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To AND or To OR: On Energy-Efficient Distributed

Spectrum Sensing with Combined Censoring and

Sleeping
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Abstract—Distributed spectrum sensing improves the detection
reliability of a cognitive radio network but generally comes at the
price of a large power consumption. Since cognitive radios are
generally low-power sensors with limited batteries, a combined
censoring and sleeping scheme is considered as an energy-efficient
algorithm for distributed spectrum sensing. Each sensor switches
off its sensing module with a specific sleeping rate. When the
sensor is on, a censoring policy is employed in order to send the
sensing result to the fusion center. The result is only transmitted,
if it is deemed to be informative. Hence, the energy consumption
of each sensor, including the sensing and transmission energies,
is reduced. The underlying sensing parameters are derived by
minimizing the maximum average energy consumption per sensor
subject to a lower-bound on the global probability of detection
and an upper-bound on the global probability of false alarm.
We analyze the problem for the OR and the AND rule and
provide a performance analysis for a case study based on the
IEEE 802.15.4/ZigBee standard. It is shown that the combined
censoring and sleeping scheme achieves a significant energy
saving compared to the case where no censoring or sleeping is
taken into account.

Index Terms—Energy-efficiency, combined censoring and
sleeping, distributed spectrum sensing, cognitive radio networks.

I. INTRODUCTION

Dynamic spectrum access employing cognitive radios has

been proposed, in order to opportunistically operate in un-

derutilized portions of the heavily licensed electromagnetic

spectrum [1], [2]. Cognitive radios opportunistically share

the spectrum, while avoiding any harmful interference to the

primary licensed users. One major category of cognitive radios

yields the interweave cognitive radios [3]. In this category,

cognitive radios employ spectrum sensing to detect the empty

bands of the radio spectrum, also known as spectrum holes.

Upon detection of such a spectrum hole, cognitive radios

dynamically use this empty band. However, as soon as the

primary user appears in the corresponding band, cognitive

radios have to vacate the band and search for a new spectrum

hole. This way, reliable spectrum sensing becomes a key

functionality of a cognitive radio network.
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Several algorithms have been investigated in order to per-

form spectrum sensing. Three of the most common techniques

which are considered in the literature are energy detection,

cyclostationary feature detection and matched filtering [4].

Matched filter detection is optimal in terms of the detection

reliability. However, perfect knowledge of the primary user

signal as well as the channel side information is required,

which is often not available at cognitive radios. Among the

other two techniques, energy detection has the lowest computa-

tional and implementation complexity, but is vulnerable to the

noise uncertainty. On the other hand, cyclostationary detection

is more robust to the noise uncertainty, but is computationally

complex, and needs a higher sensing time to deliver the same

detection performance as energy detection, when the noise

uncertainty is not taken into account. Note that in the presence

of a noise uncertainty, energy detection fails to detect the

primary user below a specific SNR independent of the number

of observation samples [5]. An overview of the state-of-the-

art in spectrum sensing for cognitive radio is discussed in [6].

Due to its simplicity and better mathematical tractability, here

we employ energy detection for spectrum sensing. However,

the algorithm discussed in this paper, can also be employed

for cyclostationary detection.

The hidden terminal problem and fading effects have been

shown to limit the reliability of single-user spectrum sensing.

Distributed cooperative detection has therefore been proposed

to improve the detection performance of a cognitive radio

network [7], [8]. Cognitive sensors sense the spectrum in

periodic sensing slots by collecting a number of observation

samples. The observation samples are then processed in order

to provide useful data for a fusion center (FC), which is

responsible for making the final decision about the presence

or absence of the primary user. The data which is received

by the FC is either soft processed data such as likelihood-

ratio test (LRT) results, or hard binary decisions, which are

made by individual cognitive users based on their observations.

This way, two distinctive categories of decision rules at the

FC arise which are known as soft and hard fusion rules.

We refer the readers to [9] for a comprehensive study of

distributed detection with soft and hard fusion rules. Due to its

simplicity and higher energy-efficiency, a distributed detection

scheme based on hard fusion of local results is considered

in this paper. Note that each cognitive radio decides for the

presence or absence of the primary user exclusively based on

the observations obtained in the current sensing slot, and the

FC also only takes the current decisions of the cognitive radios
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into account ignoring all the previous decisions. Further, [8]

shows that for energy detection, the detection performance of

hard and soft fusion schemes is comparable.

Cognitive radios often consist of low-power sensors and

thus energy consumption is another critical issue which should

be accounted for, in cognitive radio system design. Each

cognitive radio consumes energy on two fronts. First, a cog-

nitive sensor spends some energy on sensing by collecting

the observation samples and processing them. Second, some

energy is consumed in order to transmit data to the FC. In

this paper, we intend to design an energy-efficient spectrum

sensing algorithm which reduces both the sensing and the

transmission energy, while adhering to the desired detection

performance of a cognitive radio system. The desired detection

performance is defined by a lower-bound on the probability of

detection and an upper-bound on the probability of false alarm.

This way, the primary users are protected from the interference

induced by the cognitive radios and the spectrum opportunities

are utilized efficiently.

As an energy-efficient algorithm for distributed spectrum

sensing, in [20], a combined sleeping and censoring scheme

is considered, which can be viewed as the predecessor of this

paper. A censoring policy ensures that only the informative

decisions are transmitted to the FC and non-informative ones

are censored. On top of censoring, a sleeping mechanism

is proposed where each cognitive radio turns off its sensing

module with a probability µ. The network energy consumption

is minimized subject to a constraint on the probability of

detection and false alarm. This approach is shown to reduce

the network energy consumption dramatically. Note that [20]

is based on minimizing the network energy consumption.

However, in low-power sensor networks, the individual energy

consumption of each sensor is a more critical factor. Hence, in

this paper, minimizing the maximum average energy consump-

tion per sensor shall be considered as the objective function.

Further, [20] only considers the OR rule as the fusion rule,

while in this paper, we shall include the AND rule as well.

As mentioned earlier, a combination of sleeping and censor-

ing is also considered in this paper. The goal is to minimize the

maximum average energy consumption per sensor subject to

a lower-bound on the probability of detection and an upper-

bound on the probability of false alarm. This way, a great

amount of energy is saved on sensing and transmission. The

main contributions and results of this paper are listed as

follows

• A combined sleeping and censoring scheme is proposed

where each sensor turns off its sensing module with

probability µ at each sensing period. In case the sensor

is on, then a censoring policy is employed in order to

send the decisions to the FC. As mentioned before, the

cognitive radios make a decision solely based on the

current observations. If the calculated energy is more

than an upper threshold, λ2, then the decision is that

the primary user is present. If the calculated energy

turns out to be lower than a lower threshold, λ1, then

a decision is sent to the FC indicating the absence of

the primary user. Else, no decision is made and nothing

is sent to the FC. Afterward, the underlying detection

performance indicators including the global probability of

false alarm and detection are derived for the OR and the

AND rule. The problem is defined so as to minimize the

maximum average energy consumption per sensor subject

to a lower-bound on the probability of detection and an

upper-bound on the probability of false alarm.

