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Wideband Spectrum Sensing

by Model Order Selection
Andrea Mariani, Member, IEEE, Andrea Giorgetti, Senior Member, IEEE, and Marco Chiani, Fellow, IEEE

Abstract—Spectrum sensing is an essential functionality in
cognitive radio (CR) systems allowing to discover spectrum
opportunities and enabling primary user (PU) protection. Wide-
band spectrum sensing (WS) improves the awareness of the
surrounding radio environment by jointly monitoring multiple
frequency bands. In this paper we propose a WS approach based
on the observation of a frequency domain representation of the
received signal and the adoption of model order selection (MOS)
to identify the occupied frequency components. We provide a
general formulation of the problem valid for any kind of spectral
representation and then focus on the case in which discrete
Fourier transform (DFT) is used. This choice is motivated by
the fact that DFT blocks are available in many wireless systems,
such as OFDM receivers and recently proposed software radio
architectures. We provide analytical expressions for the maxi-
mum probability of correct selection of the occupied sub-bands
valid for MOS approaches encompassed within the generalized
information criterion (GIC). We then propose a method for
designing the selection algorithm to balance overestimation and
underestimation. Numerical results show that the MOS scheme
derived for DFT can be successfully applied also when more
accurate frequency representations, such as the multitaper (MT)
spectrum estimation, are adopted.

Index Terms—Cognitive radio, generalized information crite-

rion, information theoretic criteria, misspecified statistical model,

model order selection, wideband spectrum sensing.

I. INTRODUCTION

THE proliferation of wireless services is expected to

increase the demand for radio spectrum resources in the

near future [1]. To satisfy this request cognitive radio (CR)

technologies have been proposed for a more flexible use of

frequency bands allowing secondary users (SUs) to exploit

portions of spectrum that are temporarily or locally unused

[2]. The first functionality of a CR system is to observe

the environment to find communication opportunities - often

called white spaces or spectrum holes - through spectrum

sensing. Most of the spectrum sensing techniques proposed

in literature have been devised to assess the occupancy of

a single frequency band [2], [3]. For example, the most

common sensing technique is energy detection, in which the

received energy is compared to a decision threshold properly
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set according to different criteria [4]. A better knowledge of

the radio environment can be reached by wideband spectrum

sensing (WS), that consists in a joint observation of multiple

frequency sub-bands and joint decision on the occupancy in

each sub-band. Wideband sensing can be also useful for RF

monitoring to ensure coexistence in heterogeneous scenarios

such as ISM bands and professional mobile radio (PMR)

evolution [5].

Wideband sensing is typically based on the adoption of a

frequency domain representation of the received signal and the

computation of some metrics to evaluate the occupancy state

of each sub-band [6]. In CR contexts non parametric spectrum

estimation techniques are the most suitable because they do

not require any assumption on the received signal. This class

of techniques comprehends the classical estimators, based on

the periodogram, as well as more advanced approaches, such

as the multitaper (MT) method [7]–[9].

The application of WS is primarily related to hardware

front-end requirements, such as the linearity of analog compo-

nents and analog to digital converters (ADCs) characteristics

[10]–[12]. To get around such constraints some approaches

are based on sequential sensing on multiple bands, fre-

quency sweeping or filter-banks [13]–[16]. To reduce hardware

complexity reception schemes that use sampling frequencies

lower than the Nyquist rate have been proposed [17]. In this

context, two relevant classes of WS approaches are based

on compressive sensing [18], and multichannel sub-Nyquist

sampling [19], [20]. These strategies are effective in situations

in which the primary user (PU) signal occupancy is sparse in

the frequency domain [18], [21]. In [22], [23] WS has been

formalized as a generalized likelihood ratio (GLR) detector

assuming the presence of a given amount of unoccupied

spectrum. Standard information theoretic criteria (ITC) have

been adopted in [24], [25] where an energy detector (ED) in

each sub-band is used.

In this paper we propose a WS approach based on the obser-

vation of a frequency domain representation of the received

signal and the adoption of model order selection (MOS) to

identify the occupied frequency components. We provide, in

particular, the following contributions.

• We formulate WS as a MOS problem in which the order

of the model is the number of occupied frequency com-

ponents. We provide a general formulation valid for any

kind of spectral representation and then focus on the case

in which discrete Fourier transform (DFT) is used. This

choice is motivated by the simplicity of the approach and

the fact that often DFT blocks are already implemented in

common systems such as orthogonal frequency-division
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Fig. 1. Block diagram of the WS scheme proposed.

multiplexing (OFDM) receivers and recently proposed

software defined radio (SDR) architectures [6], [26]–[28].

• We propose a design strategy for the generalized in-

formation criterion (GIC) which aims at minimizing

underestimation while keeping overestimation probability

below a target level.

• We provide tight analytical approximations of the max-

imum probability of overestimation, which are used for

implementing the proposed design strategy.

• We prove that the MOS scheme derived for the DFT

exhibits excellent performance also when weighted over-

lapped segment averaging (WOSA) and MT spectral

estimates are adopted. This ensures a wide applicability

of the proposed method.

• The WS scheme provides an estimate of the noise power

floor which can be useful for flexible radio operations

[6].

