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Abstract

In this paper, we consider the problem of maximizing the energy efficiency (EE) for multi-input

multi-output (MIMO) interference channels, subject to the per-link power constraint. To avoid extensive

information exchange among all links, the optimization problem is formulated as a noncooperative game,

where each link maximizes its own EE. We show that this game always admits a Nash equilibrium

(NE) and the sufficient condition for the uniqueness of the NE is derived for the case of large enough

maximum transmit power constraint. To reach the NE of this game, we develop a totally distributed EE

algorithm, in which each link updates its own transmit covariance matrix in a completely distributed and

asynchronous way: Some players may update their solutions more frequently than others or even use

the outdated interference information. The sufficient conditions that guarantee the global convergence of

the proposed algorithm to the NE of the game have been given as well. We also study the impact of the

circuit power consumption on the sum-EE performance of the proposed algorithm in the case when the

links are separated sufficiently far away. Moreover, the tradeoff between the sum-EE and the sum-spectral

efficiency (SE) is investigated with the proposed algorithm under two special cases: 1) low transmit

power constraint regime; 2) high transmit power constraint regime. Finally, extensive simulations are

conducted to evaluate the impact of various system parameters on the system performance.
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I. INTRODUCTION

Past few years have witnessed tremendous advancement in wireless communications, including

the significant improvement of transmission rate [1], [2]. However, the impact of power con-

sumption on the environment is neglected. It is reported that the total energy consumption of the

communications takes up more than 3 percent of the worldwide electric energy consumption [3]

and the portion is expected to increase due to the explosive growth of high-data-rate applications

in the future. Hence, energy efficiency (EE) has gained lots of attention and will be one of key

issues in future fifth-generation (5G) mobile networks [4]. On the other hand, the interference

channel (IC) has been modeled mathematically for many practical systems where multiple

uncoordinated links share the same channel, such as femtocells, ad hoc wireless networks,

cognitive radio, etc [4], [5]. Furthermore, due to the development of advanced multi-antenna

techniques [6], [7], each transmission node is able to accommodate multiple antennas [8], [9]. It

is well known that multi-input multi-output (MIMO) system has the great potential for providing

high SE by employing spatial multiplexing techniques [10]. Hence, it is of great importance to

study the energy efficient transmission strategy in MIMO ICs.

This paper focuses on the EE maximization problem for MIMO ICs with per-link transmit

power constraint. To solve this problem, one may consider centralized solutions, which require a

central processing unit (CPU) to collect all complex-valued channel matrices over the network.

The CPU will compute all links’ transmit covariance matrices and send them to the corresponding

links. Hence, for large-scale networks, the centralized approaches suffer from heavy feedback

overhead and high computational complexity, which hinders practical implementations. More-

over, there may not exist a CPU for some wireless networks, such as ad hoc or wireless sensor

networks.

Recently, distributed algorithms to deal with this problem attract intensive attentions [11]–[14].

Here, “distributed” means that precoders can be computed at the transmitters with only local

channel knowledge and limited (or no) information exchange over different links. Generally,

distributed processing for MIMO systems has the benefits of low communication exchange

overhead, low computational complexity, more scalability, low system costs, etc. The classical

distributed algorithm based on dual decomposition technique is designed to decompose the
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coupling constraints among links [11], [12]. Specifically, by introducing the dual variables

associated with the coupling constraints, the original problem can be divided into several in-

dependent subproblems, each of which can be solved in a distributed way. Then, all the links

exchange some necessary information to update the dual variables. For more practical networks

with individual link power budget constraints, [15] devised a decentralized beamforming EE

(DBFEE) algorithm for symmetric MIMO ICs, where the distance from one transmitter to its

desired receiver is identical for all links, and each transmitter has the same distance to all its

unintended receivers. In each iteration, all the receivers should feed back the equivalent channel

matrices to all the transmitters in the network. In [16], the authors designed a two-layer EE

(TLEE) algorithm based on the generalized weighted minimum mean square error (WMMSE)

approach [14]: The inner layer to update precoders/decoders; the outer layer to update some

parameters. Similar to the algorithm in [15], in each inner iteration each receiver should feed

back the updated weight matrix and the positive definite covariance matrix to all the transmitters

in the network. However, for these distributed algorithms, in each iteration each receiver needs

to compute the necessary complex-valued matrix and then feed it back to all the transmitters in

the network, which could induce serious implementation challenges such as a large amount of

feedback overhead, poor scalability and heavy computational burden at the receivers. Moreover,

all the links should be synchronous, which is difficult to be satisfied, especially for large-scale

ad hoc networks or wireless sensor networks. One novel distributed algorithm based on the

adaptive price was proposed in [17] to deal with the weighted sum EE maximization problem

for single-input single-output (SISO) ICs.

Hence, one distributed algorithm with much lower feedback overhead is more desirable.

Noncooperative game theoretical approach has been recognized as a powerful tool to devise

totally distributed algorithms, in which each link just maximizes its utility without the need of

information exchanges among the links. A number of researches have applied game theory to

design energy efficient communications for ICs [18]–[21] or multiple access channel (MAC) [22].

The EE optimization problem in flat fading single-input single-output (SISO) ICs was considered

in [19], where one distributed algorithm based on non-cooperative game was proposed. Both the

existence and uniqueness of Nash equilibrium (NE) were analyzed. This work was extended to

frequency-selective channel in [20] and to a relay channel in [21]. Although [20] proved the

existence of the NE, regarding the uniqueness of the NE, [20] only showed that the number of
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NEs is determined by the cross-channel gains and the direct channel gains, without quantifying

how they are related with each other. All these studies considered single-antenna ICs and they

apply for multi-antenna case only if the transmit powers are optimized with fixed transmit

directions as shown in [23]. In [22], the authors considered the EE maximization problem for the

MIMO uplink systems with each user transmitting only one stream. This problem is formulated

as a non-cooperative game, where the uniqueness of NE is guaranteed by the fact that the EE

function is S-shaped.

In this paper, we apply the non-cooperative game theoretical approach to deal with the EE

maximization problem for MIMO ICs, where each link attempts to maximize its own EE by

jointly optimizing transmit power and beamformers. It is a nontrivial extension of the SISO case

in [20]. There is an explicit relationship between the power allocation among different links

and the achievable rates in the SISO case. This property is critical in deriving the conditions

of the existence and uniqueness of the NE by using the standard function [20]. However, in

MIMO systems, this relationship is implicit, as power allocation is carried out through matrix

manipulations. Moreover especially when multiplexing is utilized with the MIMO, different from

the beamforming case in [22] for MAC, the EE design is shown more general for the MIMO IC

and hence more difficult since there exist both inter-node (mutual) interference and intra-node

inference in the MIMO IC using multiplexing.

A. Related Work

Recently, distributed algorithms for MIMO ICs have been extensively studied in the literature,

such as linear iterative approximation (LIA) algorithm [13], the WMMSE algorithm [14], nonco-

operative game theoretic algorithm [24], etc. For the LIA algorithm, it is designed based on the

first-order Taylor expansion of the non-convex part of the weighted sum spectrum efficiency (SE)

objective function. Sequential convex optimization approaches were then presented for dealing

with various scenarios, e.g., the multi-band scenario in [25], the MAC in [26], the broadcast

channel in [27], the cognitive radio networks in [12]. However, in the LIA algorithm only one user

is allowed to update its covariance matrix at one time, which may lead to significant latency

especially in dense networks. By establishing the equivalence between the weighted sum SE

problem and weighted sum mean square error minimization problem, [14] proposed the WMMSE

algorithm that allows multiple users to update simultaneously. In this algorithm, the local optimal
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solution is obtained via alternatively optimizing the linear transceivers and iteratively updating

the weight matrices. The authors show that when the utility function satisfies some conditions,

the algorithm is guaranteed to converge to the stationary point of the original problem. The

WMMSE algorithm has been applied in various setups, please see [28] and references therein.

However, to successfully implement the ILA and WMMSE algorithms in a distributed manner,

two assumptions are required: 1) Perfect channel reciprocal between the uplink phase and the

downlink phase (in time-division duplexing mode); 2) Synchronization between all the links.

In practice, the communication systems usually operate in frequency-division duplexing (FDD)

mode. The channel reciprocal is thus hard to achieve. In addition, for wireless senor or ad hoc

networks, asynchronous among the links is more desirable. More importantly, in each iteration

each receiver needs to calculate the pricing matrix in the ILA algorithm or the weight matrix in

the WMMSE algorithm, and then feeds them back to all the transmitters in the network, which

posses serious implementation issues such as a large amount of heavy feedback overhead, poor

scalability and heavy computational burden at the receivers.

On the other hand, non-cooperative game theoretical approaches have attracted extensive

attentions. Studies in this direction are plentiful in literature, e.g., [29] for the MIMO MAC,

[24], [30]–[36] for the MIMO ICs. In [29], the authors formulated the problem as a non-

cooperative game and the authors proved that each user’s optimal eigenvectors do not depend on

the channels of others. Based on this fact, the authors showed that the existence and uniqueness

of NE is guaranteed when the numbers of transmit and receive antennas become large. The

main technique in [29] is random matrix theory. For the MIMO ICs, the authors in [24] first

utilized the noncooperative game framework to deal with the SE maximization problem, where

the iterative water-filling algorithm was proposed to find the NE of the game. However, the

existence of the NE was only shown by the simulation results without theoretic guarantees,

neither the NE uniqueness. Then, in [30], Scutati et al proved the existence of NE and provided

sufficient conditions for the uniqueness of the NE, which can be checked in practice. However,

the results are only valid for square nonsingular channel matrices. Later on, they generalized the

results to a more general case with arbitrary channel dimensions in [31]. The cognitive radio

network with null shaping constraints on the primary user is considered in [32] and its robust

version in [33]. Most recently, these works were extended to the multicell case in [34], [35]

with multiple users per cell. In [36], the authors formulated the SE maximization problem as a
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cooperative game. Specifically, by fixing the outgoing cooperative set and incoming cooperative

set, the authors formulated this problem as a non-cooperative game, where the existence and

uniqueness of the NE was analyzed. Then, the coalitional game theory [37] was applied to obtain

the stable of the cooperative set. The work that is most closely related to ours is [31], where the

noncooperative game was formulated for the SE maximization problem of the MIMO ICs and

one asynchronous distributed algorithm was proposed to reach the NE of the game.