Further, it is shown that the optimal average energy con-

sumption per sensor is obtained when the lower threshold

is zero (λ1 = 0) for the OR rule and approaching infinity

(λ1 → ∞) for the AND rule. This way, one of the three

underlying arguments of the optimization problem includ-

ing λ1, λ2 and µ, is relaxed and the problem reduces

to a two-dimensional optimization problem. Further, it is

shown that on top of reducing the main problem to a

two-dimensional problem, using the interactions between

λ2 and µ, the problem can be reduced to a line-search

problem over µ.

• Asymptotic properties of the OR and the AND rule

are discussed as the probability of the primary user

absence (or presence) approaches zero or one. It is shown

that the optimal average energy consumption per sensor

decreases with the probability of the primary user absence

for the OR rule, thus achieving the lower-bound when

the primary user is always absent. While the optimal

average energy consumption per sensor increases with

the probability of the primary user absence for the AND

rule, thus achieving the upper-bound when the primary

user is always absent.

• Asymptotic properties of the OR and the AND rule

are investigated as the signal-to-noise-ratio (SNR) ap-

proaches infinity. It is shown that as the SNR approaches

infinity, the optimal solution of the underlying problems,

determined by the optimal sleeping rate, becomes inde-

pendent from the value of the probability of the primary

user absence (or presence), as well as the sensing and

transmission energies, and only depends on the maxi-

mum sleeping rate in the feasible set of the underlying

optimization problem.

• We show that the algorithms which shall be provided in

this paper, are independent from the type of signal, as

far as the observations remain conditionally independent

among the sensors.

The remainder of the paper is organized as follows. We

discuss some related works in Section II. The system model

and detection scheme is presented in Section III and the

combined sleeping and censoring policies are introduced. In

Section IV, we shall formulate and analyze the underlying

optimization problem for the OR and AND rules, followed

by some notes on the implications of deterministic instead

of statistical signal and channel assumptions on the proposed

scheme in Section V. The numerical results are depicted in

Section VI. We conclude the paper in Section VII and discuss

some ideas for future work.

II. RELATED WORKS

Distributed detection based on censoring in sensor networks

is discussed in [10]–[12]. Two problem formulations are pro-

posed in order to derive the underlying parameters including
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the lower and upper thresholds for censoring. The probability

of miss detection is minimized subject to a constraint on the

probability of false alarm and a constraint on the total network

energy consumption, in a Neyman-Pearson (NP) problem

formulation, while the probability of error is minimized subject

to a constraint on the total network energy consumption in a

Bayesian problem formulation.

Censoring for spectrum sensing in cognitive radios is in-

vestigated in [13]–[15]. The paper [13] considers a censoring

rule in order to reduce the communication overhead of a

cognitive radio network which employs the OR rule at the FC.

In [14], analytical expressions for the sensing parameters are

given according to a NP setup for both soft and hard fusion

schemes, but unlike [10]–[12], no constraint on the energy

consumption is taken into account. A fixed-sample size cen-

soring scheme, as well as a combined censoring and sequential

sensing scheme are discussed in [15]. In the fixed-sample

size censoring, the number of observation samples per sensing

period is fixed, while in the combined censoring and sequential

scheme, a truncated sequential sensing technique is employed,

where the sensors sequentially collect observation samples

until they reach a decision about the presence or absence of

the primary user. It is shown that censored truncated sequential

sensing outperforms fixed-sample size censoring in terms of

energy-efficiency for the desired detection performance of the

cognitive radio system.

In [16], censoring for a collaborative cyclostationary de-

tection scheme in cognitive radio networks is considered. The

proposed cyclostationarity detection scheme is a generalization

of [17], where sensors send their test statistics to the FC for

a final decision about the presence or absence of the primary

user. A similar censoring rule as in [10] and [12] is employed,

in order to only transmit the test statistics which are deemed to

be informative. It is shown that this way, the communication

overhead reduces significantly, while the performance loss is

low. One of the key advantages of collaborative cyclostationary

detection is its robustness to the noise uncertainty. Employing

the cooperative cyclostationary detection approach proposed in

[16] as the sensing technique in the combined censoring and

sleeping scheme of this paper, gives an even more energy-

efficient reliable spectrum sensing technique at low SNR.

The mutual information between the state of signal occu-

pancy and the decision state of the FC for a combination

of censoring and sleeping is presented in [18]. However, the

energy-efficiency of the system is not directly addressed. A

sleeping technique is employed in [19] where the sleeping

policy is controlled by learning from the past channel obser-

vations.

A joint sensing and decision node selection scheme is con-

sidered in [21]. The network energy consumption is minimized

subject to a detection performance constraint defined as in

[20], in order to determine the sensing nodes from a pool

of cognitive radios and subsequently the decision nodes from

the selected sensing nodes. The decision nodes are the nodes

which send their result to the FC. Since the problem is to

be solved by integer programming and such problems are in

general NP hard, a convex relaxation is proposed in order to

solve the problem as a real problem and later on map the

solution from [0, 1] to {0, 1}.

Finally, we discuss some recent works related to energy-

efficient spectrum sensing which are not directly related to the

setup presented in this paper, but are still valuable to discuss

in order to provide an overview about the current state-of-

the-art. A joint clustering and confidence voting technique is

proposed in [22]. The sensors only participate in voting if

they are confident about their decision. Further, by clustering,

the transmission distance and hence the transmission energy

is reduced even further. Clustering can also be combined

with the proposed technique in this paper to achieve an even

higher energy efficiency. The sensing-throughput trade-off is

analyzed in [23] considering a detailed analysis of the circuit-

level power consumption including the energy consumed in

the power amplifier, ADC and low-noise amplifier. The total

circuit energy consumption is minimized subject to a data

rate constraint, in order to determine the sensing parameters.

Optimization of the network throughput for energy-constrained

cognitive radios is considered in [24] and [25]. Further, [26]

maximizes the energy efficiency of a cognitive radio network

by determining the sensing order, the sensing stopping time

and the access transmission power of the cognitive users with

dynamic programming. Similar energy-efficient sensing-access

strategies are also considered in [27] and [28].

III. SYSTEM MODEL

We consider a network of M cognitive radios. Each cog-

nitive radio senses the spectrum in periodic time slots by

collecting N samples in each sensing slot, and it possibly

sends a local decision to the FC exclusively based on the

current observations. The final decision is then made at the

FC only based on the current decisions, and fed back to the

cognitive radios for further action. Due to its low latency and

robustness to link failure, a parallel configuration as shown in

Fig. 1 is employed for distributed spectrum sensing. Denoting

H0 and H1 as the absence and the presence of the primary

user, each cognitive radio solves a binary hypothesis testing

problem as follows

H0 : rij = wij , i = 1, ..., N, j = 1, ...,M

H1 : rij = hijsi + wij , i = 1, ..., N, j = 1, ...,M (1)

where rij denotes the i-th sample received at the j-th cognitive

user, si is the primary user signal, hij is the channel gain

between the primary user and the j-th cognitive radio, and wij

is additive white Gaussian noise with zero-mean and variance

σ2
w. Two models for si and hij are assumed. First, the signal

is assumed to be an i.i.d. Gaussian random variable with

zero-mean and variance σ2
s and hij is constant during each

sensing slot, i.e., ∀i ∈ 1, . . . , N : hij = hj which represents

a slow-fading channel with Gaussian symbols. An example

of such a model can be an OFDM signal which experiences

flat-fading (note that OFDM signal can be modeled by zero-

mean Gaussian distribution [29]). In the second model, the

signal amplitude and phase is assumed to be constant, i.e.,

|si| = s and the channel gain hij is assumed to be an i.i.d.

