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SUMMARY

Despite the numerous wireless position estimation schemes in the patent and re-

search literature, motion capture grade localization with RF has eluded engineering

practice. Motion capture localization with cm-scale accuracy or better is typically

performed optically, with limited range, high setup time, and environmental limi-

tations (e.g. infrared systems that do not work outdoors). Today’s true RF-based

motion capture technology involves sensing low-frequency or DC fields using bulky

sensor boxes – with ranges of only a few meters. In this work, we achieved long-range,

motion-capture grade localization with extraordinarily low-powered HIMR tags.

Localization and tracking are some of the most important applications of RFID

technology. This work proposes a new fine-scale (millimeter level) radio localiza-

tion and tracking scheme—Hybrid Inertial Microwave Reflectometry (HIMR)—for

radio frequency identification and other wireless systems. The scheme fuses the in-

formation from the backscattered radio frequency signal properties, such as received

signal strength and received signal phase, along with reflected inertial data from a

tag-mounted, 9-axis inertial sensor to yield millimeter level localization accuracy. Ex-

perimental results yielded a positional accuracy in the range of 2 mm and 20 mm,

respectively, for one- and two-dimensional tracking of a fast-moving tag. The HIMR-

scheme does not require reference tags or external system for localization, instead

all the information is extracted from the RFID-based radio link and fused in novel

HIMR-algorithm without performing mathematical integration or differentiation to

achieve position and tracking.
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CHAPTER I

RESEARCH REVIEW

The objective of the this research is to develop a new fine-scale (millimeter level)

radio localization and tracking scheme (L&T) – Hybrid Inertial Microwave Reflectom-

etry (HIMR) – for radio frequency identification (RFID) and other wireless systems.

The scheme makes use of RF signal properties such as received signal phase and

received signal strength (RSS) along with reflected inertial data from a low-cost, low-

power, tag-mounted 9-axis inertial sensor. It will be demonstrated that this scheme

yields millimeter level accuracy as compared to conventional techniques. Conven-

tional techniques for tracking of tagged-objects yield a tracking accuracy between

0.1 to 5 meters while HIMR-based position estimation results in accuracies as low

as 3 mm. Unlike most RFID location tracking techniques [6–43,49], HIMR does not

require reference tags and third-party radio sources. Instead, all the information is

retrieved from a single radio link. The accuracy results demonstrated in this work

suggest the possibility for a 3D motion capture grade tracking system based on RF

rather than DC, magnetoquasistatic, or optical techniques [50–52].

The proposed HIMR-based localization method relies on an RFID system that

works in the 5.725 - 5.875 GHz Industrial, Scientific and Medical (ISM) frequency

band but can also be extended in other RF frequency bands. HIMR can be applied

for precise robotic wayfaring, remote motion capture, and tracking on a sports field.

Used in a sports helmet or other head-mounted device, the nature and position of

traumatic brain injury due to concussions could be diagnosed. Such fine-scale motion

capture could also enhance the gaming industry by incorporating virtual reality –

places where traditional radio L&T and motion capture systems do not function well
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due to range and/or accuracy limitations.

1.1 Basic Methods for Position Estimation

Most of the basic methods for position estimation utilize triangulation or trilat-

eration approach to estimate the position. The triangulation approach is illustrated

in Figure 1, where the location of the target is approximated by the intersection of

two or more incident angles measured at the reference points [6]. The trilateration

approach is depicted in Figure 2, where the location of the target is estimated by the

intersection of three or more circles. These circles are formed by evaluating the target

object’s distance using its received signal strength or time-of-flight information [6].

The fundamental methods for localization of objects are listed below [1, 6, 7, 53].

Reference point 1 Reference point 2
Known distance

Angle # 1

Angle # 2

Target object

Figure 1: In the triangulation approach the location is estimated by the intersection
of the angles formed between the reference points and the target object [6].

1 Time-of-Arrival (TOA) Estimation Time-of-arrival (TOA) allows the

measurement of an object distance by combining the signals from three or more

base nodes. In TOA, it is assumed that the position of the base nodes is known

and all nodes have synchronized clocks. The transmitted signal from the target

is labeled with a time stamp to determine the time at which the signal originated

from the target node. In addition, this technique requires line of sight (LOS)

for minimal error.
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Radius 1

Radius 2

Radius 3Target object

Base station 1

Base station 3

Base station 2

Figure 2: In the trilateration approach the location is estimated by intersection of
the three or more circles formed by evaluation of the target object’s distance using
its received signal strength [6].

