
ar
X

iv
:1

50
5.

04
53

2v
1 

 [c
s.

IT
]  

18
 M

ay
 2

01
5

1

Large System Analysis of Cognitive Radio

Network via Partially-Projected Regularized

Zero-Forcing Precoding

Jun Zhang, Chao-Kai Wen, Chau Yuen, Shi Jin, and Xiqi Gao

Abstract

In this paper, we consider a cognitive radio (CR) network in which a secondary multiantenna base

station (BS) attempts to communicate with multiple secondary users (SUs) using the radio frequency

spectrum that is originally allocated to multiple primary users (PUs). Here, we employ partially-projected

regularized zero-forcing (PP-RZF) precoding to control the amount of interference at the PUs and to

minimize inter-SUs interference. The PP-RZF precoding partially projects the channels of the SUs into

the null space of the channels from the secondary BS to the PUs. The regularization parameter and the

projection control parameter are used to balance the transmissions to the PUs and the SUs. However,

the search for the optimal parameters, which can maximize the ergodic sum-rate of the CR network,

is a demanding process because it involves Monte-Carlo averaging. Then, we derive a deterministic

expression for the ergodic sum-rate achieved by the PP-RZF precoding using recent advancements in

large dimensional random matrix theory. The deterministicequivalent enables us to efficiently determine

the two critical parameters in the PP-RZF precoding becauseno Monte-Carlo averaging is required.

Several insights are also obtained through the analysis.
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I. INTRODUCTION

The radio frequency spectrum is a valuable but congested natural resource because it is shared

by an increasing number of users. Cognitive radio (CR) [1–4]is viewed as an effective means to

improve the utilization of the radio frequency spectrum by introducing dynamic spectrum access

technology. Such technology allows secondary users (SUs, also known as CR users) to access the

radio spectrum originally allocated to primary users (PUs). In the CR literature, two cognitive

spectrum access models have been widely adopted [4]: 1) theopportunistic spectrum access

model and 2) theconcurrent spectrum accessmodel. In the opportunistic spectrum access model,

SUs carry out spectrum sensing to detect spectrum holes and reconfigure their transmission to

operate only in the identified holes [1, 5]. Meanwhile, in theconcurrent spectrum access model,

SUs transmit simultaneously with PUs as long as interference to PUs is limited [6, 7].

In this paper, we focus on the concurrent spectrum access model particularly when the

secondary base station (BS) is equipped with multiple antennas. A desirable condition in the

concurrent spectrum access model is for SUs to maximize their own performance while minimiz-

ing the interference caused to the PUs. Several transmit schemes have been studied to balance

the transmissions to the SUs and the PUs [8–12]. In [8], a transmit algorithm has been proposed

based on the singular value decomposition of the secondary channel after the projection into the

null space of the channel from the secondary BS to the PUs. A spectrum sharing scheme has

been designed for a large number of SUs [9], in which the SUs are pre-selected so that their

channels are nearly orthogonal to the channels of the PUs. Doing so ensures that the SUs cause

the lowest interference to the PUs.

In multi-antenna and multiuser downlink systems, a common technique to mitigate the mul-

tiuser interference is a zero-forcing (ZF) precoding [13–16], which is computationally more

efficient than its non-linear alternatives. However, the achievable rates of the ZF precoding

are severely compromised when the channel matrix is ill conditioned. Then, regularized ZF

(RZF) precoding [17, 18] is proposed to mitigate the ill-conditioned problem by employing a

regularization parameter in the channel inversion. The regularization parameter can control the

amount of introduced interference. Several applications based on the RZF framework have been

developed, such as transmitter designs fornon-CR broadcast systems [19–22], security systems

[23, 24], and multi-cell cooperative systems [25–28].
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While directly applying RZF to CR networks, the secondary BScan only control the inter-

ference in inter-SUs. Apartially-projectedRZF (PP-RZF) precoding has been proposed [10,

11], which limits the interference from the SUs to the PUs by combining the RZF [17, 18] with

the channel projection idea [8]. The PP-RZF precoding follows the classical RZF technique,

although the former is based on the partially-projected channel, which is obtained by partially

projecting the channel matrix into the null space of the channel from the secondary BS to the

PUs. The amount of interference to the PUs decreases with increasing amounts of projection

into the null space of the PUs, which can be achieved by tuningthe projection control parameter.

However, the search for the optimal regularization parameter and projection control parameter

is a demanding process because it involves Monte-Carlo averaging. Therefore, a deterministic

(or large-system) approximation of the signal-to-interference-plus-noise ratio (SINR) for the PP-

RZF scheme has been derived [10, 11]. Unfortunately, only the CR channel with asingle PU

has been studied and the scenario wheremultiple PUs are present remains unsolved [10].

To apply the PP-RZF precoding scheme in a CR network withmultiplePUs, a new analytical

technique that deals with amulti-dimensional random projection matrix, which is generatedby

partially projecting the channel matrix into the null spaces of multiple PUs, is required. This

paper aims to address the above mentioned challenge by providing analytical results in a more

general setting than that in [10, 11]. Specifically, we focuson a downlink multiuser CR network

(Fig. 1), which consists of a secondary BS with multiple antennas, SUs, and PUs as well as

different channel gains. Our main contributions are summarized below.

• We derive deterministic equivalents for the SINR and the ergodic sum-rate achieved by

the PP-RZF precoding under the general CR network. Unlike previous works [10, 11], our

model considersmultiplePUs and allows different channel gains from the secondary BSto

each user. Owing to recent advancements in large dimensional random matrix theory (RMT)

with respect to complex combinations of different types of independent random matrices

[29], we identify the large system distribution of the Stieltjes transform for a new class of

random matrix. Therefore, our extension becomes non trivial and novel.

• In the PP-RZF precoding, the regularization parameter and the projection control parameter

can regulate the amount of interference to the SUs and the PUs, but a wrong choice of

parameters can considerably degrade the performance of theCR network. However, the

search for the optimal parameters is a demanding process because Monte-Carlo averaging
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is required. We overcome the fundamental difficulty of applying PP-RZF precoding in the

CR network. The deterministic equivalent for the ergodic sum-rate provides an efficient

way of finding the asymptotically optimal regularization parameter and the asymptotically

optimal projection control parameter. Simulation resultsindicate good agreement with the

optimum in terms of the ergodic sum-rate.

• We provide several useful observations on the condition that the regularization parameter

and the projection control parameter can achieve the optimal sum-rate. We also reveal the

relationship between the parameters and the signal-to-noise ratio (SNR).

