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Abstract

This paper characterizes the performance of cellular msvemploying multiple antenna open-
loop spatial multiplexing techniques. We use a stochastiontetric framework to model distance
depended inter cell interference. Using this frameworkawalyze the coverage and rate using two linear
receivers, namely, partial zero-forcing (PZF) and minimoman-square-estimation (MMSE) receivers.
Analytical expressions are obtained for coverage and iatghilition that are suitable for fast numerical
computation.

In the case of the PZF receiver, we show that it is not optimaltilize all the receive antenna for
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canceling interference. With as the path loss exponem¥, transmit antennaly,. receive antenna, we

show that it is optimal to usev, [( - 2) (]]\V,—t - %ﬂ receive antennas for interference cancellation
and the remaining antennas for signal enhancement (ariay. §@r both PZF and MMSE receivers,

we observe that increasing the number of data streams g®wad improvement in the mean data rate
with diminishing returns. Also transmittingy,. streams is not optimal in terms of the mean sum rate.
We observe that increasing the SM rate with a PZF receiveaysvdegrades the cell edge data rate

while the performance with MMSE receiver is nearly indepamtdof the SM rate.

Sreejith T. V. and Kiran Kuchi are with the Department of Efeal Engineering, [IT Hyderabad, India. Radha Krishnantsa

is with the Department of Electrical Engineering, IIT Masiréndia.

November 15, 2018 DRAFT


http://arxiv.org/abs/1405.0209v1

Index Terms

Cellular networks, stochastic geometry, spatial mulilg, partial zero forcing, minimum mean

square error estimation.

. INTRODUCTION

Multiple-input multiple-output (MIMO) communication isnaintegral part of current cellular
standards. The antennas can be used for increasing the nofrdea streams or improving the
link reliability and the trade-off is well understood for aipt-to-point link [1], [2], [3]. Spatial
multiplexing (SM) is an important technique for boostingestral efficiency of a point-to-point
link with multiple antenna, wherein independent data streare transmitted on different spatial
dimensions. The capacity improvement with SM in an isoldiekl in the presence of additive
Gaussian noise has been extensively studied [4], [5], [6].

However cellular systems are multi-user systems and coralainterference is a major
impediment to the network performance. Indeed, it has beguned with the help of simulations
in [7], [8] that SM is not very effective in a multi-cell en@nment due to interference. In
a multi-user setup, in addition to providing diversity andltiplexing, the antennas can also
be used to serve different users asubpress interference, thereby adding new dimensions for
system design.

Existing cellular networks employ both closed-loop andmefmop SM methods. Closed-loop
SM requires channel state information (CSI) at the trartemiand is suitable for users with
slowly varying channels (low Doppler case). On the otherdhapen-loop SM is used for
channels with high Doppler or in cases were there is inadedeadback to support closed-loop
SM. Open-loop SM is also used for increasing the performaria@ntrol channels where CSI
feedback is not available. Open-loop SM can be implemenmtad/d ways. In single user SM,
a base station (BS) can allocate all the available datarstréa a single user thereby increase
the user’s rate. Alternatively, the BS can serve multiplersist the same time by allocating one

stream per user. The latter approach is termed as open-latipuser SM.
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We consider the case where each BS hasantenna and multiplexed; streams with one
stream per user. The receiver hds receiver antennas. In this case, with a linear receiver,
N; degrees-of-freedom (DOF) (among available DOF) can be used for suppressing self-
interference caused by SM while the remainiNg — N; DOF can be used for suppression of
other cell interference or to obtain receiver array gair. &adypical cell edge user, a reduction
of the SM rate at the transmitter might result in enough reidOF (after suppression of self-
interference) to cancel the other cell interference an@ggly results in an increased throughput.
When the number of data streams transmitted from a BS is tess the number of antennas
available, techniques like cyclic-delay-diversity or ageop dumb-beamforming [9] can be used
the remaining antennas.

In this paper, we consider distance dependent inter-cédirfarence and investigate how
multiple antenna can be used in the down link of an open-logjular system. A general
design goal is to maximize both mean and cell edge data fAtesanalyze the various trade-

offs between SM rate and the achievable mean/cell-edgerdegs using linear receivers.

Il. RELATED WORK

Recent studies [7], [8] show that spatial multiplexing MIMEYstems, whose main benefit
is the supposed potential upswing in spectral efficiencse Imuch of their effectiveness in a
multi-cell environment with high interference. Severapeagaches to handling interference in
multi-cell MIMO systems are discussed in [8]. Blum in [1O)éstigated the capacity of an
open-loop multi user MIMO system with interference and hskiewn that the optimum power
allocation across antenna depends on the interferencerpdiben the interference is high, it is
optimal to allocate the entire power to one transmit anté€eimgle-stream) rather than spreading
the power equally across antenna.

There has been considerable work in ad hoc networks conigasingle stream transmission
with multi-stream transmission using tools from stoclagfeometry. It has been shown in

[11], [12] that the network-wide throughput can be increag@early with the number of
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receive antennas, even if only a single transmit antennaasl by each node, and each node
sends/receives only a single data stream. Interestinglychannel state information (CSI) is

required at the transmitter to achieve this gain.

Using (1—2/«), wherea is the path loss exponent, fraction of the receive degreégedlom
for interference cancellation and the remaining degreefseedom for array gain, allows for a
linear scaling of the achievable rate with the number of ik@eg antennas [12]. It is interesting
to see that canceling merely one interferer by each node nwigase the transmission capacity
even when the CSl is imperfect [13]. Importance of intenieecancellation in ad-hoc networks
is also discussed in [14], [15] and [16]. However, most ofstheesults are obtained by deriving

bounds on the signal-to-interference rat§dg) distribution.

