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Abstract

In this paper, we consider a cognitive radio (CR) network hiclk a secondary multiantenna base
station (BS) attempts to communicate with multiple secopdeers (SUs) using the radio frequency
spectrum that is originally allocated to multiple primaseuss (PUs). Here, we employ partially-projected
regularized zero-forcing (PP-RZF) precoding to contr@ #mount of interference at the PUs and to
minimize inter-SUs interference. The PP-RZF precodindiglr projects the channels of the SUs into
the null space of the channels from the secondary BS to the Piésregularization parameter and the
projection control parameter are used to balance the tigsgns to the PUs and the SUs. However,
the search for the optimal parameters, which can maximigeetiyodic sum-rate of the CR network,
is a demanding process because it involves Monte-Carlcagireg. Then, we derive a deterministic
expression for the ergodic sum-rate achieved by the PP-R&€ogding using recent advancements in
large dimensional random matrix theory. The deterministjaivalent enables us to efficiently determine
the two critical parameters in the PP-RZF precoding becaws&lonte-Carlo averaging is required.

Several insights are also obtained through the analysis.
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I. INTRODUCTION

The radio frequency spectrum is a valuable but congestestalaesource because it is shared
by an increasing number of users. Cognitive radio (CR) [is4jewed as an effective means to
improve the utilization of the radio frequency spectrum iblyaducing dynamic spectrum access
technology. Such technology allows secondary users (3&tskaown as CR users) to access the
radio spectrum originally allocated to primary users (PUis)the CR literature, two cognitive
spectrum access models have been widely adopted [4]: 1pppertunistic spectrum access
model and 2) theoncurrent spectrum acces®odel. In the opportunistic spectrum access model,
SUs carry out spectrum sensing to detect spectrum holesemathfigure their transmission to
operate only in the identified holes [1, 5]. Meanwhile, in tmmcurrent spectrum access model,
SUs transmit simultaneously with PUs as long as interfexedndPUs is limited [6, 7].

In this paper, we focus on the concurrent spectrum accesslnpadticularly when the
secondary base station (BS) is equipped with multiple ar@tenA desirable condition in the
concurrent spectrum access model is for SUs to maximize d¢lai performance while minimiz-
ing the interference caused to the PUs. Several transménse$ have been studied to balance
the transmissions to the SUs and the PUs [8-12]. In [8], astméinalgorithm has been proposed
based on the singular value decomposition of the secondemynel after the projection into the
null space of the channel from the secondary BS to the PUs.e&tepn sharing scheme has
been designed for a large number of SUs [9], in which the Sl@spae-selected so that their
channels are nearly orthogonal to the channels of the PUsgm ensures that the SUs cause
the lowest interference to the PUs.

In multi-antenna and multiuser downlink systems, a comnemhnique to mitigate the mul-
tiuser interference is a zero-forcing (ZF) precoding [16-Which is computationally more
efficient than its non-linear alternatives. However, théieeable rates of the ZF precoding
are severely compromised when the channel matrix is ill tameed. Then, regularized ZF
(RZF) precoding [17,18] is proposed to mitigate the ill-ddioned problem by employing a
regularization parameter in the channel inversion. Theleggation parameter can control the
amount of introduced interference. Several applicaticased on the RZF framework have been
developed, such as transmitter designsrifon-CR broadcast systems [19-22], security systems

[23, 24], and multi-cell cooperative systems [25-28].



While directly applying RZF to CR networks, the secondary & only control the inter-
ference in inter-SUs. Apartially-projected RZF (PP-RZF) precoding has been proposed [10,
11], which limits the interference from the SUs to the PUs bynbining the RZF [17, 18] with
the channel projection idea [8]. The PP-RZF precoding ¥adldhe classical RZF technique,
although the former is based on the partially-projectechokl which is obtained by partially
projecting the channel matrix into the null space of the cehrfrom the secondary BS to the
PUs. The amount of interference to the PUs decreases witkasing amounts of projection
into the null space of the PUs, which can be achieved by tuthiagprojection control parameter.
However, the search for the optimal regularization paramand projection control parameter
is a demanding process because it involves Monte-Carlcagieg. Therefore, a deterministic
(or large-system) approximation of the signal-to-intexfece-plus-noise ratio (SINR) for the PP-
RZF scheme has been derived [10, 11]. Unfortunately, ordy@R channel with a&ingle PU
has been studied and the scenario whatdtiple PUs are present remains unsolved [10].

To apply the PP-RZF precoding scheme in a CR network wititiple PUs, a new analytical
technique that deals with multi-dimensional random projection matrix, which is generaigd
partially projecting the channel matrix into the null spaed multiple PUs, is required. This
paper aims to address the above mentioned challenge bydprgwanalytical results in a more
general setting than that in [10, 11]. Specifically, we foonsa downlink multiuser CR network
(Fig. 1), which consists of a secondary BS with multiple antes, SUs, and PUs as well as
different channel gains. Our main contributions are sunmadrbelow.

« We derive deterministic equivalents for the SINR and theoéig sum-rate achieved by
the PP-RZF precoding under the general CR network. Unlikgipus works [10, 11], our
model considersultiple PUs and allows different channel gains from the secondaryoBS
each user. Owing to recent advancements in large dimensamdom matrix theory (RMT)
with respect to complex combinations of different types rdependent random matrices
[29], we identify the large system distribution of the Sjed transform for a new class of
random matrix. Therefore, our extension becomes non krarid novel.

« In the PP-RZF precoding, the regularization parameter hagtojection control parameter
can regulate the amount of interference to the SUs and the BRiisa wrong choice of
parameters can considerably degrade the performance dfRheetwork. However, the

search for the optimal parameters is a demanding processigedonte-Carlo averaging



is required. We overcome the fundamental difficulty of appgyPP-RZF precoding in the
CR network. The deterministic equivalent for the ergodiengate provides an efficient
way of finding the asymptotically optimal regularizationrpaeter and the asymptotically
optimal projection control parameter. Simulation resutidicate good agreement with the
optimum in terms of the ergodic sum-rate.

« We provide several useful observations on the condition ttihe regularization parameter
and the projection control parameter can achieve the opsoma-rate. We also reveal the

relationship between the parameters and the signal-tenaiio (SNR).