Most of the sensing algorithms proposed in literature are based

on the comparison of a detection metric to a threshold, which

setting is a difficult task in practice due to the dependence on

unknown parameters. In particular, considering energy based

techniques, including frequency domain analysis, the threshold

setting depends on the noise power, which must be properly

estimated [4]. The WS technique proposed, instead, is blind

since it does not require neither noise power knowledge nor

any a-priori information about the number and the character-

istics of the signals present. With respect to the previously

proposed WS schemes based on ITC [24], [25], we propose

a general framework that can be adopted with any frequency

domain representation and, considering DFT, we adopt GIC

and propose a penalty design strategy.

The performance of the proposed scheme are compared

with existing WS techniques based on the ED analyzing the

probability of correct detection of the number of occupied

frequency sub-bands and the detection probability on each

sub-band. Numerical results reveal that the proposed algorithm

remarkably outperforms ED based techniques.

The paper is organized as follows. In Section II we for-

mulate WS as a MOS problem, providing the general scheme

as well as DFT-based case. ITC are reviewed in Section III.

In Section IV we propose a design strategy for the penalty

associated with the GIC and in Section V some numerical

results are presented. Throughout the paper, boldface letters

denote matrices and vectors, X ∼ χ2
m is a central chi squared

distributed random variable (r.v.) with m degrees of freedom

(d.o.f.) and X ∼ G(κ, θ) is a gamma distributed r.v. with

shape parameter κ and scale parameter θ. We denote the

cumulative distribution function (CDF) of the r.v. X with

FX(x). Moreover, |A| and tr{A} stand, respectively, for the

determinant and the trace of the matrix A; diag{A} stands for

the vector containing the diagonal elements of A; (·)
T

and (·)
H

stand, respectively, for simple and Hermitian transposition.

II. WIDEBAND SENSING BY MODEL ORDER SELECTION

The proposed WS technique is based on the observa-

tion of N independent frequency domain vectors xi =
(x1,i, x2,i, . . . xNb,i)

T
, each with Nb frequency components,

where i ∈ {1, 2, . . . , N} denotes the observation at the ith
time instant. We assume that frequency occupancy does not

change during the N observations. The vector xi can be any

kind of frequency domain representation, such as a power

spectral density (PSD) estimate, the output of a filter bank,

a compressive sampling reconstruction of the spectrum or,

simply, the output of a Nb-points DFT. We generally refer

to the elements of xi as frequency bins. If PU signals are

present in the observed frequency band we consider that they

occupy k∗ bins, while the remaining Nb − k∗ contain only

noise. The objective of WS is to identify the k∗ occupied bins.

To accomplish this goal we formulate WS as a MOS problem

in which k∗ is the order of the model. The proposed scheme

estimates k∗ and also identifies the occupied bins, following

the approach described in the following.

Let us collect the N column vectors xi in the observation

matrix

X = (x1|x2| . . . |xN ) (1)

and let us sort all vectors xi according to the estimated

power of each bin, σ̂2
q = (1/N)

∑N
i=1 |xq,i|

2
, so that the

elements of the vector
(
σ̂2
1 , σ̂

2
2 , . . . , σ̂

2
Nb

)
are in descending

order. We denote with X̃ the ordered matrix and with x̃i

the corresponding columns. After sorting, MOS provides an

estimate of k∗, k̂, which allows to construct the vector ω̃

composed by the concatenation of k̂ ones and Nb − k̂ zeros.

Lastly, by means of reverse ordering, we obtain the occupancy

vector ω. The qth frequency bin is declared occupied if the

corresponding element in ω equals 1. This WS method is

represented by the block diagram in Fig. 1, with the ordering

phase depicted in detail in Fig. 2. In some CR scenarios, the

SUs may need to detect the presence of signals with fixed

channelization. In these situations, if each channel corresponds
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Fig. 2. Ordering phase of the MOS based WS. Ordering is based on the
average power of the elements of xi (a), providing the vector x̃i (b).

to a group of consecutive bins, the WS strategy proposed can

be modified by grouping sub-bands.

The WS strategy described above can be applied using

any frequency representation of data and any MOS approach.

For solving the selection problem in this paper we adopt

ITC, which are described in the next section. Considering the

frequency representation to be adopted, we focus on the case

in which DFT of the received signal is used. In Section (V-C2)

we also show some numerical results using WOSA and MT

spectral estimates.

A. DFT-based wideband sensing

In this subsection we describe the signal model correspond-

ing to the DFT case and derive the expression of the likelihood

of the received observation matrix X̃, which will be used for

detecting the occupied bins.

The output of the DFT at the ith observation is denoted as

the Nb length vector

xi = si + ni (2)

where ni represents the additive white Gaussian noise

(AWGN) and si is the aggregation of the PUs signals in-

cluding the channel effects. The signal-to-noise ratio (SNR)

is defined as SNR = E
{
si

H
si

}
/
(
Nb σ

2
)
, where σ2 is

the unknown noise power at each frequency bin. For many

communication signals, such as widely adopted OFDM, the

received samples in time domain can be modeled as zero mean

complex Gaussian r.v.s [29]. Thus, due to the properties of the

DFT operation, xi and x̃i are vectors of zero mean complex

Gaussian r.v.s with covariance matrices Σx = E
{
xixi

H
}

and Σ
x̃

= E
{
x̃ix̃

H
i

}
, respectively. Considering ordering

performed in the presence of perfect bin power knowledge,

if the number of frequency bins containing signals is k, Σ
x̃

is

a block diagonal matrix with two blocks, where the first one,

Σ(k), is given by the leading principal minor of order k of Σ
x̃

,

and the second is σ2
INb−k, where Ip is a p×p identity matrix.