In [17], [18] the exact distribution o8IR with SM and minimum-mean-square-estimation
(MMSE) receiver has been obtained in an ad hoc network whemterferers are distributed as
a spatial Poisson point process. T8I& follows a quadratic form, and results from [19], [20] are
used to obtain the distribution. Again, it was shown thagkrstream transmission is preferable
over multi-stream transmission. In [21], distribution ®fR for multiple antenna system with
various receivers and transmission schemes are obtaimed Roisson interference field. In
[16] scaling laws for the transmission capacity with zevosing beamforming were obtained,
and it was shown that for a large number of antennas, the meamimlensity of concurrently
transmitting nodes scales linearly with the number of amasnat the transmitter, for a given
outage constraint. In [22], the distribution 6fiR in a zero-forcing receiver with co-channel

interference is obtained.

In ad hoc networks, an interferer can be arbitrarily closeidimcloser than the intended
transmitter) to the receiver in consideration. This resuitinterference that is heavy-tailed. On
the other hand, in a cellular network the user usually cotsntecthe closest BS and hence the
distance to the nearest interferer is greater than thendisteo the serving BS. This leads to a

more tamed interference distribution compared to an ad lebwarks.
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A. Main Contributions

In this paper we focus on linear receivers, namely the thégbarero-forcing receiver and
the MMSE receiver. The MMSE receiver optimally balancesaigooosting and interference
cancellation and maximizes the SINR. The sub-optimal gla#ero-forcing receiver uses a
specified number of degrees of freedom for signal boostimfytha remainder for interference

cancellation.

« We provide the distribution ofINR with a partial zero-forcing receiver. This analysis also
includes the inter-cell interference which is usually metgd. The resultant expression can
be computed by evaluating a single integral.

« With one stream per-user, we obtain the optimal configunatd receive antennas. In
particular we show that it is optimal to use {(1 —2) (% — %ﬂ receive antennas for
interference cancellation and the remaining antennasigmakenhancement (array-gain).

« We compute the cumulative distribution function of $iI&NR with a linear MMSE receiver.
In the interference-limited case, the distribution can bmputed without any integration.

« The sum rate expressions are provided for both PZF and MMS$Eivers. Numerical
evaluation of these results show that average sum rateamesewith the number of data
streams with diminishing returns. The mean sum rate reaiegximum value for a certain
optimum number of data stream that is generally less thamtneber of receive antenna
N,.. On the other hand, increasing the number of data streanayslelegrades the cell edge
data rate for PZF receiver and MMSE receivers. However, riifgact is less severe with a

MMSE receiver.

B. Organization of the paper

In Section lll, the system model, particularly the BS loocatimodel, is described in detalil.
In Section IV, theSINR distribution with a partial-zero-forcing receiver is dexd. In Section

V, the SINR distribution is obtained for a linear MMSE receiver and irctgan VI, the average
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ergodic rate is analyzed with both PZF and MMSE receiverg. fJdper is concluded in Section

VILI.

[1l. SYSTEM MODEL

We now provide a mathematical model of the cellular systeat Will be used in the subse-
guent analysis. We begin with the spatial distribution af base stations.

Network Model: The locations of the base stations (BSs) are modeled bytakPaisson point
process (PPP) [23p c R? of density\. The PPP model for BS spatial location provides a
good approximation for irregular BS deployments. The msesihd demerits of this model for
BS locations have been extensively discussed in [24].

We assume the nearest BS connectivity model, a user connects to the nearest BS. This
nearest BS connectivity model results in a Voronoi tesBefiaof the plane with respect to the
BS locations. See Figure 1. Hence the service area of a BR i¥dfonoi cell associated with
it.

We assume that each BS is equipped withantenna (active transmitting antennas) and a
user (UE) is equipped witlV,, antenna. In this paper we focus on downlink and henceMhe
antenna at the BSs are used for transmission and/ttentenna at the UE are used for reception.
We assume that all the BSs transmit with equal power whiclcémvenience we set to unity.
Hence each transmit antenna uses a powdr/f,.

Channel and path loss model: We assume independent Rayleigh fading with unit mean etwe
any pair of antenna. We focus on the downlink performancehamte without loss of generality,
we consider and analyse the performance of a typical mobéelocated at the origin. ThE, x 1
fading vector between theth antenna of the BS € ¢ and the typical mobile at the origin
is denoted byh, ,. We assuméh,, ~ CN(On,x1,1n,), i.€, @ circularly-symmetric complex
Gaussian random vector. The standard path loss m@del= ||z||~“, with path loss exponent
a > 2 is assumed. Specifically, the link betweegith transmit antenna of the BS atand the

N, receiver antennas of the user at originj§|z||~*h, ,.
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Received signal and interference: We consider the case where each BS used/jtantennas to

serveN, independent data streams td/, users in its cell. Let 6 € ® denote the BS that is closest
to the mobile user at the origin. We assume that the UE at tiggnas interested in decoding
the k-th stream transmitted by its associated 83-ocusing on the&-th stream transmitted by

0, the receivedV, x 1 signal vector at the typical mobile user is

Ny
Qs 1 1
=—h;; +— h; as, + I(® +w, 1
y \/T_a ik \/T_aq:; . q%,q ( ) 1)

whereI(®) = > ff;l h, ,a.,, denotes the intercell interference from other BSs.

zed\o \/ﬁ E
The symbol transmitted from the theth antenna of the base statienc ® is denoted by, ,
andE||a, ,*] = 1/N,. The additive white Gaussian noise is given\wy~ CN (0y, x1,c*Iy,).

The distance between the typical mobile user at the origih its1associated (closest) BS is
denoted byr = ||6||. Observe that is a random variable since the BS locations are random.
We now present few auxiliary results on the distribution ofne spatial random variables that
will be used later in the paper.