Notations—We use uppercase and lowercase boldface letters to derattees and vectors,
respectively. AnN x N identity matrix is denoted b¥,, an all-zero matrix by, and an all-one
matrix by 1. The superscripts-)?, ()7, and (-)* denote the conjugate transpose, transpose,
and conjugate operations, respectivély:} returns the expectation with respect to all random
variables within the bracket, aridg(-) is the natural logarithm. We ug@];;, [A]; 1, or A to
denote the K,l)-th entry of the matrixA, and a, denotes the-th entry of the column vector
a. The operators-)z, (-)~%, tr(-), anddet(-) represent the matrix principal square root, inverse,

trace, and determinant, respectivelly, || represents the Euclidean norm of an input vector or

the spectral norm of an input matrix, aréhg(x) denotes a diagonal matrix witkh along its

main diagonal. The notation™>” denotes the almost sure (a.s.) convergence.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

As illustrated in Fig. 1, we consider a downlink multiuser @Rtwork that consists of a
secondary BS withV antennas (labeled &S). The BS simultaneously transmitg” independent
messages t& single antenna SUs (labeled 834, . . ., SUk). We assume that all the SUs share
the same spectrum with single antenna PUs (labeled RS, ..., PU;). Leth’ € C™*V be the
fading channel vector betweest andSUy, f/7 € C'*¥ be the fading channel vector between
BS andPU,, andg;, € CV*! be the precoding vector &U,. The received signal &8U, can

therefore be expressed as

K
yr = hyl gesi + Z hi'g;s; + 2, 1)
j=Li#h
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Fig. 1. A downlink multiuser cognitive radio network.

wheresy, is the data symbol a$U,, s;'s are independent and identically distributed (i.i.d.Jada
symbols with zero mean and unit variance, respectively, and the additive Gaussian noise
with zero mean and variance of. For ease of exposition, we defidé = [hy, .. .,hK]H €
CKN F 2 [f,... ] e CN, G 2 [g,....gx] € CV*K y 2 [yy,...,yx]" e CK,
s 2 [s1,...,sx]" € CK, andz £ [z,...,2¢]" € C¥. The received signal of all the SUs in
vector form is given by

y = HGs + z. (2)

We also assume th&8S satisfies the average total transmit power constraint
E{tr (GG")} < NPr, 3)

where Pr > 0 is the parameter that determines the power budg@&SofNotably, if we consider
the instantaneous transmit power constraint, td GG”) < NP, we can obtain the same
constraint in a large-system regime, as shown in Appendil.B-

The peak received interference power constraint or theageereceived interference power
constraint is used to protect the PUs. Given that the latemore flexible for dynamically
allocating transmission powers over different fadingesahan the former [30, 31], we employ
the average received interference power constraint ansidemtwo cases: Case |I—the average

received interference power constraint at each PU and Qasthd total average received



interference power constraint at all PUhese cases are respectively given by

Case | (Per PU power constraint):E {f’GG"f;} <P, for I=1,... L, (4a)

Case Il (Sum power constraint): E {tr (FGG"F")} < P, (4b)

where P, > 0 denotes the interference power thresholdbf, and P,; > 0 represents the total
interference power threshold of all PUs. We then Bet 6,Pr and P, = 0., Pr with 6, 0.,
being positive scalar parameters to make a connection Wwehtransmit power. Although we
only consider equal power allocation for simplicity in thpaper, our framework can be easily
extended to arbitrary power allocation by replaci@gwith GPz, whereP = diag(p1, - . ., PK)
with p, > 0 being the signal power U, (see [21, 22] for a similar application).

Next, to incorporate path loss and other large-scale fadiffigcts, we model the channel

vectors by

hY = /rrhi and £ = /£ (5)

WhereﬁkH and le are the small-scale (or fast) fading vectors, angl andr,; denote the large-
scale fading coefficients (or channel path gains), inclgdive geometric attenuation and shadow

effect. Using the above notations, the concerned channglaes can be rewritten as
1. 1
H=R/H and F =R;F, (6)

whereH = [chy] € C*V and F = [ f,;] € C*Y consist of the random components of
the channel in whiclk;;'s and f;;'s are i.i.d. complex random variables with zero mean andl uni
variance, respectively, and, € C**¥ andR, € C/** are diagonal matrices whose diagonal
elements are given bjR, |, = r1, and [Ry]; = roy, respectively. In line with [10, 11], we
assume thaH is perfectly known taBS in this paper. Sinc8S needs to predict the interference
power in (4), we further assume that perfect knowledge&of available atBS [10, 11, 32].
To acquire perfect channel state information (CSI) Fbrand F, transmission protocols need
to incorporate certain cooperation among the PUs, the StuékB& [32]. Further research can

focus on the case with imperfect CSI or estimation of chafi3&|34].

INotably, multiple single-antenna PUs exist. These PUs tsmlze considered a single equivalent PU with multiple rexei
antennas.



In the downlink CR network (2), we consider the RZF precodiegause this precoding’s
relatively low complexity compared with dirty paper codifiy’, 18,21, 27]. However, a direct
application of the conventional RZF to the secondary BS wedlult in a very inefficient trans-
mission because a large power back-off at the secondary Bfusred to satisfy the interference
power constraint (4). Therefore, following [10, 11], we atithe RZF precoding based on the
partially-projectedchannel matrix

H=HIy - SW"W), 7

whereW £ (FFH)~2F € CX*N, and € [0,1] is the projection control parameter. Note that
the projected channel matrid is obtained bypartially projectingH into the null space oF.
Specifically, the RZF precoding matrix is given by

G = ¢ (HH + oly) HY, (8)

where¢ is a normalization parameter that fulfills the BS transmivpo constraint (3) and the
interference power constraint (4), and> 0 represents the regularization parameter. We refer
to this precoding as PP-RZF precoding.