We decompose the vector x̃i as x̃i =
(
x̃

T
(k),i, ñ

T
(k),i

)T

, where

x̃(k),i contains the first k elements of x̃i, so that the first prin-

cipal minor of Σ
x̃

can be written as Σ(k) = E

{
x̃(k),i x̃

H
(k),i

}
.

Then the likelihood function of observed frequency bins can

be written as

f
(
X̃

)
=

N∏

i=1

f(x̃i) =

N∏

i=1

1

πNb |Σ
x̃
|
exp

(
−x̃

H
i Σx̃

−1
x̃i

)

=

N∏

i=1

exp
(
−x̃

H
(k),iΣ(k)

−1
x̃(k),i

)
exp
(
− 1

σ2 ñ
H
(k),iñ(k),i

)

πNb |Σ(k)| (σ2)
Nb−k

and thus the log-likelihood can be expressed as [30]

ln f
(
X̃

)
=−NbN lnπ −N ln |Σ(k)| −N (Nb − k) lnσ2

−N tr
{
Σ(k)

−1
S(k)

}
−

N

σ2
tr
{
N(k)

}
(3)

where S(k) = (1/N)
∑N

i=1 x̃(k),i x̃
H
(k),i and N(k) =

(1/N)
∑N

i=1 ñ(k),i ñ
H
(k),i.

Considering the most general case, Σ(k) is a non diagonal

matrix in which the off-diagonal elements take into account

the correlation among the frequency bins. However, it has

been observed that a non negligible frequency correlation is

experienced only in specific situations, such as in presence

of observations with very short duration [31]. This is also

confirmed by the fact that increasing the observation time

the correlation between the DFT outputs tends to zero [32,

Section 3.7].1 Therefore, considering uncorrelated frequency

bins, Σ(k) is diagonal and the log-likelihood (3) reduces to

ln f
(
X̃;Θ(k)

)
=−NbN lnπ −N

k∑

q=1

lnσ2
q

−N (Nb − k) lnσ2

−N

k∑

q=1

σ̂2
q

σ2
q

−
N

σ2
tr
{
N(k)

}
(4)

where (σ2
1 , . . . , σ

2
k) = diag

{
Σ(k)

}
and (σ̂2

1 , . . . , σ̂
2
k) =

diag
{
S(k)

}
. In (4) we explicitly show the dependence of the

log-likelihood on Θ
(k), which is the vector that contains the

unknown parameters, whose number, φ(k), depends on k.

In our problem we have Θ
(k) =

(
σ2
1 , . . . , σ

2
k, σ

2
)
, and thus

φ(k) = k + 1.

III. INFORMATION THEORETIC CRITERIA FOR WIDEBAND

SPECTRUM SENSING

For solving the MOS problem we adopt ITC, a statistical

approach for choosing among a family of possible models

the one that better describes the observed data [33], [34].

Considering that at least one frequency bin contains only

noise, there are Nb possible models, where the kth model

corresponds to the case in which the first k ordered bins are

occupied, with k ∈ {0, . . . , Nb − 1}.2

1Also note that considering OFDM transmissions, the presence of cyclic
prefix causes uncorrelated frequency bins.

2We refer to the kth model also as the kth hypothesis.
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According to ITC, the model that better fits the observed

data is the one that minimizes the penalized likelihood metric

[34], [35]

ITC(k) = −2 ln f

(
X̃; Θ̂

(k)
)
+ P(k) (5)

where f

(
X̃; Θ̂

(k)
)

is the likelihood, Θ̂
(k)

is the vector of the

estimated parameters in the kth hypothesis, and P(k) is the

ITC penalty.3 Thus the order of the model is estimated as4

k̂ = argmin
k

ITC(k) , with k ∈ {0, 1, . . . , Nb−1} . (6)

The choice of the penalty in (5) defines the criterion adopted,

determining its performance and complexity [33]. In the next

section we review the most common techniques which have

been also adopted throughout the paper.

In the WS problem considered the unknown parameters

vector can be estimated as Θ̂
(k)

=
(
σ̂2
1 , . . . , σ̂

2
k, σ̂

2
)

where

σ̂2
q = (N)

∑N
i=1 |xi,q|

2, and

σ̂2 =
tr
{
N(k)

}

(Nb − k)
. (7)

Therefore, the log-likelihood in (5) can be expressed as

ln f

(
X̃; Θ̂

(k)
)

= −N

k∑

q=1

ln σ̂2
q −N (Nb − k) ln σ̂2 + c (8)

where c is a term that does not depend on k and thus has

no effect on the minimization in (6). Then, using (8) in (5)

and (6) the estimated number of occupied frequency bins is

represented by k̂. Also note that from (7) we obtain the noise

power estimate tr
{
N(k̂)

}
/
(
Nb − k̂

)
.

