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Deterministic Equivalent Performance Analysis of
Time-Varying Massive MIMO Systems

Anastasios K. Papazafeiropoulos, Member, IEEE, and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—Delayed channel state information at the transmitter
(CSIT) due to time variation of the channel, coming from the
users’ relative movement with regard to the BS antennas, is an
inevitable degrading performance factor in practical systems. De-
spite its importance, little attention has been paid to the literature
of multi-cellular multiple-input massive multiple-output (MIMO)
system by investigating only the maximal ratio combining (MRC)
receiver and the maximum ratio transmission (MRT) precoder.
Hence, the contribution of this work is designated by the per-
formance analysis/comparison of/with more sophisticated linear
techniques, i.e., a minimum-mean-square-error (MMSE) detector
for the uplink and a regularized zero-forcing (RZF) precoder
for the downlink are assessed. In particular, we derive the
deterministic equivalents of the signal-to-interference-plus-noise
ratios (SINRs), which capture the effect of delayed CSIT, and
make the use of lengthy Monte Carlo simulations unnecessary.
Furthermore, prediction of the current CSIT after applying a
Wiener filter allows to evaluate the mitigation capabilities of
MMSE and RZF. Numerical results depict that the proposed
achievable SINRs (MMSE/RZF) are more efficient than simpler
solutions (MRC/MRT) in delayed CSIT conditions, and yield
a higher prediction at no special computational cost due to
their deterministic nature. Nevertheless, it is shown that massive
MIMO are preferable even in time-varying channel conditions.

Index Terms—Massive MIMO, delayed CSIT, channel estima-
tion, channel prediction, linear precoding, linear detection.

I. INTRODUCTION

Multi-user MIMO (MU-MIMO), applied to next generation
systems (e.g., 802.16m [3], LTE-Advanced [4]), is one of the
core technologies promising to provide a remarkable increase
in data rates. Such systems include several co-channel users
communicating with a base station (BS) equipped with multiple
antennas. However, the technological transition to 5G systems
is expected to demand a thousand-fold higher capacity.

Massive MIMO, where the BS includes a very large number
of antennas, have emerged as one of the most promising
technologies towards this direction because more degrees
of freedom and increased power efficiency are achieved by
simplifying multi-user processing, reducing transmit power, as
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well as vanishing the effects of thermal noise and fast fading [5]-
[16]. Along these lines, given a multi-cellular scenario, linear
detectors and precoders behave nearly optimal as the number of
BS antennas goes to infinity, taking into account that channel
vectors tend to be orthogonal when the number of antennas
is large [7]. Specifically, the author derived the asymptotic
signal-to-interference-plus-noise ratios (SINRs) and inferred
that the effects of fast fading, uncorrelated noise, and intra-
cell interference tend to disappear for unlimited number of
BS antennas, even with simple maximum-ratio combining
(MRC) in the uplink and maximum-ratio transmission (MRT)
in the downlink. Similarly, derivation of lower bounds in the
uplink revealed that MRC and zero forcing (ZF) perform
the same in the low spectral efficiency regime, while ZF
outperforms at higher spectral efficiencies [9]. Moreover,
application of tools from random matrix theory (RMT) in [10]
led to deterministic approximations (deterministic equivalents)
of the SINR for the uplink with MRC and minimum mean-
square error (MMSE) receivers as well as for the downlink
with beamforming (BF) or else maximal ratio transmission
(MRT) and regularized zero-forcing (RZF) precoders under
the assumption that the numbers of BS antennas and users go
to infinity at the same rate. Interestingly, it was shown that
even in the case of a moderate number of BS antennas and
users, the deterministic approximation of the SINR is tight.
Nevertheless, the computational requirements of conjugate and
zero-forcing linear precoders have been analyzed in [13], while
a cooperative transmission strategy among BSs (multi-cell)
with large number of antennas has been considered in [16], in
order to study the asymptotic SINR.

Notably, except of grounding and well documenting the
theory of massive MIMO, system simulations and channel
measurements have validated their promising benefits [17],
[18]. However, the assessment of this technique has not been
conducted in depth. Specifically, the exploration of its behavior
by including channel imperfections is imperative, in order
to understand its real limits, given that the acquisition of
perfect and timely CSI is crucial. Such imperfections include
pilot contamination [6]-[13], [19], [20], transceiver hardware
impairments [21], [22], and phase noise drift [23]. For example,
the error induced in the channel due to the pilot contamination
effect constitutes a bottleneck, since it saturates the performance
with the number of antennas. Being an inherent weakness of
multi-cell systems, caused by the reuse of pilot sequences in
adjacent cells, it has been studied thoroughly.

Additionally to the aforementioned imperfections, delayed
CSIT appears due to the time-varying nature of real channels.
In fact, the channel varies between when it is learned via



estimation and when it is used for precoding or detection
due to the relative movement between the antennas and the
scatterers. Although it is main cause for the inevitably imperfect
channel state information CSIT that should be taken seriously
into account, an effort for characterizing the impact of delayed
CSIT in massive MIMO has been addressed only in [24]-[26].
Especially, in [24], an application of the deterministic equivalent
analysis was presented by considering linear techniques in the
uplink and downlink in terms of maximum ratio combining
(MRC) detector and maximum ratio transmission (MRT)
precoder, respectively. Moreover, in [25], the optimal linear
receiver in the case of cellular massive MIMO has been derived
by exploiting the correlation between the channel estimates
and the interference from other cells, while in [26], the uplink
analysis of a cellular network with zero-forcing (ZF) receivers
that holds for any finite as well as infinite number of BS
antennas has been provided.

Given that further study of massive MIMO systems under
such CSI assumptions is of paramount practical and theoretical
interest, the focus of this paper is to cover the arising need
for conducting realistic characterization and comparison of
the corresponding ergodic achievable rates accounting for
user mobility, when other types of receivers/precoders are
considered. Note that this work extends substantially our
conference papers [1], [2] by elaborating more on the effect of
channel aging, providing an overall and thorough presentation
of the analyses of both the uplink and downlink channels,
and presenting the lengthy proofs, which have theoretical
and practical interest regarding the large RMT. Hence, in
the spirit of deterministic equivalents, developed in [10] for
cellular networks, which employ the large MIMO concept, i.e.,
the number of users and BS antennas become larger at the
same speed, we provide a deeper study in both the uplink
and the downlink by considering a MMSE receiver and a
RZF precoder under the assumption of imperfect CSI at the
BS due to its delayed knowledge and pilot contamination as
in [24]. It should be pointed out that our analysis is not just a
straightforward extension of [24], which unfortunately brings
too many typos, but it encompasses much more complex tools
to deal with the more mathematically complex expressions of
MMSE and RZF. Nevertheless, not only do we provide more
details with comparison to [10], [24] in order to shed light
into the mathematical analysis, but we also use a mixture of
both approaches from the very start of defining the models
to the end for providing the most advantageous analysis in
terms of mathematical convenience and engineering insight.
Note that the approximations (deterministic equivalents) are
accurate even for realistic system dimensions, as simulations
show. Thus, our analysis circumvents any need for lengthy
Monte Carlo simulations. Specifically, the paper makes the
following main contributions:

e« We carry out an asymptotic performance analysis by
deriving deterministic equivalent (asymptotically tight
approximations) sum-rates accounting for the aforemen-
tioned channel impairments. In particular, we employ a
MMSE receiver for the uplink and a RZF precoder for the
downlink. Especially, the results quantify the loss in the
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Fig. 1. Massive MIMO system with N BS antennas and K user terminals.
The solid and dotted arrows represent the downlink and uplink channels,
respectively. Due to TDD, channel reciprocity is considered. h';- i and hj,
denote the desired downlink column channel vector in cell 5 and tﬁe interference
uplink channel vector from cell [, respectively.