Distance to the serving BS and (m — 1)-th interfering BS We now obtain the joint distribution

of the distance of the origin to the nearest BS and the distamdhem — 1 interfering BS.
Recall thatr denotes the distance to the serving (nearest) BS. The PDikeafistance to the

nearest neighbor is [23]

fr(r) = e 2. (2)

We now compute the distance to the —1)-th closest interfering BS conditioned on the distance
to the nearest BS. Let R denote the distance to thie: — 1)-th BS. See Figure 1. Hence the
eventR < R, equals the event that there are at least 1 base stations in the region between

two concentric circles of radius and R centred at origin. Hence

0 k

2oy [AT R2 — 7“2
FR\T’(RO | 7’0) =P [R < R0|7’ = To] = G_WA(RO_TO)[ ( (}{:' 0)] , RQ > Tg. (3)
k=m—1 ’

We make the assumption that every cell has at I8astisers. This is true with high probability when there are dangmber

of users which is normally the case.
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Fig. 1: lllustration of the BS locations modelled by a PPP #rar corresponding cells. As an
example, the distance to the fifth nearest BS from the typisat at the origin is denoted by

and the distance to the serving BS is denoted-by

Hence the conditional PDF is

2TAR
(m—2)!

Let 5 = R/r denote the ratio of the distance of the— 1 th closest interfering BS of the typical

frpr(Rlr) = e~ TAE~T?) (W)\(Rz — 7"2))m_2 , R>r. 4)

user to the distance of its closest BS. Using (4) and (2),ntlma easily shown that the PDF of

the random variablé is
95(8) = 2(m — 1) (B2 = 1), B> 1. (5)

Observe that the ratiof does not depend on the density of the PPP. The average valtie of

is given byE[3] = 2220~ /(m — 1)x, andE[3"] = oo, v > 2 irrespective ofm > 2. We

T(m—1/2)
begin with the analysis of a partial zero forcing receiver.
IV. PARTIAL ZERO FORCING (PZF) RECEIVER

In this section, we will analyze the distribution of the ppsbcessingSINR with a PZF

receiver in a cellular setting. We assume that the user hdsgpd&nowledge of the interfering
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node channels that it wishes to cancel.

A. Coverage probability

Each user had/, antenna, which can be representedvas= m/NV;+09, m > 1 receive antenna.
The receive filtew for the typical user at the origin is chosen orthogonal todhannel vectors
of the interferers and the streams that need to be canceittioWWloss of generality, we assume
that the typical UE at the origin is interested in the¢h stream (1). The receive filteris chosen

as a unit norm vector orthogonal to the following vectors:

hsy:q=1,2,.. k—1k+1 N,

h,,:ze{r, 20, ..., Tm}, ¢=1,2,., N,

where{xy, z,, ..., z,,_1 } are the(m —1) BSs closest to the typical UE in consideration excluding
0. The dimension of the span of the above mentioned vectak§ is1 + (m — 1)V, = mN;, — 1
with high probability. Amongst the filters orthogonal to #eovectors, we are interested in the
one that maximizes the signal power'h, |? . This corresponds to choosingin the direction

of the projection of vectoh, ; on the nullspace of the interfering channel vectors. Theedision

of the corresponding nullspace 6. — mN, + 1. If the columns of an(N,, — mN; + 1) x N,
matrix Q form an orthonormal basis for this nullspace, then the vecéiter v is chosen as:

tha,k

v=0Q———".
Q.|

So if N, = mN, + 4, the remaining + 1 degrees of freedom can be used to boost the signal

power. Hence at the receiver,

Nt
Qs Qs
viyn I—’ZVTha,k + E Lythy, + vIT(®) + viw.

a q=1,q#k e

Since v’ is designed to null the closest — 1 interferers,viI(®) = viI(®) where® = & \

{21,...,2,_1}. SO We havej, = “j?gv*ha,k +viI(®) + viw. Let S 2 |vihs,|? and H,, =
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|vh, ,|%. The post processing zero-forcing signal-to-interfeeenoise ratio §INR) [11] of the

k-th stream is

Sr—«
SINR = — . (6)

t
Nyo? + Z [ Z Hyq
1

zed =

v~

()
AlSO S ~ X3x. _mn,11) -6 @ Chi-squared random variable wi2gV, — mN; + 1) degrees of
freedom andH, , are i.i.d. exponential random variables. Wh&h = mN; the receiver can
only cancel interference frorfm — 1) nearest BSs and in this casejs an exponential random
variable.

A mobile user is said to be in coverage if the receigadiR (after pre-processing) is greater
than the threshold, needed to establish the connection. The probability obraye is defined

as

Pose(2) 2 P[SINR > z]. (7)

Observe that the coverage is essentially the complememwtamnulative distribution function
(CCDF) of theSINR. SincePpz:(z), quantifies the entire distribution, it can be used to comput
other metrics of interest like average ergodic rate. We firevide the main result which deals
with the coverage probability with noise. We begin with tvalaation of the Laplace transform

of interference conditioned on the distandeésnd .

Lemma 1. The Laplace transform of the residual interference in PZF conditional on R and r

L1(s) = exp (—)\ﬂ'RQ <2F1 (Nt, —g, a- 2, —R_O‘s) — 1)) ,
a o«

where ,F(a, b, ¢, z) is the standard hypergeometric function?.

is given by

2, Fi(a,b,¢,2) = pryms [ CA=0" 7 gt andT(«) is the standard G functi
2F1(a,b,¢,2) = rFr—w o =L , andI'(z) is the standard Gamma function.
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Proof: The PZF receiver is designed such that it can cancel ineeréerfrom nearegin—1)
BSs. Conditioned on the distance (@ — 1)-th BS R,

L1(s) =E [ 1] = Eexp | s [l QZHM

red
Since H, , are i.i.d exponential, their surﬁ:q:1 H, , is Gamma distributed. Using the Laplace

transform of the Gamma distribution,

a 1
e[z (et S ) =21
zed

zed

@ o [ — Y ST S
= exp ( )\27T/R (1 i sx—a)Nt) xdx) ,
—exp < A R? ( <Nt, 2 O‘;2, —R‘%) — 1)) . (8)

where(a) follows from the probability generating functional (PGFaf) the PPP [23]. [ |

The Laplace transform in Lemma 1 is used next to compute therage probability.