Before setting each of the parameters in (8), two speciasca$ the PP-RZF precoding are
considered first. On the one handpit= 0 thenG degrades to the conventional RZF precoding.
On the other hand, if = 1 thenH is completely orthogonal t&" and we havefH” = 0, i.e.,
no interference signal from the secondary BS will leak to Bus. Therefore, the interference
power constraint (4) is naturally guaranteed. Furthermibre amount of the interference to the
PUs decreases as the projection control parameter instease

Now we return to the setting of the normalization parameid(i8). Considering Case I, from
(3) and (4a), we have

Pr
£ <52 — . ES—— > (9a)
D E{ b (A ony) T HAH (A 4 oTy) )}
< Oubr , fori=1,....,L.  (9b)

E{£/7 (F7H + aly) ™ FVH (HTH + oly) ' £, |

To satisfy (3) and (4a) simultaneously, we §ét= min{¢?, 7,1 = 1,..., L}. Then, the SINR



of secondary use$U, is given by

’hllj (HHH + aIN)_l flkr

T g (APH + aly) B Hyy (APH 1 aly) b+ 2
P ‘hg (HHH + OéIN)_l flk‘z

— e - , (10)
pth (HHH+aIN) IHfZ]H[k] (HHH+aIN) 1hk+1/

Where:[:I[k] = [fll, ey l:lk_l, flk_H, RN BK]H € C(K_I)XN, flk = (IN —5WHW)hk, P = PT/O'z,
and

e (o o)

14
N —1 g -1
elE{le(HHH+aIN) HYH (HH + ol ) fl},lzl,...,L}.
(11)

Here, the equality of (11) follows from (9). For Case II, wevba
1 - H -~ —1 h H he he H e _1
v = max{ E ¢ ~tr (HYH +aly) " HYH (H"H+aly) ') ¢

iHE {tr <F (H7H + oly) " HPH (H'H + oly) FH) } } (12)

a

Consequently, under the assumption of perfect CSI at battstnitter and receivers, the ergodic

sum-rate of the CR network with Gaussian signaling can beneléfas

K
Roum = Z E{log (14 )} . (13)
k=1

Note that~, in the ergodic sum-rate is subject to the BS transmit powestraint in (3) and

the interference power constraint (to the primary userg¥)n

B. Problem Formulation

The SINR 4 in (10) is a function of the regularization parameterand the projection
control parameteg. In the literature, adopting incorrect regularizationgraeter would degrade
performance significantly [18, 21, 27]. In light of the dission in the previous subsection, one

can realize that a proper projection control parameter caistain decreasing the interference



to the PUs. As a result, using the PP-RZF precoding effdgtiexjuires obtaining appropriate
values ofa and  to optimize certain performance metrics. In this paper, weeiaterested in
finding («, ), which maximizes the ergodic sum-rate (13). Formally, weeha
{aol’t,ﬁ"pt} = argmax Rgun. 14
a>0,1>8>0

The above problem does not admit a simple closed-form swludnd the solution must be
computed via a two-dimensional line search. Monte-Carbyaying over the channels is required
to evaluate the ergodic sum-rate (13) for each choice ahd s, which, unfortunately, makes
the overall computational complexity prohibitive. Thisadiback hinders the development of the
PP-RZF precoding. To address this problem, we resort to wm@stic expression of (13) in

the large-system regime in the next section.

[1l. PERFORMANCEANALYSIS OF LARGE SYSTEMS

This section presents the main results of the paper. Fiestdevive deterministic equivalents
for the SINR~; and the ergodic sum-ratB,,, in a large-system regime. Then, we identify
the asymptotically optimal regularization parameter amel asymptotically optimal projection

control parameter to achieve the optimal deterministiadvedent for the ergodic sum-rate.

A. Deterministic Equivalents for the SINR and the ErgodimSrate

We present a deterministic equivalent for the SINRby considering the large-system regime,
where N, K, and L approach infinity, whereas

—E and —£
Cl—K 02—N

are fixed ratios, such th@t< liminfy ¢; < limsupy ¢; < 00,0 < liminfy co < limsupy co <
1. For brevity, we simply usé\V" — oo to represent the quantity in such limit. In addition, we
impose the assumptions below in our derivations.

Assumption 1:For the channel matricedd and G in (6), we have the following hypotheses:

1) H = [5hy] € CF°N, whereh;;'s are ii.d. standard Gaussian.
2) F= [\/—%ﬁj] € CHN, where f,;’s have the same statistical propertieshass.
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3) Ry = diag(ri1,...,m.x) € CE*F and Ry = diag(ray,...,79) € C*L are diagonal
matrices with uniformly bounded spectral ndrmith respect toX and L, respectively.
Based on the definition oW in (7), WH/W = FH(FFY)-'F = FI/(FFP)~'F = WIW,
whereW £ (FFH)~:F. Therefore,W is L < N rows of anN x N Haar-distributed unitary
random matrix [29, Definition 4.6]. The partially-projedtehannel matrixH is clearly com-
posed of the product of two different types of independentioan matrices. Owing to recent
advancements in large dimensional RMT [29], we arrive afdliewing theorem, and the details

are given in Appendix A.
Theorem 1:Under Assumption 1, in Case | (per PU power constraint)Vas: oo, we have

Vi — T 230, for k =1,..., K, where

— pay,
=k 15
Tk oor + 7 (15)
with
_ r1k(ts +t2(1 = 3))
= : 16
@k Oé+’f’1’k(t1 —|—t2(1 —ﬁ)2)7 ( a)
o (1-—@m)’t | (1-(1—B)@)’ (1B, de
b = T < 1+e * 1+ (1—p5)2% da’ (16b)
_ 131 (1 — )t de roy (1-— B)°ts de
V_max{<1+e+1+(1—ﬁ)2e 6@’910214—(1—5)268@’[_1"”’[/ .+ (160)
de LRy (alg + (t +ta2(1 — B)?) Ry) (164)
Oa - <1t—ie + 712(_16_);;58) wtr (R (ol + (1 + to(1 = B)?) Rl)_l)m
B 1—co - Co
h= I+e’ t2_1+(1—5)267 (16e)
ande is given as the unique solution to the fixed point equation
1 _
(& :NtrRl (OéIK -+ (tl + tg(l — 6)2) Rl) ! . (17)

Meanwhile, in Case Il (sum power constraint), all asympgtetipressions remain, except for

2[35]: The spectral nornf| e |- is defined onC™*™ by A |2 = max{v/X: A is an eigenvalue ofA*A}.
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which should be changed to