performance due to delayed CSIT for different Doppler
shifts, and illustrate the outperformance of MMSE and
RZF against MRC and MRT, respectively. Nevertheless,
it can be concluded that large MIMO are preferable even
in time-varying channel conditions.

o We exploit the time correlation of the channel, in order
to mitigate the detrimental effect of delayed CSI by pre-
dicting the current channel state from past measurements.
Basically, capitalizing on the results in [24], we apply
the finite impulse response (FIR) Wiener predictor under
the concept of asymptotic equivalent analysis, in order to
derive the corresponding realistic deterministic sum-rates
for both the uplink (MMSE) and the downlink (RZF)
channels. The results enable us to study explicitly how
much more efficiently the predicted CSIT can overcome
the inherent degradation due to delayed CSIT, if more
sophisticated techniques than MRC and MRT are used.

Notation: Vectors and matrices are represented by boldface
lower and upper case symbols. (-)", (-)", and tr () denote the
transpose, Hermitian transpose, and trace operators, respectively.
The expectation operation and the spectral norm of a matrix
are denoted by E{-} and || - ||, respectively. The symbol ®
stands for the Kronecker product. Finally, b ~ CN(0,X)
denotes a circularly symmetric complex Gaussian vector b
with zero-mean and covariance matrix X.

II. SYSTEM MODEL

A wireless cellular network is considered with L cells, as
illustrated in Fig. 1. Following the common cellular architecture,
we assume that each cell has one BS equipped with /N antennas
and K distributed active users with a single antenna each,
served simultaneously. Note that both IV, K increase by keeping
their ratio fixed, in order to preserve the characteristic property
of large MIMO. In other words, the number of antennas of
each BS grows at the same speed with the number of the user
terminals in every cell. Perfect synchronization occurs in time
and frequency by all nodes (BSs and users), which operate
in a time division duplex (TDD) protocol. Staying complied
with 3GPP LTE/LTE-Advanced standards [27], a universal



frequency reuse of one is assumed, although other frequency
reuse factors can also be implemented.

We consider flat-fading channels, where transmissions take
place over a single frequency or subcarrier; Extensions to
frequency selective channels follow similarly. In addition, a
quasi-static fading model is assumed with coherence bandwidth
much larger than the channel bandwidth, where the channel
coefficients vary from symbol to symbol, but they are constant
within one symbol.

The channel vector hjj,,,[n] € CV from user m in cell [ to
BS j at the n-th time slot is modelled as

hjim[n] = R 2 djim[nl, (1)

where R j;, € CV* is a deterministic Hermitian-symmetric
positive definite matrix and q;i,,[n] € C¥ is an uncorrelated
fast fading Gaussian channel vector with elements having

zero mean and unit variance, i.e. qjm[n] ~ CN(0,Ix).

Note the independence of the deterministic matrix Rz, =
E [hﬂm[ }h;‘lm[n]} of symbol index n because, in typical
systems, their parameters change on a much larger time scale
compared with the coherence interval and stay constant during
several OFDM symbols [10], [12], [24]. Interestingly, many
effects such as path loss dependent on the distance of the users
from the BS, spatial correlation due to lack of limited antenna
spacing, and different antenna patterns can be characterized by
means of R j;,,,. Hereafter, the indices r and f denote the uplink
(reverse) and the downlink (forward) channels, respectively.

A. Uplink Transmission

During the uplink phase, a simultaneous transmission of data
occurs by the user terminals to their corresponding BS. The
baseband signal y, ; € CV,
is given as

\/PTZHgl n)x.1[n] + zr j[n], 2
=1

where p, >0 denotes the average transmit signal-to-noise ratio
(SNR), Hj;[n] = [hj[n], hja[n], ... hjk[n]] € CV*K is
the channel matrix from the users in cell [ to BS j, x;[n]=
[z [n], ..., ek [n]]” ~ CN (0,Ik) is the transmit symbol
vector from the users in cell I, and z, j[n] ~ CN (0,031y) is
the noise vector. It is worthwhile to mention that the transmit
symbols z, ;,[n] are mutually independent.

Yejln

Taking into consideration the application of linear detectors,

the symbol ., of user terminal m is obtained by the jth
BS after applying a linear filer W[n] € CV*K to y, ;[n]. In
particular, the received signal after the detector is (scaled by

1//pr)

e jm[n] = Wi In|hyjm 0], jm[n] +

1 .
ﬁzr,jm [n]
N————

noise

Wi [n]hyig ], i n), 3)

desired signal
+
(k) #(5,m)

interference

where Z; jm = Wy . [n]2r jm[n] is spatially filtered Gaussian
noise and W, jn,[n] is the mth column of W[n].

received at BS j at time instant n,

B. Downlink Transmission

The simultaneous transmission of data from the base stations
forms an interfering broadcast channel, which makes necessary
the use of a precoding matrix. Due to use of TDD, the downlink
channel is related with the uplink channel by applying the
Hermitian transpose operation. Hence, the received signal
yt.jm € C by the mth user in the jth cell is

\/>V thjm ]m

desired signal

+ 3 VeV )z, @)

(1,k)#(3,m)

yf,jm ]zf,jm[n] +Zf,j7n[n]
——

noise

interference

where we have assumed that all BSs send the same transmit
power pg, si[n] = /A F n|xs pi [n] constitutes the transmit
signal vector by the Jth BS and 2f jm[n] ~ CN(0,02,)

) jm
is complex Gaussian noise at user m. Note that F;[n| €
CN*K s the linear precoding matrix that BS j uses,

in order to transmit the data symbol vector x; ;[n] =
I:xf;jl[nL zsja(n], ..., l’f’jK[n]]T € CK ~ CN(0,If) to
its K serving users. The normalization parameter \; constrains
the average transmit power per user of BS [ to pf, ie.,
E [%s}'[n]si[n]], which gives

1

A= E [ tr F;[n]F}[n]]

&)

III. CHANNEL IMPAIRMENTS

The promised theoretical gains of multi-user channels, con-
cerning power and multiplexing gains, require the knowledge of
perfect current CSIT. Unfortunately, certain phenomena appear
in realistic cases that degrade the quality of the CSIT. In this
section, we present certain basic impairments that limit the
performance by starting with the pilot contamination due to
the interference from adjacent cells [7]. The description of this
effect leads to inaccurate CSIT which can be rendered known
by means of minimum mean square error (MMSE) estimation.
Next and most importantly, we explain how delayed CSIT
arises as a main detrimental effect. In fact, we model the
delayed CSIT and we achieve to predict the current state by
exploiting the time correlation of the channel by means of a
simple linear channel predictor.