In contrast to the most of the above cited papers which focus on the (weighted) sum SE

problem, in this work we consider the EE maximization problem. For SE optimization problems,

it is known that all the transmitters use full power during transmission in order to maximize its

own SE. Based on this fact, the best response strategy at the NE can be written in a closed-form

water-filling solution, which can be interpreted as a projector on the convex and closed set. This

interpretation enables the authors to derive the uniqueness of the game’s NE [31]. However, the

study of EE maximization problem cannot be obtained by employing the methodologies since

the transmitters in fact use a portion of the power, instead of full, to achieve energy efficient

transmission.

B. Contributions

In this paper, we apply the non-cooperative game theoretical approach to deal with the EE

maximization problem for MIMO ICs, where each link attempts to maximize its own EE by

jointly optimizing transmit power and beamformers.

The main contributions and observations of our work are summarized as follows.

1) The EE maximization problem in MIMO interference channels is modeled as a noncoop-

erative game where each MIMO link competes against the others by choosing its transmit

covariance matrix to maximize its own EE. We show that the NE of this game always

exists and derive sufficient conditions for the uniqueness of the NE for the case of large

enough maximum transmit power constraint.

2) To reach the NE of the game, we provide a totally distributed EE algorithm named

Asynchronous Distributed Energy-Efficient (ADEE) algorithm, which is the extended ver-

sion of simultaneous updating proposed in [20]. In this algorithm, all users apply the

fractional programming to update the transmit covariance matrices and these updates can

be performed in a totally asynchronous way, which means some links may update their



7

transmit covariance matrices more frequently than the others and they may even use the

outdated information of the measurement of the interference generated by the other links.

In addition, during the updating procedure of the algorithm, there is no need for the links to

exchange the signaling overhead mutually. These features make our distributed algorithm

more appealing for practical implementations. We provide the sufficient conditions for the

global convergence of this algorithm to the unique NE of the game. Interestingly, we find

that these conditions coincide with the conditions for the uniqueness of NE.

3) We study the impact of the circuit power consumption on the overall SE and EE perfor-

mance of the system for one special case when the links are separated sufficiently far away.

We show that the overall SE increases with the circuit power consumption, but the overall

EE decreases with it. Although this trend is derived for this special case, from simulations

we find the trend holds for the general case when the interference among the links is

sizeable. This observation implies that when the circuit power consumption increases, we

should enhance the transmit rate or SE in order to obtain the best EE performance.

4) The tradeoff between SE and EE is investigated for the proposed algorithm (denoted as

ADEE algorithm) and the SE maximization algorithm (denoted as ADSE algorithm) in

[31]. Two special cases are studied: the transmit power constraint approaches zero or

infinity. For the case of low transmit power constraint, we show that both algorithms use

all power to transmit and thus achieve the same performance in terms of the overall SE

and EE performance. However, for the latter case, the ADSE algorithm always uses all

available power to transmit, yielding severe inference over the network. In this case, the SE

achieved by the ADSE algorithm will not increase. Then, the EE achieved by the ADSE

algorithm will approach zero due to the significant power consumption. On the other hand,

for the EE metric, the ADEE algorithm is unwilling to consume all power in this case.

As a result, the SE and EE achieved by the ADEE algorithm will become constant in the

case of the high transmit power constraint.

The rest of the paper is organized as follows. In Section II, we introduce the system model

and formulate the optimization problem as a strategic noncooperative game. Then, we show

that this game always admits a NE and derive sufficient conditions for the uniqueness of the

NE in Section III. To reach the NE, a totally asynchronous and distributed algorithm is given
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in Section IV. In Section V, we study the impact of the circuit power consumption on the

system performance in terms of the sum-SE and sum-EE, along with the study for the tradeoff

between the sum-EE and sum-SE for the proposed algorithm. Section VI provides representative

numerical results to study the effects of different system parameters on the proposed algorithm.

Finally, some conclusions are drawn in Section VII.

Notations: (·)∗, (·)T , (·)H , vec(·), E{·}, tr() and ⊗ are conjugate, transpose, Hermitian

transpose, stacking vectorization operator, expectation operator, trace operators and the Kronecker

product operator [38], respectively. Uppercase and lowercase boldface denote matrices and

vectors, respectively. For matrix A, [A]:,k and [A]i,j represent the kth column of A and the

(i, j) element of matrix A, respectively. ‖A‖2 denotes the spectral norm of A [38]. ‖A‖F
denotes the Frobenius norm of A. λmin(A) stands for the minimum eigenvalue of A. A � B

means A−B is positive semidefinite. The spectral radius of A is denoted by ρ(A) [38]. rank(A)

denotes the rank of A. For vector a ∈ Cn×1, ‖a‖2 represents the Euclidean norm defined as

‖a‖2 =
√

aHa. The sets of m × n complex matrices, n × n complex positive semidefinite and

definite matrices are denoted by Cm×n, Sn×n+ and Sn×n++ , respectively. DXY denotes the Jacobian

matrix of function Y with respect to (w.r.t.) X [39]. I and 0 represent the identity and zero

matrices with appropriate dimensions, respectively. [x]+ is equivalent to max {0, x}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a K-link MIMO interference channel with K transmitter-receiver pairs. Each link

consists of one transmitter with M transmit antennas and one receiver with N receiver antennas.

All links are simultaneously communicating over the same channel. At receiver k 1, the received

complex baseband signal vector yk ∈ CN×1 is given by

yk = Hk,kxk +
∑
j 6=k

Hjkxj + nk, (1)

where xk ∈ CM×1 denotes the transmit signal vector of link k, Hkk ∈ CN×M is the direct channel

matrix of link k, Hjk ∈ CN×M is the cross-channel matrix from transmitter j to receiver k, and

nk ∈ CN×1 is circularly symmetric, zero-mean, complex Gaussian noise with normalized identity

1“Receiver k” represents the receiver of the kth link. In the following, “transmitter k” means the transmitter of the kth link.
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covariance matrix. For each link, the total average transmit power should satisfy the per-link

power constraint:

Pk = tr(Qk) ≤ PT, (2)

where Qk = E
{
xkx

H
k

}
is the covariance matrix of xk and PT is the maximum transmit power.

To reduce the complexity of decoding at the receivers, it is assumed that joint decoding of

the interfering signals is not an option and the interference is treated as noise at the receivers.

Thus, the SE of link k is given by (in bit/s/Hz)

Ck(Qk,Q−k) = log2 |I + HH
k,kR

−1
k Hk,kQk|, (3)

where Rk
∆
= I+

∑
j 6=k Hj,kQjH

H
j,k represents the interference-plus-noise (IPN) covariance matrix

at receiver k and Q−k
∆
= [Q1, · · · ,Qk−1,Qk+1, · · · ,QK ] denotes the set of all links’ covariance

matrices, except that of link k. In this work, it is assumed that each receiver k can perfectly

measure the IPN covariance matrix Rk and estimate the direct channel Hk,k, and then report

them back to transmitter k. The channels are assumed to vary sufficiently slowly such that it

can be considered fixed during the transmission.

In order to design energy efficient transmissions, the total power consumption should be

considered at each link k: power used for reliable data transmission Pk, circuit power during

transmission PC, which is the power consumed by the mixers, filters and digital-to-analog

converters, digital signal processing (DSP), etc. The power consumption of the DSP depends

on the number of computations of the algorithm and the signaling overhead. It is difficult to

accurately model this kind of power consumption. Thus, the circuit power PC is modeled as a

constant in this work for the sake of analysis, as simplified in most of the existing works [15],

[19]–[21], [23]. Even though, we will evaluate the system performance under different PC via

simulations. Then, the EE (in bits/Hz/Joule) of link k, defined as the ratio of SE to the total

power consumption, is given by

EEk(Qk,Q−k) =
Ck(Qk,Q−k)

Pk+PC

. (4)

Since our goal is to devise a totally distributed algorithm that requires neither a CPU nor

information exchange among the links, we formulate the optimization problem as the following
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noncooperative game:

(G) :
max
Qk

EEk(Qk,Q−k),

s.t. Qk ∈ Wk

∀k ∈ ΨK , (5)

where EEk(Qk,Q−k) is the payoff function of link k defined in (4), ΨK
∆
= {1, 2, · · · , K} is the

set of all links and Wk is the set of admissible strategies of link k, defined as

Wk = {Qk ∈ CM×M |Qk ∈ SM×M+ , tr(Qk) ≤ PT}. (6)

In this game, each user competes against the others by choosing his own covariance matrix

that maximizes his own payoff function subject to the strategy set. A solution of the game to

reach a NE is when each link, given the strategic profiles of the others, does not get any increase

in its objective by unilaterally changing its own strategy and is formally defined as follows.

Definition 1: A strategic profile Q? = (Q?
k)k∈ΨK

∈ W1 × · · · ×WK is a NE of game G if

EEk(Q
?
k,Q

?
−k)≥EEk(Qk,Q

?
−k), ∀Qk ∈ Wk,∀k ∈ ΨK . (7)

In the forthcoming sections, we first show that game G always admits at least one NE. In

general, game G may admit multiple NEs, depending on the level of the interference from

the other links [20]. Then, we study the uniqueness condition of the NE and provide a totally

distributed algorithm to reach such a NE.

III. EXISTENCE AND UNIQUENESS OF THE NE

A. Existence of NE

Whether NE exists depends largely on the properties of the payoff function. In the sequel, we

first study the property of the EE function and then check the existence of NE.

Lemma 1: Given the other links’ strategy Q−k, the EE function of link k, i.e., EEk(Qk,Q−k),

is quasiconcave in Qk. Furthermore, if the channel matrix Hk,k is full column rank, EEk(Qk,Q−k)

is strictly quasiconcave in Qk

Proof: Please see Appendix A. �

Based on Lemma 1, the existence of NE is given in the following theorem.

Theorem 1: Game G always admits at least one NE for any set of channels and transmit

power constraints.

Proof: Please see Appendix B. �
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B. Uniqueness of NE

In this subsection, we first study the uniqueness condition for the case of full column-rank

channel matrices. Then, we extend the results to the more general case without making any

restrictive assumptions on the channel structure.