Theorem 1. The probability of coverage with PZF receiver having N, = mN, + § antennas is

given by

(_S)k d* —sN¢o?
) = [ [ 2% S L5 (Rl f(r)dRdr,

s

where Ly(s) is given in Lemma 1 and fg,(R|r) in (4).

Proof: Conditioned on the random variablésandr, we have

4 a\k

O3 EP (1 4 Nio?) e 0
k=0 )

) ((—s)F ¥

= ( ]{;‘ —dsk ‘C(I+Nt0'2)(8)) ) . (9)
k=0 s=zr

(a) follows from the CCDF ofxj v, @nd (b) by the differentiation property of the
Laplace transformZy; y,.2)(s) is the Laplace transform of interference and noise and squal
L1(s) exp(—sN;0?) where Ly(s) is given in Lemma 1. The result follows by averaging over

andr. -
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B. Interference limited networks, % = 0

We now specialize the coverage expression in Theorem 1 wheno, i.e., an interference-
limited network. In Theorem 1, the coverage probability r@gsion requires evaluating thketh
derivative of a composite function. The derivatives of a posite function can be written in
a succinct form by using a set partition version of Faa dirfsi formula. We now introduce
some notation that will be used in the next theorem.

A partition of a setS is a collection of disjoint subsets 6f whose union isS. The collection
of all the set partitions of the integer st 2,3,...k] is denoted bysS;, and its cardinality is
called thek-th Bell number. For a partition € S, let |v| denote the number of blocks in
the partition andv|; denote the number of blocks with exacflyelements. For example, when

k = 3, there areb partitions,
8= {{1,2,3} {1}, {2,3}}, {121, {33}, {131, {21, {1} {2, 131}
For the partitionv = {{1},{2},{3}}, |v| =3, |v|s = 3 and[v], = 0. Also, define
A 2 2
Aeni(2) = 2 B4 (Nt +6¢——<¢——+1, —z) ,
[0 (8
where 5 F} (a, b, ¢, ) is the standard hypergeometric function.

Theorem 2. When the network is interference limited, i.e., o = 0, the probability of coverage

with a PZF receiver having N, = mN; + § antennas is

B—ak k (Nt) -(—2) ; A'N (ﬁ—az) Ivls
) (m L el
PPZF Z k! zg‘;k ‘U‘Eﬁ onNt(ﬁ_O‘Z)m 1 ( (QT_Q)J' A;,Nt(ﬁ_az)> ’

(10)

where, (), = - (:”(Jr)" is the Pochhammer function., The expectation is with respect to the variable

S = R/r whose PDF is given by ¢(53) provided in (5)

Proof: See Appendix A. [ |
In Table I, the coverage probability expressions are pexifbr the case ofn = 2. We now

make a few observations:
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Fig. 2: Coverage probability versus for various N; with a = 4 at z = 0 dB.

« Whenm = 1, i.e, only the self-interference from the other data streamsaieled,5 = 1
almost surely and hence the expectation with respegt ito Theorem 2 can be dropped.

« Whend =0, i.e., all the antenna are used to cancel interference, then

Pozr(2) = Eg[Aon, (B7%2)7™"].

From the expression, it seems that the coverage probainiitgases exponentially with the
number of canceled interferers. However, this is not the @’ in the above expression
is a function ofm. This can be seen in Figure 2 where we observe diminishingflien
with increasingm

. In Theorem 2, the coverage probability is obtained by aveagver 5 = R/r. Hence
Ppzr(2) corresponds to the coverage probability of typical usestdad of averaging over
5, evaluating (22) at a particular value of would indicate the coverage of a user at a

specified distance. For exampleé~= 1 would correspond to an edge user with= 2.

C. Interference cancellation or signal enhancement?

The antennas at the receiver can be used for either intedereancellation or enhancing the

desired signal. In our formulatiom; V; — 1 antenna are used for interference cancellation while
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N: x N, | Coverage probabilityezr(z)
Ix2 | [ EPYe 7%12 —) sdp.
pp— 2 “a
T B R0 £ P - i
2x4 | [ R %ig ) sdp.
P 2 —y
2x5 | [ s — e B A g,

TABLE |: Coverage probability expressions fof = 0, m = 2 with different N,.

d + 1 antenna are used for signal enhancement. For a dWemvhat is the optima(m, ¢) split
to maximize the coverage probability? Since coverage fitibhais a complicated expression

of (m,d), we will use the average interference-to-signal ratio &srttetric. We have
E[SINR!] = E[N,0*r*S~ + S71Ir9],

which equalsV,o’E[r*|E[S~!] +E[S~E[Ir]]. If § # 0, thenE[S™!] = 5. Sincer is Rayleigh
distributed E[r®] = (7\)~*/?T'(1+ «/2). Also, E[Ir®] = N, Zz":mE[ﬁ(‘kﬂ, wheref ;) represent
the ratio of the distance to thieth nearest interfering station to the serving BS distaktseng

(5), we obtain

E[Ir*] = N, i (k—1DI(k—1DT(1+a/2)T(k+ a/2)""

k=m

Hence

E[SINR '] — w ( 2(xA)"°/2D(1 + a/2) + Z (k(il_/%m) RNCEN
It follows from Kershaw’s inequality thaF'(k + o/2)/T(k) =~ (k + «/4 — 1/2)*/? (indeed an
upper bound). Substituting fdr(k + «/2)/T'(k) and replacing the summation by integration, we
have the following approximation:

NIT(1+ ¢ o
E[SINR™!] ~ % <U2(7r)\)_5F(1 +2

)+

2 a—2

20(1+2)(m+ % — 1/2)1—§> a2
Using this result we can obtain the optimaland is stated in the following proposition.
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20 4 1x10,a=4]
=1 x10,a=3
1.5 +2X10,0z:47
— —-2x 10,00 =3
L —0—3x 10, =4
5 10 @ Optimal ||
u,
€9
0.5 -
07 | | | | |
2 4 6 8
m

Fig. 3: AverageE[SINR!] from (11) as a function ofn for N, = 10 with different NV; and «

for o2 = 0. The optimal (lowest) value in each case is marked. We obstrat the optimal

value is alwaysV, {(1 - 2) <% — %ﬂ as specified in Proposition 1.