- tl (1 — 6)2752 de tng (1 — 5)2152 de
v max{ <1 +e T +(1— 5)26) 0 Oaica 1+ (1 — 6)26%}' (18)

|

An intuitive application of Theorem 1 is that, can be approximated by its deterministic
equivalent 7,, which can be determined based only on statistical chanmevledge, that is,
R, R,, ando?. Note that, according to the definition of the deterministiciivalent (see footnote
3), in the expression of the deterministic equivaleptthe parameters/, K, L, as well as the
matrix dimensions oR; andR,, arefinite. Combining Theorem 1 with the continuous mapping
theorem, we havelog (14 7;) — log (1 +7,) =25 0. An approximationR,,,, of the ergodic
sum-rateR,.,, in (13) is obtained by replacing the instantaneous SHJRvith its large system

approximatioryy,, that is,

K
Reum = Z log (14 7,) - (29

k=1

Therefore, whenV' — oo, + (Reum — Reum) — 0 holds true almost surely.
To facilitate our understanding of Theorem 1, we look at @nirthe two special cases as
follows:
1) In Theorem 1, we introduce the two variabtesndt, to reflect the effects of the projection
control parametep. If 5 = 1, from (16), then the deterministic equivalept does not
depend ont,. Substitutings = 1 into (15) and lettingR; = I, we have

p(cl(l —c2)(1+ (i, m, ) = Clp, m, a)2)

p+ (1 + C(mn@))z

Tk =

, (20)

3[29, Definition 6.1] (also see [36]): Consider a series of Higian random matrice8:, B,, ..., with By € C¥*V and
a seriesf1, f2,... of functionals ofl x 1,2 x 2,... matrices. A deterministic equivalent &, for functional f» is a series
BS, B3, ..., whereB$ € CV*¥, of deterministic matrices, such thiiny o fn(Bx) — fv(B%) — 0. In this case, the
convergence often be with probability one. Similarly, wemtgyx 2 fn (B%;) the deterministic equivalent ofy (B ), that is,
the deterministic serieg, g, . .., such thatfx (Bx) — gn — 0 in some sense.

Note that the deterministic equivalent of the Hermitiand@m matrix By is a deterministicand afinite dimensionaimatrix
B%,. In addition, the deterministic equivalent ¢& (Bx) is gn £ fx(B%), which is a function ofB3.

4137, Theorem 25.7-Corollary 2]: I, =+ a and h is continuous function at, thenh(z,) == h(a).
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where( (i, 1, ) 2 t1/a, p = 1 — ¢y, andn £ 1/¢,. Combining (16€) and (17), we obtain

C(Ww)étl:1(u—n_1+\/(u—n)2+2(u+n)+1>' 21)

a 2 o o? o

Before providing an observation based on the above, we Yrefiew a well-known result
from the large dimensional RMT. First, we consider the dag@niof H from (6). If R; =
Ik, the entries of theéx x N matrix H are zero mean i.i.d. with variand¢ N. Following
[29, Chapter 3], we see that @, K — oo with N/K — ¢;, hi! (H*’i’HJrozI]\;)_lh;C

converges almost surely to

|
/a LN (22)

where

VA —a)tb - A"
2T

FO) =@ =m" o\ + (23)

with (z)* £ max{z, 0}, a = (1 — /n)? andb = (1 + ,/n)% In fact, f(u) is the limiting
empirical distribution of the eigenvalues BF’H and is known as the Martcenko-Pastur
law [38]. The integral of (22) can be evaluated in closed form

l(1__”_1+\/(1—2n)2+2(1+n)+1>. o

2 « Q «

Note that (21) is equal to (24) whenis replaced withl, i.e., (24) is equal tq (1, n, «). In

fact, following the similar derivations of Theorem 1, we cshrow that (20) and the SINR

of the conventional RZF precoding share the same formuldiioreplacing((x, 7, ) in

(20) with ¢(1,n, «). Substituting the definitions aof;, ¢, into . andn, we havey — n =
1—c—1/c; = (N — (L+ K))/N. Comparing this value with —n = (N — K)/N in

(24), we thus conclude that i = 1, the SINR of the PP-RZF precoding ssmilar® to

that of the conventional RZF precoding but with an increasthé number of active users
from K to K + L. Hence, the degrees of freedom of the PP-RZF precoding igeeldto

N — (K + L) because the additional degrees of freedom are used to suppress interference
to the PUs.

Notably, whens = 1, the SINRs of the PP-RZF precoding and the conventional REEqgaling are similar butot identical
because (i, n, «) is replaced with((1, 7, a).
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2) For another extreme case with= 0 in Theorem 1t, + ¢, = ﬁ Letting R; = Ik, we

obtain 7' = ¢(1,7,a), such that

p<01(1 +¢(1,m, ) = (1, O‘)2>

p+V0<1 +C(1,n,a)>2

wherev, = max{1,r9;/6;,l = 1,...,L} is for Case | andyy = max{l,trRy/0.,} is

for Case Il. The received interference power constrainhatRUs (4) can be controlled
only throughuvy, where is not involved inv,. Therefore, the SINRy, is significantly
degraded if the channel path gains between the BS and thetRaisg,r,,’s) are strong.
However, if the channel path gains between the BS and the RUweak, then, = 1
and 7, behave in a manner similar to bobt identical to that of the conventional RZF
precoding because is replaced withe; (1 — ¢y).

Comparing (25) forg = 0 with (20) for 5 = 1 obtains notable results. First, we note
that (20) and (25) share a similar formulation, except thditahal 1, appears at the
denominator of (25). Wher$ = 1, the secondary BS yields zero interference on the
PUs, such that the interference power constraint in (4)w&s inactive. Therefore, no
additional parameter, is required to reflect the received interference power caimtat
the PUs. Althoughy, > 1, the SINR performance of the PP-RZF precoding with= 1

is not implied to be always better than that with= 0. An additional note should be
given on((-,n, a), where the argumentis x for 5 =1 and1 for 5 = 0. The parameter
uw= (N —L)/N for g =1 implies that the additional. degrees of freedom is used to
suppress interference to the PUs. Consequently, if thenghgoath gains between the BS
and the PUs are weak, the SINR performance of the PP-RZF dgirecavith 5 = 1 shall
not be better than that with = 0. Thus, we infer that the projection control parameter
should be decreased if the received interference powertraimsat the PUs is relaxed.
Finally, we note that (1, n, «) agrees with:(r, o) in [10, 11, Theorem 1]. As a result, (25)
is identical to the deterministic equivalent for the SINRabed in [10,11, Theorem 1],
where the PP-RZF precoding withsinglePU is considered. The deterministic equivalent
for the SINR in [10,11, Theorem 1] is clearly a special casd1&) with 3 = 0 even

though the case of # 0 is considered in [10, 11, Theorem 1] because a single PUtsesul



14

only in one-dimensional perturbation, and the effect ofhsperturbationvanishesin a
large system. Even if the number of PUss finite and onlyN becomes large, the effect
of § vanishes. The lack of a relation betweérand the SINRs will result in a bias when
the number of antennas at the BS is not so large. However,ralytacal results show the
effect of 8 by assuming thatv, K, and L are large, whereag = N/K andc, = L/N
are fixed ratios. Thus, our results are clearly more genbeal those in [10, 11].