1) Case of full column-rank channel matrices

For the SE maximization game in [31], all the transmitters use full power during transmission

in order to maximize its own SE. Based on this fact, the best response strategy at the NE can

be written in a closed-form water-filling solution, which can be interpreted as a projector on the

convex and closed set. This interpretation enables the authors to derive the uniqueness condition

of the game’s NE. However, the study of our EE maximization problem cannot be obtained by

employing the methodologies developed in [31] since the transmitters do not always, and in fact

not in most cases, use the full power to transmit in our EE case. Here, we consider the case

when the maximum transmit power is large enough so that each transmitter only uses portion

of the maximum power at the NE.

Before providing the uniqueness condition for the EE maximization game, we first introduce

some useful intermediate results. Given the other links’ strategy Q−k, the best response of the

transmit covariance matrix of link k is denoted as

Fk(Q−k) = arg max
Qk∈Wk

EEk(Qk,Q−k) (8)

where function Fk(Q−k): W−k 7→ CM×M is a complex matrix-valued function with W−k
∆
=

W1 × · · · ×Wk−1 ×Wk+1 × · · · ×WK . We introduce the following mapping function,

F(Q) = F1(Q−1)× · · · × FK(Q−K) :W 7→ W (9)

where W ∆
=W1 × · · · ×WK and Q

∆
= [Q1, · · · ,QK ] ∈ W . Using (9) and Definition 1, the NE

of the game can now be characterized by the following fixed-point equation:

F(Q?) = Q?. (10)

According to Proposition 1.1 of [40], the contraction mappings have a unique fixed point. It

is formally stated as the following lemma.

Lemma 2: Game G has a unique NE if the mapping F(·) defined in (9) satisfies:∥∥F(Q(1))− F(Q(2))
∥∥
F
<
∥∥Q(1) −Q(2)

∥∥
F
, (11)
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for any two different Q(1) and Q(2) in the closed set W . �

However, directly using this lemma is difficult. Instead, we give a sufficient condition for (12)

to be satisfied, which plays a key role in the study of uniqueness of the NE.

Lemma 3: The sufficient condition for (12) to hold is that, for any link k, the mapping defined

in (8) satisfies∥∥∥Fk(Q
(1)
−k)− Fk(Q

(2)
−k)
∥∥∥
F
<

√
1

K − 1

∥∥∥Q(1)
−k −Q

(2)
−k

∥∥∥
F
,∀Q(1)

−k,Q
(2)
−k ∈ W−k. (12)

Proof: Our main task is to show that, under condition (12), the condition of the mapping F(·)

to be a contraction in (12) is satisfied. We have∥∥F(Q(1))− F(Q(2))
∥∥2

F
=

K∑
k=1

∥∥∥Fk(Q
(1)
−k)− Fk(Q

(2)
−k)
∥∥∥2

F
(13)

<
1

K − 1

K∑
k=1

∥∥∥Q(1)
−k −Q

(2)
−k

∥∥∥2

F
(14)

=
∥∥Q(1) −Q(2)

∥∥2

F
(15)

where (14) follows from (12), and (15) follows by the definitions of Q−k and Q. �

Based on the above results, we give a sufficient condition to guarantee the uniqueness of the

equilibrium for the case of full column-rank matrices in the following theorem:

Theorem 2: Define Tk
∆
=

(
I + PT

K∑
i=1

Hi,kH
H
i,k

)−1

. Suppose that the channel matrices {Hk,k}k∈ΨK

are full column rank, i.e., rank(Hk,k) = M . Let αk be

αk =
ρ(HH

k,kHk,k)
∥∥DQ−k

Rk

∥∥
2(

λmin

(
HH
k,kTkHk,k

))2 , (16)

where DQ−k
Rk is the Jacobian matrix of Rk w.r.t. Q−k and is given by

DQ−k
Rk =

[
H∗1,k ⊗H1,k, · · · ,H∗k−1,k ⊗Hk−1,k,H

∗
k+1,k ⊗Hk+1,k, · · · ,H∗K,k ⊗HK,k

]
(17)

Then for sufficient large maximum transmit power PT, the NE of game G is unique if

αk <

√
1

K − 1
,∀k ∈ ΨK . (18)

Proof: Please see Appendix C. �

The importance of Condition (18) is that for given direct channel gains, it explicitly qualifies

how small the multi-link interference each link can tolerate to guarantee the uniqueness of the

NE. Hence, Condition (18) can be checked in practice to facilitate the admission control. In
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contrast, [20] only showed that the number of the equilibria is determined by the cross-channel

gains and the direct channel gains, without quantifying how they are related with each other.

2) Case of more general channel matrices

In practical systems, the channel matrices may not be full column rank. In this part, we consider

the more general case without making any restrictive assumptions on the channel structure.

For each link k, we write the eigendecomposition of Hk,k as Hk,k=ŪkΛ̄kV̄H
k , where Ūk ∈

CN×rk , V̄k ∈ CM×r̄k are semi-unitary matrices, Λ̄k ∈ Cr̄k×r̄k is a diagonal matrix with positive

eigenvalues, and r̄k is the rank of matrix Hk,k, i.e., r̄k = rank(Hk,k) ≤ min{M,N}. To

maximize each link’s EE in (4), each link k’s optimal covariance matrix should lie in the subspace

orthogonal to the null-space of Hk,k for a given Q−k. It follows that the best response of the

transmit covariance matrix of each link k belongs to the following class of matrices:

Qk = V̄kQ̄kV̄
H
k ,∀k ∈ ΨK , (19)

with

Q̄k ∈ W̄k
∆
=
{
X ∈ Crk×rk |X ∈ Srk×rk+ , tr (X) ≤ PT

}
. (20)

By inserting (19) into game G in (5) and defining H̄j,k = Hj,kV̄j,∀j, k, game G can be

transformed into the following lower-dimensional game Ḡ, given as

(Ḡ) :
max
Q̄k

EEk

(
Q̄k, Q̄−k

)
=

log2|I+H̄H
k,kR̄−1

k H̄k,kQ̄k|
tr(Q̄k)+PC

s.t. Q̄k ∈ W̄k,
∀k ∈ ΨK , (21)

where Q̄−k = Q̄1×· · ·×Q̄k−1×Q̄k+1×· · ·×Q̄K and R̄−1
k = R̄−1

k (Q̄−k) = I+
∑

j 6=k H̄j,kQ̄jH̄
H
j,k.

Now the channel matrices H̄k,k ∈ CN×rk ,∀k are full column rank. Hence, we can apply the

same derivations for Theorem 2 to obtain the uniqueness condition for this more general channel

case, which is the same as that in (18) except that the channel matrices Hj,k∀j, k are replaced

by H̄j,k∀j, k.

To give more insights into the physical interpretation of the uniqueness conditions of the

NE, Fig. 1 is plotted to show the probability for the uniqueness conditions to be satisfied for

different cases. Specifically, full-rank square, fat and tall channel matrices are simulated. If

the channel matrices are square or tall, condition (18) in Theorem 2 is applied to check the

uniqueness condition of the NE. In the case of fat channel matrices, the above derived condition

for general channel matrices is used to check the uniqueness condition of the NE. The probability
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of the uniqueness of the NE is defined as the ratio of the number of channel matrices that

guarantee the uniqueness condition to the total number of channel matrices. For simplicity, we

consider a symmetric system with two links (K = 2) where the direct-channel distances for

both links are set to be Ddirect = 1 and both links have the same cross-channel distances (i.e.,

D1,2 = D2,1 = Dcross). The power constraint and the noise power are set to be PT = 10−2W,

σ2 = 10−3W, respectively. Note that PT � σ2. These results are obtained by testing over 10000

random channel matrices whose entries are generated as the circularly symmetric, zero-mean,

complex Gaussian random variables with variance equal to the square root of the channel path

loss power, where the path loss exponent is assumed to be 3.5. Several interesting observations

can be found from Fig. 1: 1) The uniqueness probability of the NE for all cases increase with the

cross-channel distance corresponding the decrease in the interference. This is reasonable since in

the extreme case when the cross-channel distance approaches infinity, the system becomes two

independent point-to-point links. On the other hand, when one of the receivers is too close to one

of its unintended transmitters, one of the two links should be shut down, which is instructive for

practical use; 2) For the case of square channel matrices, the uniqueness probability decreases

with the number of antennas; 3) For the case of fat channel matrices, increasing the number of

transmitter antennas while keeping the number of receiver antennas fixed leads to an increase

in the uniqueness probability of the NE. For example, the curve associated to the case of 2× 5

MIMO channels is higher than that associated to the case of 2 × 3 MIMO channels for any

given Dcross. Similar observations hold for the case of tall channel matrices. This observation is

of significant importance: equipping unequal number of antennas at transmitters and receivers

can dramatically improve the uniqueness condition of the NE.

IV. ASYNCHRONOUS DISTRIBUTED ENERGY EFFICIENT ALGORITHM

To reach the NE of game G, we employ the totally asynchronous algorithm [40]. The main

characteristic of the asynchronous algorithm is that some users are allowed to update their best

response more frequently than others. This algorithm has been successfully employed to deal

with the rate maximization game in [30], [31].

For the sake of readability, we briefly introduce the asynchronous algorithm and adapt it to

our EE maximization problem. To this end, we first introduce some definitions and assume that

the set of times at which the links update their solutions is the discrete set T = {0, 1, 2, · · · }.
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Fig. 1. Probability of the uniqueness of the NE for different numbers of antennas.

Let T k ⊆ T be the subset of times at which transmitter k updates its solution and let Qk(t)

be the updated transmit covariance matrix of transmitter k at time t ∈ T k. Denote τ kr (t) as the

most recent time at which the interference from transmitter r is measured at receiver k at time

t. Hence, at time t, link k updates its transmit covariance matrix based on the interference from

Q−k(τ
k(t))

∆
=
(
Q1(τ k1 (t)), · · · ,Qk−1(τ kk−1(t)),Qk+1(τ kk+1(t)), · · · ,QK(τ kK(t))

)
. (22)

To guarantee that the system is totally asynchronous, three conditions should be satisfied by

the schedules {τ qr (t)} and {T k} [40]: A1) 0 ≤ τ kr (t) ≤ t; A2) limk→∞τ
k
r (tk) = +∞; and A3)∣∣T k∣∣ = ∞; where {tk} is a sequence of T k. Based on the above definitions, the asynchronous

distributed EE algorithm is described in Algorithm 1, where Tmax is the maximum number of

the iterations.