Proposition 1. The optimal m*(o?) is the smallest integer that is greater than the positive root

of the equation
2(m~+a/4—1/2)' 2N, + 6% (7 \) 2Ny (a—2) — (N, —mN,) (m~+a/4—1/2)"**(a—2) = 0,

if such a root exists. In particular when o2 = 0, i.e., when the system is interference limited, we

wo-x(1-2) (2 1)] -

Proof: To find the optimalm, we setd = N, — m1V; in (12), differentiate and equate to

have

zero. [
This is in tune with the results in [11], where they show thatsi optimal to use(1 —
2/a) fraction of the antennas for interference cancellationFigure 3, the averag&[SINR™!]
computed using (11) is plotted as a functiomofor various configurations. We observe that the
optimalm*(0) coincides with the optimal: as can be seen in the Figure 3. This result indicates

that it is optimal to utilizem*(0) fraction of receive antenna to cancel interfering nodes and
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Coverage probability

—_
3
[
—_
X
=
3
I

—1x4m=3

- 1x4,m=4

A 1x4, m=3, Sim
| | | | | | | |

-2 0 2 4 6 8 10 12 14 16

Thresholdz dB

Fig. 4. Coverage probability versusfor N, = 4 and differentN; with optimal choice ofm.
The path loss exponent = 4 and % = 0. Coverage probability versus for different choices
of m andé. The path loss exponent= 4 ando? = 0. The Monte Carlo results are also plotted

and marked with. For N; x N, =1 x 4 anda = 4, from (13),m*(0) = 2.

utilize the remaining antenna to strengthen the desiredakidgso as the path loss exponent
increases, more antenna should be used for interferenaeltion rather than boosting the

desired signal.

D. Numerical results for coverage and discussion

In Figure 4, the coverage probability is plotted fox 4 configuration fora. = 4 and different
choices ofm and § using Theorem 2. In the same Figure, the coverage resultdifierent

configurations obtained by Monte Carlo simulation are mag ¢. We first observe that the

DRAFT November 15, 2018



17

coverage results obtained with Monte Carlo simulationscmatith the analytical results.

We observe that utilizing all the antennas for interferecaecellation is not optimal. In fact,
from Figure 4, we observe that utilizing all the antenna faeiference cancellation leads to the
lowest coverage probability, particularly for medil81R thresholds.

If a very highSIR is required, we observe from Figure 4 that it is better to uktha antenna
for cancellation. This can be observed by looking at thesmesr points of the different curves.
So an interior user should use his antenna to cancel intesfend obtain a highe¥IR. For
most users, canceling the strongest interference imprinesoverage significantly over the ZF
receiver which utilizes all of its receiver DoF to canceleirierence. So in a practical system,
obtaining the channel of the nearest interferer is sufficierhave good coverage. It can also
be seen that canceling nearest three BSs is giving almost sawerage compared to canceling
nearest two, the reason is that the interference from the thay not be strong enough. So the
better strategy can be canceling nearest BSs and using rtieniag DoF for array gain. We
also observe that canceling one interferes, m = 2 has the highest coverage probability and
corresponds ton*(0) for Ny x N, =1 x 4.

Now coming to the performance of the PZF receivers with ratéam transmission, we can
see that the coverage probability reduces with increasMgéee for a fixed number of antennas
at the receiver. In Figure 4, it is easy to see that the coeeimpeavily reduced with increasing
the number of stream®’;. This is because, increasing the number of streams whilgirkgéV,
constant will increase the interference and the antenndablato cancel external interference
is also reduced. For the edge user this effect is dominanin@ndan get more insight into this

when we study the rate parameters.

V. LINEAR MMSE RECEIVER

In this Section, we analyze the performance of a linear MM&g&eiver with inter-cell inter-
ference. We consider the case where each BS uses its antersssge ndependent data streams

to the users connected to it. Each user decodes its assigaathausing a linear MMSE receiver
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treating other streams as interference. Focusing on theatighe origin, interested in thee-th

stream, the linear MMSE filter is given by}, = hgkR;,i, where

HH' 4 o°Iy,,

ok—

3 ), x> (EE
q=1,q#k :B€<I>\o Hx’a
is the interference plus noise covariance matrix. The postgssingSINR at the receiver is
given by

1
SINR = WhT@kR;iha’k.

It is assumed that each receiving node has the knowledgeraspmnding transmitting channel
H, andR; .

The result in [19], [20] can be used to express $i8R distribution in terms of the channel
gains. We then use the probability generating functionahefPPP to average the channel gains
to obtain the coverage with a MMSE receiver. In [18], the @&distribution of SIR with SM
and MMSE receiver has been obtained in an ad hoc network wieemterferers are distributed
as a spatial Poisson point process. However, the resultskdagned by starting with a finite
network and then obtaining the final distribution by a limgiargument. The proof in this paper
uses the probability generating functional, and is easi@xtend to other spatial distribution of
nodes. Also, as mentioned earlier, unlike an ad hoc netwuahlkere the distance to the intended
transmitter is fixed, in a cellular network the distancés random making the network scale
invariant (the coverage probability without noise does aepend on the density of the BSs).