Notations—We use uppercase and lowercase boldface letters to denote matrices and vectors,

respectively. AnN×N identity matrix is denoted byIN , an all-zero matrix by0, and an all-one

matrix by 1. The superscripts(·)H , (·)T , and (·)∗ denote the conjugate transpose, transpose,

and conjugate operations, respectively.E{·} returns the expectation with respect to all random

variables within the bracket, andlog(·) is the natural logarithm. We use[A]kl, [A]l,k, or Akl to

denote the (k,l)-th entry of the matrixA, andak denotes thek-th entry of the column vector

a. The operators(·) 1

2 , (·)−1, tr(·), anddet(·) represent the matrix principal square root, inverse,

trace, and determinant, respectively,‖ · ‖ represents the Euclidean norm of an input vector or

the spectral norm of an input matrix, anddiag(x) denotes a diagonal matrix withx along its

main diagonal. The notation “
a.s.−−→” denotes the almost sure (a.s.) convergence.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As illustrated in Fig. 1, we consider a downlink multiuser CRnetwork that consists of a

secondary BS withN antennas (labeled asBS). TheBS simultaneously transmitsK independent

messages toK single antenna SUs (labeled asSU1, . . . , SUK). We assume that all the SUs share

the same spectrum withL single antenna PUs (labeled asPU1, . . . ,PUL). Let hH
k ∈ C1×N be the

fading channel vector betweenBS andSUk, fHl ∈ C1×N be the fading channel vector between

BS andPUl, andgk ∈ CN×1 be the precoding vector ofSUk. The received signal atSUk can

therefore be expressed as

yk = hH
k gksk +

K
∑

j=1,j 6=k

hH
k gjsj + zk, (1)
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Fig. 1. A downlink multiuser cognitive radio network.

wheresk is the data symbol ofSUk, sj ’s are independent and identically distributed (i.i.d.) data

symbols with zero mean and unit variance, respectively, andzk is the additive Gaussian noise

with zero mean and variance ofσ2. For ease of exposition, we defineH , [h1, . . . ,hK ]
H ∈

CK×N , F , [f1, . . . , fL]
H ∈ CL×N , G , [g1, . . . , gK ] ∈ CN×K , y , [y1, . . . , yK]

T ∈ CK ,

s , [s1, . . . , sK ]
T ∈ CK , and z , [z1, . . . , zK ]

T ∈ CK . The received signal of all the SUs in

vector form is given by

y = HGs + z. (2)

We also assume thatBS satisfies the average total transmit power constraint

E
{

tr
(

GGH
)}

≤ NPT , (3)

wherePT > 0 is the parameter that determines the power budget ofBS. Notably, if we consider

the instantaneous transmit power constraint, i.e.,tr(GGH) ≤ NPT , we can obtain the same

constraint in a large-system regime, as shown in Appendix B-III.

The peak received interference power constraint or the average received interference power

constraint is used to protect the PUs. Given that the latter is more flexible for dynamically

allocating transmission powers over different fading states than the former [30, 31], we employ

the average received interference power constraint and consider two cases: Case I—the average

received interference power constraint at each PU and Case II—the total average received
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interference power constraint at all PUs1. These cases are respectively given by

Case I (Per PU power constraint):E
{

fHl GGHfl
}

≤ Pl, for l = 1, . . . , L, (4a)

Case II (Sum power constraint): E
{

tr
(

FGGHFH
)}

≤ Pall, (4b)

wherePl > 0 denotes the interference power threshold ofPUl, andPall > 0 represents the total

interference power threshold of all PUs. We then setPl = θlPT andPall = θallPT with θl, θall

being positive scalar parameters to make a connection with the transmit power. Although we

only consider equal power allocation for simplicity in thispaper, our framework can be easily

extended to arbitrary power allocation by replacingG with GP
1

2 , whereP = diag(p1, . . . , pK)

with pk ≥ 0 being the signal power ofSUk (see [21, 22] for a similar application).

Next, to incorporate path loss and other large-scale fadingeffects, we model the channel

vectors by

hH
k =

√
r1,k h̃

H
k and fHl =

√
r2,l f̃

H
l , (5)

whereh̃H
k and f̃Hl are the small-scale (or fast) fading vectors, andr1,k andr2,l denote the large-

scale fading coefficients (or channel path gains), including the geometric attenuation and shadow

effect. Using the above notations, the concerned channel matrices can be rewritten as

H = R
1

2

1 H̃ and F = R
1

2

2 F̃, (6)

whereH̃ ≡ [ 1√
N
h̃ij ] ∈ CK×N and F̃ ≡ [ 1√

N
f̃ij ] ∈ CL×N consist of the random components of

the channel in which̃hij ’s and f̃ij ’s are i.i.d. complex random variables with zero mean and unit

variance, respectively, andR1 ∈ CK×K andR2 ∈ CL×L are diagonal matrices whose diagonal

elements are given by[R1]kk = r1,k and [R2]ll = r2,l, respectively. In line with [10, 11], we

assume thatH is perfectly known toBS in this paper. SinceBS needs to predict the interference

power in (4), we further assume that perfect knowledge ofF is available atBS [10, 11, 32].

To acquire perfect channel state information (CSI) forH andF, transmission protocols need

to incorporate certain cooperation among the PUs, the SUs, and BS [32]. Further research can

focus on the case with imperfect CSI or estimation of channel[33, 34].

1Notably, multiple single-antenna PUs exist. These PUs can also be considered a single equivalent PU with multiple receive
antennas.
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In the downlink CR network (2), we consider the RZF precodingbecause this precoding’s

relatively low complexity compared with dirty paper coding[17, 18, 21, 27]. However, a direct

application of the conventional RZF to the secondary BS willresult in a very inefficient trans-

mission because a large power back-off at the secondary BS isrequired to satisfy the interference

power constraint (4). Therefore, following [10, 11], we adopt the RZF precoding based on the

partially-projectedchannel matrix

Ȟ = H(IN − βWHW), (7)

whereW , (FFH)−
1

2F ∈ CL×N , andβ ∈ [0, 1] is the projection control parameter. Note that

the projected channel matrix̌H is obtained bypartially projectingH into the null space ofF.

Specifically, the RZF precoding matrix is given by

G = ξ
(

ȞHȞ+ αIN
)−1

ȞH , (8)

whereξ is a normalization parameter that fulfills the BS transmit power constraint (3) and the

interference power constraint (4), andα > 0 represents the regularization parameter. We refer

to this precoding as PP-RZF precoding.

Before setting each of the parameters in (8), two special cases of the PP-RZF precoding are

considered first. On the one hand, ifβ = 0 thenG degrades to the conventional RZF precoding.

On the other hand, ifβ = 1 thenȞ is completely orthogonal toF and we haveFȞH = 0, i.e.,

no interference signal from the secondary BS will leak to thePUs. Therefore, the interference

power constraint (4) is naturally guaranteed. Furthermore, the amount of the interference to the

PUs decreases as the projection control parameter increases.