Remark 1 - Two special cases: Note that some well-known algorithms such as sequential and

simultaneous algorithms [40], where the links update their solutions sequentially and simulta-

neously, are special cases of our algorithm. Each one of them can be obtained by appropriately

choosing the scheduling parameters {T k} and {τ qr (t)}. In the sequential algorithm, all links

update their own strategies sequentially, whose scheduling parameters {T k} and {τ qr (t)} are



16

Algorithm 1 Asynchronous Distributed Energy-Efficiency (ADEE) Algorithm
1: Set t = 0 and initialize Qk(0) ∈ Wk,∀k;

2: FOR t = 0 : Tmax

FOR k = 1 : K

IF t ∈ T k

Update Qk(t+1) using Algorithm 2 in the following subsection based on Q−k(τ
k(t)).

ELSE

Qk(t+ 1) = Qk(t),

END

END

END

chosen as T k = {mK + k,m ∈ N+}={k,K + k, 2K + k, · · · }, τ kr (t) = t, ∀k, r, where

N+ denotes the discrete set N+ = {0, 1, 2, · · · }. Similarly, in the simultaneous algorithm,

all links update their own strategies simultaneously with the scheduling parameters chosen as

T k = N+, τ
k
r (t) = t,∀k, r. In contrast, for the DBFEE [15] and TLEE algorithms [16], each

transmitter should collect the knowledge of the channels to all the receivers over the network

at the initial stage of the algorithm. Moreover, in each iteration all the receivers should feed

back the complex-valued matrices to all the transmitters in the network, which is not scalable

for large scale networks.

A. Per-link Response Problem

The best response problem for link k can be written as 2

max
Qk∈Wk

Ck(Qk)
tr(Qk)+PC

. (23)

Since the numerator and denominator in the objective function of Problem (23) are concave

and affine in Qk respectively, the objective function of (23) is a pseudo-concave function [23].

Moreover, the constraint in (23) is convex. Hence, problem (23) can be solved by the following

lemma, the proof of which can be found in Proposition 6 of [41].

2As Q−k is treated as constant, Ck(Qk) is used to represent Ck(Qk,Q−k) for simplicity.
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Lemma 4: Define function G(κ) as

G(κ)
∆
= max

Qk∈Wk

log2 |I + HH
k,kR

−1
k Hk,kQk| − κ(tr(Qk)+PC), (24)

For fixed κ, the solution of (24) is denoted as Q?
k(κ). Then, solving (23) is equivalent to finding

the root of the equation G(κ?)
∆
= Ck(Q

?
k(κ

?))− κ?(tr(Q?
k(κ

?))+PC)=0. �

Lemma 4 gives us insights to solve (23). We can solve Problem (24) with fixed κ firstly, while

the optimal κ can be searched via the Dinkelbach method [42].

Now we attempt to solve (24) for fixed κ. To this end, we first write the eigenvalue decom-

position (EVD) of HH
k,kR

−1
k Hk,k for each k ∈ ΨK as

HH
k,kR

−1
k Hk,k = UkDkU

H
k , (25)

where Uk is a semi-unitary matrix of the eigenvectors with rk
∆
= rank(HH

k,kR
−1
k Hk,k), Dk ∈

Rrk×rk
++ is a diagonal matrix with Dk = diag{dk,1, · · · , dk,rk} being the eigenvalues.

Then, given k ∈ ΨK and Q−k ∈ W−k, the solution to problem (24) with fixed κ is [13]:

Qk = UkΛkU
H
k , (26)

where Λk = diag{qk,1, · · · , qk,rk} represents the power allocations on all subchannels with

qk,m =

[
1

(κ+ λk) ln 2
− 1

dk,m

]+

,m ∈ {1, 2, · · · , rk}, (27)

where λk ≥ 0 is the Lagrange multiplier associated with the power constraint, which should be

chosen to satisfy the complementarity slackness condition: λk (tr(Qk)− PT) = 0.

After solving problem (24), we utilize the Dinkelbach method [42] to update κ as follows

κn+1 =
Ck(Q

(n)?
k (κn))

tr(Q
(n)?
k (κn))+PC

, n = 1, 2, · · · , (28)

where n is the iteration index.

To summarize the above analysis, we give the following algorithm to solve the per-link problem

in (23).

Algorithm 2 The Dinkelbach method to solve (23)
1: Initialization: κ0 satisfying G(κ0) ≥ 0, tolerance ε, iteration number n = 0;

2: For given κn, solve (24) to get the optimal Q
(n)?
k (κn);

3: If |G(κn)| > ε, update κn+1 in (28), n = n+ 1, go back to step 2. Otherwise, terminate.
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Remark 2 - Distributed nature of the algorithm: For transmitter k to update Qk, it requires

receiver k to feed back the channel matrix Hk,k and the IPN covariance matrix Rk according

to (24). It is well-known that the channel matrix Hk,k can be estimated at the receiver. For

the IPN covariance matrix Rk, it can be easily computed at the receiver as follows: First,

transmitter k sends a sequence of training sequence to receiver k. The statistical information of

the training sequence is assumed to be known at the receiver. Then the IPN covariance matrix

can be obtained by subtracting the covariance matrix of the received training sequence from the

covariance matrix of the total received signal 3. Hence, the ADEE algorithm can be performed

in a totally distributed and asynchronous way without the need of information exchange among

different links. In contrast, for the DBFEE [15] and TLEE algorithms [16], in each iteration all

the receivers should feed back the complex-valued matrices to all the transmitters in the network,

which is not scalable for large scale networks.

B. Convergence Analysis

In this section, the sufficient condition that guarantees the global convergence of the ADEE

algorithm is given. Interestingly, we find that this convergence condition is the same as the

uniqueness condition obtained in Theorem 2, as proved in the following.

Theorem 3: In the case of full column-rank channel matrices, suppose that condition (18) in

Theorem 2 is satisfied and the maximum transmit power is large enough, then as Tmax → ∞,

the sequence generated by the ADEE algorithm converges to the unique NE of game G, for any

given set of feasible initial conditions and updating schedules.

Proof: Please see Appendix D. �

The proof for the more general case can be derived similarly. It is omitted for brevity.

Remark 3 - Robustness of the algorithm: The condition for the convergence of the ADEE

algorithm is independent of the update schedule for each link. Hence, all special cases of the

ADEE algorithm like the well-known sequential and simultaneous updating are guaranteed to

converge under the same condition in (18). Furthermore, there is no restrict constraints on the

updating schedule on each link, so that some links are allowed to update their transmit covariance

matrices more often than others, without affecting the convergence of the algorithm.

3Note that this has been done in most of the existing distributed algorithms [12], [13], [15], [24], [26], [27], [30]–[36].
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V. PERFORMANCE ANALYSIS OF THE PROPOSED ALGORITHM

In this section, we give the performance analysis for the proposed algorithm. Firstly, the impact

of the circuit power consumption on the system performance is studied. Then, we investigate

the tradeoff between SE and EE.

A. Impact of Circuit Power Consumption on the System Performance

In this part, we investigate the impact of circuit power consumption on the overall SE and EE

performance. Due to the coupling interference among different links, it is difficult to provide the

analytical results. To simplify the analysis, we only consider the extreme case that all the links

are separated far away with each other so that the interference among all the links reduces to

almost zero. In this case, the overall system can be regarded as K independent links. Then, we

only need to study the impact of circuit power consumption on the each link k’s SE and EE

performance, which is given in the following theorem.

Theorem 4: When the links are separated far away and no power constraints are imposed at the

transmitters, the maximum achievable EE of each link k for a given circuit power consumption

PC decreases with PC , but the corresponding SE of each link k increases with PC .

Proof: Please see Appendix E. �

To validate the analysis in Theorem 4, we plot a figure in Fig. 2 to show the impact of circuit

power consumption on system’s SE and EE for the same scenario in Fig. 1 with Dcross = 5. The

sum-EE and the sum-SE are defined as EEsum =
∑K

k=1 EEk, SEsum =
∑K

k=1Ck, respectively.

For illustration purpose, the y-axis is shown by 10log10EEsum. It can be seen from the figure

that the sum-EE decreases with the circuit power consumption while the corresponding sum-

SE increases with it for all considered numbers of antennas, which validates the correction of

the theorem. From the simulation section, the above trend also holds for the general case with

sizeable interference among the links, though the above theorem is derived for the extreme case.

B. Tradeoff between Spectral and Energy Efficiency

In this part, we study the tradeoff between SE and EE for the proposed ADEE algorithm and

the asynchronous distributed spectral efficient (ADSE) algorithm [31]. Generally, it is difficult to

study this problem analytically due to the coupling interference. For this reason, we investigate the

tradeoff for two special cases: low transmit power constraint and high transmit power constraint.
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Fig. 2. The impact of circuit power consumption on system’s SE and EE when links are separated far away.

1) Low transmit power constraint: PT → 0: In this case, the interlink interference can be

neglected, i.e., Rk ≈ I,∀k, and the network reduces to K independent point-to-point links.

Hence, we only need to analyze one link’s performance. Without loss of generality, we only

focus on the performance of link k. Denote the transmit power of link k of the ADEE algorithm

as Pk ∈ [0, PT]. Since PT → 0, from (E.3) there is only one stream for link k that transmits with

positive power. Hence, the SE for link k can be written as Ck (Pk) = log2 (1 + dk,1Pk), where

dk,1 is the maximum eigenvalue of HH
k,kHk,k. The optimal EE for link k can be written as

EEk (Pk) =
Ck (Pk)

Pk + PC

. (29)

Then, we have

lim
Pk→0

EE′k (Pk) =
dk,1

ln 2PC

> 0, (30)

where EE′k (Pk) is the derivative of EEk (Pk) w.r.t. Pk. Hence, EEk (Pk) is increasing for Pk ∈

[0, PT]. Then, the optimal transmit power is P ∗k = PT, i.e., link k transmits with its maximum

power.