Gaussian random variable with zero-mean and variance σ2
h,j

which represents a fast-fading channel, e.g. a BPSK signal
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Fig. 1. Distributed spectrum sensing configuration

experiencing a fast-fading channel. This way, denoting γj
to be the received average SNR at the j-th cognitive radio,

γj = |hj |
2σ2

s/σ
2
w under the first model and γj = σ2

h,js
2/σ2

w

under the second model. Cognitive radios are not able to esti-

mate the instantaneous channel gain, because the primary user

training sequence is generally not available at the secondary

users, and further, synchronization with the primary user signal

is very difficult as the cognitive radios are not aware of the

presence or absence of the primary user at a specific time.

However, the received average SNR can be estimated and thus,

throughout this paper, we focus on the average received SNR

instead of the instantaneous one. We assume that the expected

SNR in case of primary user presence is time-invariant during

the cognitive radio activity, and can be obtained either through

radio environment mapping (REM) [30], or estimated in the

beginning of the process [31]. Note that under both models, the

received signal remains an i.i.d. zero-mean Gaussian random

process with some variance, namely σ2
j = |hj |

2σ2
s + σ2

w for

the former model and σ2
j = s2σ2

h,j + σ2
w for the latter model.

Therefore, the analyses which are given in the following

sections are valid for both models. Furthermore, hijsi and wij

are assumed statistically independent. Similar signal modeling

is frequently used in cognitive radio literature, e.g. [32]–[34].

We shall discuss the implications of a deterministic scenario

on our scheme in Section V.

Each cognitive radio accumulates the energy of N samples

by employing an energy detector. Considering the adopted

system model in this paper, the energy detector is equivalent

to the optimal log-likelihood-ratio (LLR) detector [35]. The

received energy collected over the N observation samples at

the j-th radio is given by

Ej =

N
∑

i=1

|rij |
2

σ2
w

. (2)

A censoring policy is then employed at each radio where the

local decisions are sent to the FC, only if they are in a specific

information region. The censoring policy is defined by the

censoring thresholds λ1 and λ2, and the range λ1 < Ej < λ2

is called the censoring region. This way, the local censoring

decision rule at the j-th cognitive radio is given by







send 1, declaring H1 if Ej ≥ λ2,
no decision if λ1 < Ej < λ2,
send 0, declaring H0 if Ej ≤ λ1.

(3)

Since the received samples are i.i.d. Gaussian with zero-

mean, Ej follows a central chi-square distribution with 2N
degrees of freedom under H0 and H1. Therefore, the local

probabilities of false alarm and detection, respectively become

Pf,j = Pr(Ej ≥ λ2|H0) =
Γ(N, λ2

2 )

Γ(N)
, (4)

and

Pd,j = Pr(Ej ≥ λ2|H1) =
Γ(N, λ2

2(1+γj)
)

Γ(N)
, (5)

where Pr denotes probability and Γ(a, x) is the incomplete

gamma function given by Γ(a, x) =
∫∞

x
ta−1e−tdt, with

Γ(a, 0) = Γ(a). In order to achieve a higher energy saving,

on top of censoring, a sleeping policy is applied. Each sensor

turns off its sensing module randomly with a sleeping rate

denoted by µ. This process can be implemented in each sensor

by ordering the sleep/awake slots such that the number of sleep

slots is µ times the total number of sensing slots. The ordering

should be totally random and independent from other sensors.

Denoting by Cs and Ct the energy consumed by the j-th radio

in sensing per sample and transmission per bit, respectively,

our cost function is given by the average energy consumption

per sensor as follows

Cj = (1− µ)(NCs + Ct(1− ρj)), (6)

where ρj = Pr(λ1 < Ei < λ2) represents the censoring rate.

It is assumed that µ 6= 0 and ρj 6= 0. Note that in this

paper, the transmission and sensing energy of the sensors is

assumed to be the same. In practice, this assumption holds

when the sensors employ similar radio transceivers. Further,

the sensors consume energy during wake-up and idle periods

as well. However, these energy sinks are much smaller than

the amount of energy spent on the transmission and sensing

procedures. Therefore, in this paper, the energy consumption

model includes only the transmission and sensing energies,

which can be considered as a good approximation of the

complete energy consumption model and provides a good

platform for further analytical work. Defining π0 = Pr(H0),
π1 = Pr(H1), δ0,j = Pr(λ1 < Ej < λ2|H0) and

δ1,j = Pr(λ1 < Ej < λ2|H1), the censoring rate is given

by

ρj = π0Pr(λ1 < Ej < λ2|H0) (7)

+π1Pr(λ1 < Ej < λ2|H1) (8)

= π0δ0,j + π1δ1,j , (9)

where δ0,j and δ1,j are obtained as follows

δ0,j = Pr(λ1 < Ej < λ2|H0) (10)

=
Γ(N,

λ1
2 )

Γ(N) −
Γ(N,

λ2
2 )

Γ(N) , (11)

δ1,j = Pr(λ1 < Ej < λ2|H1) (12)

=
Γ(N,

λ1
2(1+γj)

)

Γ(N) −
Γ(N,

λ2
2(1+γj)

)

Γ(N) . (13)

Note that Pf,1 = Pf,2 = · · · = Pf,M = Pf and δ0,1 =
δ0,2 = · · · = δ0,M = δ0 due to the fixed noise variance over

the different cognitive radios. However, this is not true for
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Pd,j and δ1,j . So from now on, we will simply use Pf and

δ0. The FC employes either the OR or the AND rule in order

to make the final decision about the presence or absence of

the primary user. This means that the FC shall decide for the

presence of the primary user, if at least one cognitive radio

votes in favor of H1 for the OR rule, and for the absence of

the primary user if at least one cognitive radio votes in favor

of H0 for the AND rule. In the following section, we shall

derive the global probabilities of false alarm and detection for

both rules. Further, we provide the corresponding analyses and

problem formulations in detail for each rule.

IV. ANALYSIS AND PROBLEM FORMULATION

As mentioned earlier, the cognitive radio should avoid

harmful interference to the primary user. A constraint on the

global probability of detection denoted by QD is thus dictated

to satisfy this requirement. Further, to increase the cognitive

network throughput, correct detection of a spectrum hole is

very important and thus the probability of false alarm denoted

by QF shall be designed to be as low as possible. Ideally, we

would like QD = 1 and QF = 0. However, in real systems,

such an ideal case is impossible. Therefore, we define an

upper-bound denoted by α for QF and a lower-bound denoted

by β for QD. Our goal is then to design the system parameters

including λ1, λ2 and µ by minimizing the maximum average

energy consumption per sensor subject to a constraint on the

probabilities of false alarm and detection, as follows

min
µ,λ1,λ2

max
j

Cj

s.t. QF ≤ α, QD ≥ β.
(14)

Depending on the prior knowledge about the a priori proba-

bilities, π0 and π1, we consider two different cases: a) a blind

setup, where π0 and π1 are unknown, but π1 is known to

be much smaller than π0, reflecting channel under-utilization.