The advantage of using ITC is that they do not require any

a priori knowledge of parameters such as the noise power or

PUs characteristics. In addition, they do not require the setting

of thresholds, avoiding problems such as deriving a threshold

selection rule. The unique requirement of the proposed WS

approach is to have a model of the frequency bins statistic.

However, since that ITC can be also applied when the true

model of the observed data does not belong to the family

set considered [34], [37]–[39], in Section V we show that

the proposed WS technique is effective also when only an

approximate model of the frequency bins statistic is available.

This situation is generally referred as a MOS problem with

misspecified models [39].

A. Review of fundamental criteria

In [35] Akaike first proposed an information theoretic

criterion for statistical model selection deriving what is now

3Using the notation P(k) we emphasize that the penalty depends on k,
which is important for the minimization in (6). Note that in general P(k)
could also depend on further parameters, e.g. Nb, N , and other functions of
the observation.

4Note that ITC, defined by (5) and (6), can be considered as extensions of
the maximum likelihood (ML) principle in the form of penalized likelihoods,
where the penalty is introduced as a cost for the increased complexity of the
model, related to the presence of unknown parameters that must be estimated
[35], [36].

called the Akaike information criterion (AIC), in which the

penalty is

PAIC(k) = 2φ(k) (9)

where φ(k) is the number of free parameters in Θ
(k). Al-

though the AIC metric provides an unbiased estimate of the

Kullback-Leibler (K-L) divergence between the likelihood in

the kth hypothesis and the likelihood in the k∗ case, in

many situations it overestimates the order of the model, even

asymptotically [33], [40], [41].

Alternative ITC can be derived adopting the Bayesian

approach, which chooses the model maximizing the posterior

probability P

{
Θ

(k)
∣∣x1,x2, . . . ,xN

}
. In this context, the most

simple criterion is the Bayesian information criterion (BIC)

with penalty [42]

PBIC(k) = φ(k) lnN. (10)

For large enough samples BIC coincides with the minimum

description length (MDL) criterion, which attempts to con-

struct a model that permits the shortest description of the data

[43]. The AIC and BIC are the most popular ITC adopted in

statistical and engineering problems (see e.g. [24], [33], [41],

[44]–[47]).

Besides (9) and (10), many other ITC present a penalty in

the form

PGIC(k) = φ(k) ν (11)

where ν can be a constant (as in (9)) or a function of the

system parameters (as in (10)). We refer to this approach as

the GIC [33]. Other examples of GIC are given, e.g., in [40],

where ν = lnN + 1 is used, and in [46], where ν = 2 lnN
has been adopted.

B. MOS performance metrics

In this section we introduce the performance metrics that

will be used in Section IV for the penalty design and in

Section V for the numerical results. The performance of WS

is evaluated in terms of probability to correctly estimate k∗,

Pc = P

{
k̂ = k∗

}
, and the probability of correctly identifying

the set of occupied frequency bins, Pid. The error probabili-

ties are evaluated in terms of probability of overestimation,

Pover = P

{
k̂ > k∗

}
, and probability of underestimation,

Punder = P

{
k̂ < k∗

}
, which can be used to express Pc as

Pc = 1− Pover − Punder. (12)

Note that the false alarm probability, commonly adopted

in binary hypothesis testing, coincides with Pover when no

frequency bins are occupied, i.e.

PFA = Pover|k∗=0 . (13)

An additional performance metric useful in practice is the

probability of detection related to the qth bin, P
q
D.

Evaluating the MOS error performance generally requires

to take into account both underestimation and overestimation

events. This holds in particular in low SNR regions in which
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Punder and Pover are both non negligible. However, increasing

the SNR numerical results show that for finite sample sizes

Punder goes to zero, while Pover generally converges to a non

zero value. Several works in literature, such as [47] and

[48], report this behavior and in Section V we show some

simulation results that confirm it. Thus for high SNR an

incorrect detection always consists in an overestimation, and

the probability of correct model selection can be expressed as

Pc ≃ 1− Pover (high SNR regime). (14)

Note that this is a very favorable property in CR scenarios,

implying that ITC never misdetect the presence of PUs if the

SNR is sufficiently high.

IV. DESIGN OF THE GENERALIZED INFORMATION

CRITERION

Although ITC have been widely adopted for solving MOS

problems, there are relatively few works that address the

derivation of the penalty as a design problem. Most of them

study the consistency of MOS, defining conditions under

which asymptotically, for large N , the correct model order

is selected [37], [49]. In particular, considering GIC, it has

been proved that it is required for N that goes to infinity that

ν/N → 0 to avoid underestimation and ν/ ln lnN → +∞ to

avoid overestimation [37]. However, in practice, where finite

sample sizes are used, they are not sufficient for controlling

the error probabilities.5 In this section we address the design

of GIC for finite samples problems, following the approach

proposed in [50].