For the ADSE algorithm, each link maximizes its SE selfishly by always using its maximum

power, i.e., P ∗k = PT. Hence, both the ADEE algorithm and ADSE algorithm achieve the same

SE and EE.
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2) High transmit power constraint: PT → ∞: In this case, the interlink interference cannot

be neglected any more. Due to the interference, the analysis becomes more difficult. To simplify

the analysis and get insights, we consider a symmetric system similar to one in [20] for the SISO

frequency selective interference channel. We assume that H = Hk,k,∀k and Hj,k = αH,∀j 6= k,

where α is a constant. In this symmetric system, all links transmit with the same covariance

matrices, i.e., Q = Qk,∀k. Denote the transmit power as tr(Q) = P .

The overall network EE is

EE =
Klog2

∣∣I + HHR−1HQ
∣∣

P + PC

, (31)

and the overall network SE is

SE =Klog2

∣∣I + HHR−1HQ
∣∣ , (32)

where R = I + (K − 1)α2HQHH.

For the ADSE algorithm, each link selfishly maximizes its own SE by using its maximum

transmit power, i.e., tr(Q) = P = PT. When PT → ∞, the interlink interference becomes

very large. According to Theorem 3 of [24], one of the optimal solutions employs beamforming

(1-stream signaling) for all links. Hence, the optimal covariance matrix can be written as Q =

PTwwH, where w is the beam direction with unit norm. Then, the network SE of the ADSE

algorithm in the high transmit power is upper bounded by

SEADSE = lim
PT→∞

Klog2

(
1 +

gPT

1 + α2(K − 1)gPT

)
= Klog2

(
1 +

1

α2(K − 1)

)
, (33)

where g = wHHHHw is a constant. The corresponding EE is EEADSE = lim
PT→∞

SEADSE/(PT + PC) =

0, which is not desirable from the EE point of view.

On the other hand, for the ADEE algorithm, the system will not use the maximum power to

transmit due to the power value in the denominator of (31). Hence, the interlink interference may

not be so large. Thus, the above derivations for the high interference scenario are not applicable

and it is difficult to analyze the performance of the ADEE algorithm in this case. However,

from the above discussion, we can conclude that its overall EE will increase when the transmit

power constraint is low, and keeps constant when the transmit power constraint is high, which

is significantly larger than that of the ADSE algorithm. The overall SE has the same trend as

the overall EE.
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VI. SIMULATION RESULTS

We consider an ad hoc network contained in a 250m×250m square area, in which all links are

randomly distributed. The distance from one transmitter to its unintended receiver is at least 35m.

The channel is modeled by path-loss [43] and independent Rayleigh fading with the complex

normal distribution, CN (0, 1). The channel path-loss is modeled as 38.46 + 35log10(d) [43].

Each channel realization is obtained by generating a random set of links’ positions as well as

fading channel realizations. It is assumed that the transmitters and the receivers have the same

number of antennas. Unless otherwise specified, the other main system parameters are given in

Table I For comparisons, the metrics used are the sum-EE and the sum-SE, which are defined

as EEsum =
∑K

k=1 EEk, SEsum =
∑K

k=1Ck, respectively.

TABLE I

MAIN SIMULATION PARAMETERS

Parameters Value

Number of links K 4

Number of transmit antennas M 4

Number of receiver antennas N 4

Direct-channel distance Ddirect 80 m

Noise power σ2 -106 dBm

Circuit power consumption PC 23 dBm [44]

Tolerance ε 10(−5)

Maximum transmit power PT 30 dBm

Maximum number of iterations Tmax 20

Channel path loss model 38.46 + 35log10(d) [43]

A. Convergence behavior of the ADEE algorithm

Fig.3 illustrates the convergence behavior of the ADEE algorithm for different updating

schedules for one randomly generated channel realization. For comparison, the performance

of another updating scheme, named ‘unbalanced ADEE’, is also shown, where the parameters

are chosen as T k = {k, 2k, 3k, · · · }, τ kr (t) = t, ∀k, r. Hence, in the unbalanced ADEE, Link 1

is set to update its strategy faster than the other three links, and Link 4 is set to be the slowest

to update its strategy. Also, in each time, the number of links updating their strategies is no
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less than that of the sequential ADEE (only one link), no more than that of the simultaneous

ADEE (all four links). To make the figure not too crowded, we report only the curves of two

links (Link 1 and Link 4). It can be seen from this figure that the simultaneous ADEE converges

faster than the other two schemes, and can converge within a few iterations. However, it takes

about 12 iterations for the sequential ADEE to converge. The reason is that each user in the

sequential ADEE is forced to wait for all the users scheduled in advance, before updating its

own strategy. Moreover, the unbalanced ADEE converges a little faster than the sequential ADEE

due to more links involved in updating their strategies in each iteration. From this figure, we

find that different scheduling methods yield almost the same performance. For this reason, we

only report the performance of the simultaneous ADEE due to its rapid convergence speed in

the following simulations.

B. Performance Comparison with Existing Algorithms

We next compare the performance of the ADEE algorithm with some existing algorithms,

including the ADSE algorithm [31] where each link always uses its maximum transmit power,

and DBFEE algorithm [15]. Since in the proposed ADEE algorithm each link only attempts

to maximize its own EE selfishly, its achieved overall EE is generally suboptimal. Hence, it is

interesting to study the performance gap between the proposed ADEE algorithm and the (near-

)optimal sum-EE maximization algorithm. For this reason, we simulate the TLEE algorithm

in [16] that aims at the sum-EE maximization. Moreover, the WMMSE algorithm in [14] that

focuses on the sum-SE maximization is also simulated.

1) Impact of the Maximum Transmit Power on the System Performance: Fig. 4 shows the

average sum-EE (left) and the average sum-SE (right) versus the maximum transmit power for

various algorithms. It can be seen that in the low transmit power regime, i.e., PT ≤ 10 dBm,

both the sum-EE and the sum-SE of all algorithms monotonically increase with the maximum

transmit power. Interestingly, we find that in this regime the proposed ADEE algorithm almost

achieves the optimal sum-EE and sum-SE. That is, the performance gap with the optimal sum-EE

and sum-SE performance approaches zero. Fortunately, many short-distance wireless networks

operate in this regime, such as ad hoc networks [45], [46], femtocells, and wireless sensor

networks [47]. However, in the high transmit power regime, the sum-EE of the ADRM algorithm

decreases dramatically, while its sum-SE performance becomes stable. This is because in the



25

high transmit power regime, the system becomes interference limited and increasing the transmit

power may slightly help increase the sum-SE, which leads to a significant performance loss in

terms of the sum-EE due to the increased transmit power. Note that the sum-SE achieved by the

ADEE algorithm is comparable with that achieved by the ADRM algorithm, which corroborates

with the analysis in Section V. Fig. 4 also shows that the ADEE algorithm outperforms the

DBF algorithm in terms of both the sum-EE and the sum-SE. This is because the DBFEE

algorithm is primarily designed for the symmetry system and may not be suitable for the

asymmetric ad hoc network considered here. Moreover, this algorithm requires a substantial

feedback overhead on the network and further the power consumption due to these information

exchanges is not considered. As expected, both the sum-EE and the sum-SE performance of

the TLEE algorithm is superior to that of the ADEE algorithm in the high transmit power

regime due to the selfish nature of the ADEE algorithm. However, this benefit comes at the cost

of the heavy information exchange overhead, high computational complexity, synchronization

requirements of the networks, and the need for coordination among the users. In contrast, the

proposed ADEE algorithm does not need information exchange among different links, and can

be implemented in a totally distributed and asynchronous manner, which is appealing for some

practical applications.

2) Impact of the Number of Antennas on the System Performance: Fig. 5 illustrates the

average sum-EE (left) and the average sum-SE (right) versus the number of antennas for various

algorithms. As expected, increasing the number of antennas at both the transmitters and the

receivers leads to a significant increase in both the sum-EE and the sum-SE due to the fact that

a larger number of degrees of freedom (DoF) in the spatial domain can be exploited to strengthen

the signal power received by the intended receiver while avoiding the interference imposed on

the unintended ones. It can be seen from this figure that the ADEE algorithm outperforms the

DBF algorithm in terms of the sum-EE and the sum-SE. The performance gain monotonically

increases with the number of antennas, meaning the ADEE algorithm uses the spatial resources

more effectively. Again, the ADEE algorithm is observed to achieve a significantly higher sum-EE

than that achieved by the ADRM algorithm and the performance gain becomes more significant

with more antennas. The sum-SE of the ADRM algorithm is slightly higher than that of the

ADEE algorithm. As expected, the TLEE algorithm has superior performance over the ADEE

algorithm in terms of the sum-EE and sum-SE.
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3) Impact of the Direct-Channel Distance on the System Performance: Fig. 6 illustrates the

impact of increasing the direct-channel distance Ddirect on the sum-EE and sum-SE. It can be

seen from this figure that both the sum-EE and sum-SE monotonically decreases upon increasing

Ddirect. The reason is that increasing Ddirect will degrade the direct-channel gains, and thus

reducing the attainable sum-EE and sum-SE. This figure shows much of the same properties as

Fig. 5. For example, the ADEE algorithm outperforms the DBFEE and ADRM algorithms in

terms of the sum-EE, and the sum-SE loss is negligible compared with the ADRM algorithm.

With much more information exchange overhead and higher computational complexity, the TLEE

and WMMSE algorithms have the best sum-EE and sum-SE performance, respectively.

4) Impact of the Circuit Power on the System Performance: The impact of the circuit power

on the attainable sum-EE and sum-SE is characterized in Fig. 7. For illustration purpose, the

y-axis is shown by 10log10EEsum. As expected, the sum-EE achieved by all the algorithms

decreases with the increase of the circuit power due to the increased power consumption and

finally converges to almost the same value. On the other hand, the corresponding sum-SE of the

ADEE algorithm and the DBFEE algorithm monotonically increases with the increase of circuit

power and finally converges to the sum-rate achieved by the ADRM algorithm. This indicates

that more circuit power will encourage each link to use more power to achieve a higher SE,

which shows the trend in Theorem 4 also holds in the more general case. Note that the similar

trend has been observed for the MIMO interference channel in [15]. It is interesting to find that

the sum-EE gain provided by the TLEE algorithm over the ADEE algorithm is small and fixed

during the overall circuit power consumption regime.