And b) a knowledge-aided setup where π0 and π1 are known.

As shall be shown later, the blind setup is a special case of

the knowledge-aided setup, where π1 → 0. Note that the blind

setup could also be defined as the case where π1 >> π0,

however this scenario is not of practical interest in cognitive

radio applications. Therefore, without loss of generality, here,

we focus on the analysis and problem formulation for the

knowledge-aided setup.

In this section, first, we derive QF and QD, followed by an

analysis of (14) for the OR rule in Section IV-A, and then we

follow the same rationale for the AND rule in Section IV-B.

Finally, we discuss the asymptotic properties of combined

censoring and sleeping for the OR and the AND rules as the

SNR approaches infinity in Section IV-C.

A. OR rule

In this subsection, the FC employs the OR rule in order

to make the final decision. Denoting DFC to be the decision

made at the FC, the OR rule means that DFC = 1 if at least one

cognitive radio sends a 1, else DFC = 0. This way, the global

probability of false alarm QF,OR for the OR rule is obtained

by

QF,OR = Pr(DFC = 1|H0) (15)

= 1− Pr(DFC = 0|H0) (16)

= 1− [1− (1− µ)Pf ]
M , (17)

where Pf is given by (4). This can be easily explained by

the OR rule based global probability of false alarm when

considering (1−µ)Pf to be the local probability of false alarm

including the sleeping policy. Note that the false alarm and

detection rates are independent from censoring, because if a

sensor does not transmit a result to the FC, the FC assumes

that the decision of this sensor is zero.

The global probability of detection QD,OR for the OR rule

can be derived in a similar way, and results in

QD,OR = Pr(DFC = 1|H1) (18)

= 1− Pr(DFC = 0|H1) (19)

= 1−
∏M

j=1[1− (1− µ)Pd,j ], (20)

where Pd,j is given by (5). This also can be explained

by the OR rule based global probability of detection when

considering (1−µ)Pd,j to be the local probability of detection

including the sleeping policy.

To analyze (14) for the OR rule, it is more convenient to

rewrite it in the following format

min
µ,λ1,λ2

max
j

(1− µ)
[

NCs + Ct(1− ρj)
]

s.t. 1− [1− (1− µ)Pf ]
M ≤ α, (21)

1−
M
∏

j=1

[1− (1− µ)Pd,j ] ≥ β. (22)

Since for the OR rule, the FC only decides on the presence of

the primary user by receiving 1s, sending 0s is not optimal in

terms of energy efficiency. Therefore, λ1 = 0 is the optimal

solution to (21). Using this result, we can relax one of the

arguments of the problem. When λ1 = 0, we obtain

1− δ0 = Pf , 1− δ1,j = Pd,j . (23)

Hence, (21) is given by

min
µ,λ2

max
j

(1− µ)
[

NCs + Ct(π0Pf + π1Pd,j)
]

s.t. 1− [1− (1− µ)Pf ]
M ≤ α, (24)

1−

M
∏

j=1

[1− (1− µ)Pd,j ] ≥ β. (25)

Since µ, λ2 (and thus Pf ), Cs, and Ct are the same among the

sensors, the maximum average energy consumption belongs

to the sensor with maximum probability of detection. This

in turn is acheived by the user with the maximum SNR.

Therefore, denoting j∗ as the user with maximum average

energy consumption, we obtain j∗ = max
j

(γj). Note that

since the expected SNR is assumed to be time-invariant, j∗ is

also time-invariant. From (21), we can see that if the values

Cs and Ct are different among the sensors, determining the

user with the maximum average energy consumption becomes

dependent on the specific values of µ and ρ. In this situation,
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solving the min-max problem becomes mathematically in-

tractable. Therefore, we need to apply a seemingly sub-optimal

approach called person-by-person optimization in each indi-

vidual sensor by minimizing the average energy consumption,

and then determine µ and ρ from the sensor which delivers

the maximum minimum average energy consumption among

the sensors. Considering j = j∗, for a fixed value of µ = µ∗,

(24) reduces to the following problem

min
Pf

(1− µ∗)
[

NCs + Ct(π0Pf + π1Pd,j∗)
]

s.t. Pf ≤
1− (1− α)1/M

(1− µ∗)
, (26)

1−

M
∏

j=1

[1− (1− µ∗)Pd,j ] ≥ β, (27)

where we exchanged λ2 in (24) with Pf , because λ2 is a

one-to-one function of Pf [36]. Defining F (λ2) =
Γ(N,

λ2
2 )

Γ(N) ,

we can write Pd,j∗ as Pd,j∗ = F (λ2/(1 + γj∗)). Calculating

the derivative of Cj∗ with respect to Pf , we find that
∂Cj∗

∂Pf
=

(1− µ∗)
∂
[

Ct(π0Pf+π1Pd,j∗ )
]

∂Pf
= (1−µ∗)

[

Ctπ0+
∂Pd,j∗

∂Pf

]

≥ 0

where we used the fact that
∂Pd,j∗

∂Pf
≥ 0. This way, minimizing

Pf leads to minimizing Pd,j∗ and thus minimizing the objec-

tive function in (26). Therefore we can write (26) as follows

min
Pf

Pf

s.t. Pf ≤
1− (1− α)1/M

(1− µ∗)
, (28)

1−

M
∏

j=1

[1− (1− µ∗)Pd,j ] ≥ β. (29)

Looking at (28) we can find that

F (G−1(µ∗, β)) ≤ Pf ≤ α
′

/(1− µ∗), (30)

where G(µ, λ2) = QD,OR = 1 −
∏M

j=1[1 − (1 − µ)Pd,j ],

α
′

= 1 − (1 − α)1/M , and G−1(µ, β) is defined over the

second argument of G(µ, β). Thus, we find that for every µ∗

for which F (G−1(µ∗, β)) ≤ α
′

/(1− µ∗), the solution to (28)

is given by P ∗

f = F (G−1(µ∗, β)). Therefore, our optimization

problem reduces to the following line search problem which

we solve by exhaustive search over µ,

min
µ

(1− µ)

[

NCs + Ct

(

π0F
(

G−1(µ, β)
)

(31)

+π1F
(

G−1(µ, β)/(1 + γj∗)
)

)

]

. (32)

Looking carefully at (31), we find that we can use the

same optimization problem for the blind setup by considering

π0 = 1 (π1 = 0). In other words, the blind setup is just a

special case of the knowledge-aided setup. This is the approach

that we will adopt in the simulations for both setups. Further,

the following theorem leads to some results regarding the

asymptotic properties of (31) when π0 approaches zero or one.

