
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fading, the statistics ofΓSk(i) andΓkD(i) are independent of
i.

Lemma 2:The optimal values ofµk, k = 1, ...,M , denoted
by µ∗

k, which maximizeR̄SD, can be obtained by solving4 the
following system ofM equations


















∫∞

0 log2(1 + x)fΓS1
(x)dx =

∫∞

0 log2(1 + x)fΓ1D
(x)dx

∫∞

0 log2(1 + x)fΓS2
(x)dx =

∫∞

0 log2(1 + x)fΓ2D
(x)dx

...
∫∞

0 log2(1 + x)fΓSM
(x)dx =

∫∞

0 log2(1 + x)fΓMD
(x)dx,

(23)

where, forx > 0,

fΓSk
(x) = fγSk

(x)FγkD

(

(1 + x)
µk

1−µk − 1
)

×
M
∏

j=1
j 6=k

FγSj

(

(1 + x)
µk
µj − 1

)

FγjD

(

(1 + x)
µk

1−µj − 1
)

,

(24)

fΓkD
(x) = fγkD

(x)FγSk

(

(1 + x)
1−µk
µk − 1

)

×
M
∏

j=1
j 6=k

FγSj

(

(1 + x)
1−µk
µj − 1

)

FγjD

(

(1 + x)
1−µk
1−µj − 1

)

.

(25)

Here,fγα
(x) andFγα

(x) denote the probability density func-
tion (PDF) and cumulative distribution function (CDF) ofγα,
α ∈ {Sk, kD}, respectively. Furthermore, if the fading on
all source-to-relay and relay-to-destination links is i.i.d., the
solution to (23) isµ∗

k = 1/2, ∀k.
Proof: Please refer to Appendix C.

Remark 2:For i.i.d. links, sinceµ∗
k = 1/2, ∀k, the pro-

posed protocol, given by (20), always selects the link with the
largest instantaneous channel gain among all2M available
links for transmission. Hence, for i.i.d. links this protocol
becomes identical to the protocol proposed in [8]. However,
for i.n.d. links, the protocol in [8] will cause data loss dueto
buffer overflow. In particular, applying the protocols in [8] and
[9], the buffers at relays withΩSk > ΩkD suffer from overflow
and receive more information than they can transmit. Hence,a
fraction of the source’s data is trapped inside the relay buffers
and does not reach the destination, i.e., data loss occurs. On the
other hand, our proposed protocol is applicable for all fading
statistics.

Lemma 3:The maximum achievable average rate of the
protocol in Theorem 1 is given by

R̄SD =

M
∑

k=1

∫ ∞

0

log2(1 + x)f∗
ΓkD

(x)dx, (26)

wheref∗
ΓkD

(x) is obtained by insertingµk = µ∗
k found using

Lemma 2 intofΓkD
(x) given by (25). For i.i.d. fading on

all links, i.e., whenfγSk
(x) = fγkD

(x) = fγ(x), ∀k, and

4A system of nonlinear equations can be solved e.g. by algorithms based
on Newton’s method [22].

FγSk
(x) = FγkD

(x) = Fγ(x), ∀k, (26) simplifies to

R̄SD = M

∫ ∞

0

log2(1 + x)fγ(x) (Fγ(x))
2M−1

dx. (27)

Proof: Let us insert the optimalµ∗
k, ∀k, found from

Lemma 2, into fΓkD
(x) given in (25) and denote it by

f∗
ΓkD

(x). Eq. (26) is obtained by insertingf∗
ΓkD

(x) into (22),
whereas (27) is obtained by insertingµ∗ = 1/2 into (26) and
simplifying the resulting expression.
To get more insight, in the following we investigate the case
of i.i.d. Rayleigh fading.

E. Special Case: I.i.d. Rayleigh Fading

In the following, we simplify the expression for the maxi-
mum average rate in (27) for i.i.d. Rayleigh fading.

The expressionfγmax
(x) = 2Mfγ(x) (Fγ(x))

2M−1 in
(27) can be interpreted as the distribution of the largest
random variable (RV) among2M i.i.d. RVs with distributions
fγSk

(x) = fγkD
(x) = fγ(x), ∀k, see [23]. For i.i.d. Rayleigh

fading, i.e., whenfγSk
(x) = fγkD

(x) = e−x/γ̄/γ̄, ∀k, where
γ̄ is the average SNR of all source-to-relay and relay-to-
destination links,fγmax

(x) is given as [23]

fγmax
(x) = 2M

2M−1
∑

k=0

(−1)k
(

2M − 1

k

)

1

γ̄
exp

(

−x

γ̄
(k + 1)

)

.

(28)

Inserting (28) into (27) and integrating, we obtain the average
rate as

R̄SD = M

2M−1
∑

k=0

(

2M − 1

k

)

(−1)k

(1 + k) ln(2)
exp

(

1 + k

γ̄

)

× E1

(

1 + k

γ̄

)

, (29)

whereE1(·) is the first order exponential integral function
defined asE1(x) =

∫∞

1
e−xt/(t)dt. On the other hand, for

the same case, i.e., for i.i.d. Rayleigh fading on all links,the
achievable rate for conventional relay selection given in (4)
can be written equivalently as [24, Eq. (26)]

R̄conv =
M

2

M−1
∑

k=0

(

M − 1

k

)

(−1)k

(1 + k) ln(2)
exp

(

2(1 + k)

γ̄

)

× E1

(

2(1 + k)

γ̄

)

. (30)

In order to gain further insight, expressions (29) and (30)
can be further simplified for low and high SNRs using the
following first order Taylor approximations

exp(c/γ̄)E1 (c/γ̄) =
c

γ̄
, as γ̄ → 0, (31)

exp(c/γ̄)E1 (c/γ̄) = −KEM − ln(c) + ln(γ̄), as γ̄ → ∞,
(32)

whereKEM is the Euler-Mascheroni constant and its value is
KEM ≈ 0.577.
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1) Low SNR:Using (31), the rates in (29) and (30) can be
approximated as

R̄SD → γ̄

2 ln(2)

2M
∑

k=1

1

k
, as γ̄ → 0 (33)

R̄conv → γ̄

4 ln(2)

M
∑

k=1

1

k
, as γ̄ → 0. (34)

Dividing (33) by (34), we obtain the following ratio

R̄SD

R̄conv
= 2

∑2M
k=1

1
k

∑M
k=1

1
k

. (35)

For M = 1 andM → ∞, the ratio in (35) is equal to3 and
2, respectively, which constitute the upper and lower bounds
of (35) for 1 ≤ M ≤ ∞. Hence, for low SNRs, the average
rate of the proposed buffer-aided relay selection protocolis 2
to 3 times higher than the rate of conventional relay selection.