A. Pilot Contamination

Pilot Contamination, appearing in practical systems, is
observed during channel estimation, which takes place at the
training phase. In this phase, the user terminals send sequences
(pilots) that are going to allow the BS j estimate its local
channel I:Ij ; [10]. We assume that the length of the training
period is 7 and that all cells share the same set of orthogonal
pilots ¥ = [)1;...;9% ] € CKXT with ¥ normalized, i.e.,
WW" = Ik. The received signal reads as

Y, (0] =\/pTT( 3 Hﬂ[nl) Tz, ©
=1



where p;, is the common average transmit power for all users
and Z, ;[n] € CN*7 is spatially white additive Gaussian noise
matrix at BS j during this phase. Correlation of the received

. . o s 1 H .
slg}I;;l Wlth the training sequence W’(/Jm of user m provides
at i

Yp.jm[n] = hjjm[n Z, jInldm,, (1)

+ Z h]lm

l#j

F

noise

desired
interference

where Z,, ;[n] = Z, ;[n]y¥, ~ CN(0,071y). The interference
term coming from users using the same sequence but belonging
to other cells is known as pilot contamination, while the last
term corresponds to noise contamination. The effect of pilot
contamination, leading to a noisy observation of the received
signal, makes necessary the use of MMSE estimation, in
order to obtain the estimated channel hjj,n[n], distributed as
h

jim[n] ~ CN (0, ®,;,), according to [28]
By jim[n] = RjjmQjmFp.jm|n]
1
— R Qim hiyn, 5 @
1imQ; (; i) + o nalrl). ®)
where

-1
o2
Q]m(jgi_IN“i’Zlem) ) and q:.jl’m:]lejm(ernl{jlm-
p l

It has to be mentioned that Rjim, Qjm, and ®j,, are
independent of n Vj, I, and m. The orthogonality property of
MMSE estimation allows decomposing the current CSIT as
= Byjmln] + hyjmn], ©)

where fljjm[n] ~ CN(Q, Rjjm — qjjjm) is the channel
estimation error. Note that h; ., [n] and h ., [n] are statistically

hjjm[n]

independent because they are uncorrelated and jointly Gaussian.

B. Delayed CSIT

The transmitter (BS) obtains CSI indirectly by assuming
channel reciprocity. However, this reverse-channel information
requires the forward and reverse links to occur at the same
time. Unfortunately, a delay, being inherent in real channels,
appears between the time the channel is learned via estimation
and when it is applied for precoding or detection due to its
time variation coming from the relative movement between the
antennas and the scatterers.

A new model, capable of modelling the time variation of the
channel, is presented, in order to study the effects of delayed
CSIT on very large MIMO channels. Without loss of generality,
we assume that all users move with the same velocity. As a
result, the time variation does not depend on the user index.
While this seems not realistic, we stay very near to the practical
case by considering the worst-case scenario where we set all
users with the velocity corresponding to the most varying user.

It is known that the variation of the channel is described
by means of the second order statistics of the channel.
An appropriate measure is the autocorrelation function of
the channel, which is dependent on many parameters such

as the characteristics of the propagation medium and the
velocity of the user [29]. Although many models, describing
the autocorrelation function, could be used, we choose the
Jakes model, which is widely accepted due to its generality
and simplicity. It refers to a propagation medium with two-
dimensional isotropic scattering and a monopole antenna at
the receiver [30]. According to this model, the normalized
discrete-time autocorrelation function of the fading channel is
given by

Th M :Jo(QWfDTS |Z|)7

where Jy(-) is the zeroth-order Bessel function of the first kind,
T is the channel sampling duration, |¢| is the delay in terms
of the number of symbols, and fp = % is the maximum
Doppler shift (v is the velocity of the user in m/s, ¢ =3 x 108
m/s is the speed of light, and f. is the carrier frequency).
Increase of the argument of the Bessel function, i.e., higher
velocity of the user or more delay, results to decrease of the
magnitude to zero but with some ripples in the meanwhile.
In other words, as the delay |i| increases or the user moves
faster, the autocorrelation 7 [¢] decreases in magnitude to zero
though not monotonically, since there are some ripples.

In our analysis, an appropriate method for relating the past
samples of the fading channel with its current state can be
given by the application of an autoregressive model of order
L, denoted as AR(L) [29]. Its expression is

L
:Zagh[n — 0] + z[n],
=1

where {a,}}_, are the AR coefficients and z[n] is temporally
uncorrelated complex white Gaussian noise process with zero
mean and variance 057 (L Although the order L of the model
improves the accuracy of the current channel, we assume that
L =1 to keep complexity in logical levels without sacrificing
enough accuracy. Otherwise, the design of predictors would
be prohibitive, since many parameters should be estimated.
Thus, the current channel between the BS j and the mth user,
belonging to the /th cell, is modelled as

hjim [n]

where hj;,,[n — 1] is the channel in the previous symbol
duration and ej,,,[n] € CV is an uncorrelated channel error
due to the channel variation modelled as a stationary Gaussian
random process with i.i.d. entries and distribution CA/ (0, (1 —
az)Rﬂm) [31]. It is assumed that the BSs know perfectly
a = ri([1] = Jo(27fpTs). Nevertheless, we have from (12)
that

(10)

(11

=ahji,[n — 1] + ejim[n], (12)

E[bjim[n]hj,, [n —1]] =aRim. (13)

Basically, we can incorporate the effect of channel estimation,
presented previously, to the autoregressive model of (12). As a
result, the jth BS can be able to estimate its channel with the
mth user in the local cell h;;,,[n + 1] by encountering at the
same time both pilot contamination and delayed CSIT. This
gives the ability to the BS to design the decoder W ;[n + T']
or the precoder F;[n + T at time instance (n + T') for the
uplink and downlink, respectively. At time (n + 1), i.e., when



the delay lasts for one channel sample (7' = 1), the proposed
model takes the form

hjjm[n + 1] = ahjjm[n] + €jjm([n + 1]
= ahjjm[n] + ahjjm[n] + ejjmn +1]  (14)
= ahjjm[n] + &jm[n + 1], (15)

where &;j,,[n+1] ~ CN(0, R;jm —2®,,,) and b, [n] are
mutually independent. Following this way, the description of
the channel with regards to larger delays is obvious. Obviously,
the combined error €;;,[n + 1] depends on both the pilot
contamination and delayed CSIT effects, allowing the export
of interesting outcomes during the following analysis.

C. Channel Prediction

The standard approach, confronting and circumventing chan-
nel uncertainties, is to apply a channel prediction method, which
obtains the current channel state from delayed measurements!.
In other words, our target is to predict the autoregressive
random process, given in (15), that accounts for pilot con-
tamination and delayed CSIT. Interference from other BSs
can be treated as uncorrelated additive Gaussian noise with
zero mean and constant variance during the training phase.
However, these channels change over time as the user moves.
Suppose that we apply the p-th order linear Wiener predictor
ijm = [ijm,O ijm,l ijm,p] € (CNXN(erl). This
predictor provides us the predicted channel

p
hjjm[n+1] :Z ijm,qyp-,jm[n_q} :ijmyp,jm[n]v (16)
q=0

where y;, jm [n] = [y;jm[n] ygyjm[n—l] &;’jm[n—p]]H €
(CN(p—‘,—l)Xl'

The p-th order linear Wiener predictor is obtained in [24] as
ijm :01[5(}), OL) b2 Rjjm]ij (p, OL), (17)

Certain definitions have to be given regarding (17). Specifically,
we have

0(p,a) =[1a ... &P, (18)
1 le% oP
e% 1 e ap_l

Alp,a) = | . - E 19)
a.p ap.fl 1

L 2
o

A(pv CY) & E lem+ bT
L =1 Pp

ij(p7 a) =

-1
IN(p+1)‘| . (20)

Note that this predictor is obtained by means of the principle
of orthogonality [35, Eq. 3.41]

E [(hﬂm[n +1] - ijmyp,jm[n])y;,jm[n]] =0.