A. Design strategy to control sensing performance

Considering (5) and (6), given that P(k) is an increasing

function of k, it is easy to see that for large penalties the

selection of a small model order is favored, and thus a lower

Pover is provided. However, this gives a higher Punder and thus

choosing the penalty implies a tradeoff between overestimation

and underestimation. See Section V-A for some numerical

examples. Given a target maximum overestimation probability,

PMAX
over , we choose the penalty that minimizes Punder while

guaranteeing Pover ≤ PMAX
over . Considering the overestimation-

underestimation trade-off, Punder is minimized when Pover is

maximum, and thus our sensing design strategy can be ex-

pressed as

ν̃ = argmax
ν

{
Pover| Pover ≤ PMAX

over

}
. (15)

Note that Pover is in general a function of k∗ and SNR,

which are unknown. Thus, adopting a worst case approach,

we modify the design rule (15) including the maximization

on these parameters obtaining

ν̃ = argmax
ν

max
k∗,SNR

{
Pover (k

∗,SNR, ν)| Pover ≤ PMAX
over

}

= argmax
ν

max
k∗

{
Pover (k

∗,∞, ν)| Pover ≤ PMAX
over

}
(16)

5In CR scenarios the time available for sensing is severely constrained
making the finite samples analysis crucial.

where the last form is due to the fact that Pover increases with

SNR. In the next section we study the high SNR expression

of Pover for GIC. This analysis allows to provide an explicit

form for the computation of (16).

B. Probability of overestimation

The function ITC(k) defined in (5) is in general a sum

of two monotonic functions in k. Indeed, minus two the

log-likelihood of the observation decreases with k, while the

penalty is an increasing function. In most of selection prob-

lems with nested models if the penalty is properly designed

ITC(k) is a convex function with a unique minimum, that

in case of correct model selection corresponds to k = k∗

[34]. Therefore, in order to analyze overestimation it has been

shown that in many MOS problems it is sufficient to study

which is the minimum for k = {k∗, k∗+1}, giving [47], [48],

[51], [52]

Pover ≃ P{ITC(k∗) > ITC(k∗+ 1)} (17)

where Pover is defined for k∗ ∈ {0, 1, . . . , Nb − 2}. In the

following we adopt (17) for our problem in agreement with

numerical results presented in Section V-A, that confirm the

tight approximation for high SNR.

Using (5) and (8) in (17) we obtain (18) that can be rewritten

as

Pover ≃ P

{
y (1− y)

Nb−k∗−1
< ξk∗

}
(19)

with

y =
σ̂2
k∗+1∑Nb

q=k∗+1 σ̂
2
q

(20)

and

ξk∗ =
(Nb − k∗ − 1)

Nb−k∗−1

(Nb − k∗)
Nb−k∗

exp

(
P(k∗)−P(k∗+1)

2N

)
.

(21)

The equation y (1− y)Nb−k∗−1 = ξk∗ has one single root

in [1/ (Nb − k∗) , 1], the range of y, which can be easily

computed using standard root finding algorithms. Denoting

this root with y, (18) can be expressed by the CDF of y,

Fy(·), i.e.

Pover = 1− Fy(y). (22)

In the Appendix we propose two approximations of Fy(·) for

computing Pover.

C. Penalty design for DFT-based WS

From (22) and (38) we can see that Pover is a decreasing

function of k∗ and thus the maximum probability of overes-

timation is reached for k∗ = 0. Then the penalty design (16)

reduces to

ν̃ = argmax
ν

{
Pover (0,∞, ν)| Pover ≤ PMAX

over

}
. (23)

Using (22), we have Pover (0,∞, ν) = 1 − Fy|
k∗=0

(y) and

thus the value of y that corresponds to PMAX
over is

ỹ = F−1
y|

k∗=0

(
1− PMAX

over

)
. (24)
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Pover ≃ P

{
2 ln f

(
X̃; Θ̂

(k∗+1)
)
− 2 ln f

(
X̃; Θ̂

(k∗)
)

> P(k∗ + 1)− P(k∗)

}

= P

{
ln σ̂2

k∗+1 + (Nb − k∗ − 1) ln

(∑Nb

q=k∗+2 σ̂
2
q

Nb−k∗−1

)
− (Nb − k∗) ln

(∑Nb

q=k∗+1 σ̂
2
q

Nb − k∗

)
<

P(k∗)− P(k∗ + 1)

2N

}
. (18)
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Fig. 3. Probability to correctly estimate the number of occupied frequency
bins, Pc (blue lines), and probability to detect the occupied frequency bins,
Pid (red lines with crosses), as function of the SNR for GIC. The number of
occupied bins is k∗ = 64, Nb = 128, and N = 1000.

Considering k∗ = 0, the argument of (18) is

ỹ (1− ỹ)
Nb−1

=
(Nb − 1)Nb−1

NNb

b

exp

(
PGIC(0)−PGIC(1)

2N

)

=
(Nb − 1)

Nb−1

NNb

b

exp

(
−

ν̃

2N

)
(25)

from which we finally derive the desired GIC penalty

ν̃ = −2N ln

(
Nb

Nb

(Nb − 1)Nb−1
ỹ (1− ỹ)

Nb−1

)
. (26)

Note that (23) reveals that the design approach based on

PMAX
over , thanks to (13), is equivalent to satisfy a requirement

on the probability of false alarm. Thus our design strategy

is analogous to the Neyman-Pearson criterion adopted in

binary hypothesis testing, in which Punder corresponds to the

probability of misdetection.