2) High SNR: On the other hand, using (32), the rates in
(29) and (30) can be approximated as

R̄SD → γ̄ −KEM

2 ln(2)

−M

2M−1
∑

k=0

(

2M − 1

k

)

(−1)k log2(1 + k)

(1 + k)
, as γ̄ → ∞,

(36)

R̄conv → γ̄ −KEM

2 ln(2)

− M

2

M−1
∑

k=0

(

M − 1

k

)

(−1)k log2(1 + k)

(1 + k)
− 1

2
, as γ̄ → ∞.

(37)

Subtracting (37) from (36), we obtain

R̄SD − R̄conv =
1

2
+

M

2

M−1
∑

k=0

(

M − 1

k

)

(−1)k log2(1 + k)

(1 + k)

−M

2M−1
∑

k=0

(

2M − 1

k

)

(−1)k log2(1 + k)

(1 + k)
.

(38)

For M = 1 andM → ∞, the expression in (38) evaluates to
1 and1/2, respectively, which constitute the upper and lower
bounds of (38) for1 ≤ M ≤ ∞. Hence, for high SNRs,
the average rate of the proposed buffer-aided relay selection
protocol is between1 and1/2 bits/symb larger than the rate
of conventional relay selection.

In the following, we discuss the implementation of the
proposed buffer-aided HD relay selection protocol.

IV. I MPLEMENTATION OF THE PROPOSEDBUFFER-A IDED

PROTOCOL

In this section, we discuss the implementation of the pro-
tocol proposed in Theorem 1. The proposed protocol can
be implemented in a centralized or in a distributed manner.
A centralized implementation assumes a central node which
selects the active relay in each time slot and decides whether

it should receive or transmit. On the other hand, in the dis-
tributed implementation, there is no central node and the relays
themselves negotiate which relay should be active in each time
slot. In the following, we discuss both implementations.

A. Centralized Implementation

For the centralized implementation, we assume that the
destination is the central node. Hence, in each time slot, the
destination has to obtain the CSI of all links. To this end,
at the beginning of each time slot, the source transmits pilot
symbols from which all relays acquire their respective source-
to-relay CSIs. Then, each relay broadcasts orthogonal pilots,
from which the source and destination learn all source-to-relay
and relay-to-destination CSIs, respectively. Next, each relay
feedsback5 the CSI of its respective source-to-relay channel
to the destination. With the acquired CSI, the destination
computesCSk(i) andCkD(i), ∀k. In order to select the active
relay according to the protocol in Theorem 1, the destination
has to construct setA(i), given by (19). This requires the
computation of the constantsµk, ∀k. These constants can
be computed using Lemma 2, but this requires knowledge of
the PDFs of the fading gains of all links before the start of
transmission. Such a priori knowledge may not be available in
practice. In this case, the destination has to estimateµk, ∀k, in
real-time using only the CSI knowledge until time sloti. Since
µk, ∀k, are actually Lagrange multipliers obtained by solving
the linear optimization problem in (51), an accurate estimate
of µk, ∀k, can be obtained using the gradient descent method
[25]. In particular, usingCSk(i) andCkD(i), the destination
recursively computes an estimate ofµk, denoted byµe

k(i), as

µe
k(i) = µe

k(i− 1) + δk(i)(R̄
e
kD(i− 1)− R̄e

Sk(i− 1)), (39)

whereR̄e
Sk(i − 1) and R̄e

kD(i− 1) are real-time estimates of
R̄Sk and R̄kD, respectively, computed fori ≥ 2 as

R̄e
Sk(i − 1) =

i− 2

i− 1
R̄e

Sk(i− 2) +
rRk (i − 1)

i− 1
CSk(i− 1),

(40)

R̄e
kD(i − 1) =

i− 2

i− 1
R̄e

kD(i− 2) +
rTk (i− 1)

i− 1
CkD(i− 1),

(41)

whereRe
Sk(0) andRe

kD(0) are set to zero∀k. In (39),δk(i) is
an adaptive step size which controls the speed of convergence
of µe

k(i) to µk. In particular, the step sizeδk(i) is some
properly chosen monotonically decaying function ofi with
δk(1) < 1, see [25] for more details.

Once the destination hasCSk(i), CkD(i), andµe
k(i), ∀k, it

constructs the setA(i), and selects the active relay according
to Theorem 1. The destination also has to keep track of the
queue length in the buffers at each relay in each time slot.
To this end, usingCSk(i), CkD(i), rRk (i), andrTk (i), ∀k, the
destination computes the queue length in the buffers at each

5This feedback can also be done using pilots. In particular, since the
destination already knows the channel between each relay and itself, each
relay can broadcast pilots whose amplitude is equal to the channel gain of
the channel from the source to the selected relay.
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relay using the following formula

Qk(i) = Qk(i − 1) + rRk (i)CSk(i)

− rTk (i)min{Qk(i − 1), CkD(i)}. (42)

Then, the destination broadcasts a control message to the
relays which contains information regarding which relay is
selected and whether it will receive or transmit. If the selected
relay is scheduled to transmit, it extracts information bits
from its buffer, maps them to a codeword, and transmits the
codeword to the destination with rateRkD(i) = min{Qk(i−
1), CkD(i)}. Otherwise, if the selected relay is scheduled to
receive, it sends a control message to the source which informs
the source which relay is selected. Then, the source transmits
the information codeword intended for the selected relay with
rateRSk(i) = CSk(i).

The destination may receive the information bits in an order
which is different from that in which they were transmitted by
the source. However, using the acquired CSI, the destination
can keep track of the amount of information received and
transmitted by each relay in each time slot. This information is
sufficient for the destination to perform successful reordering
of the received information bits.