The predicted channel h;;,, [n+1] appears to have a covariance
matrix equal to a?0@j,,,(p, @), where

ejlm(p7 Oé) = [6(177 a)®Rjjm} ij(p7 a)H [6(17’ a)®lem]H .

21

11t is worthwhile to mention that channel prediction techniques are used for
downlink frequency division duplex (FDD) massive MIMO as well [32]-[34].

Thus, the current channel can be derived from its predicted
version as

— ¥

hjj'm[n + 1] = hjjm[n + 1] + hjjm[n + 1]a (22)
where 1, [ + 1] is the uncorrelated channel prediction error
vector with covariance matrix R;j, — a?© i, (p, @). Note
that the zeroth order filter provides hj;,,[n + 1] = o, [n],
i.e., no channel prediction as expected.

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

This section provides the characterization of the uplink and
downlink channels after taking into consideration the effects of
pilot contamination and delayed CSIT, as well as application of
the Wiener predictor. The theory of deterministic equivalents
offers the derivation of asymptotic results as K, N — oo, while
keeping a finite ratio K/N. In fact, simulations, performed in
the next section, corroborate that the proposed results are of
practical value, since they are tight even for moderate system
dimensions. Specifically, we start with general expressions for
the SINR regarding both the uplink and downlink. In the sequel,
we achieve to present deterministic equivalent SINRs, where
the MMSE decoder on the uplink and the RZF precoder on
the downlink are applied. However, the proofs corresponding
to the downlink are omitted due to limited space. The most
interesting parts are i) the demonstration of the dependence
of these expressions by delayed CSIT, which is inherent in
real channels, and ii) the description of these expression after
having applied a linear predictor, useful to mitigate any delayed
CSIT effects.

We have to mention that the results rest to certain assump-
tions. Specifically, let the maximum eigenvalue of any corre-
lation matrix and the inter-cell interference matrix including
the channel estimation errors to be finite. Moreover, all spatial
correlation matrices must not have zero energy, especially,
during the simulations.

We consider that BS j has knowledge of CSI g, [n + 1],
which differentiates among specific conditions. Thus, in case
of knowledge of current CSI at time n + 1, where the channel
is not perfect but estimated due to pilot contamination, we
have by means of (9) that

gjjm[n + 1} = hjjm[n + 1]. (23)
More concretely, the last expression has considered the
knowledge of imperfect current CSI because of pilot con-
tamination without any use of delayed CSI. When, the effect
of delay is taken into account, the expression of CSI reads due
to (15) as
gjjmln + 1] = ahyjm[n)]. (24)
In a similar way, after applying channel prediction, the
expression for CSI according to (22) becomes



A. Uplink Channel Analysis

During the uplink phase, the jth BS detects the transmit
symbol z, j,[n + 1] of user m belonging to the same cell by
applying a linear filter w;,,,[n+1] € C¥ to the received signal
Yr jm|[n+ 1], as shown in (3). The detected signal gy j,m, 1+ 1]
can be written in a different way as

Tr,jm[n+1] :w;-'m [n+1]gjjm[n+1]zs jm[n+1]
+Wl;‘m [n+1] (hjjm [n+1] —8jjm [n+1])$r7jm [n+1]

Zr,jm|n+1
+ ZW;m[n—’_l]hﬂk[n""_”xr,lk[nﬁ-l]—|—M
(l,k);é(j,m) \/ZTI’

where CSI takes different forms depending on the effect we
want to study, as expressed by (23)—(25). In addition, the
temporal parameter v and R, VI are assumed known by BS
j. Based on the approach [6], [10], g jm[n+1] can be described
as the received signal of a single-input single-output (SISO)
system with the effective channel to be W, [ + 1]g;jm[n +
1], while any other term constitutes the uncorrelated additive
Gaussian noise. Thus, the desired signal power is

, (26)

Sr jm

,

2
=W, 0+ 1gjjmn +1]|7,

27)

while the terms, concerning the interference and noise powers,
are

2

[n+1] (hjjm[n+1]—gjjm[n+1]) |
[n+1] | + Z |W
(LK) #(Gm)

As a result, the uplink ergodic achievable rate of user m
in cell j, based on a bound that considers the worst-case
uncorrelated additive noise [36], is

Ir jm: |WH

1 |w [n+1lhun+1)°. (28)

Re jm =E[logy(1 + Y2 jm) ] (29)

where v jm = p is the instantaneous uplink SINR, and
the expectation is computed over all channel realizations.
The deterministic approximation of the uplink SINR is

. _ a.s. _ .
obtained such that vy j, — ¥ jm —> 0, where 7, jn, is

the deterministic equivalent SINR, and —> denotes almost

sure convergence. The corresponding determlnlstlc equivalent
uplink sum-rate can be obtained by means of the dominated
convergence [37] and the continuous mapping theorem [38] as

—logy (1 + r jm) Na._s.) 0.

—00

Rr,jm (30)

If delayed CSIT is considered, the estimated desired channel
at time n + 1 is g;;m[n + 1] = ahjjn,[n] according to (24).
The linear filter, taken into account, is the MMSE detector

MMSE

wWMMSE[ 1) = S 4 g n + 1]
= a2 [n]h; 0], (31)
where we define the matrices
2 n41]=(Gy[n+1]GY [n+1]+Z, ;+ N jIn) " (32)
0 = (o* B, ) + Zs + NoesIn) . (33)

Hereafter, we set XAIE-H) [n] = 33,[n] for simplicity. Regard-
ing the parameters of 2J— [n], ¢r,; i8 a positive scalar and
Z,; ¢ CN*N is a Hermitian nonnegative definite matrix,
which can be optimized, and provide some new insights in
case of presence of both delayed CSI and pilot contamination.
Similar analysis has been presented in [39], where different
regularization parameters for RZF precoding were derived
under different scenarios with large number of antennas. Thus,
it is an interesting topic of future work to explore and determine
the corresponding parameters and shed light on their behavior.

If the BS has predicted CSI, we substitute g;;m[n +

1) = Byjln + 1), WYNSEn + 1] = 20 + Lggmln +
1] = Xj[n + 1]hjjm[n + 1], and hjjp[n + 1] — hjnn +
1] =

hjm[n + 1] into (27) and (28), where 3;[n + 1] =
(Hjj[n+1 HH i+ 1+ 2, 5 + NopjIn) '

Theorems 1 and 2 present the deterministic equivalent uplink
SINRs that consider delayed and predicted CSI, respectively,
after applying the MMSE detector.