V. NUMERICAL RESULTS

A. Performance analysis of GIC-based WS

In this section, we show some numerical results of the

performance metrics Pc, Pid, Pover, and Punder for the proposed

DFT-based WS approach, focusing on the GIC for different

values of ν. To evaluate the performance of the algorithm, we

consider Gaussian band-limited signals with flat PSD.6

6Note that, using real signals, the number of occupied bins also depends
on sideband leakage.
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(a) Probability of overestimation

-15 -10 -5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν = 3

ν = 4

ν = 5

ν= 6

ν= 8

ν=15

P
u

n
d

er

SNR [dB]

(b) Probability of underestimation

Fig. 4. Probabilities to overestimate and underestimate the number of
occupied bins as function of the SNR for GIC. The number of occupied
bins is k∗ = 64, Nb = 128, and N = 1000. The dotted lines correspond to
Pover for high SNR computed using (22) and (37).

In Fig. 3 we consider the WS strategy proposed with

Nb = 128, in presence of a signal that occupies k∗ = 64
bins and AWGN. The number of DFT outputs collected is

N = 1000. For all criteria Pid presents a sigmoidal dependence

on the SNR, reaching a maximum value that increases with ν.

Note that the difference between Pc and Pid is small, ensuring

that generally when the algorithm correctly estimates k∗ it

also correctly identifies the occupied set as well. It is also

evident that a high ν moves the rise of Pc towards higher

SNRs. Considering the same scenario, in Fig. 4 we show the

corresponding probabilities of incorrect order selection. We

can see that for high SNR Punder goes to zero and an incorrect

detection always consists in an overestimation. Fig. 4(a) also

confirms that the maximum Pover is correctly predicted using

(22) and (37) (horizontal dotted lines).

B. Performance comparison among ITC and ED

The GIC with penalty designed as described in Sec-

tions IV-A is now compared with AIC, BIC (adopted in [24],
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Fig. 5. Probability to correctly estimate the number of occupied bins as
function of the SNR. The number of occupied bins is k∗ = 64, Nb = 128,
and N = 1000. The dashed lines correspond to the maximum Pc computed
using (14), (22) and (37).

[25]), and the consistent AIC (CAIC) with ν = 1 + lnN .

Unless otherwise specified we consider N = 1000, which

gives ν = 6.90 and 7.90 for BIC and CAIC, respectively. For

GIC the penalty is designed considering PMAX
over = 0.1, 0.05 and

0.01, which gives ν ≃ 9.88, 11.18 and 14.14, respectively.

The performance of ITC-based WS is also compared with a

detection scheme where an ED is adopted for each frequency

bin, as proposed in [22]. In this case, according to [22] and

[23], we assume that at least a known fraction of the Nb bins

contains only noise, so that the γ ·Nb bins with lower received

power are used for noise power estimation. Then, the ED

threshold is set in order to keep the overestimation probability

in the γ ·Nb noise-only bins below PMAX
over .

In the same setting of Section V-A, Fig. 5 shows the

probability Pc as a function of the SNR for ITC-based and

ED-based WS. As can be seen the high SNR performance

is always correctly predicted, confirming the efficacy of the

design strategy and the analysis proposed in Sections III-B

and IV-B. Note that maximum Pc for BIC is about 0.76, while

the AIC confirms its non consistent behavior providing almost

zero probability of correct MOS. Also note that the ED-based

approach with γ = 20%, 30%, and 40% performs quite poorly

due to the insufficient accuracy of noise power estimation7 [4].

In Fig. 6 we show Pc as function of the number of collected

DFT outputs N with k∗ = 64, Nb = 128, and SNR = 0 dB.

The curves confirm that the performance of the consistent ITC

(i.e. all except AIC) improves with N . In the same figure we

also show the theoretical values of Pc computed using (37)

(dashed lines) and (38) (dotted lines). When N is sufficiently

high (approximatively N > 25) using the gamma approxima-

tion we correctly predict the Pc obtained by simulations. The

discrepancy between theoretical and experimental curves for

small N is justified by the incorrect ordering caused by the

inaccurate estimates
{
σ̂2
q

}
, i.e., the power of the frequency

bins. Note that the simpler approximation proposed in the

7The low ED performance is also accompanied by the need to a priori
know the number of noise-only bins, which makes the approach not blind.
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Fig. 6. Probability to correctly estimate the number of occupied bins as
function of the number of observations N . The simulation has been performed
considering k∗ = 64, Nb = 128, and SNR = 0 dB. The dashed and dotted
lines correspond to Pc computed from (14) and (22) using (37) and (38),
respectively.

Appendix (dotted lines) matches the simulated curves for high

values of Pc.

The probability of correct bin selection as function of the

actual number of occupied bins k∗ is plotted in Fig. 7, where

the SNR for the single bin, SNR
(bin) = E

{
|xq,i|

2
}
/σ2, is

assumed to be constant for all i and q, and equal to −5 or 0 dB.

Also in this case we can see that the proposed GIC outperforms

AIC, BIC and CAIC. Note that for all the ITC the probability

of correct model selection increases, demonstrating that the

worst case design with k∗ = 0 provides a high performance

until some high value of k∗, beyond which Pc drops rapidly.