5) Impact of number of links on the System Performance: Finally in Fig. 8, we investigate the

impact of increasing the number of links on the sum-EE and sum-SE performance of different

algorithms. It can be seen from this figure that the sum-EE of the ADEE algorithm decreases with

the increase of the number of the links. The reason is that when the number of links increases, the

interference power received at the receivers increases. To compensate for this negative effects,

each transmitter will increase its transmit power. However, this slightly improves the sum-SE

but significantly reduces the sum-EE. To improve the performance of our algorithm for this

interference-limited scenario, we may combine our algorithm with some scheduling methods,

which is beyond the scope of this paper. On the other hand, by increasing the number of links,

the sum-EE performance of the DBFEE algorithm gradually increases. This can be explained as
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follows: As the number of links increases, the interference power perceived at different receivers

become comparable with each other due to the law of large numbers. As a result, the system

will become symmetry, for which the DBFEE algorithm will be suitable. It can also be observed

from this figure that there is a point beyond which the DBFEE algorithm outperforms the ADEE

algorithm. However, this superiority comes at the cost of more energy consumption incurred by

the information exchange, which is not accounted for in the simulations. Finally, it is observed

that both the sum-EE and sum-SE increases with the number of links due to the multiuser

diversity.

VII. CONCLUSION

In this paper, we have considered a game theoretical formulation of the maximization of

the EE on each link, subject to the power constraints, in the MIMO interference channel.

We have provided a complete characterization of the game, by showing the existence of the

NE and deriving the sufficient conditions for the uniqueness of the NE for the case of large

enough maximum transmit power constraint. We have provided a totally asynchronous iterative

distributed algorithm, named the ADEE algorithm, to reach the NE of this game. The ADEE

algorithm has three advantages: no rigid scheduling in the updates of the players is required, the

synchronization requirement of both sequential and simultaneous algorithms can be removed and

information exchange among the players is not necessary, which make the proposed algorithm

appealing to implement in practice. Furthermore, the sufficient conditions guaranteeing the

convergence of the algorithm have been provided. Interestingly, our sufficient condition does

not depend on the scheduling of the links. Extensive simulation results have shown that the

ADEE algorithm performs better than the DBFEE and ADRM algorithms in terms of the sum-EE

performance, and is comparable to the ADRM algorithm in terms of the sum-SE performance.

APPENDIX A

PROOF OF LEMMA 1

Before proving Lemma 1, the following definition is given.

Definition 2 [48]: A real-valued differentiable function f(X) : X ∈ SM×M+ , is (strictly)

quasiconcave on SM×M+ if its sublevel sets Sα = {X ∈ SM×M+ |f(X) ≥ α}, for α ∈ R, are

(strictly) convex. �
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For simplicity, we omit the dependency of EEk(Qk,Q−k) and Ck(Qk,Q−k) on Q−k. Define

two functions f1(Qk) = Ck(Qk) and f2(Qk) = tr(Qk)+PC, and define f(Qk)
∆
= EEk(Qk) =

f1(Qk)
f2(Qk)

.

Now, we give the proof of the lemma. Since f2(Qk) > 0, Sα is equivalent to

Sα = {Qk ∈ SM×M+ |f1(Qk)− αf2(Qk) ≥ 0}. (A.1)

Since f2(Qk) is affine in Qk, Sα is (strictly) convex for any given α if f1(Qk) is (strictly)

concave in Qk. In the following, we will prove f1(Qk) is concave w.r.t. Qk for any channel

matrix Hk,k and is strictly concave w.r.t. Qk if Hk,k is full column rank.

To this end, we adopt the technique in [24]. We consider the convex combination of two

different feasible Xk ∈ Wk and Zk ∈ Wk, which is

Qk = tZk + (1− t)Xk = Xk + tYk, (A.2)

where 0 ≤ t ≤ 1, and Yk = Zk − Xk, which is a non-zero Hermitian matrix. Obviously,

Qk ∈ Wk. Then f1(Qk) is (strictly) concave w.r.t. Qk if and only if (d2/dt2)f1(Qk) ≤ 0

((d2/dt2)f1(Qk) < 0) for any feasible Xk and Zk. Denote Ak = HH
k,kR

−1
k Hk,k, the second

derivative of f1(Qk) w.r.t. t can be calculated as
d2f1(Qk)

dt2
= − 1

ln 2
tr
(
AkYk(I + AkQk)

−1AkYk(I + AkQk)
−1) . (A.3)

Since (I + AkQk)
−1 ∈ SM×M++ , it is possible to write (I + AkQk)

−1 = DkD
H
k with DH

k ∈ SM×M++ .

Then, it is seen that
d2f1(Qk)

dt2
= − 1

ln 2
tr
((

DH
k AkYkDk

) (
DH
k AkYkDk

))
≤ 0. (A.4)

Furthermore, when Hk,k is a full column-rank matrix, AkYk is always non-zero since Yk is a

non-zero matrix. Then (d2/dt2)f1(Qk) < 0 always holds. Hence, the proof is completed.

APPENDIX B

PROOF OF THEOREM 1

We prove the existence of NE for game G using the following well-known game theory result.

Lemma 5 [49] : The strategic noncooperative game G =
{

ΨK , {Wk}k∈ΨK
, {Uk}k∈ΨK

}
admits

at least one NE if, for all k ∈ ΨK :1) the set Wk is a nonempty compact convex subset of a

Euclidean space, and 2) the payoff function Uk is quasiconcave on Wk. �

It can be easily verified that game G satisfies the two conditions required by Lemma 5

according to Lemma 1 and the convexity of the admissible power set.
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APPENDIX C

PROOF OF THEOREM 2

Before proving Theorem 2, we provide three lemmas [38] that will be used in our derivations.

Lemma 6: Given matrices A ∈ Cm×n,B ∈ Cn×l, the relation ‖AB‖2 ≤ ‖A‖2‖B‖2 holds.�

Lemma 7: If A,B ∈ Sn×n++ , then we have ρ(AB) ≤ ρ(A)ρ(B). �

Lemma 8: Given matrix A ∈ Cn×n with eigenvalues {λi, i = 1, · · · , n} and eigenvectors

{xi, i = 1, · · · , n}, and matrix B ∈ Cm×m with eigenvalues {µi, i = 1, · · · , n} and eigenvectors

{yi, i = 1, · · · , n}, the eigenvalues of A ⊗ B are given by {λiµj, i = 1, · · · , n; j = 1, · · · ,m}

and the corresponding eigenvectors are given by xi ⊗ yj, i = 1, · · · , n; j = 1, · · · ,m. �

Based on the above results, we now proceed to prove Theorem 2. Our main idea lies in

showing that under condition (18), condition (12) in Lemma 3 will hold. To this end, we will

employ the mean-value theorem for complex matrix-valued functions stated in [31]. That is, for

any two different points Q
(1)
−k and Q

(2)
−k, there exists some t ∈ (0, 1) such that∥∥∥Fk(Q

(1)
−k)−Fk(Q

(2)
−k)
∥∥∥
F
≤
∥∥DQ−k

Fk(∆)
∥∥

2

∥∥∥Q(1)
−k−Q

(2)
−k

∥∥∥
F
, (C.1)

where ∆ = tQ
(1)
−k + (1 − t)Q

(2)
−k and DQ−k

Fk(∆) represents the Jacobian matrix of function

Fk(Q−k) w.r.t. Q−k, evaluated at Q−k = ∆ [39].

Let DRk
Fk(∆) be the Jacobian matrix of function Fk(Q−k) w.r.t. Rk, evaluated at Rk =

Rk(∆). Let DQ−k
Rk(∆) be the Jacobian matrix of function Rk(Q−k) w.r.t. Q−k, evaluated at

Q−k = ∆. Then, we have:∥∥∥Fk(Q
(1)
−k)− Fk(Q

(2)
−k)
∥∥∥
F
≤
∥∥DRk

Fk(∆) ·DQ−k
Rk(∆)

∥∥
2

∥∥∥Q(1)
−k −Q

(2)
−k

∥∥∥
F

(C.2)

≤‖DRk
Fk(∆)‖2

∥∥DQ−k
Rk(∆)

∥∥
2

∥∥∥Q(1)
−k −Q

(2)
−k

∥∥∥
F
, (C.3)

where (C.2) follows from the chain rule and (C.3) follows from Lemma 6.

Our goal is to obtain the upper bound of ‖DRk
Fk(∆)‖2

∥∥DQ−k
Rk(∆)

∥∥
2
. If this upper bound

is less than
√

1/(K − 1), then Condition (12) is satisfied. In the following, we derive the upper

bounds of ‖DRk
Fk(∆)‖2 and

∥∥DQ−k
Rk(∆)

∥∥
2
, respectively.

A. The upper bound of
∥∥DQ−k

Rk(∆)
∥∥

2

To derive the upper bound of
∥∥DQ−k

Rk(∆)
∥∥

2
, we should obtain the expression of DQ−k

Rk(∆).

To this end, the expression of the Jacobian matrix DQ−k
Rk, which is a function of Q−k, should

be obtained firstly. Then DQ−k
Rk(∆) can be obtained by inserting Q−k = ∆ into DQ−k

Rk.
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The Jacobian matrix DQ−k
Rk can be computed using the three-step procedure in [39]. Specif-

ically, we compute firstly the differential of Rk and then the Jacobian matrix. Function Rk is

differentiable at Q−k, with differential given by dRk =
∑
j 6=k

Hj,kdQjH
H
j,k. By vectorizing dRk

and using the equality vec(ABC) = (CT ⊗A)vec(B) [38], we obtain

dvecRk=
[
H∗1,k⊗H1,k,· · · ,H∗k−1,k⊗Hk−1,k,H

∗
k+1,k⊗Hk+1,k,· · · ,H∗K,k ⊗HK,k

]
dvec(Q−k).

(C.4)

Using the identification rule in [39], we can obtain DQ−k
Rk given in (17) in Theorem 2. Note

that DQ−k
Rk does not depend on Q−k. Hence, we have DQ−k

Rk(∆) = DQ−k
Rk.

B. The upper bound of ‖DRk
Fk(∆)‖2

Similarly, to obtain the upper bound of ‖DRk
Fk(∆)‖2, we should obtain the expression of

DRk
Fk, which is a function of Q−k. Then the expression of DRk

Fk(∆) can be obtained by

inserting Q−k = ∆ into it.