B. Distributed Implementation

We now outline the distributed implementation of the pro-
posed protocol using timers, similar to the scheme in [1].

At the beginning of time sloti, source and destination
transmit pilots in successive pilot time slots. This enables the
relays to acquire the CSI of their respective source-to-relay and
relay-to-destination channels, respectively. Using the acquired
CSI, thek-th relay computesCSk(i) andCkD(i). Next, using
CSk(i) andCkD(i), the k-th relay computes the estimate of
µk, µe

k(i), using (39), (40), and (41). UsingCSk(i), CkD(i),
and µe

k(i), the k-th relay turns on a timer proportional to
1/max{µe

k(i)CSk(i), (1 − µe
k(i))CkD(i)}. This procedure is

performed by allM relays. If

max{µe
k(i)CSk(i), (1− µe

k(i))CkD(i)} = µe
k(i)CSk(i)

and

max{µe
k(i)CSk(i), (1−µe

k(i))CkD(i)} = (1−µe
k(i))CkD(i),

the k-th relay knows that if it is selected, then it will receive
and transmit, respectively. The relay whose timer expires first,
broadcasts a packet containing pilot symbols and a control
message with information about which relay is selected and
whether the selected relay receives or transmits. From the
packet broadcasted by the selected relay, both source and
destination learn the channels from the selected relay to the
source and destination, respectively. They also learn which
relay is selected and whether it is scheduled to receive or
transmit. If the selected relay is scheduled to transmit, then
it extracts bits from its buffer, maps them to a codeword and
transmits the codeword to the destination with rateRkD(i) =
min{Qk(i− 1), CkD(i)}. Otherwise, if the relay is scheduled
to receive, then the source transmits to the selected relay a
codeword with rateCSk(i).

Again, the destination may receive the information bits in
an order which is different from that in which they were
transmitted by the source. Therefore, in order for the desti-
nation to reorder the received information bits, it should keep
track of the amount of information received and transmitted
by each relay in each time slot. If the selected relay transmits,
by successful decoding the destination learns the amount of
information received. However, when the selected relay is
scheduled to receive, the relay should feedback the amount
of information that it received to the destination. Using this
information, the destination can perform successful reordering
of the received information bits.

Remark 3:We note that distributed relay selection proto-
cols based on timers may suffer from long waiting times before
the first timer expires. Moreover, collisions are possible when
two or more relay nodes declare that they are the selected
node at approximately the same time. However, by choosing
the timers suitably, as proposed in [26], these negative effects
can be minimized.

C. Comparison of the Overhead of the Conventional and the
Proposed Protocols

The conventional relay selection protocol reviewed in Sec-
tion II-B can also be implemented in a centralized or a
distributed manner. In the following, we discuss the overheads
entailed by both implementations.

For the centralized implementation, the destination controls
the relay selection. To this end, the destination has to acquire
the CSI of all links in the network. Therefore, for centralized
implementation, in each time slot,2M + 2 pilot symbol
transmissions are required for CSI acquisition, one control
packet transmission by the destination is needed to inform
the relays which relay is selected, and another control packet
transmission is required for the selected relay to inform the
source which relay is selected. Moreover, the source has to
acquire knowledge ofmin{CSk(i), CkD(i)} in order to select
the rate of transmission. Hence, ifmin{CSk(i), CkD(i)} =
CkD(i), the selected relay has to feedback the CSI of the
selected-relay-to-destination link to the source. As a result,
in total 2M + 4 or 2M + 5 pilot symbol, feedback, and
control packet transmissions are needed in each time slot.
On the other hand, for the centralized implementation of the
proposed buffer-aided relaying protocol, also2M+4 or 2M+5
pilot symbol, feedback, and control packet transmissions are
required. Hence, both the conventional and the proposed
buffer-aided relaying protocols have identical overheadswhen
implemented centrally.

For conventional relay selection with distributed implemen-
tation, each relay has to acquire the CSI of its source-to-
relay and relay-to-destination links. To this end, two pilot
transmissions, one from the source and the other from the
destination, are needed. Moreover, one packet with pilots and
a control message from the selected relay are needed to inform
source and destination which relay is selected, and to allow
source and destination to learn the CSI of the source-to-
selected-relay and selected-relay-to-destination links, respec-
tively. Furthermore, assuming relayk is the selected relay in
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time sloti, in order for the source to adapt its transmission rate
to min{CSk(i), CkD(i)} and the destination to know which
codebook to use for decoding in time sloti, both source
and relay have to knowmin{CSk(i), CkD(i)}. Acquiring this
CSI knowladge requires feedback of the source-to-relay or the
relay-to-destination channel from the relay to the destination
or the source, respectively. Hence, the distributed implemen-
tation of conventional relay selection requires4 pilot symbol,
feedback, and control packet transmissions. On the other hand,
the distributed implementation of the proposed buffer-aided
relaying protocol has the same overhead as conventional relay
selection since it also requires4 pilot symbol, feedback, and
control packet transmissions.

As can be seen from the above discussion, the proposed
buffer-aided protocol does not require more signaling over-
head than the conventional relay selection protocol. We note,
however, that the proposed protocol requires the computation
of µe

k(i) and Qk(i), ∀k, which are not required for the
conventional protocols. On the other hand, the computational
complexity of obtainingµe

k(i) andQk(i) using (39)-(41) and
(42), respectively, is not high since these equations require
only one or two additions and one to three multiplications.

V. BUFFER-A IDED RELAYING PROTOCOL WITH A DELAY

CONSTRAINT

The protocol in Theorem 1, with theµ∗
k, ∀k, obtained

from Lemma 2, gives the maximum average achievable rate,
but introduces unbounded delay. To bound the delay, in the
following, we propose a buffer-aided relaying protocol for
delay limited transmission. Before presenting the protocol, we
first determine the average delay for the considered network.

A. Average Delay

The average delay for the considered network, denoted by
T̄ , is specified in the following lemma.