Theorem 1: The deterministic equivalent uplink SINR for
user m in cell 5 with MMSE detector, accountlng for delayed

CSI, is given by (34) with 3jm = % tr®;;,,T,, (ﬁjm =
L tr(R”m « @Mm)Tr‘“ 5" = 1 tl" ‘D”mT . ’L9ﬂk =
tI" @JlkT]’ ﬁ]lkm = trq)ﬂkT"“ 5;/]2 =1 tI‘ ‘I’MkTr

and

tr RﬂkT;‘“ QRG{ﬂﬂk’ggmm}(l"'Sjk) _79?115%

Fjtlem = ——
N <1+5jk>

)

where
* Tj = T(qﬁr’j) and (Sj = [5j17...,(5jK]T = 5(¢r7j) are
given by Theorem 5 for D = Iy, S = Z;/N, Ry, =
« (}]jk Vk
* T = T'(¢r,) is glven by Theorem 6 for D
S Z]/N K'it =@, Ry =« <I’3Jk vk,
* Tr‘i2 = T'(¢.,;) is given by Theorem 6 for D = Iy,
S = Z;/N, K' =1y, Ry = o?®;;, Vk.
Proof: See Appendix B. [ ]
Theorem 2: The deterministic equivalent uplink SINR for
user m in cell j with MMSE detector, accounting for predicted
CSI by means of a pth-order Wiener predictor, is given by (35)

Iy,

with 5Jm = rtr(amm(p, )T 5”m = 1 ~ tr(Ryjjm —
o @ij(p’ ) o 5” = tr@JJm(pa )T 2 ﬁjlk =
%tr@)jlk(p, )T p2 ﬁ;lkm = trGﬂk(p, )T i (53’,2 =
%tr@wk(p, )T 3 , and
_ _tl"lekT;»pl
/”'jlkm—T
2Re{a ﬁjlk 7Jlkm,} (1+a26;1) _0‘67532%5%
(1+a23;)° 7
where
* Tj = T(¢r,j) and 5 [ 71,...,5]‘K]T = 6(¢r7j> are

given by Theorem 5 for D=1Iy,S=7Z;/N,R; =
&1V,

* T;’” = T'(¢r,;) is given by Theorem 6 for D = Iy,
S = Zj/N, K = ijm(p,a), Rk = q)jjka’



252
o5,

Yo, jm (@) = — pEa— i . — (34)
N0 jm t - N0 + Z  ftkm + o Z |0 j1m|
(L,k)#(5,m) I#j
a?62,,
Fr,jm () = ) pra— (35)

(L,k)#(3,m)

> &

Hjtkm + Z a* P21, 2
17

* T = T/(¢y;) is given by Theorem 6 for D = Iy,
S = Zj/N, K'»2 =1y, Ry = @jjka‘.

Proof: See Appendix C. ]

B. Downlink Transmission

During the downlink phase, users do not have instantaneous
CSI. For this reason, we use similar techniques to [40], in
order to obtain an expression for the downlink sum-rate under
the assumption that user m, found in cell j, has knowledge
of only E[h;, [n + 1]f;,[n + 1]]. Specifically, the received
signal at user m in cell j, scaled by 1/,/pt, is given after
reforming (4) by

VAE [ JJm [n+1] fJW[""’H] g jm[n+1]

1
+ > VA [ ik e g[n+ 1]+ — 25 jm [n+1]
Wk Gm) b

+\/>( ]Jm TL—i—l jm[n+1]
—E [h}},, [n+1]fjm [n+1]]) ¢ jm[n+1].

Yt jm Tl+1

If we assume uncorrelated additive noise, we may consider

a SISO channel. Thus, the signal power at user m in cell j,
divided by N2, can be given by

Stim =72 (36)

2
Y ]E b [+ 1+ 1]]

while the interference plus noise power at user m in cell j,
scaled by 1/N?2, is

H 1 sz’rn
If,jm = Nz/\ var [hjjm[n+1]f]m[n+1]] +N2 D
+ Z )\l]EUhljm n—i—l]flk[n—&-l]‘ } (37
(1,k)# (4, m)

Here, we focus on the use of RZF precoding F5*"[n + 1] in
cell j that considers delayed CSI. It is given by
RZF (&) A @) & s
Fj [n—i—l] = Ej [n—i—l]ij[n—i-l] = aZj[n]Hjj[n], (38)
where we have defined 2§G) [n + 1] and 3[n] as in (32)
and (33). The design parameters ¢y ; > 0 and Z¢ ; € CVXN,

which is a Hermitian nonnegative definite matrix, correspond
to the downlink case and can be optimized as in the uplink

phase. In case of predicted CSI, the precoding vector is f (P)'Z (25)
3 [n+1]hyjm[n+1], where 3;[n+ 1], can be defined 51m11ar
to the uplink case, although the optimization parameters now
refer to the downlink case.

The downlink deterministic equivalent SINRs at user m in
cell j with RZF precoding, including delayed and predicted
CSI considerations, are expressed by mean of Theorems 3
and 4, respectively.

Theorem 3: The downlink deterministic equivalent SINR
at user m in cell j, applying a RZF precoder and accounting
for delayed CSI, is glven by (39) w1th 5Jm = % tr @5, T,

5; Gm = L tI‘(R”m « ':I)j]m) ﬁljm = %tr (@ljmTl,
I%Jmk = N tr @ljmTida, 52;7/1 = N tl" @llmTlda, and
§d— L K
J 2 dl
N a2 (L trT- _ —tr (ZWJ + (pg‘lIN) Tfau)
. tr lemT§dS 2Re{191]m192jmk}(1+5lm) ﬁlzjm(gl/;‘/n
Hijmk = N —3 ,
(i)
where

* Tj = T(qbr’j) and 5 [ ]1,...,(5J'K]T = 6(¢r7]’) are
given by Theorem 5 for D=1Iy,8S=7Z;/N,R; =
a?® i, Vk,

* Tf”’1 = T'(¢r,;) is given by Theorem 6 for D
S Z;/N, Ko =1y, Ry = a?®,;; Vk,

* Ti‘” = T'(¢r,;) is given by Theorem 6 for D
S = Zj/N, Kfaz = (I)jjrm R, = 042(I>jjk vk,

* Tf‘“” T (¢, J) is given by Theorem 6 for D
S=17, /N Kfas = &y, Rk—a (I)ijVk

Theorem 4: The downlink deterministic equivalent SINR at

user m in cell j with RZF precoding and predicted CSI by

using a pth-order Wiener filter is given by (40) with §;,, =
fp

7 8O (D, )Ty, Oy, = t1(Ryjm — @?Ojjm(p, @) T,

= Iy,
= Iy,

= Iy,

f.jm

9 q f
ﬁl]m = %U@lgm(p, )'Tl, ’l%jmk = NtI‘@ljm(p, )T p3,
3l = & tr @y (p, @) T, and
3P K
J 2
N (%trTj—tr( +<leIN) Tpl)
_ tr Ryjp T}
Higmk = T
~ 2Re{a* 0}, V)i (1 + @%00m) — 007,00,

)

(1+ a28,)°
where

* Tj = T(¢r,j) and (5]‘ = [5j17...75jK]T = 6(¢r,j) are
given by Theorem 5 for D = Iy, S = Z;/N, Ry,
D, VE,



)\d 462

Y jm (@) = i 1+5Jm TR (39)
'm (1105m ~ ~
()42)\;[]{76[’ JmJ’_%—‘r Z <1+6]m) Nulﬂmk+za4)\d< +S]m> |'l9ljm|2
(LK) (jm) tm
4)\1’52
Fe,gm (P, @) o, 1+a; = T \? (40)
yP15¥ m @ a2\P jm 2(p+2) P jm 9 . 12
a2)\jN5;.7jm+ T (140%5jm) + Z Al <1+a251 ) ijm;ﬁrza PN (1-&-&2517”) [V15m]

(Lk)Z(.m)

I#5

* T;’” = T/(¢r,;) is given by Theorem 6 for D = Iy,
S = Zj/N, K = Iy, Ry = q’jjk vk,

* T;”Q = T'(¢r,;) is given by Theorem 6 for D = Iy,
S = Zj/N, Kf = @jjm(p, a), R = D1 VK,

* T;’“ = T'(¢r,;) is given by Theorem 6 for D = Iy,

S =7Z;/N, K»* = Ouy(p, @), Ry, = @, k.