Now we return to the setting of the normalization parameter in (8). Considering Case I, from

(3) and (4a), we have

ξ2 ≤ξ20 ,
PT

E
{

1
N
tr
(

(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1
)} , (9a)

ξ2 ≤ξ2l ,
θlPT

E
{

fHl
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

fl

} , for l = 1, . . . , L. (9b)

To satisfy (3) and (4a) simultaneously, we setξ2 = min{ξ20 , ξ2l , l = 1, . . . , L}. Then, the SINR
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of secondary userSUk is given by

γk =

∣

∣

∣
hH
k

(

ȞHȞ+ αIN
)−1

ȟk

∣

∣

∣

2

hH
k

(

ȞHȞ+ αIN
)−1

ȞH
[k]Ȟ[k]

(

ȞHȞ+ αIN
)−1

hk +
σ2

ξ2

=
ρ
∣

∣

∣
hH
k

(

ȞHȞ+ αIN
)−1

ȟk

∣

∣

∣

2

ρhH
k

(

ȞHȞ+ αIN
)−1

ȞH
[k]Ȟ[k]

(

ȞHȞ+ αIN
)−1

hk + ν
, (10)

whereȞ[k] , [ȟ1, . . . , ȟk−1, ȟk+1, . . . , ȟK ]
H ∈ C(K−1)×N , ȟk , (IN −βWHW)hk, ρ , PT/σ

2,

and

ν ,
PT

ξ2
= max

{

E

{

1

N
tr
(

(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1
)

}

,

1

θl
E
{

fHl
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

fl

}

, l = 1, . . . , L

}

.

(11)

Here, the equality of (11) follows from (9). For Case II, we have

ν = max

{

E

{

1

N
tr
(

(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1
)

}

,

1

θall
E
{

tr
(

F
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

FH
)}

}

. (12)

Consequently, under the assumption of perfect CSI at both transmitter and receivers, the ergodic

sum-rate of the CR network with Gaussian signaling can be defined as

Rsum ,

K
∑

k=1

E {log (1 + γk)} . (13)

Note thatγk in the ergodic sum-rate is subject to the BS transmit power constraint in (3) and

the interference power constraint (to the primary users) in(4).

B. Problem Formulation

The SINR γk in (10) is a function of the regularization parameterα and the projection

control parameterβ. In the literature, adopting incorrect regularization parameter would degrade

performance significantly [18, 21, 27]. In light of the discussion in the previous subsection, one

can realize that a proper projection control parameter can assist in decreasing the interference
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to the PUs. As a result, using the PP-RZF precoding effectively requires obtaining appropriate

values ofα andβ to optimize certain performance metrics. In this paper, we are interested in

finding (α, β), which maximizes the ergodic sum-rate (13). Formally, we have

{

αopt, βopt
}

= argmax
α>0,1≥β≥0

Rsum. (14)

The above problem does not admit a simple closed-form solution and the solution must be

computed via a two-dimensional line search. Monte-Carlo averaging over the channels is required

to evaluate the ergodic sum-rate (13) for each choice ofα andβ, which, unfortunately, makes

the overall computational complexity prohibitive. This drawback hinders the development of the

PP-RZF precoding. To address this problem, we resort to an asymptotic expression of (13) in

the large-system regime in the next section.

III. PERFORMANCE ANALYSIS OF LARGE SYSTEMS

This section presents the main results of the paper. First, we derive deterministic equivalents

for the SINR γk and the ergodic sum-rateRsum in a large-system regime. Then, we identify

the asymptotically optimal regularization parameter and the asymptotically optimal projection

control parameter to achieve the optimal deterministic equivalent for the ergodic sum-rate.

A. Deterministic Equivalents for the SINR and the Ergodic Sum-Rate

We present a deterministic equivalent for the SINRγk by considering the large-system regime,

whereN , K, andL approach infinity, whereas

c1 =
N

K
and c2 =

L

N

are fixed ratios, such that0 < lim infN c1 ≤ lim supN c1 < ∞, 0 < lim infN c2 ≤ lim supN c2 ≤
1. For brevity, we simply useN → ∞ to represent the quantity in such limit. In addition, we

impose the assumptions below in our derivations.

Assumption 1:For the channel matricesH andG in (6), we have the following hypotheses:

1) H̃ = [ 1√
N
h̃ij ] ∈ CK×N , whereh̃ij ’s are i.i.d. standard Gaussian.

2) F̃ = [ 1√
N
f̃ij ] ∈ CL×N , wheref̃ij ’s have the same statistical properties ash̃ij ’s.
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3) R1 = diag(r1,1, . . . , r1,K) ∈ C
K×K and R2 = diag(r2,1, . . . , r2,L) ∈ C

L×L are diagonal

matrices with uniformly bounded spectral norm2 with respect toK andL, respectively.

Based on the definition ofW in (7), WHW = FH(FFH)−1F = F̃H(F̃F̃H)−1F̃ = W̃HW̃,

whereW̃ , (F̃F̃H)−
1

2 F̃. Therefore,W̃ is L ≤ N rows of anN × N Haar-distributed unitary

random matrix [29, Definition 4.6]. The partially-projected channel matrixȞ is clearly com-

posed of the product of two different types of independent random matrices. Owing to recent

advancements in large dimensional RMT [29], we arrive at thefollowing theorem, and the details

are given in Appendix A.

Theorem 1:Under Assumption 1, in Case I (per PU power constraint), asN → ∞, we have

γk − γk

a.s.−−→ 0, for k = 1, . . . , K, where

γk =
ρa2k

ρbk + ν
, (15)

with

ak =
r1,k(t1 + t2(1− β))

α+ r1,k(t1 + t2(1− β)2)
, (16a)

bk = r1,k

(

(1− ak)
2 t1

1 + e
+

(1− (1− β)ak)
2 (1− β)2t2

1 + (1− β)2e

)

∂e

∂α
, (16b)

ν = max

{(

t1
1 + e

+
(1− β)2t2

1 + (1− β)2e

)

∂e

∂α
,
r2,l
θlc2

(1− β)2t2
1 + (1− β)2e

∂e

∂α
, l = 1, . . . , L

}

, (16c)

∂e

∂α
=

1
N
trR1 (αIK + (t1 + t2(1− β)2)R1)

−2

1−
(

t1
1+e

+ (1−β)4t2
1+(1−β)2e

)

1
N
tr
(

R1 (αIK + (t1 + t2(1− β)2)R1)
−1)2

, (16d)

t1 =
1− c2
1 + e

, t2 =
c2

1 + (1− β)2e
, (16e)

ande is given as the unique solution to the fixed point equation

e =
1

N
trR1

(

αIK +
(

t1 + t2(1− β)2
)

R1

)−1
. (17)

Meanwhile, in Case II (sum power constraint), all asymptotic expressions remain, except forν,

2[35]: The spectral norm||| • |||2 is defined onCn×n by |||A|||2 ≡ max{
√
λ : λ is an eigenvalue ofA∗A}.
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which should be changed to

ν = max

{(

t1
1 + e

+
(1− β)2t2

1 + (1− β)2e

)

∂e

∂α
,
trR2

θallc2

(1− β)2t2
1 + (1− β)2e

∂e

∂α

}

. (18)

�

An intuitive application of Theorem 1 is thatγk can be approximated by its deterministic

equivalent3 γk, which can be determined based only on statistical channel knowledge, that is,

R1, R2, andσ2. Note that, according to the definition of the deterministicequivalent (see footnote

3), in the expression of the deterministic equivalentγk, the parametersN , K, L, as well as the

matrix dimensions ofR1 andR2, arefinite. Combining Theorem 1 with the continuous mapping

theorem4, we havelog (1 + γk) − log (1 + γk)
a.s.−−→ 0. An approximationRsum of the ergodic

sum-rateRsum in (13) is obtained by replacing the instantaneous SINRγk with its large system

approximationγk, that is,

Rsum =
K
∑

k=1

log (1 + γk) . (19)

Therefore, whenN → ∞, 1
K

(

Rsum −Rsum

) a.s.−−→ 0 holds true almost surely.