Corollary 1: In addition to the assumptions of Theorem 1, we supposeduttmtc, = 1
(that is, N = L), Ry = rIg, and3 € [0,1). Then, as\N' — oo, we havey, — 75 <= 0 for
k=1,..., K, where

p(cir? — (crae —ry)?)
plcrae)? + vy

7 = (26)

ande is given as an unique solution to the fixed point equation

_ ri(l+e(l—3)?)
aa(l+e(l—p)?) +eri(l—p6)%

e

andvy = rymax{1,ry;/60;,l =1,..., L} for Case | oryy = r; max{1l,trR,/0,,} for Case Il.
Proof: By letting c; = 1 and R, = 15, we immediately obtain the result from Theorems
1 and 2. [ |
For a brief illustration, we consider only Case Il of Coroffd because the same characteristics

can be found in Case I. Given théf, = P.;/Pr = P.a/(c%p), (26) can be rewritten as

cr? — (clzae — 7’1)2’ 0 potrR, <1
_ (01046) + 1//) Pall (27)
7 c1r? — (crae —ry)? | < potrR,

(610(6)2 + 0'21'.I’].:{,2/P3L117 Pau )

We can see that does not depend on the SNRvhen1 < po?trR,/ P,y. In this case, the system
performance is interference-limited. Notably, the asstiomg of c, = 1 and 5 # 1 are taken in
Corollary 1. In the case of; = 1 and 3 = 1, from (16a), we have, = 0 and consequently
7. = 0, which implies a failure in the transmission. This resultréasonable because when

¢, = 1, the dimension of the null space Bfis zero with probability oné.Therefore, the setting

®If N = L, we haveRank(I — F(FF#)~'F) = 0 with probability one because from [39, Theorem 1E]js a full rank
square matrix with probability one.
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of 5 = 1 results in transmission failurevenwhen the channel path gains between the BS
and the PUs are weak. We thus show that a choice of appropgtiaignificantly affects the
successful operation of the CR network, which serves asvatain for the remainder of this

paper.

B. Asymptotically Optimal Parameters

Our numerical results confirm the high accuracy of the detastic equivalent for the ergodic
sum-rateR.,,, in the next section. Therefore, the deterministic equiviafer the ergodic sum-
rate can be used to determine the regularization parameted the projection control parameter
$. By replacing R, With R, in (14), we focus on this particular optimization to maximiz
the deterministic equivalent for the ergodic sum-rate

{aopt, BOpt} = arg max Ryum. (28)

a>0,1>5>0

Similar to the problem in (14), the asymptotically optimallutions @ and 3" do not
permit closed-form solutions. However, the asymptoticalptimal solution can be computed
efficiently via the following methods without the need for Me-Carlo averaging becauseg
is deterministic. First, given that is fixed, the optimala®P*(3) := argmax, ., Reum(3) can
be obtained efficiently via one-dimensional line search, 27], which performs the simple
gradient method. The complexity in this part is linear. Them obtain the optimaBOlot =
arg maxo< g<; Rsum (@°'(8), 8) through the one-dimensional exhaustive seardhnally, the
optimal parameters are given §g°**(3°""), 37" }. For a special case, we obtain a condition of
the optimal solutions in the following proposition:

Proposition 1: Under the assumptions of Corollary 1, the asymptoticalliinoal parameters

@t and 3™ satisfy the equation

—opt Yo (1 o Eopt>2‘ (29)

(0% =
P

where 3™ € [0, 1).

"Although the one-dimensional exhaustive search seemisothe, the case in question here is easy because the search i
only over a closed sdi < 5 < 1.
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Proof: By differentiating R, With respect to and 3, we immediately obtain the result
from Corollary 1. [ |
From Proposition 1, we note that the number of asymptogiagiitimal solutions is infinite.
All o’s andg’s that satisfy (29) are optimal. This condition will be confed in the next section.

Similar to (27), we consider Case Il for brief illustratidm. this case, (29) can be rewritten

as ot
_ 7R%Pho 2
(1-p )7 O<patrR2§1;
FOPt — P Pan (30)
(1— B"")202trR, |- potrRy
01T1Pa11 ’ Pall .

From (27), whern) < po?trRy/Pa < 1, the system performance is unaffected by the average
received interference power constraint. In this c&f’%t, is expected to be close tobecause the
weak interference at all the PUs is negligible. This cownditis combined with the first term of
(30) to reveal thati°** decreases with increasing wherep = Pr/o? is the same as previously
defined. However, whepo?trR, /Py > 1, the system performance is limited by the average
received interference power constraint. To decrease tlsua‘eiemenceBOpt is expected to be close
to 1. Therefore, the second term of (30) reveals thatecreases t6 with an increase irﬁopt.

We end this section by observing two additional extreme caselheorem 1 folR; = Ix:
If 5 =0, by means of some algebraic manipulations, we ob@&ith = v/(c¢;p). By contrast,
if 3 =1andc, # 1, we obtaina® = 1/(¢;p). We find that the optimal regularization
parameter tends to decrease monotonically with increasiag expected. This characteristic is
similar to that of the conventional RZF precoding in [18,,1®herer; = 1 is assumed and the

asymptotically optimal regularization paramete¥® = 1/(c,p) is derived.

IV. SIMULATIONS

In this section, we conduct simulations to confirm our anedytresults. First, we compare
the analytical results (19) in Theorem 1 and the Monte-Camoulation results (13) obtained
from averaging over a large number of i.i.d. Rayleigh fadamgnnels. In the simulations, we
set channel path gains; = 1 andry; = 0.6 for all £ and/ and assume that, = P for all [
in Case | andP,; = LP in Case Il. Several characteristics of Cases | and Il arelaimihus,

without loss of generality, we provide the numerical reswit Case | only.
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Fig. 2. Ergodic sum-rate and the deterministic equival@sults under different interference power threshold ardi taro
different antenna configuration cases.

Fig. 2 compares the ergodic sum-rate and its determinisgigvalent result under different
interference power thresholds< {—10dB, 0dB} and two different antenna configuration cases:
{N =10, K =8, L =6} and{N = 16, K = 8, L = 6}. In the simulation,{a°"*, 5°P*}
is obtained by using the two-dimensional line search in .(3¥¢ find that the deterministic
equivalent is accurate under various settings even foesystwith a not-so-large number of
antennas. In addition, Fig. 2 illustrates that for the cagé WwN = 10, K =8, L = 6}, the
sum-rate of the SUs cannot increase linearly in SNR and besodnterference-limited because
the sum-rate of the SUs is easily restricted by the averaggved interference power at each
PU, particularly when the number of active users is largantthe number of antennas at the
BS, that is,L + K > N.