Lemma 4:The average delay for the considered network is
given by

T̄ =

∑M
k=1 Q̄k

∑M
k=1 R̄Sk

, (43)

whereR̄Sk is the average rate received at thek-th relay and
given by (12). Furthermore,̄Qk is the average queue size in
the buffer of thek-th relay, which is found as

Q̄k = lim
N→∞

1

N

N
∑

i=1

Qk(i). (44)

Proof: Please refer to Appendix D.
The queue size at time sloti can be obtained using (42).

Due to the recursiveness of the expression in (42), it is
difficult, if not impossible, to obtain an analytical expression
for the average queue sizēQk for a general buffer-aided relay
selection protocol. Hence, in contrast to the case without delay
constraint, for the delay limited case, it is very difficult to
formulate an optimization problem for maximization of the
average rate subject to some average delay constraint. As a
result, in the following, we develop a simple heuristic protocol

for delay limited transmission. The proposed protocol is a
distributed protocol in the sense that the relays themselves
negotiate which relay should receive or transmit in each time
slot such that the average delay constraint is satisfied. We note
that the proposed protocol does not need any knowledge of the
statistics of the channels.

B. Distributed Buffer-Aided Protocol

Before presenting the proposed heuristic protocol for delay
limited transmission, we first explain the intuition behindthe
protocol.

1) Intuition Behind the Protocol:Assume that we have
a buffer-aided protocol which, when implemented in the
considered network, enforces the following relation

Q̄k

R̄Sk
= T0, ∀k, (45)

i.e., the average queue length divided by the average arrival
rate in the buffer at thek-th relay is equal toT0. If (45)
holds ∀k, then by inserting (45) into (43), we see that the
average delay of the network will bēT = T0. Moreover,
enforcing (45) at thek-th relay requires only local knowledge,
i.e., only knowledge of the average queue length and the
average arrival rate at thek-th relay is required. Hence, this
protocol can be implemented in a distributed manner. There
are many ways to enforce (45) at thek-th relay. Our preferred
method for enforcing (45) is to have thek-th relay receive
and transmit whenQk(i)/R̄Sk < T0 andQk(i)/R̄Sk > T0

occur, respectively. Moreover, we prefer a protocol in which
the moreQk(i)/R̄Sk differs from T0, the higher the chance
of selecting thek-th relay should be. In this way,Qk(i)/R̄Sk

becomes a random process which exhibits fluctuation around
its mean valueT0, and thereby achieves (45) in the long run.
We are now ready to present the proposed protocol.

2) The Proposed Protocol for Delay-Limited Transmission:
Let T0 be the desired average delay constraint of the system.
At the beginning of time sloti, source and destination transmit
pilots in successive pilot time slots. This enables the relays to
acquire the CSI of their respective source-to-relay and relay-to-
destination channels. Using the acquired CSI, thek-th relay
computesCSk(i) and CkD(i). Next, usingCSk(i) and the
amount of normalized information in its buffer,Qk(i−1), the
k-th relay computes a variableλk(i) as follows

λk(i) = λk(i− 1) + ζk(i)

(

T0 −
Qk(i − 1)

R̄e
Sk(i− 1)

)

, (46)

whereR̄e
Sk(i − 1) is a real-time estimate of̄RSk, computed

using (40). In (46),ζk(i) is the step size function, which is
some properly chosen monotonically decaying function ofi
with ζk(1) < 1. Now, usingCSk(i), CkD(i), Qk(i − 1), and
λk(i), thek-th relay turns on a timer proportional to

1

max{λk(i)CSk(i) , min{Qk(i− 1), CkD(i)}/λk(i)}
. (47)

This procedure is performed by allM relays. If

max{λk(i)CSk(i) , min{Qk(i− 1), CkD(i)}/λk(i)}
= λk(i)CSk(i)
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and

max{λk(i)CSk(i) , min{Qk(i− 1), CkD(i)}/λk(i)}
= min{Qk(i− 1), CkD(i)}/λk(i), (48)

the k-th relay knows that if it is selected, then it will receive
and transmit, respectively. The relay whose timer expires
first, broadcasts a control packet containing pilot symbolsand
information about which relay is selected and whether the se-
lected relay receives or transmits. From the packet broadcasted
by the selected relay, both source and destination learn the
source-to-selected-relay and the selected-relay-to-destination
channels, respectively, and which relay is selected and whether
it is scheduled to receive or transmit. If the selected relayis
scheduled to transmit, then it extracts information from its
buffer and transmits a codeword to the destination with rate
RkD(i) = min{Qk(i − 1), CkD(i)}. However, if the relay is
scheduled to receive, then the source transmits a codeword
to the k-th relay with rateRSk(i) = CSk(i). In this case,
the relay has to feedback its source-to-relay channel to the
destination. This fedback CSI is needed by the destination
to keep track of the amount of information that each relay
receives and transmits in each time slot so that the destination
can perform successful reordering of the received information
bits. Moreover, exploiting (42), this information is used by the
destination to compute the queue length in the buffer at each
relay,Qk(i).

Remark 4:Note that with (46) we achieve the aforemen-
tioned goal of increasing the probability of selecting thek-th
relay whenQk(i)/R̄Sk differs more fromT0. More precisely,
if Qk(i)/R̄Sk < T0, then λk(i) increases and1/λk(i) de-
creases, giving thek-th relay a higher chance to be selected
for reception. On the other hand, ifQk(i)/R̄Sk > T0, then
λk(i) decreases and1/λk(i) increases, giving thek-th relay
a higher chance to be selected for transmission.

Remark 5:The required overhead of the proposed dis-
tributed delay-limited protocol is identical to the overhead
of the proposed distributed protocol without delay constraint.
Furthermore, the delay-limited buffer-aided protocol canalso
be implemented in a centralized manner, similar to the scheme
in Section IV-A. The centralized implementation of the delay-
limited protocol has an overhead identical to the overhead
of the centralized protocol without delay constraint, see Sec-
tion IV-A. A summary of the overheads of conventional
relay selection protocols and the proposed buffer-aided (BA)
relaying protocols with and without delay constraint is given
in Table I.

VI. N UMERICAL EXAMPLES

We assume that all source-to-relay and relay-to-destination
links are impaired by Rayleigh fading. Throughout this sec-
tion, we use the abbreviation “BA” to denote “buffer-aided”.