We first introduce some notation about integer partitiomsnfmumber theory that we use to
present the main results in this paper. We need integettipartd represent coefficient ofi-th
term of a polynomial which is a product of a number of polynalsi The integer partition of
positive integerk is a way of writingk as a sum of positive integers. The set of all integer
partitions of & is denoted byZ, andp; is the j-th term in the partitiorp. Here we usedp|
to denote the cardinality of the spt For example, the integer partitions of 4 are given by
Z,={{1,1,1,1},{1,1,2},{2,2},{1, 3}, {4} }. The second term of the partition= {1,1,1,1},

is p, = 1 and|p| = 4. For each partition, we introduce non-repeating partisetq(p), without
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any repeated summands antb); represents the number of times thi¢h term of ¢(p) is
repeating irp. For example, for the partition= {1, 1, 2}, we havey(p) = {1,2} andq(p); = 2.

The next Theorem provides the coverage probability in a ig¢rsetting.

Theorem 3. The probability of coverage with a linear MMSE receiver, when the BS locations

are modelled by a PPP is

Nyr—1 Np—m _ min(m,N¢—1)
1 o o 20'2 ro)v 1 N, —1
Puce(2) = oy || ¢ ey (Y
0

(1 +z m=0 wv=1 <U - 1)' k=0 k

Z 6—7|')\7"2@0-,Nt(z) (27T)\)|p|+1 ICp(Z)T2|p|+1dT7 (14)

pez—mfk

H\p\ (Nt) Op,;, Ny (2)

apj72

H‘Jq:(p” a(p);!

where O, y,(z) = 2F1 (Ni,s — 256 — 2 + 1;—2) and K,(2) =

Proof: See Appendix C. [ |

Wheno? = 0, the coverage probability expressions can be simplified doebs not require

integration.

Lemma 2. The coverage probability of a typical user in an interference-limited environment,

i.e., 02 =0 with MMSE receiver is

Ny—1 min(m,N¢—

B N, -1 2P0 (|p| + 1)Ky (2)
Pusse(2) = 1+2Nt Z Z ( k ) Z Oon, (z)lPH1 7 (15)

PELm—k

Proof: Follows from Theorem (3), by setting? = 0 and integrating with respect ta =
Note the the coverage expression in (15) is not a functiom.ofrhis is because of the
scale invariance property of the PPP. In Figure 5, the cgeepobability with linear MMSE
receiver is plotted for different configurations. As exgektusing higher number of transmitting
antennas, keepingV, the same, the coverage probability reduces because of tneased
interference. Also, as the number of receiving antennaease, keepingV, a constant, the

coverage probability increases because of increasedsdiverder.
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Fig. 5: Coverage probability versusfor for different antenna configurations witff = 0 and

a = 4 using a linear MMSE receiver.

VI. AVERAGE ERGODIC RATE

In this Section, we compute the rate CDF for a typical user @sd the ergodic data rate.
We assume thalv; users are being served by the BS in a cell, with one stream gt Also
for computing the rate, we treat residual interference asendrhe ergodic rate is given by
E[log,(1+ SINR)] . Sincelog,(1+ SINR) is a positive random variable, its mean is given by the

integral of its CCDF. Hence
C(Ny, N,.) S E [logy(1 4 SINR)] = / P(SINR > 2° — 1)dt. (16)
0

P(SINR > 2! — 1) depends on the receiver used and follows from the coverageapility by
settingz = 2! — 1.
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Total rate with SM: In SM each user decodes a single stream and hence achievegoalice

rateC(V;, N,.), N; > 1. Hence for N, users, the rate CDF is given by
Fsp(c) = P(N;log,(1 + SINR) < ¢), a7)

where SINR denotes theSINR with N, transmit andmN, + § receive antenrfa The above
distribution can be easily computed from B8R CCDF in Theorem 2 for a PZF receiver and
the result in Theorem 3 for the MMSE receiver. It is easy totbe¢ the total average downlink
rate is given byCgy = N;C(Ny, N,.).

Total rate with SST: In SST, the BS has only one antenna,, N; = 1. Hence it can serve only
one stream and hence one user. So all the users are serveddaygiihe resources either in time
(TDMA) or frequency (FDMA). Hence in this case, each user has; time or frequency slice.

In SST, since the resources have to be divided among the esefsuser achieves an average rate
N;'C(1, N,). Hence for N, users the average total downlink rate achievedCis;r = C(1, N,.).

The rate CDF is given by
FSST(C) = P(IOgQ(l + SINR) < C).

Various rate profiles are presented in in Table I, Figures, & and 9 for path loss exponent
a = 4 and o? = 0 obtained by numerically evaluating the analytical expgmess In Table Il
the rate profile is provided for various antenna configuratizhen a PZF receiver is used. We
observe that the average rate is maximfzathen m = m*(0) = N, {(1 - 2) (% - %ﬂ We
also observe that the MMSE receiver provides higher erg@de compared to PZF receiver for
all antenna configurations.

In Figure 6, the average rate is plotted as a function of nurabgansmit streams for various

N, with a MMSE receiver. We observe that the average sum rate nlokincrease linearly with

the number of transmit antenna. Interestingly, transngttV, = N, streams, does not lead to

%In this expression we are neglecting the correlationsIofR across the users.