In the above simulations, the best solutions{af**, 3°P*} are calculated by Monte-Carlo
averaging over0* independent trials; doing so which clearly results in a higimputational
cost. To confirm that the optimization based on the detestimequivalent is not only more
computationally efficient but also near-optimal, we conepidwe ergodic sum-rate of the PP-RZF
precoding with? = 0dB and{N = 16, K =8, L = 6} in Fig. 3 for the following four cases: 1)
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Fig. 3. Ergodic sum-rate results under various parametéhs &= 0dB and{N = 16, K =8, L = 6}.

{@rt, B, 2) {aoPt, gort), 3) {a°P, B = 0}, and 4){a°*", 8 = 1}. The solution of{@®*, 3"}
is obtained by using the two-dimensional line search in.(28)"", Bopt} provides results that are
indistinguishable from those achieved py°r*, 5°P*}, which demonstrates that the optimization
based on the deterministic equivalent is promising. Moegothe performance is significantly
improved if the PP-RZF precoding with an appropriate chatda, 3} is employed. In the
low-SNR regime, the optimal transmission becomes the ctiveal RZF precoding, whereas
the optimal transmission is the PP-RZF precoding witha 1 in the high-SNR regime.

To provide further results on the optimal solutions{af 5}, Figs. 4 and 5 show the values of
{@, 7

{@t, 3"} based on the deterministic equivalent result is almostisterg with {a°*, 5Pt}

}, {a°Pt, g°P'} under various settings. We have observed that the optintahpeter

based on the ergodic sum-rate. Moreover, we have obseraedith increasing, a°* (or a°")
tends to monotonically decrease (ipwhereas3°"* (or F’pt) tends to monotonically increase
from 0 to 1. These characteristics are expected based on the analySection III.

Finally, we confirm the result in Proposition 1. Fig. 6 dig@ahe ergodic sum-rate under
various parameter settings with = 0dB and{N = 10, K =8, L = 10}. We find that when



——3 % by (28) (P =
-+-3% py (28) (P =
—o—a ™ by (14) (P =
-8-a® by (14) (P =

0dB)
-10dB
0dB)

-10dB

10
p (in dB)

Fig. 4. Optimala under different the interference power threshold fof = 16, K =8, L = 6}.

1
0.9t
0.8¢
0.7}
0.6f
«@ 0.5}
0.4}
0.3f
! —w—[3 Ot =
(117 ST NS F SRR R B™" by (28) (P = 0dB) |
! -+-B% by (28) (P = -10dB
QL i —6—p %' by (28) (P = 0dB) |
N , -8-3° py (28) (P = -10dB
-10 -5 0 15 20 25

30
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Fig. 6. Ergodic sum-rate results under various parameter®f= 0dB and{N = 10, K =8, L = 10}.

co = 1, the parameters that satisfy (29) can achieve the asyroaligtoptimal sum-rate for any
B € 10,1), such that infinitely many asymptotically optimal solutsoexist.

V. CONCLUSION

By exploiting the recent advancements in large dimensi&MI, we investigated downlink
multiuser CR networks that consist of multiple SUs and rplétiPUs. The deterministic equiv-
alent of the ergodic sum-rate based on the PP-RZF precodasgderived. Numerical results
revealed that the deterministic equivalent sum-rate pies/reliable performance predictions even
for systems with a not-so-large number of antennas. We tkad the deterministic equivalent
result to identify the asymptotically optimal regularizat parameter and the asymptotically op-
timal projection control parameter. In addition, we praddhe condition that the regularization
parameter and the projection control parameter are asyitgitp optimal. Several insights have
been gained into the optimal PP-RZF precoding design. Arabéxtension of this is to consider
the PP-RZF precoding under various scenarios, such aslspatielations and imperfect CSI at

the transmitter. However, such development is still ongdiecause of mathematical difficulties.
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APPENDIX A: PROOF OFTHEOREM 1
To complete this proof, we first introduce the limiting distition for a new class of random
Hermitian matrix in Theorem 2. Such distribution servestesrhathematical basis for the latter
derivation. We recall the definition of the Stieltjes traorsh (see, e.g., [40]). For a Hermitian
matrix By € CV*¥| the Stieltjes transform oBy, is defined as

1
mp, () = Ntr (By +oly)™" for a e R,

For ease of explanation, we also define the matrix produettfes transform oB as

1 _
mpy.qa) = FrQ By +aly) ',

whereQ is any matrix with bounded spectrum norm (with respeci\p

Notably, bothmg, (o) andmsg,, q(«) are functions oty, but for ease of notationy is dropped.
In addition, all the subsequent approximations will be perfed under the limi\\ — oo, and
for ease of expressiom, < b denotes that — b =5 0 as N — oo.

Theorem 2:Consider anV x N matrix of the following form:
By = H'H = (Iy - pW/W)H"R,H(Iy — SWH'W), (31)

where W, H, and R, follow the restrictions given by Assumption 1. Then, &5 — oo, we

have
t1 + to

1
NtrQ, (32)

mBy,Q =

wheret; = 111062 andt, = He(cliiﬁ)g with e being the unique solution to the fixed point equation

1

e =Ry (ol + (14 01— ) Ra) (33)

Proof: If ¢, = 1 (i.e., N = L), WHW = I, the result is directly obtained by Lemma 4
(see Appendix C).

We consider the case with < 1. Given thatmg, q is a function of two random matricéa’
and H, we aim to derive an iterative deterministic equivalent] [8L mp, . In particular, we
first find a functiongy (W, a), such thatfy ((H, W), o) =< jn (W, a), where fy ((H, W), o) £
mBy.q, andjn (W, a) is a function ofW and is independent dffl} y~,. Notably,jy (W, o) is
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a deterministic equivalent ofy ((H, W), a) with respect to random matrix sequend@$} v .
Second, we further find a functiogy (), such thatjy (W, a) = gy (). Thus, we obtain an
iterative deterministic equivalemty (o) of fx((H, W), a), i.e., fx((H, W), a) = gy(a).