In Fig. 2, we plot the theoretical maximum average rate
obtained from Theorem 1, and Lemmas 2 and 3, forM = 5
relays and i.n.d. fading, where

[ΩS1,ΩS2,ΩS3,ΩS4,ΩS5] = [0.5, 1, 1.5, 2, 2.5]

−5 0 5 10 15 20 25
0

1

2

3

4

5

A
v
er
a
g
e
ra
te

(i
n
b
it
s/
sy
m
b
)

P/σ2
n (in dB)

 

 
Proposed BA protocol without delay – Theory
Proposed BA protocol without delay – Simulation
Proposed BA protocol, T̄ = 5 time slots – Simulation
Proposed BA protocol, T̄ = 10 time slots – Simulation
Rate in [10] and [11]

Fig. 2. Achievable average rates forM = 5, [ΩS1,ΩS2,ΩS3,ΩS4,ΩS5] =
[0.5, 1, 1.5, 2, 2.5], and [Ω1D,Ω2D ,Ω3D ,Ω4D ,Ω5D ] =
[3, 1.3, 0.9, 1.1, 0.7].
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and

[Ω1D,Ω2D,Ω3D,Ω4D,Ω5D] = [3, 1.3, 0.9, 1.1, 0.7].

We have also included simulation results for the proposed
buffer-aided protocol, where theµe

k(i), k = 1, ..., 5, are found
using the recursive method in (39) withδk(i) = 0.1/

√
i, ∀k.

As can be seen, the simulated average rate coincides perfectly
with the theoretical average rate. As a benchmark, in Fig. 2,
we show the average rate given in [10] and [11]. Moreover, we
have also included the average rates achieved using the delay
limited BA protocol introduced in Section V-B for an average
delay of T̄ = 5 and T̄ = 10 time slots. For the delay limited
protocol, in order to evaluate (46) we have usedλk(1) = 0.9
and the step size functionζk(i) = 0.005/

√
i/ log2(1+P/σ2

n),
∀k. As can be seen from Fig. 2, both the delay-unlimited and
the delay-limited BA protocols achieve higher rates than the
rate achieved in [10] and [11]. We note that we cannot use
the protocols in [8] and [9] as benchmarks in Fig. 2 since
these protocols are not applicable in i.n.d. fading as the buffers
would become unstable. In particular, for the protocols in
[8] and [9], the buffers at relays withΩSk > ΩkD would
suffer from overflow and receive more information than they
can transmit. Hence, a fraction of the source’s data would be
trapped inside the buffers and does not reach the destination,
i.e., data loss would occur.

For the parameters adopted in Fig. 2, we show in Fig. 3 the
corresponding constantsµ1 andµ5 obtained using Lemma 2,
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TABLE I
NUMBER OF PILOT SYMBOL, FEEDBACK, AND CONTROL PACKET TRANSMISSIONS REQUIRED FOR THE CONVENTIONAL AND THE PROPOSED

BUFFER-AIDED (BA) PROTOCOLS PER TIME SLOT

Conventional BA protocols with and without delay constraint
Centralized 2M + 4 or 2M + 5 2M + 4 or 2M + 5
Distributed 4 4
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and the corresponding estimated parametersµe
1(i) andµe

5(i)
obtained using the recursive method in (39) as functions
of time for P/σ2

n = 0 dB. As can be seen from Fig. 3,
the estimated parametersµe

1(i) andµe
5(i) converge relatively

quickly to µ1 andµ5, respectively.
Furthermore, for the parameters adopted in Fig. 2, we

have plotted the average delay of the proposed delay-limited
protocol until time sloti in Fig. 4, for the case whenT0 = 5
time slots, andP/σ2

n = 20 dB and P/σ2
n = 25 dB. The

average delay until time sloti is computed based on (43) where
the queue size and the arrival rates are averaged over the time
window from the first time slot to thei-th time slot. Hence,
for finite i, the average delay until time sloti is the average
of a random process over a time window of limited duration.
Because of the assumed ergodicity, fori → ∞, the size of
the averaging window becomes infinite and the time average
converges to the mean of this random process. However, for
i < ∞, the time average is still a random process. This is
the reason for the random fluctuations in the average delay
until time sloti in Fig. 4. Nevertheless, Fig. 4 shows that the
average delay until time sloti converges relatively fast toT0

as i increases. Moreover, after the average delay has reached
T0, it exhibits relatively small fluctuations aroundT0.
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Fig. 6. Achievable average rates forΩSk = ΩkD = 1, ∀k, vs P/σ2
n for

different number of relaysM , and different delay.

In Fig. 5, we plot the theoretical achievable average rates
for BA relaying for i.i.d. fading withΩSk = ΩkD = 1, ∀k,
and P/σ2

n = 10 dB, as a function of the number of relays
M . As can be seen from this numerical example, the growth
rate of the maximum average rate is inversely proportional to
M , i.e., the growth rate of the average data rate decreases as
M increases. In particular, the largest increase in data rateis
observed whenM increases from one to two relays, whereas
the increase in the maximum average rate whenM increases
from 29 to 30 relays is almost negligible. This behavior can
be most clearly seen from the expression for the average rate
for low SNR given in (33). According to (33), the average
rate increases proportionally to1+1/2+1/3+ ...+1/(2M).
Therefore, whenM is large, adding one more relay to the
network has a negligible effect on the average rate. As bench-
marks, we also show the average rate given in [10] and [11],
and the average rates achieved with the protocols in [8] and
[9]. For i.i.d. links, as explained in Remark 1, the protocolin
[8] is identical to the protocol presented in Theorem 1, thereby
leading to the same rate.

In Fig. 6, we plot the achievable average rate for BA
relaying without and with a delay constraint, as a function
of P/σ2

n, for i.i.d. fading and different numbers of relaysM .
This numerical example shows that, as the number of relays
increases, the permissible average delay has to be increased
in order for the rate of the delay constrained protocol to
approach the rate of the non-delay constrained protocol. More
precisely, for a single relay network, an average delay of five
time slots is sufficient for the rate of the delay constrained
protocol to approach the rate of the non-delay constrained
protocol. However, for a network with two and four relays,
the corresponding required delays are7 and 10 time slots,
respectively. For comparison, we have also plotted the average
rate given in [10] and [11], which requires a delay of one time
slot. Fig. 6 shows that the average rate of the buffer-aided
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relaying protocol with five time slots delay and only one relay
surpasses the average rate in [10] and [11] for four relays.