This is mainly related to imperfect noise power estimation

because for high k∗ the frequency bins used to estimate σ2

(see (7)) are too few. Note, however, that increasing the SNR

this effect is less evident, with a drop that moves to higher k∗

values.

In Fig. 8 we perform the same analysis of Fig. 5 in a

Rayleigh fading scenario. Here we consider time-frequency

block fading where each block size is 16 bins × 250 time

samples. With respect to the AWGN case the effect of fading

on the performance of all the algorithms (both ITC and ED

based) is to increase the SNR value at which the target

probability of correct detection is reached.

C. Case study with multiple PUs and different spectral esti-

mates

We now analyze a multiband scenario in which three

OFDM-like signals are present in the observed bandwidth.

The PSD of the three signals is depicted in Fig. 9. In the

following we denote with SNR the SNR of each of the two

lower frequency signals, while the higher frequency signal has

a SNR drop of −3 dB. In Fig. 9 we also plot the noise spectral

density for the SNR = −10 dB case, which is adopted in the

following.

1) DFT-based wideband sensing: In Fig. 10 we show

P
q
D when the wideband algorithm proposed in Section IV
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Fig. 7. Probability to correctly estimate the number of occupied bins as
function of the actual number of occupied bins k∗. The simulation has
been performed considering Nb = 128 and N = 1000. The dashed lines
correspond to the maximum Pc computed using (14), (22) and (37).

is adopted. Note that compared to other criteria the AIC

provides a high probability of detection also for out-of-band

frequencies.8 This is in accordance with the fact that, as noted

in Section III-A, AIC tends to overestimate the number of

occupied bins. We can also see that all ITC provide a high Pc

at SNR = −10 dB.

2) MOS based WS in case of misspecified models: ITC

are conceived for being statistical approaches that choose the

model that best represents data among a family of mod-

els. It is interesting therefore to analyze if they provide a

good detection performance also when the true model of

the observed signal is not in the considered model set. This

analysis is interesting for practical situations in which either

the exact statistical description of the collected data is not

known, or it is too complex to calculate the likelihood in

(5), and thus algorithms derived for simpler models can be

adopted as approximated approaches. Here we consider the

8Note that in general frequency occupancy should also consider the problem
of out-of-band emissions, such as OFDM sidelobes.
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Fig. 8. Probability to correctly estimate the number of occupied bins as
function of the SNR in Rayleigh fading. The number of occupied bins is
k∗ = 64, Nb = 128, and N = 1000. The dashed lines correspond to the
maximum Pc computed using (14), (22) and (37).
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Fig. 9. PSD of the signals in a scenario with multiple PUs as a function
of the frequency bin index, q. PSDs are normalized to 0 dB/Hz while the
higher frequency signal has a SNR drop of −3 dB. The noise PSD level for
the SNR = −10 dB case is also plotted (orange line).

case in which the spectral representation is obtained with the

WOSA [53] or the MT [7] spectrum estimates, and we apply

the WS technique derived for the DFT in Section IV.9 This

can be considered as an approximated strategy in which these

spectrum estimates, that in general are chi squared distributed,

are approximated to Gaussian r.v.s [55].10 In Fig. 11(a) and

Fig. 11(b) we can see that WOSA and MT estimates provide

very good detection performances over the DFT-based ap-

proach for low SNR levels. Then we benefit from the adoption

of better spectrum estimates (DFT has a non negligible spectral

leakage). Note that also in this case AIC presents a high

probability of detection in the noise only bands.

VI. CONCLUSIONS

In this paper we proposed a WS technique based on MOS.

We derived a general approach that can be applied to any

spectral representation and discussed in detail the case in

which DFT is used. This WS technique is completely blind

since it does not require any knowledge about the noise power

and the characteristics of the signals present in the observed

9Also note that using DFT with different windows, such as e.g. Hanning,
Kaiser, Chebychev windows, could be an alternative approach [54].

10Note that this approximation is valid when the chi squared distribution
has a high number of d.o.f..
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Fig. 11. Probability of detection for each frequency bin when 128-points
spectrum estimates based on WOSA and MT methods are adopted with N =
1000. The GIC penalty is designed for PMAX

over =0.1, and 0.05.

band. In particular, we proposed a performance analysis in the

high SNR regime which led to a tight approximation of the

probability of detecting the occupied bins for all the criteria

that can be enclosed in the GIC class. Such analysis has been

used to design the penalty that balances the trade-off between

overestimation and underestimation. Finally, we showed that

the DFT-based algorithm derived can be successfully applied

as an approximated approach in situations in which the exact

distribution of the spectral observation is unknown or too

complex, such as in the case of MT spectrum estimation.

APPENDIX

According to (22) the probability of overestimation can be

evaluated using the statistic of the parameter y defined in (20).

The high SNR regime considered in Section IV-B implies

perfect ordering, i.e., ordering performed under reliable esti-

mation of the received power in each bin,
{
σ̂2
q

}
q=1,...,Nb

. Note

that the estimation of σ̂2
q does not depend only on the SNR but

also on N . However, it is always verified that perfect ordering

is guaranteed if the SNR is sufficiently high. Therefore the last

Nb − k∗ bins in the ordered vectors are noise only bins, and

thus the distribution of y can be derived by the noise statistic.