To facilitate our understanding of Theorem 1, we look at it from the two special cases as

follows:

1) In Theorem 1, we introduce the two variablest1 andt2 to reflect the effects of the projection

control parameterβ. If β = 1, from (16), then the deterministic equivalentγk does not

depend ont2. Substitutingβ = 1 into (15) and lettingR1 = IK , we have

γk =
ρ
(

c1(1− c2)(1 + ζ(µ, η, α))2 − ζ(µ, η, α)2
)

ρ+
(

1 + ζ(µ, η, α)
)2 , (20)

3[29, Definition 6.1] (also see [36]): Consider a series of Hermitian random matricesB1, B2, . . . , with BN ∈ C
N×N and

a seriesf1, f2, . . . of functionals of1 × 1, 2× 2, . . . matrices. A deterministic equivalent ofBN for functional fN is a series
B◦

1, B
◦

2, . . ., whereB◦

N ∈ C
N×N , of deterministic matrices, such thatlimN→∞ fN (BN) − fN (B◦

N ) → 0. In this case, the
convergence often be with probability one. Similarly, we term gN , fN (B◦

N) the deterministic equivalent offN (BN), that is,
the deterministic seriesg1, g2, . . ., such thatfN (BN)− gN → 0 in some sense.
Note that the deterministic equivalent of the Hermitian random matrixBN is a deterministicand afinite dimensionalmatrix
B◦

N . In addition, the deterministic equivalent offN (BN ) is gN , fN (B◦

N), which is a function ofB◦

N .
4[37, Theorem 25.7-Corollary 2]: Ifxn

a.s.−−→ a andh is continuous function ata, thenh(xn)
a.s.−−→ h(a).
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whereζ(µ, η, α) , t1/α, µ , 1− c2, andη , 1/c1. Combining (16e) and (17), we obtain

ζ(µ, η, α) ,
t1
α

=
1

2

(

µ− η

α
− 1 +

√

(µ− η)2

α2
+

2(µ+ η)

α
+ 1

)

. (21)

Before providing an observation based on the above, we briefly review a well-known result

from the large dimensional RMT. First, we consider the definition of H from (6). If R1 =

IK , the entries of theK ×N matrix H are zero mean i.i.d. with variance1/N . Following

[29, Chapter 3], we see that asN, K → ∞ with N/K → c1, hH
k

(

HHH+ αIN
)−1

hk

converges almost surely to
∫ b

a

1

λ+ α
f(λ) dλ, (22)

where

f(λ) = (1− η)+ δ(λ) +

√

(λ− a)+(b− λ)+

2πλ
(23)

with (x)+ , max{x, 0}, a , (1−√
η)2, andb , (1 +

√
η)2. In fact, f(u) is the limiting

empirical distribution of the eigenvalues ofHHH and is known as the Marčcenko-Pastur

law [38]. The integral of (22) can be evaluated in closed form

1

2

(

1− η

α
− 1 +

√

(1− η)2

α2
+

2(1 + η)

α
+ 1

)

. (24)

Note that (21) is equal to (24) whenµ is replaced with1, i.e., (24) is equal toζ(1, η, α). In

fact, following the similar derivations of Theorem 1, we canshow that (20) and the SINR

of the conventional RZF precoding share the same formulation by replacingζ(µ, η, α) in

(20) with ζ(1, η, α). Substituting the definitions ofc1, c2 into µ and η, we haveµ − η =

1 − c2 − 1/c1 = (N − (L +K))/N . Comparing this value with1 − η = (N −K)/N in

(24), we thus conclude that ifβ = 1, the SINR of the PP-RZF precoding issimilar5 to

that of the conventional RZF precoding but with an increase in the number of active users

from K to K +L. Hence, the degrees of freedom of the PP-RZF precoding is reduced to

N−(K+L) because the additionalL degrees of freedom are used to suppress interference

to the PUs.

5Notably, whenβ = 1, the SINRs of the PP-RZF precoding and the conventional RZF precoding are similar butnot identical
becauseζ(µ, η, α) is replaced withζ(1, η, α).



13

2) For another extreme case withβ = 0 in Theorem 1,t1 + t2 =
1

1+e
. Letting R1 = IK , we

obtain 1
α(1+e)

= ζ(1, η, α), such that

γk =
ρ
(

c1(1 + ζ(1, η, α))2 − ζ(1, η, α)2
)

ρ+ ν0

(

1 + ζ(1, η, α)
)2 , (25)

where ν0 = max{1, r2,l/θl, l = 1, . . . , L} is for Case I andν0 = max{1, trR2/θall} is

for Case II. The received interference power constraint at the PUs (4) can be controlled

only throughν0, whereβ is not involved inν0. Therefore, the SINRγk is significantly

degraded if the channel path gains between the BS and the PUs (that is,r2,l’s) are strong.

However, if the channel path gains between the BS and the PUs are weak, thenν0 = 1

and γk behave in a manner similar to butnot identical to that of the conventional RZF

precoding becausec1 is replaced withc1(1− c2).

Comparing (25) forβ = 0 with (20) for β = 1 obtains notable results. First, we note

that (20) and (25) share a similar formulation, except the additional ν0 appears at the

denominator of (25). Whenβ = 1, the secondary BS yields zero interference on the

PUs, such that the interference power constraint in (4) is always inactive. Therefore, no

additional parameterν0 is required to reflect the received interference power constraint at

the PUs. Althoughν0 ≥ 1, the SINR performance of the PP-RZF precoding withβ = 1

is not implied to be always better than that withβ = 0. An additional note should be

given onζ(·, η, α), where the argument· is µ for β = 1 and1 for β = 0. The parameter

µ = (N − L)/N for β = 1 implies that the additionalL degrees of freedom is used to

suppress interference to the PUs. Consequently, if the channel path gains between the BS

and the PUs are weak, the SINR performance of the PP-RZF precoding with β = 1 shall

not be better than that withβ = 0. Thus, we infer that the projection control parameter

should be decreased if the received interference power constraint at the PUs is relaxed.

Finally, we note thatζ(1, η, α) agrees withz(r, α0) in [10, 11, Theorem 1]. As a result, (25)

is identical to the deterministic equivalent for the SINR obtained in [10, 11, Theorem 1],

where the PP-RZF precoding with asinglePU is considered. The deterministic equivalent

for the SINR in [10, 11, Theorem 1] is clearly a special case of(15) with β = 0 even

though the case ofβ 6= 0 is considered in [10, 11, Theorem 1] because a single PU results
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only in one-dimensional perturbation, and the effect of such perturbationvanishesin a

large system. Even if the number of PUsL is finite and onlyN becomes large, the effect

of β vanishes. The lack of a relation betweenβ and the SINRs will result in a bias when

the number of antennas at the BS is not so large. However, our analytical results show the

effect of β by assuming thatN , K, andL are large, whereasc1 = N/K and c2 = L/N

are fixed ratios. Thus, our results are clearly more general than those in [10, 11].