Theorem 1: If π0 increases, then the optimal Cj decreases

for the OR rule.

Proof: The proof is provided in Appendix A.

Two immediate corollaries of Theorem 1 which describe the

asymptotic properties of (31) are as follows:

Corollary 1: The lower-bound on the optimal average energy

consumption per sensor in (31) is obtained for π0 = 1 or when

the primary user is always absent.

Corollary 2: The upper-bound on the optimal average en-

ergy consumption per sensor in (31) is obtained for π0 = 0
or when the primary user is always present.

B. AND Rule

Here, we analyze the performance of the combined sleeping

and censoring for the AND rule. As in Section IV-A, we

provide the analysis for the knowledge-aided case. The analy-

sis for the blind problem formulation is then straightforward.

According to the AND rule, DFC = 0, if at least one cognitive

radio reports a zero, else DFC = 1. Note that for the AND rule,

if the FC receives no decision from the j-th cognitive user, it

automatically considers this decision to be 1. This way, the

global probabilities of false alarm and detection are obtained

as follows

QF,AND = Pr(DFC = 1|H0) (33)

=
[

µ+ (1− µ)(δ0 + Pf )
]M

(34)

=
[

1− (1− µ)(1− δ0 − Pf )
]M

, (35)

QD,AND = Pr(DFC = 1|H1) (36)

=
∏M

j=1

[

µ+ (1− µ)(δ1,j + Pd,j)
]

(37)

=
∏M

j=1

[

1− (1− µ)(1− δ1,j − Pd,j)
]

. (38)

These derivations can be easily explained by the AND rule

based global probabilities of false alarm and detection when

considering 1−
[

(1−µ)(1−δ0−Pf )
]

and 1−
[

(1−µ)(1−δ1,j−

Pd,j)
]

to be the local probabilities of false alarm and detection

including the sleeping and censoring policies, respectively.

Note that for the AND rule, the FC considers any result except

0 as 1. Therefore, from the FC viewpoint, a false alarm (or

detection) at the j-th cognitive radio occurs if the received

result is not 0 when the primary user is absent (or present).

This happens if the sensor goes to sleep mode at a specific

sensing time, or if awake, the sensor either censors the result

or sends a 1 to the FC. That is why for the AND rule, the

censoring rate plays a role in the global probabilities of false

alarm and detection which is not the case for the OR rule.

We define our problem in order to find the underlying

arguments (λ1, λ2, µ), so as to minimize the maximum average

energy consumption per sensor subject to a constraint on the

probabilities of false alarm and detection. As in the previous

scenario, the constraints on the probabilities of false alarm and

detection are defined by an upper-bound α and a lower-bound

β, respectively. This way, the problem is written as follows

min
µ,λ1,λ2

max
j

Cj

s.t. QF,AND ≤ α, QD,AND ≥ β.
(39)
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Since the FC decides for H0 only by receiving zeros, the

optimal solution of (39) is attained by λ2 → ∞. This way,

the global probabilities of false alarm and detection reduce to

QF,AND =
[

1− (1− µ)(1− δ0)
]M

, (40)

QD,AND =
M
∏

j=1

[

1− (1− µ)(1− δ1,j)
]

. (41)

Inserting (40) and (41) in (39) and relaxing λ2 using the fact

that λ2 → ∞ is optimal, we obtain

min
µ,λ1

max
j

(1− µ)(NCs + Ct(1− ρj))

s.t.
[

1− (1− µ)(1− δ0)
]M

≤ α, (42)

M
∏

j=1

[

1− (1− µ)(1− δ1,j)
]

≥ β, (43)

where ρj = π0δ0+π1δ1,j . Since there is a one-to-one relation

between λ1 and δ0, we can rewrite (42) as follows

min
µ,δ0

max
j

(1− µ)(NCs + Ct(1− π0δ0 − π1δ1,j))

s.t.
[

1− (1− µ)(1− δ0)
]M

≤ α, (44)

M
∏

j=1

[

1− (1− µ)(1− δ1,j)
]

≥ β, (45)

Since all the parameters in Cj are the same among the

sensors except δ1,j , unlike the OR rule, the user with the

minimum SNR consumes the maximum amount of energy in

average. Therefore, j∗ = min
j

γj . As in the OR rule, if Cs and

Ct become different among the sensors, a similar person-by-

person optimization can be applied. Considering j = j∗, for

a given µ = µ∗, (44) becomes

min
δ0

(1− µ∗)(NCs + Ct(1− π0δ0 − π1δ1,j∗))

s.t.
[

1− (1− µ∗)(1− δ0)
]M

≤ α, (46)

M
∏

j=1

[

1− (1− µ∗)(1− δ1,j)
]

≥ β. (47)

Since δ1,j∗ is a monotone increasing function of δ0, the

optimal solution of (46) is obtained by solving the following

problem

max
δ0

δ0

s.t.
[

1− (1− µ∗)(1− δ0)
]M

≤ α, (48)

M
∏

j=1

[

1− (1− µ∗)(1− δ1,j)
]

≥ β. (49)

Therefore, if the feasible set of (48) is not empty, then the

maximum δ0 in this feasible set determines the optimal δ0.

From the first constraint in (48), we find δ0 ≤ 1− 1−α1/M

1−µ∗
.

Assuming QD,AND = G(µ, δ0), we have
∂G(µ,δ0)

∂δ0
=

∂G(µ,δ0)
∂δ1,j

∂δ1,j
∂δ0

≥ 0, where we used the fact that
∂G(µ,δ0)

∂δ1,j
≥ 0.

This way, from the second constraint in (48), we obtain δ0 ≥
G−1(µ∗, β), where the inverse function is defined over the

second argument in G(µ, δ0). Based on this discussion, (48)

reduces to max
δ0

δ0 subject to G−1(µ∗, β) ≤ δ0 ≤ 1− 1−α1/M

1−µ∗
.

Therefore, the optimal δ0 is obtained by δ0 = 1 − 1−α1/M

1−µ∗
.

Inserting the optimal δ0 for a given µ in (44), we obtain

the following line search problem in order to determine the

optimal µ and consequently δ0 and λ1 which is solved by

exhaustive search.

min
µ

(1− µ)

[

NCs + Ct

(

1− π0

(

1−
1− α1/M

1− µ

)

(50)

− π1Fj∗,AND

(

1−
1− α1/M

1− µ

)

)

]

(51)

where Fj∗,AND(δ0) = δ1,j∗(δ0) = F
(

F−1(δ0)/(1 + γj∗)
)

.

In search for the optimal µ, we should note that µ ≤ α1/M

which comes from the fact that 1 − 1−α1/M

1−µ ≥ 0 and also

G(µ, 1 − 1−α1/M

1−µ ) ≥ β. Further, the following theorem leads

to some results regarding the asymptotic properties of (50)

when π0 approaches zero or one.

Theorem 2: If π0 decreases, the optimal Cj decreases for

the AND rule.

Proof: The proof is provided in Appendix B.

Two immediate corollaries of Theorem 2 which describe the

asymptotic properties of (50) are as follows:

Corollary 3: The lower-bound on the optimal average energy

consumption per sensor in (50) is obtained for π0 = 0 or when

the primary user is always present.