According to Lemma 1, the EE function EEk(Qk) is strictly quasiconcave on SM×M+ since

Hk,k is assumed to be full column rank. Also, the maximum transmit power is assumed to be

very large. Then, for given Q−k (and thus Rk), the gradient of EEk(Qk) w.r.t. Qk, evaluated

at Qk=Fk, must be zero [50]. Thus, using ∂ |BXC|/∂X = |BXC|
[
C(BXC)−1B

]T
[51], we

have

G(Rk,Fk)
∆
=HH

k,k(Rk + Hk,kFkH
H
k,k)
−1Hk,k−αkI=0. (C.5)

where αk = Ck(Qk,Q−k)/(Pk + PC). Since function EEk(Qk) is strictly quasiconcave in Qk

for given Rk, there exists a unique globally optimal solution Fk that satisfies (C.5) [50]. Hence,

equation (C.5) defines an implicit function [52]. Taking the derivative of (C.5) w.r.t. Rk and

using the chain rule, we have 4

DRk
G + DFk

G ·DRk
Fk = 0. (C.6)

Now we first obtain the Jacobian matrices DRk
G and DFk

G, then DRk
Fk can be solved from

(C.6). We again use the three-step procedure in [39] to compute DRk
G and DFk

G. Function

G is differentiable w.r.t. both Rk and Fk, with the differential given by

dG = −HH
k,kJkdRkJkHk,k −HH

k,kJkHk,kdFkH
H
k,kJkHk,k. (C.7)

4For simplicity, the dependency of function G(Rk,Fk) on both Rk and Fk is omitted.
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where Jk =
(
Rk + Hk,kFkH

H
k,k

)−1 and we used dX−1 = −X−1dXX−1 [39]. Then by vec-

torizing both sides of (C.7) and using the identification rule in [39], we can obtain the Ja-

cobian matrices DRk
G = −Uk and DFk

G = −Vk , with Uk = HT
k,kJ

T
k ⊗ HH

k,kJk and

Vk = HT
k,kJ

T
kH∗k,k⊗HH

k,kJkHk,k. Note that Vk is a Hermitian matrix. Since the channel matrix

Hk,k is assumed to be full column rank and Jk is nonsingular, HH
k,kJkHk,k is nonsingular. Then

Vk is also nonsingular. This is because [51]

(A⊗B)−1 = A−1 ⊗B−1, for all nonsingular A,B. (C.8)

Hence, DRk
Fk can be solved from (C.6):

DRk
Fk = −V−1

k Uk. (C.9)

Thus, DRk
Fk(∆) can be obtained by inserting Q−k = ∆ into (C.9):

DRk
Fk(∆) = −V−1

k (∆)Uk(∆). (C.10)

Then, we have

‖DRk
Fk(∆)‖2

2 = ρ(UH
k (∆)V−2

k (∆)Uk(∆)) ≤ ρ(V−2
k (∆))ρ(Uk(∆)UH

k (∆)), (C.11)

where the inequality follows from Lemma 7. We now aim to obtain the upper bound of ρ(V−2
k (∆))

and ρ(Uk(∆)UH
k (∆)), respectively.

1) The upper bound of ρ(V−2
k (∆)): The upper bound of ρ(V−2

k (∆)) can be obtained as

follows:

ρ(V−2
k (∆)) (C.12)

= ρ
((

HT
k,kJ

T
k (∆)H∗k,k ⊗HH

k,kJk(∆)Hk,k

)−2
)

(C.13)

= ρ
((

HT
k,kJ

T
k (∆)H∗k,k

)−2 ⊗
(
HH
k,kJk(∆)Hk,k

)−2
)

(C.14)

=
(
ρ
((

HH
k,kJk(∆)Hk,k

)−2
))2

(C.15)

=
(
λmin

(
HH
k,kJk(∆)Hk,k

))−4
(C.16)

≤

λmin

HH
k,k

(
I + PT

K∑
i=1

Hi,kH
H
i,k

)−1

Hk,k

−4

(C.17)

where Jk(∆) is obtained by inserting Q−k = ∆ into Jk, (C.14) follows from (C.8) and the

equality (A⊗B) (C⊗D) = AC ⊗ BD [51], (C.15) follows from Lemma 8, (C.16) results
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from the fact that HH
k Jk(∆)Hk ∈ SM×M++ , the last inequality results from λmin(AHBA) ≥

λmin(AHCA) for all B � C � 0 and the following relations

Jk =

(
I +

∑
i 6=k

Hi,k∆HH
i,k + Hk,kFk(∆)HH

k,k

)−1

(C.18)

�

(
I + tr (Fk(∆)) Hk,kH

H
k,k +

∑
i 6=k

tr (∆) Hi,kH
H
i,k

)−1

(C.19)

�

(
I + PT

K∑
i=1

Hi,kH
H
i,k

)−1

. (C.20)

2) The upper bound of ρ(Uk(∆)UH
k (∆)): The upper bound of ρ(Uk(∆)UH

k (∆)) can be

obtained as follows:

ρ(Uk(∆)UH
k (∆)) = ρ

((
HT
k,kJ

T
k (∆))⊗HH

k,kJk(∆))
)(

J∗k(∆))H∗k,k ⊗ JHk (∆))Hk,k

))
(C.21)

= ρ
(
HT
k,kJ

T
k (∆)J∗k(∆)H∗k,k ⊗HH

k,kJk(∆)JHk (∆)Hk,k

)
(C.22)

=
(
ρ
(
HH
k,kJ

2
k(∆)Hk,k

))2
(C.23)

≤
(
ρ
(
HH
k,kHk,k

))2
(C.24)

where in (C.22) we use (A⊗B) (C⊗D) = AC⊗BD [51] , (C.23) follows from Lemma 8,

and (C.24) follows from Jk(∆) � I.

Combining (C.11) with (C.17) and (C.24), we obtain

‖DRk
Fk(∆)‖2 ≤

ρ(HH
k,kHk,k)(

λmin

(
HH
k,kTkHk,k

))2 (C.25)

Finally, by combining (C.3) with (17) and (C.25), we have∥∥∥Fk(Q
(1)
−k)− Fk(Q

(2)
−k)
∥∥∥
F
≤ αk

∥∥∥Q(1)
−k −Q

(2)
−k

∥∥∥
F

(C.26)

where αk is given in (16). Hence, if condition (18) is satisfied, condition (12) in Lemma 3 holds,

which completes the proof.

APPENDIX D

PROOF OF THEOREM 3

Before proving the theorem, we introduce some basic definitions that will be used in our

derivations. Given the multiuser mapping F(Q) defined in (9), we introduce the following block-
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maximum norm on CKM×KM , defined as [53]

‖F(Q)‖F,block

∆
= max

k∈ΨK

‖Fk(Q−k)‖F . (D.1)

Let ‖·‖∞,vec be the vector maximum norm, defined as [38]

‖x‖∞,vec

∆
= max

k∈ΨK

|xk|,x ∈ RK , (D.2)

and let ‖·‖∞,mat denote the matrix norm induced by ‖·‖∞,vec, given by [38]:

‖A‖∞,mat

∆
= max

k

K∑
r=1

|[A]k,r|,A ∈ RK×K . (D.3)

Finally, we introduce the nonnegative matrix B ∈ RK×K
+ defined as

[B]k,r
∆
=

 α2
k, if k 6= r,

0, otherwise.
(D.4)

Define αmax
∆
= max

k∈ΨK

α2
k and β ∆

= (K − 1)αmax < 1, then ‖B‖∞,mat can be easily computed as

‖B‖∞,mat = β. (D.5)

Based on the above results, we then give the contraction property of the multiuser mapping

function in the following lemma, which will be used in the proof of the theorem.

Lemma 9: If the uniqueness condition in (18) in Theorem 2 is satisfied, then the multiuser

mapping function F(Q) defined in (9) is Lipschitz continuous on W:∥∥F(Q(1))− F(Q(2))
∥∥
F,block

≤
√
β
∥∥Q(1) −Q(2)

∥∥
F,block

(D.6)

∀Q(1),Q(2) ∈ W , where ‖·‖F,block is defined in (D.1). Furthermore, the mapping is a block-

contraction with modulus
√
β < 1.

Proof: Given Q(1) = (Q
(1)
1 , · · · ,Q(1)

K ) ∈ W and Q(2) = (Q
(2)
1 , · · · ,Q(2)

K ) ∈ W , define, for

each k ∈ ΨK , eFk

∆
=
∥∥∥Fk(Q

(1)
−k)− Fk(Q

(2)
−k)
∥∥∥2

F
and ek

∆
=
∥∥∥Q(1)

k −Q
(2)
k

∥∥∥2

F
. Then we have

eFk
=
∥∥∥Fk(Q

(1)
−k)−Fk(Q

(2)
−k)
∥∥∥2

F
≤α2

k

∥∥∥Q(1)
−k−Q

(2)
−k

∥∥∥
F

=
∑
j 6=k

[B]k,j

∥∥∥Q(1)
j −Q

(2)
j

∥∥∥2

F
=
∑
j 6=k

[B]k,jej(D.7)

∀Q(1),Q(2) ∈ W and ∀k ∈ ΨK .

Introducing the vectors eF
∆
= [eF1 , · · · , eFK

]T , and e
∆
= [e1, · · · , eK ]T , the set of inequalities

in (D.7) can be rewritten as:

0 ≤ eF ≤ Be,∀Q(1),Q(2) ∈ W . (D.8)
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Then we have [53]

‖eF‖∞,vec ≤ ‖Be‖∞,vec ≤ ‖B‖∞,mat‖e‖∞,vec = β‖e‖∞,vec (D.9)

where ‖‖∞,vec and ‖‖∞,mat are defined in (D.2) and (D.3), respectively, and the last equality

follows from (D.5).

Finally, using (D.9) and (D.1), one obtains∥∥F(Q(1))− F(Q(2))
∥∥2

F,block
= ‖eF‖∞,vec ≤ β

∥∥Q(1) −Q(2)
∥∥2

F,block
(D.10)

∀Q(1),Q(2) ∈ W . Hence, the lemma follows. �

Interestingly, we find that if condition (18) in Theorem 2 is satisfied, the multiuser mapping

function F(Q) is not only a block-contraction for the Frobenius norm as shown in Lemma 2

but also block-maximum norm as shown in Lemma 9.