VII. C ONCLUSION

We have devised buffer-aided relaying protocols for the
slow fading HD relay selection network and derived the
corresponding achievable average rates. We have proposed a
buffer-aided protocol which maximizes the achievable average
rate but introduces an unbounded delay, and a buffer-aided
protocol which bounds the average delay at the expense of a
decrease in rate. We have shown that the new achievable rates
are larger than the rates achieved with existing relay selection
protocols. We have also provided centralized and distributed
implementations of the proposed buffer-aided protocols, which
do not cause more signaling overhead than conventional relay
selection protocols for adaptive rate transmission and do not
need any a priori knowledge of the statistics of the involved
channels.

APPENDIX

A. Proof of Lemma 1

We denote the left and right hand sides of (15) asAk and
Dk, respectively, i.e.,

Ak = lim
N→∞

1

N

N
∑

i=1

rRk (i)CSk(i), (49)

Dk = lim
N→∞

1

N

N
∑

i=1

rTk (i)CkD(i). (50)

There are three possible cases for the relationship betweenAk

andDk, i.e.,Ak > Dk, Ak < Dk, andAk = Dk. If Ak > Dk

then the buffer of thek-th relay is receiving more information
than it transmits. Therefore, the average queue length in the
buffer grows with time to infinity, and, as a result,̄RkD =
Dk, for a proof please refer to [27, Section 1.5]. Whereas, if
Ak < Dk, due to the conservation of flow, the buffer cannot
emit more information than it receives, and thereforeR̄kD =
Ak. We now prove that forAk > Dk andAk < Dk, R̄kD

can always be increased by changing the values ofrRk (i) and
rTk (i). As a result, the only remaining possibility is thatR̄SD

is maximized forAk = Dk. Furthermore, since the achievable
rate is given byR̄SD =

∑M
k=1 R̄kD, if R̄kD increases,̄RSD

will also increase.
Assume first thatAk > Dk. Then, we can always increase

Dk, and thereby increasēRkD, by switching anyrRk (i) = 1
for which Qk(i − 1) > 0 holds, from one to zero and, for
the samei, switchrTk (i) from zero to one. On the other hand,
if Ak < Dk then we can always increaseAk, and thereby
increaseR̄kD, by switching any randomly chosenrTk (i) = 1
from one to zero and, for the samei, switchrRk (i) from zero to
one. Now, sincēRSD can always be improved whenAk > Dk

or Ak < Dk, it follows thatR̄SD is maximized forAk = Dk.
Furthermore, when thēRkD are maximized∀k, thenR̄SD is
also maximized. Moreover, forAk = Dk the buffer at thek-th
relay is stable since the information that arrives at the buffer
also leaves the buffer without information loss. On the other
hand, the proof that (16) holds when (15) is satisfied is given

in [13, Appendix B]. Finally, considering (14), if (16) holds
∀k, then (17) holds as well. This concludes the proof.

B. Proof of Theorem 1

To solve (18), we first relax the binary constraintsrTk (i) ∈
{0, 1} and rRk (i) ∈ {0, 1} in (18) to 0 ≤ rTk (i) ≤ 1 and
0 ≤ rRk (i) ≤ 1, ∀i, respectively. Thereby, we transform the
original problem (18) into the following linear optimization
problem

Maximize :
rR
k
(i),rT

k
(i),∀i,k

1
N

∑N
i=1

∑M
k=1 r

T
k (i)CkD(i)

Subject to : C1 : 1
N

∑N
i=1 r

R
k (i)CSk(i)

= 1
N

∑N
i=1 r

T
k (i)CkD(i), ∀k

C2 : 0 ≤ rRk (i) ≤ 1, ∀k, i
C3 : 0 ≤ rTk (i) ≤ 1, ∀k, i
C4 : 0 ≤∑M

k=1[r
R
k (i) + rTk (i)] ≤ 1, ∀k, i.

(51)

In the following, we solve the relaxed problem (51) and then
show that the optimal values ofrTk (i) andrRk (i), ∀i, k are at
the boundaries, i.e.,rRk (i) ∈ {0, 1} andrTk (i) ∈ {0, 1}, ∀i, k.
Therefore, the solution of the relaxed problem (51) is also the
solution to the original maximization problem in (18).

Since (51) is a linear optimization problem, we can solve it
by using the method of Lagrange multipliers. The Lagrangian
function for maximization problem (51) is given by

L =

M
∑

k=1

1

N

N
∑

i=1

rTk (i)CkD(i)

−
M
∑

k=1

µk

(

1

N

N
∑

i=1

rTk (i)CkD(i)− 1

N

N
∑

i=1

rRk (i)CSk(i)

)

−
M
∑

k=1

1

N

N
∑

i=1

αT
k (i)

(

rTk (i)− 1
)

+
M
∑

k=1

1

N

N
∑

i=1

βT
k (i)r

T
k (i)

−
M
∑

k=1

1

N

N
∑

i=1

αR
k (i)

(

rRk (i)− 1
)

+
M
∑

k=1

1

N

N
∑

i=1

βR
k (i)r

R
k (i)

− 1

N

N
∑

i=1

φ(i)

(

M
∑

k=1

[rRk (i) + rTk (i)]− 1

)

+
1

N

N
∑

i=1

λ(i)

(

M
∑

k=1

[rRk (i) + rTk (i)]

)

, (52)

whereµk/N , αx
k(i)/N , βx

k (i)/N , for x ∈ {R,T}, φ(i)/N ,
andλ(i)/N are Lagrange multipliers. These multipliers have
to satisfy the following conditions.
1) Dual feasibility condition: The Lagrange multipliers for
the inequality constraints have to be non-negative, i.e.,