Although deriving the exact distribution of y is a very difficult

task, the evaluation of its exact moments can be performed

as described below. Thus, an approximated distribution for

y can be derived using the method of moments [46], [56],

[57]. In the following we derive the exact moments of y
and two approximations of Fy(·) based on the maximum of

a set of Nb − k∗ independent, identically distributed (i.i.d.)

r.v.s zq = µq/t, where 2Nµq ∼ χ2
2N , t =

∑Nb−k∗

q=1 µq , and

q = {1, . . . , Nb−k∗}.

A. Moments

The joint distribution of the set of chi squared distributed

r.v.s {µq}q={1,...,Nb−k∗} is given by

(Nb − k∗)!NN(Nb−k∗)

(Γ(N))Nb−k∗

Nb−k∗∏

q=1

µN−1
q exp (−Nµq) .

Using the change of variables µq = zq · t we obtain the

distribution

(Nb − k∗)!NN(Nb−k∗)

(Γ(N))
Nb−k∗

tN(Nb−k∗)−1e−Nt

Nb−k∗∏

q=1

zN−1
q (27)

where the Jacobian of the transformation is tNb−k∗

. The

factorized form of (27) implies that t is independent from the

set {zq}q={1,...,Nb−k∗}, and thus the pth moment of µq are

given by

E
{
µp
q

}
= E

{
zpq
}
· E {tp} . (28)

Thus the moments of y can be expressed as

E {yp} = E {µ̃p
1} /E {tp} (29)

where µ̃1 = maxµq .
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The exact moments of µ̃1 are given by [58]

E {µ̃p
1} =

(Nb−k∗)Γ(p+N(Nb − k∗))

Np+Nb−k∗−1Γ(N)
Nb−k∗

× F Nb−k∗−1
A (p+N (Nb−k∗) ; N, . . . , N ;

N+1, . . . , N+1;−1, . . . ,−1) (30)

where F n
A is a Lauricella function of type A in n variables.

Given that the implementation of the Lauricella function can

be cumbersome, alternative forms for the computation of the

moments of µ̃1 are given, e.g., by the expressions proposed in

[59]. Note, however, that these forms can be computationally

quite expensive, especially for large number of d.o.f. and large

sets. Alternatively, we can numerically compute E {µ̃p
1} using

the integral representation of the moments given by [60]

E {µ̃p
1} = (Nb − k∗)

∫ 1

0

(
F−1
µq

(x)
)p

xNb−k∗−1dx (31)

where Fµq
(x) = γ(N,Nx) is the CDF of µq . Some approx-

imated methods for the computation of (31) are provided in

[61].

The moments E {tp} can be derived considering that

t is proportional to a chi squared distributed r.v. with

2N (Nb − k∗) d.o.f., and thus we have

E {tp} =
Γ(p+N (Nb − k∗))

Np Γ(N (Nb − k∗))
. (32)

Therefore the moment of y can be computed using (29),

(30) (or (31)), and (32).

B. Moment matching approach

Once the moments of y are computed using (29), we

approximate the distribution of y choosing a mathematically

tractable distribution and setting its parameters to match the

first moments. We choose to approximate y to a shifted

Gamma distributed r.v. as [57]

y + α ∼ G(κ, θ) (33)

where κ, θ and the shift α are computed as [57]

κ =
4
(
m2 −m

2
1

)3

(m3
3 − 3m1m2 − 4m3

1)
2 (34)

θ =
m

3
3 − 3m1m2 − 4m3

1

2 (m2 −m
2
1)

(35)

α =
2
(
m2 −m

2
1

)2

m
3
3 − 3m1m2 − 4m3

1

(36)

with mp = E {yp} and p = 1, 2, 3. Thus the CDF of y is

approximated as

Fy(x) ≃

{
γ
(
κ, x+α

θ

)
, x > −α

0, x ≤ −α
(37)

where γ(a, z) , 1
Γ(a)

∫ z

0 ya−1e−ydy is the incomplete gamma

function and Γ(a) ,
∫∞

0 ya−1e−ydy is the gamma function.

Note that in principle any distribution can be used for moment

matching. We consider the Gamma distribution because y is

a positive r.v., and we chose, in particular, a shifted Gamma

distribution because it ensures a better matching (involving

three moments) with respect to the conventional Gamma

distribution (where only two moments are used).

C. Approximation based on the independence assumption

An alternative approximation for Fy(x) can be derived

under the assumption that the r.v.s µq are independent, which

holds for large Nb − k∗. This is equivalent to assume that

zq are i.i.d. beta distributed r.v.s with parameters N and

N (Nb − k∗), respectively. Thus the approximated CDF can

be derived as

Fy(x) ≃ (Ix(N,N (Nb − k∗ − 1)))
Nb−k∗

(38)

where Ix(a, b) =
1

B(a,b)

∫ x

0 za−1(1−z)b−1dz is the incomplete

beta function and B(a, b) = Γ(a) Γ(b) /Γ(a+ b) is the beta

function with integer parameters.

The goodness of the two approximations (37) and (38) is

investigated in Section V.
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