V. DISCUSSION AND NUMERICAL RESULTS

This section starts with comments concerning the proposed
results. Interestingly, regarding the uplink, each term of the
denominator of (34) and (35) discriminates among different
effects due to pilot contamination. In particular, the terms
from left to right indicate the channel estimation error, the
post-processed local noise at BS j, the post-processed inter-
cell and intra-cell interference from users sharing different
pilot, and the post-processed inter-cell interference from users
sharing the same pilot with user m. Especially, in the case
of knowledge of current CSIT, i.e., « = 1 and p = 0, our
results coincide with [10, eq. 25]. From the physical point of
view, the SINR with delayed CSIT cannot be greater than the
SINR with current CSIT. This can also be shown intuitively,
since increase of « brings an increase of the desired estimated
signal power, while it results to a decrease of the estimation
error term. Moreover, the move of user m affects not only the
desired channel at BS j, but also the interference channels from
users in other cells sharing the same pilot as well. Basically,
the higher the velocity of the user (decreasing «), the greater
the degradation of the channels, as expressed by the reduction
of the uplink SINR.

As far as the downlink is concerned, expressions (39)
and (40) reduce to Theorem 6 of [10], if « = 1 and p = 0.
The pilot contamination affects the downlink sum-rate in the
same way as in the uplink, while delayed CSIT affects apart of
the desired channel and the interference channel from BS
[ belonging to different cells (I # j), but also the term
corresponding to the channel estimation error.

In addition, in this section, numerical results verify our
analysis and demonstrate the performance of MMSE decoder
and RZF precoder under the effects of delayed CSI and
pilot contamination, as well as they reveal the benefits of
the necessary channel prediction in massive MIMO cellular
networks. Nevertheless, comparisons with MRC and MRT are
provided that give an insight on the outperformance of MMSE
and RZF. It is worthwhile to mention that the simulations
testify that the proposed approximations are tight for practical
system dimensions. Space limitations allow us to present
selected representative results. However, we avoid any particular
omission of presenting important results due to the similarities
between the downlink and the uplink.
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Fig. 2. Simulated and deterministic equivalent uplink sum-rates with MMSE
and MRC decoders versus the normalized Doppler shift fp7Ts for different
number of BS antennas V.

Our focus is on the simulation of uplink and downlink sum-
rates in the center cell of a multi-cell hexagonal network with
L = 5 cells sharing the same frequency band. We assume that
each cell has normalized radius to one, while K = 4 users
are uniformly distributed around each BS on a circle of radius
0.7. The physical model includes a distance-based path loss
model with path loss parameter 5 = 3 5 and without antenna

correlation. In this case, Rﬂk = dJlk Iy, where dj;;, denotes
the distance between BS j and user & in cell j. Moreover, the
transmit, receive, and training SNRs are py = 8dB, p, = 8dB,
and p, = 5dB, respectively The design parameters for MMSE,
as well as RZF are ¢, ; = p— and Z, ; = 0 as well as ¢¢ ; = i
and Z¢ ; = 0, respectively. Monte-Carlo simulations enable us
to obtain (15) and (22), and provide the simulation curves for
the sum-rate with delayed and predicted CSIT, respectively.
More specifically, the ratios of (27) by (28) and (36) by (37)
provide the uplink and downlink SINRs by which we the
simulated curves result. The analytical curves for MMSE and
RZF as well as MRC and MRT are computed via (34), (35)
and (39), (40) as well as [24, eq. 53, 75] and [24, eq. 100, 120],
respectively. The simulated and analytical results match exactly
in all cases, even for moderate values of N.

Fig. 2 shows the uplink sum-rate of the users in the center
cell as a function of the normalized Doppler shifts fp7s for
N = 30,60, 90. Delayed CSIT decreases the downlink sum-
rate to zero with some ripples following according to the
behavior of the Bessel function Jy(-). Specifically, at fpTs ~
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Fig. 3. Simulated and deterministic equivalent downlink sum-rates of the
users with RZF and MRT precoders versus the number of antennas N for
different normalized Doppler shifts fpTs.

0.4 we observe the first zero point and then with following
ripples, the magnitude increases and later decreases to zero
again and again, tending finally to zero. Note that by increasing
the number of BS antennas N, a higher sum-rate is obtained,
but the shape of the curves stays the same by keeping the
zero points at constant specific values of fpTs. Apparently,
the dependence of MMSE by delayed CSIT is identical to
MRC, although MMSE achieves higher sum-rate under the
same conditions of delayed CSIT, i.e., specific Doppler shift.

The effect of delayed CSIT is also shown in Fig. 3 for
different Doppler shifts. In particular, the downlink sum-rate
of the users is depicted as a function of the number of the BS
antennas N. First, note that when fpTs =~ 0.4, the achievable
sum-rate is almost zero with negligible increment as the number
of antennas NV increases. Nonetheless, the downlink sum-rate
appears a rise with N, as expected. An in the case of MMSE,
RZF provides higher sum-rate than MRT for the same delayed
CSIT.

Fig. 4 shows the cumulative distribution function of uplink
deterministic equivalent sum-rate of the users for different
Doppler shifts together with the case of current CSIT, when
N = 80. As expected, lower Doppler shift allows the
transmission with a higher sum-rate at a given probability.
Specifically, with probability 1, MMSE achieves 18.21 b/s/Hz
with fpTs = 0.1 and 14.98 b/s/Hz with fpTs = 0.2
against MRT, which achieves 17.34 b/s/Hz and 13.46 b/s/Hz,
respectively.

The efficiency of the channel predictor is investigated in
Fig 5, which shows the uplink sum-rate of the users versus
foTs for varying filter order p, as well as the sum-rate with
current CSIT, when N = 90. Interestingly, the comparison
between MMSE and MRC in the cases of no channel prediction
(p = 0), p = 5 being of practical interest, and p = 20, 30
for the sake of demonstration, enables insightful observations.
Especially, channel prediction with higher value of p, i.e., more
past observations, is required, in order to predict the degraded
channel with higher precision. In addition, the inadequacy of

Average sum rate (b/s/Hz)

Fig. 4. The cumulative distribution function of the deterministic equivalent
uplink sum-rate of the users with MMSE and MRC decoding for different
normalized Doppler shifts fpTs, and N = 80 BS antennas.

Current CSIT
’

24 -
~N
I 234
Y MRC ) p=0 (no prediction), 5, 20, 30
= O Simulation
[0}
-§ 22
€
=
$ 21
% Current CSIT
o
5:20—‘ """ gfffiffgf‘555652525655555'8'5222 """"""""""""

0. 8 O o
EAREEES S
19 EER
p=0 (no prediction), 5, 20, 30
T T T T
0.01 0.02 0.03 0.04 0.05

Normalized Doppler shift ;7

Fig. 5. Simulated and deterministic equivalent uplink sum-rates of the users
with MMSE and MRC decoders versus the normalized Doppler shifts fpT’s
for different order of the channel predictor, and N = 90 BS antennas.

the Wiener filter for a practical value of its order (p = 5) is
shown. As a result, the need for efficient prediction leads to the
quest of more sophisticated predictors, but this is outside the
scope of this work. Moreover, in larger Doppler shifts and after
applying both detectors, the ability of the filter to compensate
for the loss because of the delayed CSIT weakens, but notably,
MMSE behaves better by approaching closer than MRC the
nominal value representing no delayed CSIT, i.e., current CSIT,
as the Doppler shift increases.