αR
k (i) ≥ 0, αT

k (i) ≥ 0, βR
k (i) ≥ 0, βT

k (i) ≥ 0,

φ(i) ≥ 0, λ(i) ≥ 0, ∀i, k. (53)

have to hold.
2) Complementary slackness condition: If an inequality is
inactive, i.e., the optimal solution is in the interior of the
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corresponding set, the corresponding Lagrange multipliers are
zero. Therefore, we obtain

αR
k (i)

(

rRk − 1
)

= 0, αT
k (i)

(

rTk − 1
)

= 0, ∀i, k (54)

βR
k (i)r

R
k = 0, βT

k (i)r
T
k = 0, ∀i, k (55)

φ(i)

(

M
∑

k=1

[rRk (i) + rTk (i)]− 1

)

= 0,

λ(i)

(

M
∑

k=1

[rRk (i) + rTk (i)]

)

= 0, ∀i, k. (56)

We now differentiate the Lagrangian function with respect
to rRn (i) and rTm(i), for n ∈ {1, ...,M} andm ∈ {1, ...,M},
and equate the results to zero, respectively. This leads to the
following two equations

µnCSn(i) = αR
n (i)− βR

n (i) + φ(i)− λ(i) (57)

(1− µm)CmD(i) = αT
m(i)− βT

m(i) + φ(i)− λ(i). (58)

We first show that for the optimal solution ofrRn (i) and
rRm(i), 0 < rRn (i) < 1 and/or 0 < rTm(i) < 1 cannot
hold for any n,m ∈ {1, ...,M}, and only rRn (i) ∈ {0, 1}
and rTm(i) ∈ {0, 1} can hold∀n,m = 1, ...,M . We prove
this by contradiction. Assume that0 < rRn (i) < 1 and
0 <

∑M
k=1[r

R
k (i) + rTk (i)] < 1. Then, according to (54),

αR
n (i) = βR

n (i) = φ(i) = λ(i) = 0 must hold. Inserting this
into (57a), we obtain

µnCSn(i) = 0. (59)

Since CSn(i) is an RV, (59) can hold only forµn = 0.
However, if we assumeµn = 0, and insertµn = 0 in (57b)
by settingm = n, we obtain

CnD(i) = αT
n (i)− βT

n (i). (60)

SinceCnD(i) is a non-negative RV, and since eitherαT
n (i) or

βT
n (i) can be larger than zero but not both, in order for (60) to

hold, βT
n (i) must be zero andαT

n (i) = CnD(i). On the other
hand, ifβT

n (i) = 0, it would mean thatrTn (i) = 1. However, if
rTn (i) = 1 and0 < rRn (i) < 1 hold jointly, this would violate
our starting assumption that0 <

∑M
k=1[r

R
k (i) + rTk (i)] < 1

holds. Hence,0 < rRn (i) < 1 and0 <
∑M

k=1[r
R
k (i)+rTk (i)] <

1 cannot hold.
Now, let us assume that0 < rRn (i) < 1 and

∑M
k=1[r

R
k (i) +

rTk (i)] = 1. SincerRn (i) < 1, then at least one other variable
rRk (i) or rTm(i) has to be larger than zero but smaller than
one, wherek ∈ {1, ...,M}, k 6= n, andm ∈ {1, ...,M}. Let
us assume that this variable isrRk (i), wherek 6= n. Hence,
0 < rRk (i) < 1, for k 6= n. Then, according to (54),αR

n (i) =
βR
n (i) = αR

k (i) = βR
k (i) = λ(i) = 0, andφ(i) ≥ 0 must hold.

Inserting these values in (57a), we obtain

µnCSn(i) = φ(i) = µkCSk(i). (61)

However, sinceCSn(i) andCSk(i) are independent RVs, (61)
cannot hold for any arbitrarily choseni. On the other hand, if
we assume that instead ofrRk (i), the variable which is larger
than one isrTk (i), we would have obtained that

µnCSn(i) = φ(i) = (1− µk)CkD(i) (62)

must hold. Since (62) also cannot hold for any arbitrarily
choseni, we obtain that0 < rRn (i) < 1 and

∑M
k=1[r

R
k (i) +

rTk (i)] = 1 cannot hold. Therefore, the only other possibility
is thatrRn (i) ∈ {0, 1} must hold.

Following the same approach as above, we can also prove
thatrTm(i) ∈ {0, 1} must hold. Moreover, due to constraint C4
in (51), it is clear that ifrRn (i) = 1, for anyn ∈ {1, ...,M},
then rRk (i) = 0 for all k = 1, ...,M , k 6= n, and rTm(i) = 0
for all m = 1, ...,M must hold. Similarly, ifrTm(i) = 1, for
any m ∈ {1, ...,M}, then rTk (i) = 0 for all k = 1, ...,M ,
k 6= m, andrRn (i) = 0 for all n = 1, ...,M must hold. In the
following, we investigate the conditions under whichrRn (i) =
1 and all otherrRk (i) = 0 for k = 1, ...,M , k 6= n, and all
otherrTm(i) = 0 for m = 1, ...,M .

AssumerRn (i) = 1. Then, rRk (i) = 0 for k = 1, ...,M ,
k 6= n, and rTm(i) = 0 for m = 1, ...,M must hold. As a
result, according to (54),αR

n (i) ≥ 0, βR
k (i) ≥ 0, βT

m(i) ≥ 0,
φ(i) ≥ 1, andβR

n (i) = αR
k (i) = αR

m(i) = λ(i) = 0 must hold,
for k = 1, ...,M , k 6= n, andm = 1, ...,M . Inserting these
variables in (57), we obtain the following

µnCSn(i) = αR
n (i) + φ(i), (63)

µkCSk(i) = −βR
k (i) + φ(i), ∀k 6= n (64)

(1 − µm)CmD(i) = −βT
m(i) + φ(i), ∀m. (65)

Subtracting (64) from (63) and subtracting (65) from (63), we
obtain

µnCSn(i)− µkCSk(i) = αR
n (i) + βR

k (i), ∀k 6= n
(66)

µnCSn(i)− (1− µm)CmD(i) = αR
n (i) + βR

m(i), ∀m. (67)

SinceαR
n (i) + βR

k (i) ≥ 0 and αR
n (i) + βR

m(i) ≥ 0 hold, it
follows thatrRn (i) = 1 when the following holds

µnCSn(i) > µkCSk(i), ∀k 6= n

AND µnCSn(i) > (1 − µm)CmD(i), ∀m. (68)

Eq. (68) can be written in compact form as

rRk (i) = 1 if µkCSk(i) = maxA(i), (69)

where setA(i) is defined in (19). Following the same approach
as above, we can prove that

rTk (i) = 1 if (1− µk)CkD(i) = maxA(i). (70)

Combining (69) and (70), we obtain (20). This completes the
proof of Theorem 1.