Corollary 1: In addition to the assumptions of Theorem 1, we suppose further thatc2 = 1

(that is,N = L), R1 = r1IK , andβ ∈ [0, 1). Then, asN → ∞, we haveγk − γ
a.s.−−→ 0 for

k = 1, . . . , K, where

γ =
ρ (c1r

2
1 − (c1αe− r1)

2)

ρ(c1αe)2 + ν0
, (26)

ande is given as an unique solution to the fixed point equation

e =
r1(1 + e(1− β)2)

c1α(1 + e(1− β)2) + c1r1(1− β)2
,

andν0 = r1max{1, r2,l/θl, l = 1, . . . , L} for Case I orν0 = r1max{1, trR2/θall} for Case II.

Proof: By letting c2 = 1 andR1 = r1IK , we immediately obtain the result from Theorems

1 and 2.

For a brief illustration, we consider only Case II of Corollary 1 because the same characteristics

can be found in Case I. Given thatθall = Pall/PT = Pall/(σ
2ρ), (26) can be rewritten as

γ =



















c1r
2
1 − (c1αe− r1)

2

(c1αe)2 + 1/ρ
, 0 <

ρσ2trR2

Pall
≤ 1;

c1r
2
1 − (c1αe− r1)

2

(c1αe)2 + σ2trR2/Pall
, 1 <

ρσ2trR2

Pall
.

(27)

We can see thatγ does not depend on the SNRρ when1 < ρσ2trR2/Pall. In this case, the system

performance is interference-limited. Notably, the assumptions of c2 = 1 andβ 6= 1 are taken in

Corollary 1. In the case ofc2 = 1 and β = 1, from (16a), we haveak = 0 and consequently

γk = 0, which implies a failure in the transmission. This result isreasonable because when

c2 = 1, the dimension of the null space ofF is zero with probability one.6 Therefore, the setting

6If N = L, we haveRank(I− FH(FFH)−1F) = 0 with probability one because from [39, Theorem 1.1],F is a full rank
square matrix with probability one.
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of β = 1 results in transmission failure,evenwhen the channel path gains between the BS

and the PUs are weak. We thus show that a choice of appropriateβ significantly affects the

successful operation of the CR network, which serves as motivation for the remainder of this

paper.

B. Asymptotically Optimal Parameters

Our numerical results confirm the high accuracy of the deterministic equivalent for the ergodic

sum-rateRsum in the next section. Therefore, the deterministic equivalent for the ergodic sum-

rate can be used to determine the regularization parameterα and the projection control parameter

β. By replacingRsum with Rsum in (14), we focus on this particular optimization to maximize

the deterministic equivalent for the ergodic sum-rate

{

αopt, β
opt
}

= argmax
α>0,1≥β≥0

Rsum. (28)

Similar to the problem in (14), the asymptotically optimal solutions αopt and β
opt

do not

permit closed-form solutions. However, the asymptotically optimal solution can be computed

efficiently via the following methods without the need for Monte-Carlo averaging becauseγk

is deterministic. First, given thatβ is fixed, the optimalαopt(β) := argmaxα>0Rsum(β) can

be obtained efficiently via one-dimensional line search [21, 27], which performs the simple

gradient method. The complexity in this part is linear. Then, we obtain the optimalβ
opt

:=

argmax0≤β≤1Rsum(α
opt(β), β) through the one-dimensional exhaustive search7. Finally, the

optimal parameters are given by{αopt(β
opt

), β
opt}. For a special case, we obtain a condition of

the optimal solutions in the following proposition:

Proposition 1: Under the assumptions of Corollary 1, the asymptotically optimal parameters

αopt andβ
opt

satisfy the equation

αopt =
ν0

(

1− β
opt
)2

ρc1r1
. (29)

whereβ
opt ∈ [0, 1).

7Although the one-dimensional exhaustive search seems burdensome, the case in question here is easy because the search is
only over a closed set0 ≤ β ≤ 1.
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Proof: By differentiatingRsum with respect toα andβ, we immediately obtain the result

from Corollary 1.

From Proposition 1, we note that the number of asymptotically optimal solutions is infinite.

All α’s andβ’s that satisfy (29) are optimal. This condition will be confirmed in the next section.

Similar to (27), we consider Case II for brief illustration.In this case, (29) can be rewritten

as

αopt =



















(1− β
opt

)2

ρc1r1
, 0 <

ρσ2trR2

Pall
≤ 1;

(1− β
opt

)2σ2trR2

c1r1Pall
, 1 <

ρσ2trR2

Pall
.

(30)

From (27), when0 < ρσ2trR2/Pall ≤ 1, the system performance is unaffected by the average

received interference power constraint. In this case,β
opt

is expected to be close to0 because the

weak interference at all the PUs is negligible. This condition is combined with the first term of

(30) to reveal thatαopt decreases with increasingρ, whereρ = PT/σ
2 is the same as previously

defined. However, whenρσ2trR2/Pall > 1, the system performance is limited by the average

received interference power constraint. To decrease the interference,β
opt

is expected to be close

to 1. Therefore, the second term of (30) reveals thatα decreases to0 with an increase inβ
opt

.

We end this section by observing two additional extreme cases in Theorem 1 forR1 = IK :

If β = 0, by means of some algebraic manipulations, we obtainαopt = ν0/(c1ρ). By contrast,

if β = 1 and c2 6= 1, we obtainαopt = 1/(c1ρ). We find that the optimal regularization

parameter tends to decrease monotonically with increasingρ, as expected. This characteristic is

similar to that of the conventional RZF precoding in [18, 19], wherer1 = 1 is assumed and the

asymptotically optimal regularization parameterαopt = 1/(c1ρ) is derived.

IV. SIMULATIONS

In this section, we conduct simulations to confirm our analytical results. First, we compare

the analytical results (19) in Theorem 1 and the Monte-Carlosimulation results (13) obtained

from averaging over a large number of i.i.d. Rayleigh fadingchannels. In the simulations, we

set channel path gainsr1,k = 1 and r2,l = 0.6 for all k and l and assume thatPl = P for all l

in Case I andPall = LP in Case II. Several characteristics of Cases I and II are similar. Thus,

without loss of generality, we provide the numerical results of Case I only.
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Fig. 2. Ergodic sum-rate and the deterministic equivalent results under different interference power threshold and and two
different antenna configuration cases.

Fig. 2 compares the ergodic sum-rate and its deterministic equivalent result under different

interference power thresholdsP ∈ {−10dB, 0dB} and two different antenna configuration cases:

{N = 10, K = 8, L = 6} and {N = 16, K = 8, L = 6}. In the simulation,{αopt, βopt}
is obtained by using the two-dimensional line search in (14). We find that the deterministic

equivalent is accurate under various settings even for systems with a not-so-large number of

antennas. In addition, Fig. 2 illustrates that for the case with {N = 10, K = 8, L = 6}, the

sum-rate of the SUs cannot increase linearly in SNR and becomes interference-limited because

the sum-rate of the SUs is easily restricted by the average received interference power at each

PU, particularly when the number of active users is larger than the number of antennas at the

BS, that is,L+K ≥ N .