Corollary 4: The upper-bound on the optimal average en-

ergy consumption per sensor in (50) is obtained for π0 = 1
or when the primary user is always absent.

We note that asymptotic properties of the AND rule are

opposite to those of the OR rule in Corollaries 1 and 2.

These corollaries as well as the ones in Section IV-A pro-

vide the achievable performance boundaries for the combined

censoring and sleeping scheme for the OR and the AND rule.

They are particularly important in situations where the exact

probability of the primary user absence or presence is not

known, such as in the blind setup defined in this paper, where

we know that π0 ≫ π1. In such situations, depending on the

value of π0, we can use either the lower or the upper bound.

For example, as shall be shown in Section VI-A, in case

of the blind setup, we use the lower-bound on the optimal

average energy consumption per sensor in (31) for the OR

rule, and the upper-bound in (50) for the AND rule, which

are corresponding to Corollaries 1 and 4, respectively.

C. Asymptotic properties of the OR and AND rules when γj →
∞

The following theorem which is proved in Appendix C

describes the asymptotic properties of combined censoring and

sleeping when the SNR approaches infinity. Note that this

analysis is preformed merely in order to gain analytical insight

in to the proposed scheme at extreme values of the SNR. In

practice such a situation is possible when the cognitive radios
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are either in the close range of the primary user, or there is a

line of sight (LOS) channel to the primary user.

Theorem 3 If ∀j : γj → ∞, the optimal solution to (31)

and (50) is obtained by the maximum sleeping rate µ, in the

feasible set of (31) and (50), respectively.

Therefore, when the SNR is high, using Theorem 3, a sub-

optimal solution can be obtained which is close to the optimal

solution.

V. SOME NOTES ON THE DETERMINISTIC SCENARIO

So far, we have focused on the two models which are

described under (1) in Section III, where the received samples

at each sensor are generated by an i.i.d. Gaussian random

process with zero-mean under H0 and H1. In this section,

we assume a model where the channel is time-invariant, i.e.,

∀i : hi,j = hj and the signal is deterministic, i.e., |si| = s. In

this case, the received samples at the sensors are not zero-

mean anymore under H1. This case can be considered as

an unknown deterministic signal detection scenario such as

the one in [37], employing an energy detector. This scenario

represents a case where symbol duration is comparable to

channel coherence time [31]. The received SNR at the j-th

cognitive radio in this case is γj = |hj |
2|s|2/σ2

w.

Employing the energy detector in (2), Ej follows a chi-

square distribution with 2N degrees of freedom under H0

and a non-central chi-square distribution with 2N degrees of

freedom and non-centrality parameter γj under H1. This way,

the local probabilities of false alarm and detection at the j-th

cognitive sensor, denoted by Pf,det,j and Pd,det,j , respectively,

are obtained as follows

Pf,det,j = Pr(Ej ≥ λ2|H0) =
Γ(N, λ2

2 )

Γ(N)
, (52)

Pd,det,j = Pr(Ej ≥ λ2|H1) = Q2N (
√

2γj ,
√

λ2), (53)

where Qu(c, x) is the generalized Marcum Q-function,

Qu(c, x) = 1
cu−1

∫∞

x
tue−

t2+c2

2 Iu−1(ct)dt, with Iu−1(.) be-

ing the modified Bessel function of the first kind and order

u−1. The rest of the analysis, which is discussed in Section IV,

is independent from the type of samples which are received

at the sensors, as long as they are conditionally independent.

Therefore, in order to solve (14) and (39) for the deterministic

scenario, we only need to substitute (52) and (53) instead

of (4) and (5) in the related equations. Note that here, the

exact solution to the underlying problems is not necessarily

the sames as for random signals, but the algorithms to solve

the problems are similar.

VI. NUMERICAL RESULTS

In this section, we first analyze the performance of the

system numerically by assuming some arbitrary values for the

sensing and transmission energy in Section VI-A. A case study

is then discussed in order to evaluate the energy-efficiency of

the proposed scheme in Section VI-B.
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Fig. 2. Optimal sleeping and censoring rate for α = 0.1 and 0.9 ≤ β ≤ 0.99

A. Numerical Analysis

A network of five cognitive radios is considered. Each

cognitive radio receives the primary user signal with an

average SNR of γ = 10 dB and the number of observation

samples is equal to N = 5. Here, the goal is to analyze

the behavior of the optimal censoring and sleeping rate as

the detection performance constraint of the system changes.

Further in Figs. 2 and 3, in one scenario, the sensing and

transmission energy is assumed to be the same and in the

other one, the transmission energy is assumed to be 100 times

larger than the sensing energy.

The optimal censoring and sleeping rates are depicted in

Fig. 2 for different values of β and α = 0.1. We can

see that as the transmission energy increases with respect

to the sensing energy, the censoring rate increases while the

sleeping rate decreases for the OR rule. The reason is that

as the transmission energy becomes larger than the sensing

energy, the combined censoring and sleeping scheme tends

to save more energy on transmission compared to the one

on sensing. Although the same trend can be observed for the

AND rule, the optimal censoring and sleeping rates for the

AND rule are approximately the same for the different sensing

and transmission energies. As discussed in Section IV-C, this

behavior comes from the fact that at high SNRs, the optimal

parameters of the underlying problem become independent

from the values of the sensing and transmission energies.

Further, it seems this behavior appears at lower SNRs for the

AND rule with respect to the OR rule.

The same behavior as in Fig. 2 is shown in Fig. 3, where

the optimal censoring and sleeping rates for 0.03 ≤ α ≤ 0.1
and β = 0.9 are depicted. Similar to Fig 2, we can see that as

the transmission energy increases with respect to the sensing

energy, the optimal censoring rate increases while the sleeping

rate decreases. Again we can see that due to the high SNR,

for the AND rule, the optimal censoring and sleeping rates

are approximately the same for different values of the sensing

and transmission energies.

In Fig. 4, the optimal average energy consumption per
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Fig. 3. Optimal sleeping and censoring rate for 0.03 ≤ α ≤ 0.1 and β = 0.9
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Fig. 4. Optimal average energy consumption per sensor versus the sensing
energy with α = 0.1, β = 0.99, Ct = 1. The AND rule outperforms the
OR rule after a specific Cs.

sensor is depicted versus the sensing energy Cs for π0 = 0.2
and π0 = 0.8, in order to compare the performance of the OR

and the AND rule. In this figure, M = 5, N = 5, γ = 10 dB,

α = 0.1 and β = 0.99, Ct = 1 and Cs changes from 0
to 10. We can see that the AND rule outperforms the OR

rule as Cs increases. Therefore, for the desired constraints on

the probability of detection and false alarm in this figure, the

AND rule seems a better choice compared to the OR rule,

particularly when the sensing energy is much higher with

respect to the transmission energy.