C. Proof of Lemma 2

The optimal µk, ∀k, are found from the system ofM
equations given in (21). Using the definition of the expected
value, (21) can be written equivalently as (23), where the RVs
ΓSk andΓkD are given by

ΓSk =

{

γSk if µkCSk = maxA
0 if µkCSk 6= maxA ,

ΓkD =

{

γkD if (1− µk)CkD = maxA
0 if (1− µk)CkD 6= maxA.

(71)
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Hence, to find the optimalµk, ∀k, we only have to find the
PDFs ofΓSk andΓkD, fΓSk

(x) andfΓkD
(x), and insert them

into (23). In the following, we first derive the PDF ofΓSk.
Using (71), we can obtain the PDF ofΓSk, fΓSk

(x), for
x > 0, as

fΓSk
(x) = fγSk

(x)Pr
{

µkCSk = maxA
}

, x > 0, (72)

wherePr{·} denotes probability. Note that the distribution of
fΓSk

(x) for x = 0, is not needed for the computation of the
expectations in (21) and (22). The only unknown in (72) is
the probabilityPr

{

µkCSk = maxA
}

. In the following, we
derive this probability. To this end, we setγSk = x, and obtain

Pr
{

µkCSk = maxA
}

= Pr
{

µk log2(1 + x) = maxA
}

=

M
∏

j=1,j 6=k

Pr {µj log2(1 + γSj) < µk log2(1 + x)}

×
M
∏

j=1

Pr {(1 − µj) log2(1 + γjD) < µk log2(1 + x)}

=

M
∏

j=1,j 6=k

Pr
{

γSj < (1 + x)
µk
µj − 1

}

×
M
∏

j=1

Pr
{

γjD < (1 + x)
µk

1−µj − 1
}

=

M
∏

j=1,j 6=k

FγSj

(

(1 + x)
µk
µj − 1

)

×
M
∏

j=1

FγjD

(

(1 + x)
µk

1−µj − 1
)

, (73)

whereFγα
(x) is the CDF ofγα, for α ∈ {Sk, kD}. Inserting

(73) into (72), we obtain (24). Following a similar procedure
as above, we obtain the distribution ofΓkD given in (25).

Now, assume that all source-to-relay and relay-to-
destination links are i.i.d. Then,fγSk

(x) = fγkD
(x) = fγ(x)

holds∀k. Moreover,FγSk
(x) = FγkD

(x) = Fγ(x) also holds
∀k. As a result, (24) and (25) can be written forx > 0 as

fΓSk
(x) = fγ(x)Fγ

(

(1 + x)
µk

1−µk − 1
)

×
M
∏

j=1
j 6=k

Fγ

(

(1 + x)
µk
µj − 1

)

Fγ

(

(1 + x)
µk

1−µj − 1
)

, (74)

fΓkD
(x) = fγ(x)Fγ

(

(1 + x)
1−µk
µk − 1

)

×
M
∏

j=1
j 6=k

Fγ

(

(1 + x)
1−µk
µj − 1

)

Fγ

(

(1 + x)
1−µk
1−µj − 1

)

.

(75)

We observe thatfΓSk
(x) and fΓkD

(x) in (74) and (75), re-
spectively, are both functions ofµk and show this explicitly by
redefining them asfΓSk

(x, µk) andfΓkD
(x, µk), respectively.

Moreover, from (74) and (75) we observe that

fΓkD
(x, µk) = fΓSk

(x, 1− µk) (76)
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Fig. 7. Equivalent single buffer model.

holds. If we now insert (76) into (23), we obtain
∫ ∞

0

log2(1 + x)fΓSk
(x, µk)dx

=

∫ ∞

0

log2(1 + x)fΓSk
(x, 1 − µk)dx, ∀k = 1, ...,M. (77)

Now, observe that (77) holds if and only ifµk = 1−µk, which
leads toµk = 1/2. This concludes the proof.

D. Proof of Lemma 4

The average delay for a system withM parallel queues is
well known, and given by [28, Eq. 11.69]. After changing the
notations in [28, Eq. 11.69] to our notations, we directly obtain
(43). In the following, we give an alternative, more intuitive
proof of (43).

The input-output dynamics at theM buffers in the con-
sidered network duringN time slots can be represented
equivalently by a single buffer model, shown in Fig. 7. The
different colors in this model correspond to the information
bits which are received/transmitted by the different relays. For
example, the blue, green, and red colors correspond to the bits
that are send/received via relay 1, 2, and 3, respectively. In this
model, the buffer is filled in the same order as the order of the
packets that arrive at the buffers at the different relays. Which
packet arrives at the equivalent buffer depends on the position
of the input switch in each time slot, which on the other
hand, depends on the values ofrRk (i), ∀i, k. The extraction
of the bits from the equivalent buffer also depends on the
position of the output switch in each time slot, which on the
other hand, depends on the values ofrTk (i), ∀i, k. Moreover,
when the output switch is set to a line with a specific color,
only bits with that color are extracted from the equivalent
buffer. Hence, the extraction order is different from the order
of filling the equivalent buffer. Nevertheless, since the average
delay computed by Little’s formula [29], is independent of the
order of extracting from the buffer, see [30, pp. 89-91], forthe
system model in Fig. 7, the average delayT̄ can be computed
as [29]

T̄ =
Q̄eq

Āeq
, (78)

whereQ̄eq is the average queue size of the equivalent buffer
and Āeq is the average arrival rate of the equivalent buffer.
Now, using the fact thatQ̄eq =

∑M
k=1 Q̄k and Āeq =

∑M
k=1 R̄Sk, we obtain (43). This concludes the proof.
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