In the above simulations, the best solutions of{αopt, βopt} are calculated by Monte-Carlo

averaging over104 independent trials; doing so which clearly results in a highcomputational

cost. To confirm that the optimization based on the deterministic equivalent is not only more

computationally efficient but also near-optimal, we compare the ergodic sum-rate of the PP-RZF

precoding withP = 0dB and{N = 16, K = 8, L = 6} in Fig. 3 for the following four cases: 1)
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Fig. 3. Ergodic sum-rate results under various parameters with P = 0dB and{N = 16, K = 8, L = 6}.

{αopt, β
opt}, 2) {αopt, βopt}, 3) {αopt, β = 0}, and 4){αopt, β = 1}. The solution of{αopt, β

opt}
is obtained by using the two-dimensional line search in (28). {αopt, β

opt} provides results that are

indistinguishable from those achieved by{αopt, βopt}, which demonstrates that the optimization

based on the deterministic equivalent is promising. Moreover, the performance is significantly

improved if the PP-RZF precoding with an appropriate choiceof {α, β} is employed. In the

low-SNR regime, the optimal transmission becomes the conventional RZF precoding, whereas

the optimal transmission is the PP-RZF precoding withβ = 1 in the high-SNR regime.

To provide further results on the optimal solutions of{α, β}, Figs. 4 and 5 show the values of

{αopt, β
opt}, {αopt, βopt} under various settings. We have observed that the optimal parameter

{αopt, β
opt} based on the deterministic equivalent result is almost consistent with {αopt, βopt}

based on the ergodic sum-rate. Moreover, we have observed that with increasingρ, αopt (or αopt)

tends to monotonically decrease to0, whereasβopt (or β
opt

) tends to monotonically increase

from 0 to 1. These characteristics are expected based on the analysis in Section III.

Finally, we confirm the result in Proposition 1. Fig. 6 displays the ergodic sum-rate under

various parameter settings withP = 0dB and{N = 10, K = 8, L = 10}. We find that when
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Fig. 6. Ergodic sum-rate results under various parameters for P = 0dB and{N = 10, K = 8, L = 10}.

c2 = 1, the parameters that satisfy (29) can achieve the asymptotically optimal sum-rate for any

β ∈ [0, 1), such that infinitely many asymptotically optimal solutions exist.

V. CONCLUSION

By exploiting the recent advancements in large dimensionalRMT, we investigated downlink

multiuser CR networks that consist of multiple SUs and multiple PUs. The deterministic equiv-

alent of the ergodic sum-rate based on the PP-RZF precoding was derived. Numerical results

revealed that the deterministic equivalent sum-rate provides reliable performance predictions even

for systems with a not-so-large number of antennas. We thus used the deterministic equivalent

result to identify the asymptotically optimal regularization parameter and the asymptotically op-

timal projection control parameter. In addition, we provided the condition that the regularization

parameter and the projection control parameter are asymptotically optimal. Several insights have

been gained into the optimal PP-RZF precoding design. A natural extension of this is to consider

the PP-RZF precoding under various scenarios, such as spatial correlations and imperfect CSI at

the transmitter. However, such development is still ongoing because of mathematical difficulties.
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APPENDIX A: PROOF OFTHEOREM 1

To complete this proof, we first introduce the limiting distribution for a new class of random

Hermitian matrix in Theorem 2. Such distribution serves as the mathematical basis for the latter

derivation. We recall the definition of the Stieltjes transform (see, e.g., [40]). For a Hermitian

matrix BN ∈ CN×N , the Stieltjes transform ofBN , is defined as

mBN
(α) =

1

N
tr (BN + αIN)

−1 for α ∈ R
+.

For ease of explanation, we also define the matrix product Stieltjes transform ofBN as

mBN ,Q(α) =
1

N
trQ (BN + αIN)

−1 ,

whereQ is any matrix with bounded spectrum norm (with respect toN).

Notably, bothmBN
(α) andmBN ,Q(α) are functions ofα, but for ease of notation,α is dropped.

In addition, all the subsequent approximations will be performed under the limitN → ∞, and

for ease of expression,a ≍ b denotes thata− b
a.s.−−→ 0 asN → ∞.

Theorem 2:Consider anN ×N matrix of the following form:

BN = ȞHȞ =
(

IN − βW̃HW̃
)

H̃HR1H̃
(

IN − βW̃HW̃
)

, (31)

whereW̃, H̃, andR1 follow the restrictions given by Assumption 1. Then, asN → ∞, we

have

mBN ,Q ≍ t1 + t2
α

1

N
trQ, (32)

wheret1 = 1−c2
1+e

andt2 = c2
1+e(1−β)2

with e being the unique solution to the fixed point equation

e =
1

N
trR1

(

αIK +
(

t1 + t2(1− β)2
)

R1

)−1
. (33)

Proof: If c2 = 1 (i.e., N = L), W̃HW̃ = IL, the result is directly obtained by Lemma 4

(see Appendix C).

We consider the case withc2 < 1. Given thatmBN ,Q is a function of two random matrices̃W

and H̃, we aim to derive an iterative deterministic equivalent [41] of mBN ,Q. In particular, we

first find a functiong̃N(W̃, α), such thatfN((H̃,W̃), α) ≍ g̃N(W̃, α), wherefN((H̃,W̃), α) ,

mBN ,Q, andg̃N(W̃, α) is a function ofW̃ and is independent of{H̃}N≥1. Notably,g̃N(W̃, α) is
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a deterministic equivalent offN ((H̃,W̃), α) with respect to random matrix sequences{H̃}N≥1.

Second, we further find a functiongN(α), such thatg̃N(W̃, α) ≍ gN(α). Thus, we obtain an

iterative deterministic equivalentgN(α) of fN((H̃,W̃), α), i.e., fN((H̃,W̃), α) ≍ gN(α).

WhenW̃ is treated as a deterministic matrix, applying Lemma 4 (see Appendix C), we have

1

N
trQ (BN + αIN)

−1 ≍ 1

N
trQ

(

αIN + αe
(

IN − βW̃HW̃
)2
)−1

, (34)

where

e =
1

N
trR1 (αIK + ẽR1)

−1 , (35)

ẽ =
1

N
tr
(

IN − βW̃HW̃
)2
(

IN + e
(

IN − βW̃HW̃
)2
)−1

. (36)

Notice the fact that(W̃HW̃)2 = W̃HW̃ so (34) and (36) can be written respectively as

1

N
trQ

(

αIN + αe
(

IN − βW̃HW̃
)2
)−1

=
1

α(β2 − 2β)e

1

N
trQ
(

ωIN + W̃HW̃
)−1

, (37)

and

ẽ =
1

(β2 − 2β)e

1

N
tr
(

ωIN + W̃HW̃
)−1

+
1

e

1

N

L
∑

l=1

w̃H
l

(

ωIN + W̃HW̃
)−1

w̃l, (38)

whereω , 1+e
(β2−2β)e

andw̃l denotes thel−th row of W̃.