WhenW s treated as a deterministic matrix, applying Lemma 4 (sppehdix C), we have

%trQ By +oly) ™ =< %trQ (aIN +ae(Iy — 5WHW)2)_1 : (34)

where
e = %trRl (odf +éRy) 7, (35)
¢ = %tr(IN — BWHW)? (L + e (Ty - 5WHW)2)_1 . (36)

Notice the fact that W7 W)2 = W#W so (34) and (36) can be written respectively as

1 a2 1 1 X7 HYRT) L
HrQ (aIN+ae(IN—BW W)) _—a(62_2ﬁ)eNtrQ(wIN+W W) (@37)
and
1 1 11 ]
E — il NVEW) ™ - ~ H xTHW s
e_(ﬁz_%)eNtr(wINjLW W) +eNZZ:;Wl (WIn +WHW) W, (38)

wherew £ 3. andw, denotes thé—th row of W.
Next, we aim to derive the deterministic equivalents of teeris 1 trQ(wIy + WHW)-!
andw/’ (wIy + WHW)~!w,. Applying a result of the Haar matrix in Lemma 5 (see Appendix
C) to (37) and combing (34), we immediately get (32). Then,deal with the deterministic
equivalent ofw/? (wIN + WHVV)_lerl. According to the matrix inverse lemma (see, e.g., [42,
Lemma 2.1%), we find
wh (wIN . WHVV)_I\?W - wi (wIN + Wﬁw{l])_lil~ 7 (39)

1+ WlH (wIN + Wﬁwm) W

whereWy & [Wi,..., W1, Wiy, ..., W] € CE=D*N_ Then, the trace lemma for isometric

8[42, Lemma 2.1]: For amA € C"*™ andq € C™ with A and A + qq” invertible, we have

1

H A —1
=————q"A""
T+aq7A—Tq"

q” (A + qu) -
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matrices [43, 44] gives us

- S Hxxr \—1 .~
WlH(wIN%—WﬁWm) w; =<

tr(Iy — WHWy) (wIy + Wﬁw[l])_l

N—-L
14w N | N
:N_Ltr(wINJrWﬁW[l]) — 7N—L. (40)
Now, applying [42, Lemma 2.2] and (72) to (40), we get
- < e =1 - 1
w/ (wIy + WHW) w, < T (41)
Substituting (41) into (38) and using (72) and (35), we ab{@3). [ ]

Note thatmg, q, €, t1, andt, are all functions oty and s, but for ease of expression,and
[ are dropped.

Theorem 2 indicates thatg g can be approximated by its deterministic equivalfeg@%trQ
without knowing the actual realization of channel randormponents. The deterministic equiva-
lent is analytical and is much easier to compute tBgfimg q }, which requires time-consuming
Monte-Carlo simulations. Motivated by this result in thegka system limit, we aim to derive
the deterministic equivalent of;.

The SINR~; in (10) consists of three terméi) the signal poweth (H”H + aly) 'hy|?,
(i) the interference poweh//(H”H + aly) 'H{PyHyy(H"H + aly)'hy, and (iii) the
noise powerr. Using Theorem 2, we establish the following three lemmadeiave the deter-
ministic equivalent of each term, whose proofs are detaitedppendices B-I, B-II, and B-lll,
successively.

Lemma 1:Under the assumption of Theorem 2, &#s— oo, we have
hf (I:IHI:I + OzIN)_l flk = ag, (42)

wherea; has been obtained by (16a).

Lemma 2:Under the assumption of Theorem 2, &ds— oo, we have
hg (HHH + ozIN)_l H{Z]H[k} (HHH -+ OéIN)_1 hk = l_)k, (43)

whereb, has been obtained by (16b).
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Lemma 3:Under the assumption of Theorem 2, 85— oo, we have
v, (44)

where? can be obtained by (16c) for Case | and by (18) for Case II.
According to Lemma 1, Lemma 2, and Lemma 3, we obtain the chétéstic equivalenty,

of 4, in (15). The proof is then completed.

APPENDIX B: PROOFS OFLEMMA 1, LEMMA 2, AND LEMMA 3
B-I: Proof of Lemma 1

We start from an application of the matrix inverse lemma 4@nma 2.1] to the signal term,
which results in
~ ~ _1 ~
~ ~ ~ _1 ~ .
1+ th(Hfg]Hm +aly) hy

hY (H'H + oly) Iy = (45)

Using [42, Lemma 2.3 and Lemma 2.2], we obtain

hf (H{Z]H[k} + ozIN)_l flk X’/‘Lk%tl’ (HHH + OéIN)_l - ’/’Lkﬁ%terW (HHH + ozIN)_l .

(46)
Similarly,
flkH (I:I[IZ}I:I[R] + OéIN)_l flk
1 o - 1 e —
=yt (HYH + aly) Y8 - 28) W W (H"H + aly) L@
According to Theorem 2, we have
1 o - ty +t
St (HTH +aly) ™ = e (48)

Noticing thatW”W = W”W and by using the same approach as (38), we obtain

L
1 S ~1 1 1 - R T ITI to
—tWHW(H H + oly) 2 — = Y W/ (wIy + WIW) T =< 2 (49
N (HTH + aly) ol —2B)e N &= (ol + ) Wi 49
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Substituting (48) and (49) into (46) and (47), we obtain

B - t1 +ta(1 —
L B A (50)
R . t1+t2(1 = )
bl (A ) +oly) hy < 1 Of( AR, (51)

Consequently, the expression of (45), together with (5@) &1), yields (42).

B-1I: Proof of Lemma 2
Using the fact tha—! — D' = —A~!(A — D)D!, we have
Y (HH + oly)  HHy (A H + oly) 'y

by, — ohf’ (H Hy + oly) ' (H7H +aly) by

:h{j (I:IHI:I —|— OéIN)
—hff (H"H + oly) " hhff (H'H + oly) " by

T b (HIHy +aly) (HPH +aly) hy.  (52)

+ ahy! (HHH + aly)
Applying the matrix inverse lemma, we obtain

h (H7H + oly) " hy
by’ (A Ly + ody)  hyhf (H }H[k] +aly) 'hy 53

1 hk B
1—|—h (H H[k}—FOzIN) hk

=h;! (H Hyy + oly)

Similarly,

W/ (A Hy +oly) " (H'H + oly) ' by
by (A FL gy + ozIN)_QBkBkH (F Figy + oly) by

hy — T L (54)