VI. CONCLUSION

In this paper, we analyzed in detail the uplink and downlink
channels in a cellular large MIMO setting. In particular,
we provided the corresponding deterministic equivalents of
achievable rates with MMSE detector and RZF precoder prone
to practical impairments, i.e., path loss, antenna correlation,



pilot contamination, and delayed CSIT. However, our main
purpose was to focus on the dependence by the delayed CSIT
and how it affects the performance of the system in terms
of sum-rate after applying a MMSE decoder (uplink) and a
RZF precoder (downlink). We demonstrated that the sum-rate

becomes negligible for specific Doppler shifts. Nevertheless,
simulated results were presented, in order to verify our analysis.

They showed that the deterministic analytical results are reliable
even for practical values of BS antennas /V and users K. Having
tight approximations makes any study of the system by lengthy
Monte Carlo simulations unnecessary. In particular, we noticed
similar behavior of these techniques but with higher achievable
rates with comparison to their simpler MRC detector and

MRT precoder regarding the effect of delayed CSIT. Moreover,

we applied a linear FIR Wiener predictor and derived the

deterministic equivalent sum-rates for both MMSE and RZF.

Especially, the predictor for MMSE achieves to regain most
of the loss due to delayed CSIT, while in the case of MRC
the results were not satisfactory. Overall, it was shown how
effectively MMSE and RZF outperform against MRC and MRT
without sacrificing any computational complexity due to the
deterministic essence of the proposed results.

APPENDIX A
USEFUL LEMMAS

Lemma 1 (Matrix inversion lemma (1) [41, Eq. 2.2]):
Let A € CV*N be Hermitian invertible. Then, for any vector
x € CV and any scalar 7 € CV such that A + 7xx" is
invertible,
HA—1
1 x"A
XA+ )™ = T
Lemma 2 (Matrix inversion lemma (II) [10, Lemma 2]):
Let A € CNV*¥ be Hermitian invertible. Then, for any vector
x € CV and any scalar 7 € CV such that A + 7xx" is
invertible,

A lrxxtA~L
1+ 7xHA-1Ix’
Lemma 3 (Rank-1 perturbation lemma [42, Lemma 2.1]):

Let z €< 0, A € CV*N B ¢ CN*N with B Hermitian
nonnegative definite, and x € CV. Then,

(A +7xx")"t=A —

[A]]

| tr ((B—ZIN)71 — Fl

(B + xx" — zIN)71A|) <

Lemma 4: Let A € CN*N with uniformly bounded
spectral norm (with respect to /V). Consider x and y, where
x,y € CN, x ~ CN(0,®,) and y ~ CN(0,®,), are
mutually independent and independent of A. Then, we have

1 1
TXAx - AR, NZ—SJ 0 (41)
LAy 25,0 (42)
N Y N—oo
1 2 1 2 as
1 1
ﬁ|x“Ay|2 — 5 TARA'D, % (44)

Theorem 5 ( [14, Theorem 1]): Let D € CN*N and S €
CN*N be Hermitian nonnegative definite matrices and let H €
CN*K pe a random matrix with columns vy, ~ CN (O, %Rk)
Assume that D and the matrices Ry, £ = 1,..., K, have
uniformly bounded spectral norms (with respect to N). Then,
for any p > 0,

1 _ 1
+ rD (HH" 48 + ply) - + rDT(p) LN

Ni—o0

CNXN

where T'(p) € is defined as

—1
I
<N21+5 +S+p N> :

and the elements of §(p) = [51(p)...dx(p)]" are defined as
Ok(p) = limy— o0 5,(;/) (p), where for t =1,2,...

K
1 1 R;
51(:)(%7):Nt1" Ri [+ E ’

i
N+ 53('t ()

+ S+ pIy|~t 45)

with initial values 5,(60)(p) = % for all k.

Theorem 6 ( [10, Theorem 2]): Let ® € CN*N be a
Hermitian nonnegative definite matrix with uniformly bounded
spectral norm (with respect to V). Under the same conditions
as in Theorem 5,

1 _ _
+ 1D (HH" +S + ply) 'K (HH" + S + ply) "

1
- NtrDT’(p) 250,

(CN><N

where T(p) € is defined as

K /

k:
Z 1+5 T(p)

= (
with T(p) and 8, (p) as defined in Theorem 5 and &'(p) =

T'(p) = T(p)KT(p

[07(p) ... 6% (p)]" given by
&' (p) = (I — I(p)) " v(p). (46)
J(p) € CE*K and v(p) € CK are defined as
_ % trRyT(p)R/T(p)
O = T ae)
V(p)lk = 5 RAT())KT(p). 7)
APPENDIX B

PROOF OF THEOREM 1

After appropriate substitutions and scaling by # the desired
signal power becomes

2
Sr,jm - 4|hj]m [ ] J]m[n”
_ LO/I j_;m[ ]ZA:A [ }ﬁj{m[n] ? (48)
N25 14 b, 0] o 0] By [0

where we have used Lemma 1, and 3;,,,[n] is defined as

- - - - -1
3 jmln] =(a?Hy,[n]HY [n] —hyjmn]hY;, 0]+ Ze j+ Nox ;1)



If we denote the deterministic equivalent signal power S“r,bu,
and apply Lemma 4 and Theorem 5, we have

. 1 Sim )~
Sr jm — 054( jTIL )
) N2 1 +6]m
where Sjm =
hjm [0+ 1]

a.s.

Ni—oo 0, (49)
+ tr ®;;,, T;. Similarly, by taking into account
—gjjm[n+ 1] = &5, [n + 1], (28) yields to

2
L jm= 4<h;gm[ ]3;[n]€;j mn+1] ‘ + ’hum 1%

+ Z |hJ]m

(LE)#(d,m)

Each term of (50) will be derived separately by using Lemmas 1
and 4 as well as Theorems 5 and 6. Specifically, the first term
is written a52

ol

nlhj,[n+ 1” (50)

]jm[] J[n] ]771[n+1”

N2
h;‘_]m[ ] ]m[n]eﬂjm[n+ 1]
N2 1+ h?]m,[n]z [ ] J]m[n]
2 1 5/
(07 jm
e (S
2 ~ 2
N (1 + 5]7”)

where 5;,jm = % tT(Rjjm —aQ‘ﬁjjm)T;d’l and K" = ‘bjjm,
while, hereafter, the superscripts of T and K correspond to
different instances of these variables. The next term is obtained
as

i sy = 2 P ml]
N2 M N2 1+h;jm[n]23m[n]hﬂm[n]
_ o bl Inbyim )
N (1 e ]
w4

= WW7 (52)

where 5§’m = % tr @jjmT;“ and K2 = I . Consider now
the last term. In particular, if & # m, we have

Nz’hum 3jln }hﬂk[”‘HHQ:
2|hJJmn2' Jlk [ +1] |2
N2 ’1+h;]m[ ] JJm ‘

o hi[n+ 13, [ ] jm2ijm

[nhji[n + 1]
N2 '

( + B, 0 ]2jm[”]ﬁjjm[71])2

Since 2]m[n] is not independent of h;;x[n + 1], the use of
Lemma 2 gives
. . ZA}m b Inlh!. ﬂﬁ)'m,n
3 im[n] =2 jmen]— gk [k [ }A mik (7]
L+ h_]jk[ }ijk[n]hjjk[n]

(53)

, 54)