The remaining task is to show that, under condition (18) in Theorem 2, conditions of the

asynchronous convergence theorem in Prop.2.1 of [40] on page 431 are satisfied. Based on the

above lemma, the proof can be done in a similar fashion to the proof for the rate maximization

game in [31] . For this reason, the details are omitted for simplicity.

APPENDIX E

PROOF OF THEOREM 4

Since the links are located far away, the interference among the links is negligible so that the

covariance matrix of each link k (i.e., Rk) can be regarded as an identity matrix I. Hence, the

SE function of links k reduces to

Ck(Pk) = max
tr(Qk)=Pk

log2

∣∣I + HH
k,kHk,kQk

∣∣ . (E.1)

Obviously, the optimal solution of Qk is Q∗k = ŨkPkŨ
H
k , where Ũk is the eigenvector matrix

of HH
k,kHk,k, and Pk is nonnegative matrix with Pk = diag{pk,1, · · · , pk,rk}, which is the power

allocation over the streams. By inserting Q∗k into (E.1), the SE function can be equivalently

obtained as
Ck(Pk) = max

{pk,m}

rk∑
m=1

log2(1 + dk,mpk,m)

s.t.
rk∑
m=1

pk,m ≤ Pk, pk,m ≥ 0.
(E.2)
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The solution to the above problem can be easily solved as pk,m = (µk − d−1
k,m)+,m ∈ {1, 2, · · · , rk},

where µk is the water-level chosen to satisfy
rk∑
m=1

pk,m = Pk, and dk,m’s are the eigenvalues of

HH
k,kHk,k, which are arranged in decreasing order.

Define gl = ld−1
k,l −

l∑
m=1

d−1
k,m and grk+1 = ∞. Obviously, g1 = 0. Then, the SE function can

be rewritten as

Ck (Pk) =
l∑

m=1

log2

(
dk,m
l

(
Pk +

l∑
m=1

d−1
k,m

))
, Pk ∈ [gl, gl+1] , l = 1, · · · , rk. (E.3)

Note that l represents the number of streams that are allocated with positive power allocation.

Based on the above analysis, we now provide the properties of the SE function in the following

lemma.

Lemma 10: The SE function Ck(Pk) is a continuous, strictly increasing, differential and strictly

concave function of Pk. Moreover, the first derivative of function Ck(Pk) (denoted as Ck ′(Pk))

is a continuous function of Pk. Also, the SE function Ck(Pk) is twice differentiable in each

interval of the subregions [gl, gl+1] , l = 1, · · · , rk, which is given by

C ′′k (Pk) = − l

ln 2

(
Pk +

l∑
m=1

d−1
k,m

)−2

< 0, Pk ∈ (gl, gl+1), l = 1, · · · , rk. (E.4)

Proof: Obviously, in each interval of the subregions, the SE function Ck(Pk) is a continuous,

strictly increasing, differential and concave function of Pk. We only need to verify the boundary

points. For the boundary points, we have

lim
Pk→g−l+1

Ck(Pk) =
l∑

m=1

log2

(
dk,m
dk,l+1

)
= lim

Pk→g+l+1

Ck(Pk), (E.5)

lim
Pk→g−l+1

Ck
′(Pk) =

dk,l+1

ln 2
= lim

Pk→g+l+1

Ck
′(Pk) > 0. (E.6)

Equation (E.5) means that the SE function Ck(Pk) is a continuous function and equation (E.6)

means that the SE function is a strictly increasing and differential function.

Unfortunately, the SE function is not twice differentiable since

lim
Pk→g−l+1

Ck
′′(Pk) = − 1

ln 2

d2
k,l+1

l
6= − 1

ln 2

d2
k,l+1

l + 1
= lim

Pk→g+l+1

Ck
′′(Pk). (E.7)

Hence, the concavity of the SE function cannot be proved by using the above method. To

overcome this issue, we use the duality theory to prove the concavity of the SE function.

Specifically, for a given Pk, the SE function Ck(Pk) can be obtained by solving problem (E.2),
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which is a strictly convex optimization problem. It can also be verified that the constraints in

problem (E.2) satisfy the Slater’s condition. Hence, the duality gap for this problem is zero.

Thus, the SE function can also be obtained by solving the following min-max problem

Ck(Pk) = min
µ≥0

max
pk,m≥0,∀m

rk∑
m=1

log2(1 + dk,mpk,m)− µ(

rk∑
m=1

pk,m − Pk) (E.8)

= min
µ≥0

rk∑
m=1

[
log2

(
dk,m
µln 2

)]+

−
rk∑
m=1

[
1

ln 2
− µ

dk,m

]+

+ µPk (E.9)

=

rk∑
m=1

[
log2

(
dk,m

µ(Pk)ln 2

)]+

−
rk∑
m=1

[
1

ln 2
− µ(Pk)

dk,m

]+

+ µ(Pk)Pk, (E.10)

where µ(Pk) ≥ 0 denotes the optimal value for given Pk, which is unique due to the fact that

problem (E.3) is a strictly convex problem.

For any two points P
(1)
k , P

(2)
k , define P

(3)
k = θP

(1)
k + (1 − θ)P

(2)
k , where θ ∈ (0, 1). Let

µ(P
(1)
k ), µ(P

(2)
k ) and µ(P

(3)
k ) be the optimal µ for Ck(P

(1)
k ), Ck(P

(2)
k ) and Ck(P

(3)
k ), respectively.

Then, for i = 1, 2, we have

Ck(P
i
k) =

rk∑
m=1

[
log2

(
dk,m

µ(P i
k)ln 2

)]+

−
rk∑
m=1

[
1

ln 2
− µ(P i

k)

dk,m

]+

+ µ(P i
k)P

i
k (E.11)

<

rk∑
m=1

[
log2

(
dk,m

µ(P 3
k )ln 2

)]+

−
rk∑
m=1

[
1

ln 2
− µ(P 3

k )

dk,m

]+

+ µ(P 3
k )P i

k, (E.12)

where the strict inequality follows due to the facts that µ(P 3
k ) is not the optimal solution to

problem (E.9) for given P i
k, i = 1, 2, and problem (E.2) has a unique global solution since it is

a strictly convex optimization problem [48]. By using the above inequality, we have

θCk(P
1
k ) + (1− θ)Ck(P 2

k ) < Ck(P
3
k ) = Ck(θP

1
k + (1− θ)P 2

k ). (E.13)

Hence, the SE function is also a strictly concave function of Pk. Obviously, the SE function

Ck(Pk) is twice differentiable in each interval of the subregions [gl, gl+1] , l = 1, · · · , rk and the

second-order derivative of Ck(Pk) w.r.t. Pk can be easily calculated in (E.4). �

We now proceed to prove the first part of Theorem 4: the corresponding SE increases with

the circuit power consumption. The EE function can be rewritten as

EEk =
Ck(Pk)

Pk + PC

. (E.14)

According to Lemma 10, Ck(Pk) is a strictly concave function of Pk. Moreover, the denominator

of the EE function is affine in Pk. Hence, EEk is strictly quasiconcave in Pk [48]. Then, the
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optimal solution of Pk (denoted as P ?
k ) to maximize the EE function is unique [54] and should

satisfy the first order condition [48]: C ′k(P ?
k )(P ?

k + PC)− Ck(P ?
k ) = 0, which is equivalent to

Ck(P
?
k )− P ?

kC
′
k(P

?
k )

C ′k(P ?
k )

= PC. (E.15)

Our task is to analyze the monotonicity of P ?
k w.r.t. PC. If P ?

k is strictly monotonically increasing

w.r.t. PC, the corresponding SE is monotonically increasing w.r.t. PC as well since the SE

is increasing in Pk based on Lemma 10. However, directly proving the monotonicity of P ?
k

w.r.t. PC is difficult. Instead, if the following two conditions hold: 1) PC is a continuous

function of P ?
k ; 2) there is a one-to-one mapping relation between P ?

k and PC, this proof can

be equivalently transformed into the opposite side [55]: PC is strictly monotonically increasing

w.r.t. P ?
k . Obviously, PC is a continuous function of P ?

k since both Ck(P
?
k ) and C ′k(P

?
k ) are

continuous function of P ?
k according to Lemma 10. The one-to-one mapping relation between

P ?
k and PC is also obvious: For given PC, there is a unique P ?

k satisfying (E.15) since EEk is

strictly quasiconcave in Pk [54]; for given P ?
k , the unique PC can be calculated from the left

hand side of (E.15).

The remaining task is to prove that PC is strictly increasing with P ?
k . Define the left hand side

of (E.15) as f(P ?
k ). Function f(P ?

k ) is obviously differentiable in each interval of the subregions,

i.e., [gl, gl+1] , l = 1, · · · , rk, which can be calculated as

f ′(P ∗k ) = −C ′′k(P ∗k )Ck(P
∗
k )(Ck

′(P ∗k ))
−2
> 0, Pk ∈ (gl, gl+1), l = 1, · · · , rk. (E.16)

where the inequality follows from the facts that Ck(P ∗k ) is positive and C ′′k(P
∗
k ) is negative

according to (E.4) in Lemma 10. Combining with the fact that f(P ?
k ) is a continuous function

of P ?
k , we conclude that function f(P ?

k ) is a strictly increasing function w.r.t. P ?
k and the proof

for the first part of Theorem 4 completes.

Finally, we prove the last part of Theorem 4: the EE decreases with the circuit power

consumption. Supposing P (1)
C > P

(2)
C , define P (1)

k and P (2)
k respectively as the optimal solutions

for given P (1)
C and P (2)

C . Then, we have

EEk(P
(1)
C ) =

Ck(P
(1)
k )

P
(1)
k + P

(1)
C

<
Ck(P

(1)
k )

P
(1)
k + P

(2)
C

<
Ck(P

(2)
k )

P
(2)
k + P

(2)
C

= EEk(P
(2)
C ), (E.17)

where the second inequality follows from the assumption that P (2)
k is the optimal solution for

given P (2)
C . From the above inequalities, we know that the EE decreases with PC.
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