Next, we aim to derive the deterministic equivalents of the terms 1
N
trQ(ωIN + W̃HW̃)−1

andw̃H
l (ωIN + W̃HW̃)−1w̃l. Applying a result of the Haar matrix in Lemma 5 (see Appendix

C) to (37) and combing (34), we immediately get (32). Then, wedeal with the deterministic

equivalent ofw̃H
l

(

ωIN + W̃HW̃
)−1

w̃l. According to the matrix inverse lemma (see, e.g., [42,

Lemma 2.1]8), we find

w̃H
l

(

ωIN + W̃HW̃
)−1

w̃l =
w̃H

l

(

ωIN + W̃H
[l]W̃[l]

)−1
w̃l

1 +wH
l

(

ωIN + W̃H
[l]W̃[l]

)−1
w̃l

, (39)

whereW̃[l] , [w̃1, . . . , w̃l−1, w̃l+1, . . . , w̃L]
H ∈ C(L−1)×N . Then, the trace lemma for isometric

8[42, Lemma 2.1]: For anyA ∈ C
n×n andq ∈ C

n with A andA+ qqH invertible, we have

q
H

(

A+ qq
H

)

−1

=
1

1 + qHA−1q
q
H
A

−1
.
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matrices [43, 44] gives us

w̃H
l

(

ωIN + W̃H
[l]W̃[l]

)−1
w̃l ≍

1

N − L
tr
(

IN − W̃H
[l]W̃[l]

)(

ωIN + W̃H
[l]W̃[l]

)−1

=
1 + ω

N − L
tr
(

ωIN + W̃H
[l]W̃[l]

)−1 − N

N − L
. (40)

Now, applying [42, Lemma 2.2] and (72) to (40), we get

w̃H
l

(

ωIN + W̃HW̃
)−1

w̃l ≍
1

ω + 1
. (41)

Substituting (41) into (38) and using (72) and (35), we obtain (33).

Note thatmBN ,Q, e, t1, andt2 are all functions ofα andβ, but for ease of expression,α and

β are dropped.

Theorem 2 indicates thatmB,Q can be approximated by its deterministic equivalentt1+t2
α

1
N
trQ

without knowing the actual realization of channel random components. The deterministic equiva-

lent is analytical and is much easier to compute thanEB{mB,Q}, which requires time-consuming

Monte-Carlo simulations. Motivated by this result in the large system limit, we aim to derive

the deterministic equivalent ofγk.

The SINRγk in (10) consists of three terms:(i) the signal power|hH
k (Ȟ

HȞ+ αIN)
−1ȟk|2,

(ii) the interference powerhH
k (Ȟ

HȞ + αIN)
−1ȞH

[k]P[k]Ȟ[k](Ȟ
HȞ + αIN)

−1hk, and (iii ) the

noise powerν. Using Theorem 2, we establish the following three lemmas toderive the deter-

ministic equivalent of each term, whose proofs are detailedin Appendices B-I, B-II, and B-III,

successively.

Lemma 1:Under the assumption of Theorem 2, asN → ∞, we have

hH
k

(

ȞHȞ+ αIN
)−1

ȟk ≍ ak, (42)

whereak has been obtained by (16a).

Lemma 2:Under the assumption of Theorem 2, asN → ∞, we have

hH
k

(

ȞHȞ+ αIN
)−1

ȞH
[k]Ȟ[k]

(

ȞHȞ+ αIN
)−1

hk ≍ bk, (43)

wherebk has been obtained by (16b).
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Lemma 3:Under the assumption of Theorem 2, asN → ∞, we have

ν ≍ ν, (44)

whereν can be obtained by (16c) for Case I and by (18) for Case II.

According to Lemma 1, Lemma 2, and Lemma 3, we obtain the deterministic equivalentγk

of γk in (15). The proof is then completed.

APPENDIX B: PROOFS OFLEMMA 1, LEMMA 2, AND LEMMA 3

B-I: Proof of Lemma 1

We start from an application of the matrix inverse lemma [42,Lemma 2.1] to the signal term,

which results in

hH
k

(

ȞHȞ+ αIN
)−1

ȟk =
hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk

1 + ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk

. (45)

Using [42, Lemma 2.3 and Lemma 2.2], we obtain

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk ≍r1,k

1

N
tr
(

ȞHȞ+ αIN
)−1 − r1,kβ

1

N
trWHW

(

ȞHȞ+ αIN
)−1

.

(46)

Similarly,

ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk

≍r1,k
1

N
tr
(

ȞHȞ+ αIN
)−1

+ r1,k(β
2 − 2β)

1

N
trWHW

(

ȞHȞ+ αIN
)−1

. (47)

According to Theorem 2, we have

1

N
tr
(

ȞHȞ+ αIN
)−1 ≍ t1 + t2

α
. (48)

Noticing thatWHW = W̃HW̃ and by using the same approach as (38), we obtain

1

N
trWHW

(

ȞHȞ+ αIN
)−1 ≍ 1

α(β2 − 2β)e

1

N

L
∑

l=1

w̃H
l

(

ωIN + W̃HW̃
)−1

w̃l ≍
t2
α
. (49)
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Substituting (48) and (49) into (46) and (47), we obtain

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk ≍ r1,k (t1 + t2(1− β))

α
, (50)

ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk ≍ r1,k (t1 + t2(1− β)2)

α
. (51)

Consequently, the expression of (45), together with (50) and (51), yields (42).

B-II: Proof of Lemma 2

Using the fact thatA−1 −D−1 = −A−1(A−D)D−1, we have

hH
k

(

ȞHȞ+ αIN
)−1

ȞH
[k]Ȟ[k]

(

ȞHȞ+ αIN
)−1

hk

=hH
k

(

ȞHȞ+ αIN
)−1

hk − αhH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1 (
ȞHȞ+ αIN

)−1
hk

− hH
k

(

ȞHȞ+ αIN
)−1

ȟkȟ
H
k

(

ȞHȞ+ αIN
)−1

hk

+ αhH
k

(

ȞHȞ+ αIN
)−1

ȟkȟ
H
k

(

ȞH
[k]Ȟ[k] + αIN

)−1 (
ȞHȞ+ αIN

)−1
hk. (52)

Applying the matrix inverse lemma, we obtain

hH
k

(

ȞHȞ+ αIN
)−1

hk

=hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
hk −

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟkȟ

H
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
hk

1 + ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk

. (53)

Similarly,

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1 (
ȞHȞ+ αIN

)−1
hk

=hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
hk −

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
ȟkȟ

H
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
hk

1 + ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk

, (54)

and

ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1(
ȞHȞ+ αIN

)−1
hk

=ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
hk −

ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
ȟkȟ

H
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
hk

1 + ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
ȟk

. (55)
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According to Theorem 2, we have

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
hk ≍ r1,k (t1 + t2)

α
. (56)

Noticing that

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
hk = − ∂

∂α
hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−1
hk,

we thus obtain

hH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
hk ≍ −r1,k

∂

∂α

(

t1 + t2
α

)

. (57)

Similarly, combining (50) and (51) yields

ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
hk ≍ −r1,k

∂

∂α

(

t1 + (1− β)t2
α

)

, (58)

ȟH
k

(

ȞH
[k]Ȟ[k] + αIN

)−2
ȟk ≍ −r1,k

∂

∂α

(

t1 + (1− β)2t2
α

)

. (59)

Substituting (50), (51), (56), (57), (58), and (59) into (53), (54), and (55), and combining (42)

and (52), we obtain (43).