2Let ay, and by, two infinite sequences. an,

. a.s.
relation a,, — b, —— 0.
N — o0

= by, denotes the equivalence

which introduces a new matrix ﬁljmk[n] to (53) defined as
— (@2 H5 0], (0] = By ], )]

~ ~ -1
~ By B 4+ Zes + Noogly) . 59)

X jmk[n]

By substituting (54) into (53) and applying Theorems 5 and 6,
we obtain

ISyl + 1)) = — B

N(1+ Sjm)w oo

N2 |h.7]m

where
. tr lekT;f“ 2Re{’0;lk’0;’lkm }(1 +5jk) _ﬁ?lkaﬂ
Hjlkem = N - 2
(1+5]k)

%tr@jlkTE‘“,
Note that we have used

with 7§jlk = % tr (I)jlij, églkm
and & = & tr @ T

! [0 jme[nlhjik(n] < 57 tr @;,,T; by means of Lemma 3
and Theorem 5. If k¥ = m, we need to define

1
Z hjim \/FZPJ [n].

V£l p

(57)

Zp ]lm

As a result, Z,_jim,[n] and hjj,,[n + 1] are independent, while

Zp jim[n] ~ CN (O, Qm — R, ). Thus, the last term of (50)
becomes

a? - . 2

OB 1S5 b+ 1] =

0472 ﬁ?jm[n]gj [n]hjim [0+ 1] 2(2)

N2 |14+, [0 m[n]hy jm 0]

2 H
o h]Jm

[n }Ejm [n]ejim[n + 1] ? ®
1+ 1, [0 2 [n] By 1]
a2 | b [0]Qjm Ry jm 2 jm [ hjim [n]
1+ 0 [0]3m 0] hy ]
o | Q2 1 [0 QR jin B [0 i [1] |
L+ B, (0] 2 (0] 1]
o | B (0] [n)ejun[n + 1] |
1+ b, (0] (0] ]
As shown above, application of Lemma 4 as well as Theorems 5
and 6 to the first and second term of (58) gives

(58)

ot |00, (0] Qn Rjon Sy bjim (0] > 0t | Dy [
N2 1—|—h;'jm[ ]ﬁljm[n]f]jjm[n] ~ N2 1+5jm
ot | 25,5 [P Qim R m 3 jm (2] B 1] 2V0‘74 %égmm
N2 1+ 0 [n]3m[n]hy jm 0] N2 (ngm)g
o 7 m
N (1 + Sjm)w



where 07, = Ltr®; T, 07, = +tr®; T, where §, ,, = + tr(Ryjm — 20 (p,a) T and K'»t =

Jjlkm r,jm

K" =R, and K" = ®,;,,,. Similarly, for the last term  ©,;,,,(p, @). Regarding the second term, we obtain
of (58) we have

107, _ 2
2 | By [0S [l jim[n+1] 2 N2y [Pl 11l 1] =
N2 Lo B2l 10 B+ ISt Uyl
0? g tr(1— 2)R];mTM_ NP (1B 04 US4 Ryl 1)
N2 (1+6jm> 102 S )

N2 p, 25 2’
If we neglect the terms that vanish asymptotically in (58) b (1 +a%; m)

and make the necessary substitutions into (50), we obtain the
corresponding deterministic equivalent. As a result, J; j, ()
can be derived and this concludes the proof.

where 5;’m = +tr ®jjm(p,a)T;’)2 and K™ = Iy. Finally,
we focus on the last term, which in case k # m, since h; jm[n+
1] and hj,[n + 1] are mutually independent and after similar

steps with (56), becomes

APPENDIX C B 2
PROOF OF THEOREM 2 N2 b, [n+ 12500 + Uhyn + 1]’ =
2
The signal power, divided by N2, yields by using Lemma 1 1 b [n + 1] gm [+ uhj_““[” +1
9 N2 1+h';]m[ I}Ejm[n—&— l]hJJm[n+1]
Sr,jm = h?]m[n+1]2] [n+1}h]]m[n+1]’ L Wﬂjlkm (64)
_ — 2 o 2
1 bt 4125 [n+1]hyjm [n+1] |2 (59) N (14 % 1 ©jjm(p,a)T;)
N2 S . o )
N 1+h5*3m[n—l—l]EJm[n—i—l]h”m[n—l—l] where
where we have defined X,,,[n + 1] as T
- - Hjtkm = Tj
yfn-+1) = (B -+ RS+ 1) Ry, | Ref0 P (L0280, T
Z.;+ Ny, ;1 =
A+ + Nopp jIn) (1+0625jk)2
When predictgd CSI is known, the deterministic equivalent with 9,4 _ 1 Fip O (p, )Tr‘ﬂ ﬂ/lk _
signal power S, j,, becomes 1 J tp1 ,,,7 Jjlkm to
~ 1Ok (p, )T}, and 0k = N trOuu(pa)T
_ 1| a2, |? However, if k = m, hj;jmn[n + 1] and h,[m[n + 1] are not
St jm X Nz m (60) mutually independent, since from (7) and (16) we have
Sy = 4 11O, ) S 3
where 0, = + t1 @5 (p, ) T5. As far as (28) is concerned, [n+1] V.. hipn—
? m m, 'm q
we have after dividing by N2 i (1_2_:0 wma l,; iuml ]
1
2 .
_ o iIn—q] ). 65
Ljm = N b, [n+1]%; [n+1]hjjm[n+1]‘ %zw [n q]) (65)
1 0'2 — 2 . . .
4+ — N h;'jm[n+1}§] jln+ 1]’ Consequently, the last term in (61) is written as
_ 2 _ 2
+ Z ‘ H o, [n+1]hﬂk[n+1}‘ . (61) h;m[n+1]2j[n+1}hjlm[n+1]’ -
(t, k)#(],m) 1 hyjm[n‘i’]-]Ejm[n‘i’l]hjlm[n‘i’l] 2 B
We start by applying Lemmas 1 and 4 as well as Theorems 5 N2 |1+ h;jm[n—&— U [n+1hyjm[n+1]
and 6 to each term of (61). For the first term, we have 1| $pimln ]V”ngm [n+1]hypm [n+1] 2
2 N2 1+hH n+1X,n+1hmn+1
B+ 115, 0+ 1yl + 1] = somfrt ¥mlnct Phymln s 1
w , L (S0 V=V ) Bl Uyl 1] 2
1 hjjm[n + 1]Ej_m [n+ 1]hjz'm[n +1] ’2 - N2 1+ h;']m[n+ UEm[n+1]hyjm[n+1]
N2I1+ h;‘]m[n + 11Xm[n + 1m0 + 1]
1 (5’ By considering (12), we obtain

r,jm
—_ Notgm (62)
N2 (14 a25,)° hjim[n + 1] = hypnln — pl + vimn + 1], (67)



where Vi [n 4 1] ~ CN(0, (1 — a>®+D)Rjy,,). In addition,
if we combine (7) and (67), we have for ¢ =0,1,...,p
p—q
Yimln =l = Py, [n—p] + ) a'ejunln — g 1]
t=0
(68)

Now, we can proceed with (66) by applying Lemma 4, i.e.,

+ ip,jlm[n —ql.

1 - _ 2
5 [ B [ 1S [+ 10 [ 41]

_ 2
@) P n—p) (000" V) S [n4 i [n—p)
©) N2 \ 1+ h [n+1]Z4 [+ 1]hy jm [n+1]
_ o G [ (69)
- N2 1 + anjm

where the asymptotically negligible terms have been removed.
After straightforward substitutions, we obtain 7y jm, (, p).
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