“These maximum values are underlined in the Table.
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PZF

MMSE
SM/SST| Ny x Ny | (m,9) Mean 5% 80%

SM/SST| N; x N, | Mean| 5% 80%

1x4 | (40) | 351731| 0.187 | 5.7162
1x2 | 3.36 | 0404]| 522

1x4 | (31) | 42137 | 0.5804| 6.4790
SST 1x4 | 487 |1.149]| 7.19

1x4 | (22) | 4.26918| 0.7899 | 6.3964
1x6 | 585 | 1.77 | 8.26

1x4 | (1,3) | 3.83127| 0.8333| 5.622
SST 2%x2 | 3.64 | 0.319| 5.38
1x6 | (6,0) | 3.9738 | 0.2585| 6.3549
2x4 | 635 | 1.016| 9.46
1x6 | (1,5) | 4.3858 | 1.2300| 6.2300

3x4 | 6.63 | 0958 9.73
1x6 | (24) | 50142 | 1.3100| 7.2100
4x4 | 658 | 0.925| 9.09
1x6 | (33) | 5.2393| 1.2900| 7.5700 SM

2%x6 | 806 | 1.73 | 11.97
2%x6 | (3,0) | 5.0627 | 0.1541| 8.4645
3x6 | 912 | 1.66 | 13.64
2%x6 | (1,4) | 65011 | 1.2600| 9.6600
SM 4%x6 | 956 | 1.62 | 13.96
2%x6 | (22) | 6.8904| 0.9200| 10.7
5%x6 | 967 | 1.59 | 13.65
3x6 | (2,0) | 55691 | 0.1100| 9.1100
6x6 | 934 | 157 | 12.87

3% 6 (1,3) | 7.6797 | 1.0500 | 11.7100

TABLE II: Rate profile comparison for various configurationgh PZF (left) and MMSE (right)

receivers.

the maximum rate. For example, with, = 6 the maximum rate is achieved by transmitting
five streams and not six streams. We also observe that whitsrtritting more streams thaj.,
would hurt the average rate, the rate reduction is slow witlrgasing streams. For example,
consider the case df, = 4. We see that transmitting five streams decreases the surimgat&
bits/sec/Hz to bits/sec/Hz . However, the average rate is more or less fixed & the number
of streams are increased above five. From Figure 7, similtmeédVMSE receiver, we observe
diminishing returns with increasiny; even for the PZF receiver. The mean rate for PZF receiver
configured withl x 4 is 4.27 while it is 5.27 for 2 x 4, 5.57 for 3 x 4 and4.47 for 4 x 4.
According to ITU definition, thes% point of the CDF of the normalized user throughput is
considered as cell edge user spectral efficiency and isedlatt Figure 8 for a PZF receiver.

We see that increasingy; and hence increasing the number of streams in SM degrades the
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Fig. 6: Average rate versus number of transmit streams wWNHVESE receiver.
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Fig. 7: Average rate versus number of transmit streams wRZ & receiver for optimain.

performance of the edge users. For the edge usersItfieis very weak. Adding more streams
will increase the interference which is difficult to cancEbr example in theN, = 4 case,
the mean rate increases froh27 to 5.57 when N, increases fron to 3. However, cell edge

users rate reduces from82 to 0.34 (almost halved) and foV, = 4 it is 0.073. Therefore the
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Fig. 8: Cell edge spectral efficiency versus number of transtreams with a PZF receiver.

degradation in performance for the cell edge users is drasthpared to a little improvement in
the average sum rate for the PZF receiver when moving fromt8SM. A similar observation
can be made for other receiver configurations. This imphessiasingV, and using the multiple
transmit antenna for transmitting more streams will hug tell edge users. So from an edge
user perspective, SST is more beneficial.

In Figure 9, the cell edge spectral efficiency is plotted foMEISE receiver. We observe that
unlike a PZF receiver, the cell edge rate does not decregs#icantly with increasing streams.
This suggests that MMSE receiver is the choice for edge use&3M is utilized to transmit
multiple streams. It will be interesting to see the perfonceof MMSE receiver with limited

channel knowledge.

VIlI. CONCLUSION

In this paper, we characterized the performance of opep-dpatial multiplexing techniques in
cellular networks with both MMSE and partial zero-forciregeivers in the presence of distance

dependent intercell interference. Expressions for the @DREhe SINR of a typical user are

DRAFT November 15, 2018



25

|

> 25| 11=—N, =1
S 2"—‘\’4‘\/‘\\‘7%]\0:3
G -O-N, =4
S 1_5M+NT:5
13 M &N, =6
“8’_ o N, =7
® 17©\O\O\H—o—o*of*]\7r=8
(@)
©
()]
o]
O

1 2 3 4 5 6 7 8
# of transmit antennalV; (or # of streams)

Fig. 9: Cell edge spectral efficiency versus number of transtreams with a MMSE receiver.

obtained using tools from stochastic geometry. The digtidim of SINR is used to characterize
the coverage and the rate of a typical user. For the PZF mgeixe show that it is optimal to
cancelN, [(1 - 2) <% — %ﬂ closest interferers, where is the path-loss exponent.

We observe that increasing the SM rate provides an improweimmethe mean rate with
diminishing returns. The mean rate reaches a maximum valua tertain optimum SM rate
that is generally less tha®V,. In contrast, increasing the SM rate always degrades tHe cel
edge data rate for the PZF receiver, while the cell edge réte asMMSE receiver is nearly
independent of the SM rate. However, the MMSE receiver reguihe full channel knowledge

and the practicality of MMSE receiver should be addressedgaivith the pilot design methods

to enable reliable estimation of channel and interfererararpeters.
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APPENDIX A

PROOF OFTHEOREM 2

In Theorem 1, setting? = 0, we have

PPZF / / Z k:' d VA () :ZrafR\r(Rh‘)fr(T)deT.

s

We first evaluate the derivatives inside the above intediaé k-th derivative ofC;(s) can be
evaluated using Faa di Bruno’s formula for the derivatife @omposite functiory(f(z)), and
properties of the derivatives of the hypergeometric fuorctin this paper we use a set partition

version of Faa di Bruno’s formula which is stated below.

dk . o
9 (F6) = X g FEN TTFV (),
vES) J=1
where the notation for the set partition is introduced int®eclV-B. Let g(s) = e #*s and

f(s) = oF1 (N, —2; =2, —R=5). HenceLy(s) = e’ g(f(s)). Thep-th derivative ofg(s) is

g@(s) = (=A\rR?)" e=>’s_The following property of hypergeometric functions candassily
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verified %QFl(a, b;c;s) = %ﬁ%zﬂ(a + j,b+ jic+ j:s), where (a); is the Pochhammer
symbol. Hence,