B. Case Study for IEEE 802.15.4/ZigBee

We consider a case study based on IEEE 802.15.4/ZigBee

in order to evaluate the performance of combined sleeping

and censoring. A circular network of M cognitive radios is

considered where cognitive radios are uniformly distributed

around the circle and the FC is located at the center. The radius

of the circle and thus the distance between each cognitive

radio and the FC is assumed to be 70 m. Each cognitive radio

is a Chipcon CC2420 transceiver which operates according

to the IEEE 802.15.4/ZigBee standard [38]. The sensing and

transmission energy is calculated based on the specification of

this transceiver. A free-space path loss model is employed to

model the wireless channel between the cognitive radio and

the FC and this leads to a signal attenuation which is inversely

proportional to the square of the distance d between the

transmitter and receiver. The number of samples is assumed

to be N = 5, which corresponds to a sensing time of 1 µs.

The total sensing energy consisting of listening and processing

energy for 5 samples is derived in [20] and is roughly equal

to 5Cs = 190 nJ. Following the same model as in [20], the

transmission energy for a range of 70m and transmission of a

one-bit decision, is approximately Ct = 278 nJ. Note that the

transmission energy is derived in order to satisfy a receiver

sensitivity of −90 dBm at a SNR of 10 dB.

Fig. 5 depicts the optimal average energy consumption per

sensor versus the probability of detection constraint, β. The

number of cognitive radios is M = 5, the probability of false

alarm constraint α = 0.1 and 0.9 ≤ β ≤ 0.99. We let π0 to

adopt three values including {0.2, 0.8, 1} reflecting the cases

where the probability of primary user absence is low, high, and

extremely high, respectively. We can see that the combined

censoring and sleeping scheme delivers a high energy saving

compared to the scenario where no energy-efficient scheme is

considered. We further notice that the AND rule outperforms

the OR rule for low values of π0 reflecting the lower chance of

reporting a 0 and thus a higher censoring rate compared to the

OR rule as shown in Fig. 6. The opposite trend is shown for

the case where π0 is high. For example, except for the high

values of β, the OR rule outperforms the AND rule when

π0 = 0.8. For the extremely high values of π0, it is shown

that the OR rule always outperforms the AND rule with much

higher censoring rate as shown in Fig. 6. It is also shown that

in accordance to Corollary 1 the lower-bound on the optimal

average energy consumption per sensor for the OR rule is

achieved when π0 = 1. Further, Theorems 1 and 2 are also

verified in Fig. 5. The optimal average energy consumption

per sensor increases with π0 for the AND rule and decreases

with π0 for the OR rule.

Fig. 6 shows the optimal censoring and sleeping rate versus

the probability of detection constraint β for the same pa-

rameters as in Fig. 5. This figure helps us in understanding

the observed behaviors in Fig. 5. It is shown that under the

considered parameters in this scenario, due to the high SNR,

the sleeping rate has the same value for different a priori

probabilities π0 and π1 as well as for the blind setup. This

behavior verifies the discussion in Section IV-C. Further, we

can see that the censoring rate increases with π0 and is the

largest for π0 = 1 for the OR rule and that is why the

blind setup (which assumes π0 >> π1) gives the lower-

bound on the energy-efficiency of the combined censoring and

sleeping scheme. The opposite behavior can be observed for

the AND rule as π0 increases. Note that here and in the rest

of this section, our goal is not to compare the performance

of the knowledge-aided and blind setups, but to just show
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the expected performance of the proposed algorithm under

each setup. When we refer to the blind setup, we intend to

study the performance of combined censoring and sleeping

asymptotically as π0 → 1.

The optimal average energy consumption per sensor is

drawn in Fig. 7 versus the number of cognitive radios. In this

figure, the global probabilities of false alarm and detection

are assumed to be α = 0.1 and β = 0.9. Again it is

shown that combined censoring and sleeping is very promising

in terms of energy-efficiency with respect to the scenarios

where no energy-efficiency is taken into account. We can see

that as the number of cognitive radios increases, the system

gains a higher energy saving, reflecting a lower burden on

the individual cognitive radios. As in Fig. 5, the AND rule

outperforms the OR rule in low values of π0, while the OR

rule outperforms the AND rule for high values of π0. We

can see again that the lower-bound on the optimal average
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energy consumption per sensor for the OR rule is achieved

when π0 = 1. Figures 5 and 7 show that the average energy

consumption per sensor in each sensing slot can be reduced

significantly which in turn increases the expected life-time

of the sensors. Denoting the expected life-time of a sensor

by Lj , the total available energy for sensing by CT , and the

sensing duration by Ts, the expected life-time of the sensor

is obtained by Lj = Ts
CT

Cj
. The fact that the life-time of

the sensors increases by employing combined censoring and

sleeping is depicted in Fig. 8. In this figure, CT = 1000 J, and

the remaining parameters are the same as Fig. 7. Here, again

we can see that increasing the number of cognitive radios can

improve the life-time of individual sensors significantly.

The optimal censoring and sleeping rates versus the number

of users is depicted in Fig. 9 in order to understand the

observed behaviors in Fig. 7. The results are obtained for
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Fig. 9. Optimal censoring and sleeping rate with number of cognitive radios

the same setup as the one in Fig. 7. We can see that as the

number of users increases, the optimal sleeping rate increases

in order to reduce the average energy consumption per sensor.

However, the optimal censoring rate remains almost the same.

Again considering the discussions in Section IV-C, we can see

that due to a high SNR, the optimal sleeping rate becomes

independent from π0 and that is why the sleeping rate among

all the scenarios remains the same. Further, we can see that

as π0 increases, the censoring rate increases for the OR rule

and decreases for the AND rule which results in a lower

average energy consumption per sensor for the OR rule and

a higher one for the AND rule. This verifies the validity of

Theorems 1 and 2. A specific duality is also observed between

the OR and the AND rule in this figure. While the optimal

sleeping rate is the same for both, the optimal censoring rate

for a specific π0 and the OR rule is approximately the same as

for the AND rule for a probability of the primary user absence

with a value of 1− π0. This property which can also be seen

in Fig. 7 is investigated more in the following scenarios.

In all of the following scenarios, the number of cognitive

radios is M = 5, the number of samples is N = 5 and the

SNR is γ = 10 dB.

In Figs. 10, 11 and 12, the optimal average energy consump-

tion per sensor is depicted versus the probability of primary

user absence, π0. The goal is to study performance of the

proposed algorithm for the OR and the AND rules when π0

as well as the detection constraints change. In these figures,

the probability of false alarm constraint α = 0.1, and the

probability of detection constraint β = 0.8, 0.9, and 0.99
respectively, in Figs. 10, 11 and 12. We can see that as π0

increases, the average energy consumption per sensor reduces

for the OR rule, while for the AND rule, it increases, which

is in line with Theorems 1 and 2. Intuitively speaking, in

the lower values of π0 for the OR rule, on average, a higher

number of transmissions occurs compared to the higher values

of π0, because the FC in the case of the OR rule only receives

1s from the users. In contrast to the OR rule, for the AND

rule, the probability that cognitive users transmit their results

to the FC increases by increasing π0, since the probability of

sending 0s to the FC increases. Therefore, the average energy

consumption per sensor decreases and increases with π0, for

the OR and AND rules, respectively.