Y

-2

and

flkH (I:I{Z]I:I[k} + OéIN)_l (I:IHI:I + OéIN)_lhk
B _ h (HZ Hyy + oly) b (HEZHy + oly) h
=h/ (AL + oly)  hy - ¢ (i Hu VHN)H ohi’ (Hi Ll w) e (55)
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According to Theorem 2, we have

/! (HI Hy + aly) by = W (56)
Noticing that
hi’ (H[[Hy + oly)  hy, = —a%h,f (FIf Ly + aly) " by,
we thus obtain
Y (A Hy + aly) by = —rl,k% (tl Z“) . (57)

Similarly, combining (50) and (51) yields

. NI - 0 (ti+(1-p)t
! (FLHy + oLy) by < —rye- <%) (58)
o I 0 (ti+(1—p)%t
hy (F[jHy, + oly) 2hkx—r17k% (1 (a P) 2). (59)

Substituting (50), (51), (56), (57), (58), and (59) into \5@&4), and (55), and combining (42)
and (52), we obtain (43).

B-IIl: Proof of Lemma 3

From (11), we first have
ot (HPH 4 oTy) ™ PR (EOH 4 oTy)
1 s - 1 o _
:Ntr (HHH + aIN) g aﬁtr (HHH + aIN) ? , (60)

which, together with Theorem 2, yields

1 & - -1 ~ ~ ~ - —1 8t1 8t2
—tr (HTH + ol H”H (H'H + ol = 4 2= 61
Nr( ‘I'CYN) ( —|-CYN) 80é+80é ( )
For Case |, we have

£ (H"H + oly) " H7H (H'H + oly) "' f,

—t/ (H"H + oly) " £, — of (H7H + oly) 8, (62)



wherel = 1,..., L. From (34) and (37), we obtain

o B 1
1 (HH+ oly) = —
P o) < g,

—trff) (WIy + wiw) ™
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(63)

Noticing the fact thatW = (FF¥)~=F, by using the matrix inversion formflawe obtain

trfify (I + WHW) ™ —trfiff? (0 — T F (FFY 4 w0 FF) T R

— = R
w—+1 w—+1
As a result,
S _ t
le (HHH+QIN) 1fl - T2, 2.
Cox

Combining this with (62), we obtain

£ (FYH + oLy) " HPH (HYH + aly) ' f = 2092

From (61) and (66), the proof of (16c) can be accomplishedgusi

S (FH ol HPE(HH 4 oly)
¢ {%tr(HHH T aly) 'HYE(HH 4 aIN)—l} |
le (HHH + OéIN)_lI:IHI:I (HHH + OéIN)_lfl

<E {£/ (H"H + oly) "H/H(H A + oly) 6}

Co 80é.

(64)

(65)

(66)

(67a)

(67b)

By using the martingale approach, we can prove (67) (Seefpt¥ similar application).

Similarly, for Case Il, we have
E{trP(H"H + aly) "HYH(H H+aly) 'F/} < =
2

Therefore, we obtain (18).

APPENDIX C: RELATED LEMMAS

In this appendix, we provide some lemmas needed in the prioAppendix A.

- trR2 8152

(68)

°For invertible A, B andR matrices, suppose thit = A + XRY,thenB™' = A™' —A7'X(R™'+ YA™'X)"'YA~.
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Lemma 4:Let X = [ X,;] € CV*F, where X;;’s are i.i.d. with zero mean, unit variance
and finite 4-th order moment. In addition, lef) €¢ CY*¥, T ¢ CV*¥, andR € CK*KX pe
nonnegative definite matrices with uniformly bounded sg@atorm (with respect tav, N,
and K, respectively). Consider av x N matrix of the formBy = T:XRX?T:. Define
¢y = N/K. Then, asK, N — oo such that) < liminfy ¢; < limsupy ¢; < oo, the following
holds for anyw € R*:

1 a1
Ntrq(BN +wly) = FHQ (Wl + weT) ™!, (69)

e = —t R( 1 6R) !
r w +
N K )

1
& = NtrT(IN +eT) ™.

Proof: As a special case of [46, Theorem 1] or [21, Theorem 1], thelrean be obtained
immediately. [ ]

Lemma 5:Let Q € CV*¥ be a nonnegative definite matrix with uniformly bounded $éc

norm (with respect taV) and W € CX*N be L < N rows of anN x N Haar-distributed
unitary random matrix. Define, = L/N. Then, asL, N — oo such that0 < liminfy ¢, <

limsupy ¢ < 1, the following holds for anyw € R*:

1 X HX -1 _ Co 1-— Co 1
NtrQ(W W+wIN) = <w+1 + - )NtrQ. (70)

Proof: SinceW”W = I, for ¢, = 1 (i.e., N = L), (70) evidently holds. We assumg < 1
in the following proof. Firstly, we consider a special caséhw) = 1. Using the identity of the

Stieltjes transform [29, Lemma 3.1, we have

| PR G o o 1-c
S (WIW + wly) :Zztr(WWH—i—wIL) +— = (71)

19129, Lemma 3.1]: LetA € CV*", B € C™*V, such thatAB is Hermitian. Then, for: € C\R

D ea(z) = mas(z) + o1
N BA = AB N Z.
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Notice that the rows oW are orthogonal and hend& W* = I,. Therefore,

Co 1—62
w41 w

Lt (WHW 4+ oLy) =52

N (72)

Next, for any nonnegative definite matrix with uniformly bwled spectral norm (with respect
to N) Q, we have

1 R
FEQWIW twly) ™ —05:4rQ

=(1 - dw) —trQ(WHW +wly) =46 Z Wi Q(WTW +wly) 'wi, (73)
=1

where the first equality follows from the resolvent identity ! — B! = A~1(B — A)B~! for
invertible matricesA andB. Using the matrix inverse lemma [42, Lemma 2.1], the tracent&
for isometric matrices [43, 44], and the fact ti@thas uniformly bounded spectral norm (with

respect to/V), we obtain

W WH +CUIN)_1Wl
1 +Wl (W W[l] —|—WIN)_1W1

L
WlH wN 1 =
Z Q(WHW +uI Z

=1

(1+w)LtrQ(WHW + wIy) ™ — LtrQ

—— — (74)
(1+w)~tr(WHW +wly) — e
Substituting (74) into (73), and combining (72), yields
(1+w)é (%trQ(VVHVV + u)IN)_1 — 5%trQ) > e
(1 + W>5 — C9 e ( )
Therefore, we get (70). [ ]
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