(t)(%) —avg 2 a—=2

f(j)(s) (—R Y o Fy (Ny + 7, a + 7; T +J;—R™%s). (18)

Using the propertijzlj\v|j = k and Faa di Bruno’s formula, we obtain

d*

kﬁlR( s) — R E (_1)k+\v\ ()nr)‘“‘ R2lvl-ak, —Am R? 3Py (Ny,— 2 —Rarez)
d s=zre UGSk
. 2 ol
N ; 2 o — 2 J
XH(%ZFI(Nt+]7__+]7 a ‘l’], R a’l"aZ)) . (19)
7j=1 a /I

We obtainPpzr(2) by substituting (19) in Theorem 1 with the functioffig, (R|r) and f,(r)
given by (3) and (2). Then by using the transformati®pr — 5 andr — ¢ (which implies

B > 1), and the corresponding Jacobian we have (after basic raligetmanipulation),

v v ol—ak  —Am (B2 o Fy (Np—2;9=2._g—a,
PPZF( 'Z k" /tO/B 1 S k+| |<)\ﬂ.)| | (ﬁt)2| |—ak =2 (Bt)? 2 F (N 2,928 )
VESK
X [H (% oFy (Ny + j, —— LTl —5‘“2)) ok rIm=1(52 _ 1)m=2344dt.
=1 o )i

We can see that the product term is fre¢ ahd we can group the other terms and by integrating

with respect ta we obtain the result.

APPENDIX B

PROOF OFTHEOREM 3

Denote the BS serving the typical user at the originzgywhich is at a distance, we have

from [19],
Ny—1 /Nr—m 5 v—1
P(SINR > z|r) = e /7 Z (Z %) 2" g {%] ; (20)
m=0 v=1 ’

where N, is the number of receiver antennas atig is the coefficient ofz” in D(z), which
is given by D(2) = (1 + 2)V ' [[,ce (1 4+ [22)™, where®’ = ®\{z,}. The first term inD(z)
corresponds to same cell interference due toXhe- 1 streams intended for the other users of

the same cell and the second term corresponds to the imeckeicontribution from other cells.
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Here,I',’s are the interferer powers relative to the desired souree[', = ||z|~*r®. By using
the binomial expansio®(z) can be expanded as
N¢—1
N, —1 NN\ . o
pe=3 (IS (V)
k=0 zed’ v=0
We can observe that the coefficient &f can be written as a product of coefficient 4f from

the first polynomial and the coefficient of from the second term such that = k + [. Hence

the coefficient ofz™ is

e S (Ntk— 1) §~ S | 21)

k+l=m pEL; HJ 1 Q( )
whereZ, is the set of all integer partitions éf See Section V for details about integer partitions.

Here S°7 implies sums over disjoint tuples. The teﬂﬁﬁ'ﬂ’{)' q(p);! in the denominator of (21)
is to eliminate the repeating combinations of product teforsned by the permutations of
T1,To,. .., 2 € P, For examplep = {1, 1,2} is an integer partition of = 4, and this partition

will contribute product term$x, zoz2, Tox22, w2373, 37371, TiTT3, Tiw374}. Therefore the

total number of nonrepeating product terms3ig2! = 3. Hence

o - tl) ..... o)Ll
B [D< J 1+ 3. 2 'q@ T | @

k= mpEZl j=1 q(p

(. J/
-~

T

We now focus on the terrd;, which can be rewritten as

T, =E i ﬁ Ny T 11 (14 pz)~™
pi/) (L4 Ty 2)™

X1,L2,..-, x‘p‘€<1>’ j=1 :BE‘I?"\{.’El,.’EQ ..... :B‘p‘}

We now use Campbell-Mecke theorem for a PPP which we stateoforenience. Lef (x, ¢) :
(R?*)" x N — [0,00) be a real valued function. He® denotes the set of all finite and simple

sequences [23] k2. Let ® be a PPP of density. We have
£
E Z f(xl,xg,...xn,é\{xl,xg,...,xn}):)\"/ E[f(z1,xa,...2,, ®)|de1das ... dz,

2
T1,22,...TnE€P (R2)m

In our case, we havé; = szl wnreayedr F (X1 T2y @\ A2y, 22, 1 ), Where

------

|p| N, ng
f(l‘l,l‘g,...,l“p‘,gb) = H < )m H(1+sz)—Nt.

j=1 p TEP

-~

'

P
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We use the probability generating functional of a PPP [23MaluateEq [ f(x1, 22, . . ., T|p|, D')]

B[ f (21,22, ... 2y, @) = TE]J(1 4+ Tp2) ™™

TED

@ T2 exp (—)\277'/ J;(l _ (1 + l’_aTaZ)_Nt)dgj)

2 a—2
=Thexp <—7T>\7"2 <2F1 <Nt, ——; a ;—z) — 1)) .
a

where(a) follows from the PGFL of a PPP, polar coordinate transforamaand the fact that the

interferers are at a distance at leashway. Now substituting in the Campbell-Mecke theorem

we obtain

|p| _ ;
2 a—2 N, * w(zT )P
. 2 . ) t
T, =exp (—w)\r <2F1 (Nt7 2 4 7—2) — 1)) lell (pj)Qﬂ)\/r (1+ z—oraz)M dz,

Ip| 9 T a
=exp (—7r)\7=2 (o, (2) — 1)) H (Nt) 2w Ars By (Nt,p] 2opi— 241 z)

Y

1 \Pj apj — 2
Ip|
N\ Op,.n,.(2)
=exp (—7Ar? (O, (2) — 1)) (27 A r? i ( t)p“it.
p(=mar ©u(2) ~ 1) Crar) T TT, 1) 05
Substituting forZ} in (22) we haveEy [DC(Z)] equals
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Substituting in (20), we obtain the conditional coveragebability. Averaging with respect to

the density ofr given in (2), we obtain the result.
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