B-III: Proof of Lemma 3

From (11), we first have

1

N
tr
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

=
1

N
tr
(

ȞHȞ+ αIN
)−1 − α

1

N
tr
(

ȞHȞ+ αIN
)−2

, (60)

which, together with Theorem 2, yields

1

N
tr
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1 ≍ ∂t1

∂α
+

∂t2
∂α

. (61)

For Case I, we have

fHl
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

fl

=fHl
(

ȞHȞ+ αIN
)−1

fl − αfHl
(

ȞHȞ+ αIN
)−2

fl, (62)
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wherel = 1, . . . , L. From (34) and (37), we obtain

fHl
(

ȞHȞ+ αIN
)−1

fl ≍
1

α(β2 − 2β)e
trflf

H
l

(

ωIN +WHW
)−1

. (63)

Noticing the fact thatW = (FFH)−
1

2F, by using the matrix inversion formula9, we obtain

trflf
H
l

(

ωIN +WHW
)−1

=trflf
H
l

(

ω−1IN − ω−1FH
(

FFH + ω−1FFH
)−1

Fω−1
)

=
1

ω + 1
trflf

H
l ≍ r2,l

ω + 1
. (64)

As a result,

fHl
(

ȞHȞ+ αIN
)−1

fl ≍
r2,lt2
c2α

. (65)

Combining this with (62), we obtain

fHl
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

fl ≍
r2,l
c2

∂t2
∂α

. (66)

From (61) and (66), the proof of (16c) can be accomplished using

1

N
tr
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

≍E

{

1

N
tr
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1
}

, (67a)

fHl
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

fl

≍E
{

fHl
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

fl

}

. (67b)

By using the martingale approach, we can prove (67) (See [45]for a similar application).

Similarly, for Case II, we have

E
{

trF
(

ȞHȞ+ αIN
)−1

ȞHȞ
(

ȞHȞ+ αIN
)−1

FH
}

≍ trR2

c2

∂t2
∂α

. (68)

Therefore, we obtain (18).

APPENDIX C: RELATED LEMMAS

In this appendix, we provide some lemmas needed in the proof of Appendix A.

9For invertibleA,B andR matrices, suppose thatB = A+XRY, thenB−1 = A−1−A−1X(R−1+YA−1X)−1YA−1.
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Lemma 4:Let X ≡ [ 1√
N
Xij ] ∈ C

N×K , whereXij ’s are i.i.d. with zero mean, unit variance

and finite 4-th order moment. In addition, letQ ∈ CN×N , T ∈ CN×N , andR ∈ CK×K be

nonnegative definite matrices with uniformly bounded spectral norm (with respect toN , N ,

and K, respectively). Consider anN × N matrix of the formBN = T
1

2XRXHT
1

2 . Define

c1 = N/K. Then, asK,N → ∞ such that0 < lim infN c1 ≤ lim supN c1 < ∞, the following

holds for anyω ∈ R+:

1

N
trQ
(

BN + ωIN
)−1 ≍ 1

N
trQ (ωIN + ωeT)−1 , (69)

wheree is given as the unique solution to the fixed-point equations

e =
1

N
trR(ωIK + ẽR)−1,

ẽ =
1

N
trT(IN + eT)−1.

Proof: As a special case of [46, Theorem 1] or [21, Theorem 1], the result can be obtained

immediately.

Lemma 5:Let Q ∈ CN×N be a nonnegative definite matrix with uniformly bounded spectral

norm (with respect toN) and W̃ ∈ C
L×N be L ≤ N rows of anN × N Haar-distributed

unitary random matrix. Definec2 = L/N . Then, asL,N → ∞ such that0 < lim infN c2 ≤
lim supN c2 ≤ 1, the following holds for anyω ∈ R+:

1

N
trQ
(

W̃HW̃ + ωIN
)−1 ≍

(

c2
ω + 1

+
1− c2
ω

)

1

N
trQ. (70)

Proof: SinceW̃HW̃ = IL for c2 = 1 (i.e.,N = L), (70) evidently holds. We assumec2 < 1

in the following proof. Firstly, we consider a special case with Q = I. Using the identity of the

Stieltjes transform [29, Lemma 3.1]10, we have

1

N
tr
(

W̃HW̃ + ωIN
)−1

=
c2
L
tr
(

W̃W̃H + ωIL
)−1

+
1− c2
ω

. (71)

10[29, Lemma 3.1]: LetA ∈ C
N×n, B ∈ C

n×N , such thatAB is Hermitian. Then, forz ∈ C\R
n

N
mBA(z) = mAB(z) +

N − n

N

1

z
.
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Notice that the rows ofW̃ are orthogonal and hencẽWW̃H = IL. Therefore,

1

N
tr
(

W̃HW̃ + ωIN
)−1 ≍ δ ,

c2
ω + 1

+
1− c2
ω

. (72)

Next, for any nonnegative definite matrix with uniformly bounded spectral norm (with respect

to N) Q, we have

1

N
trQ
(

W̃HW̃ + ωIN
)−1 − δ

1

N
trQ

=(1− δω)
1

N
trQ
(

W̃HW̃ + ωIN
)−1 − δ

L
∑

l=1

wH
l Q
(

W̃HW̃ + ωIN
)−1

wl, (73)

where the first equality follows from the resolvent identity: A−1 −B−1 = A−1(B−A)B−1 for

invertible matricesA andB. Using the matrix inverse lemma [42, Lemma 2.1], the trace lemma

for isometric matrices [43, 44], and the fact thatQ has uniformly bounded spectral norm (with

respect toN), we obtain

L
∑

l=1

wH
l Q
(

W̃HW̃ + ωIN
)−1

wl =
L
∑

l=1

wH
l Q
(

W̃H
[l]W̃[l] + ωIN

)−1
wl

1 +wH
l

(

W̃H
[l]W̃[l] + ωIN

)−1
wl

≍c2
(1 + ω) 1

N
trQ
(

W̃HW̃ + ωIN
)−1 − 1

N
trQ

(1 + ω) 1
N
tr
(

W̃HW̃ + ωIN
)−1 − c2

. (74)

Substituting (74) into (73), and combining (72), yields

(1 + ω)δ
(

1
N
trQ
(

W̃HW̃ + ωIN
)−1 − δ 1

N
trQ
)

(1 + ω)δ − c2
≍ 0. (75)

Therefore, we get (70).
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