Moreover, in Fig. 11, an interesting behavior in the optimal

average energy consumption per sensor is shown with π0. We

can see that for π0 < 0.5, the AND rule outperforms the OR

rule, while for π0 > 0.5, it is vice versa, and for π0 = 0.5,

both rules almost behave the same. The same behavior can be

shown to appear when α+β = 1. This duality between the OR

and the AND rules is observed in Figs. 7 and 9. We can see

in Figs. 10 and 12, that with decreasing or increasing β, the

crossing point where the OR rule starts to outperform the AND

rule moves respectively to the left or the right of π0 = 0.5.

Similar to β, we can show that increasing or decreasing α with

a constant β moves the performance crossing point of the OR

and the AND rule to the right or left, respectively.

VII. CONCLUSIONS AND FUTURE WORKS

A combined censoring and sleeping scheme was discussed

as an energy-efficient distributed spectrum sensing technique

in cognitive radio networks. The underlying parameters in-

cluding the lower threshold λ1, the upper threshold λ2, and

the sleeping rate µ were obtained by minimizing the maximum

average energy consumption per sensor subject to a specific

detection performance for the OR and the AND rule. It was

shown that the optimal λ1 is λ1 = 0 for the OR and λ1 → ∞
for the AND rule. Employing the interaction between λ2 and

µ, we showed that the problem can be solved by a line search

over µ for both the OR and the AND rule. Further, we showed

that the same solutions can be employed to solve the problem

for a deterministic scenario, where the primary user signal

is deterministic and the channel is time-invariant. Asymptotic

properties of the OR and the AND rule were discussed as

π0 → 0 or 1, and also when the SNR approaches infinity. It

was shown that the optimal average energy consumption per

sensor is increasing with π0 for the AND rule and decreasing

with π0 for the OR rule. This way the lower-bound and

upper-bound on the energy consumption per sensor is obtained

respectively for the OR and the AND rule when π0 = 1. It

was depicted that as the SNR approaches infinity, the optimal

solution of the underlying problems becomes independent

from the value of π0 as well as the values of the sensing

and transmission energies.

Several scenarios with different values of the sensing and

transmission energy as well as different probabilities of false

alarm and detection constraints were considered in the nu-

merical results. It was shown that as the transmission energy

increases with respect to the sensing energy, the optimal cen-

soring rate increases, while the optimal sleeping rate decreases.

A case study based on the IEEE 802.15.4/ZigBee standard was

considered where we showed that a significant energy saving

can be achieved by combined sleeping and censoring. It was

shown that for the desired detection performance of a cognitive

radio system defined by α = 0.1 and β = 0.9, the OR rule

outperforms the AND rule for π0 > 0.5, while the AND rule

outperforms the OR rule when π0 < 0.5.
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Fig. 10. Optimal average energy consumption per sensor versus the
probability of primary user absence for α = 0.1 and β = 0.8
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Fig. 11. Optimal average energy consumption per sensor versus the
probability of primary user absence for α = 0.1 and β = 0.9.
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Fig. 12. Optimal average energy consumption per sensor versus the
probability of primary user absence for α = 0.1 and β = 0.99

It was shown that increasing the number of cognitive users,

not only improves the detection reliability of the cognitive

radio network but also, if the system is well-designed in terms

of energy-efficiency, reduces the burden on the individual

cognitive radios in terms of energy consumption.

Note that in this paper, we considered a distributed spectrum

sensing scheme with a fusion center. There are cases though

where a fusion center is not available, in which case decentral-

ized distributed spectrum sensing is required. To the best of our

knowledge, energy-efficient decentralized distributed spectrum

sensing is not considered in the literature. Employing selective

transmission schemes such as the ones in [39] and [40] to

design energy-efficient algorithms for decentralized distributed

sensing is a subject of further study.

Here, we only considered the combined censoring and

sleeping scheme for the OR and the AND rule. Extension

of the scheme to more general hard fusion rules is another

subject for future work. In this paper, we solved the final

reduced one-dimensional problems by exhaustive search over

the sleeping rate. Designing efficient algorithmic solutions to

solve these problems are also valuable ideas for future studies.

APPENDIX A

PROOF OF THEOREM 1

Imagine µ∗ is the solution to (31). Since ∀µ, β in the

feasible set of (31), F (G−1(µ, β)/(1+γj)) ≥ F (G−1(µ, β)),
we obtain Cj(π

′

0, µ
∗) ≤ Cj(π0, µ

∗) if π
′

0 > π0. Note that

equality is achieved when γj → 0. Further, assume that µ∗
′

is the optimal solution to (31) for π
′

0. Then we know that

Cj(π
′

0, µ
∗
′

) ≤ Cj(π
′

0, µ
∗) and thus Cj(π

′

0, µ
∗
′

) ≤ Cj(π0, µ
∗)

which proves Theorem 1.�

APPENDIX B

PROOF OF THEOREM 2

Imagine µ∗ is the optimal solution to (50). Since ∀µ, α in the

feasible set of (50), δ1,j ≥ δ0, therefore, we have Fj,AND(1−
1−α1/M

1−µ ) ≥ 1−α1/M

1−µ . This way, we obtain Cj(π
′

0, µ
∗) ≤

Cj(π0, µ
∗) if π

′

0 < π0. Note that equality is achieved when

γj → 0. Further, assume that µ∗
′

is the optimal solution to

(50) for π
′

0. Then we know that Cj(π
′

0, µ
∗
′

) ≤ Cj(π
′

0, µ
∗),

and thus C∗
′

j ≤ C∗
j which proves Theorem 2.�

APPENDIX C

PROOF OF THEOREM 3

First we note that when ∀j : γj → ∞, the local probabilities

of detection become very close to each other and thus we let

Pd,j = Pd in (18). The same happens for δ1,j in (41) and hence

we also let δ1,j = δ1. This way QD,OR = 1−
[

1−(1−µ)Ps

]M

and QD,AND =
[

1− (1− µ)(1− δ1)
]M

.

From (28) and (30), we can see that for a given µ, the

optimal Pd is equal to
1−(1−β)1/M

1−µ . This way, (31), becomes

min
µ

(1 − µ)

[

NCs + Ct

(

π0F
(

(1 + γ)F−1( 1−(1−β)1/M

1−µ )
)

+

π1
1−(1−β)1/M

1−µ

)

]

. We note that when the SNR approaches

infinity, the optimal Pf = F
(

(1 + γ)F−1( 1−(1−β)1/M

1−µ )
)
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approaches 0 and thus (31) reduces to min
µ

[

(1 − µ)NCs +

π1Ct

(

1−(1−β)1/M
)

]

, and this problem is solved by finding

the maximum µ in the feasible set of (31).

Further, when the SNR approaches infinity, the optimal δ1
approaches 1, since F

(

F−1(δ0)/(1+γ)
)

→ 1. This way, (50)

reduces to min
µ

[

(1− µ)NCs − π0Ct

(

1− α1/M
)

]

, which is

solved again by finding the maximum µ in the feasible set of

(50) which is µ = α1/M .�
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