2 Time Difference of Arrival (TDOA) Estimation TDOA computes the

difference of the arrival time of signals at the base nodes with known locations.

The base station that first receives the signal is considered as the reference node

while the measurements at the subsequent base stations are made with respect

to the reference base station. Unlike TOA, this technique does not require the

time synchronization of the target node with the base nodes, however, clocks

for all base nodes are synchronized. In this technique, the transmitted signal

also does not require to time stamp its transmission making signal transmission

less complex and works best in LOS scenario.

3 Angle-of-Arrival (AOA) Estimation In this technique, base nodes de-

termine the angle-of-arrival by using the triangulation approach. Similar to

the TOA and TDOA, the base nodes locations are known apriori. Each node is

equipped with antenna arrays and RF front end resulting in higher costs, higher

power consumption, and complexity. AOA estimation is also sensitive to the

availability of clear LOS.
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4 Received Signal Strength (RSS) Estimation In an RSS estimation, the

signal strength of the received signal is measured to compute the distance cov-

ered by the signal. Better results are achieved if multiple base nodes cooperate

to localize a target via trilateration. This technique works in both LOS and

Non-LOS (NLOS) scenarios.

5 Return Time of Flight (RTOF) Measurements RTOF measurements

follow the path of direct distance measurement using two-way communication

between the units. One unit sends an interrogating signal to one or more units

in range and they reply with their independent ID encoded in the signal to

estimate the distance using round-trip TOF.

1.2 Overview of Position Estimation Systems

There are many position estimation systems that employ the aforementioned lo-

calization methods. Some of the systems are explained below:

1 Global Positioning System (GPS) The GPS is based on 27 medium earth

orbiting satellites at a height of 20,200 km from the earth’s surface. Using these

satellites, a person or an object can determine its position in terms of latitude,

longitude, and altitude. GPS can be used for many navigational applications

but it is not capable of positioning inside buildings and mines. GPS performance

is also severely affected in scattering environments such as urban areas. Further

details on the operation of GPS can be found in [2]. GPS has a very expensive

infrastructure and complex communication protocols.

2 Inertial Navigation System (INS) The INS positioning system uses inertial

motion sensors, accelerometers and gyroscopes, to track the position, velocity

and orientation of an object relative to a known initial conditions. The new

position, velocity, and orientation is computed by integrating the information
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obtained from inertial sensors. The inertial motion sensors measurements may

contain noise or offset error. When integrating these quantities, the errors in

the measured values are propagated to the subsequently calculated position and

orientation values. The localization error can be adjusted to zero by a merger

of the INS with other positioning systems such as GPS. [1].

3 Radio Frequency Identification System (RFID) The RFID is a wireless

system that identifies tags attached to an object of interest. An RFID system

consists of a reader and RFID tags. The RFID systems are divided in three

categories, according to whether they use passive, semi-passive, or active tags

[54]. Passive RFID tags are activated by rectifying and harvesting the power

from the incident RF signal, and are suitable for short range applications. An

active RFID tag is a full transceiver system including RF front end, processors,

antennas, and a power source. A semi-active tag does not contain RF front end

or signal rectifying and power harvesting circuitry; instead, it is battery powered

and suitable for long range applications as compared to a passive tag. An RFID

system can be used to localize the position of a target object as shown in the

literature [6–43, 49]. These systems are relatively inexpensive as compared to

the other systems.

4 Wireless Local Area Network (WLAN) The WLAN is used for position

estimation and identification of objects in a limited range by using RSSI to

localize the position of an object. The strength of the signal that a wireless

device or target object sends out is measured at multiple receivers to calculate

the position. The WLAN position estimation system consists of base stations

and mobile nodes. Mobile nodes periodically broadcast time stamped packets,

while a base station records the received signal strength, time difference between

signal transmission and reception, and base station identification. Using this
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information, the location is determined by combining empirical measurements

with signal propagation models [3].

5 Vision-based Localization System In vision based localization system,

two or more cameras are used to localize the target object. Assuming that the

distance between the cameras and the focal length of the cameras is known,

the distance of the object from the lens plane of the cameras can be calculated.

Given known positions of the cameras and the calculated distance, the target

object can be localized [4].

6 Radar The Radar is used to localize the position of a target (typically an

aircraft) in the surrounding areas by transmitting a short burst of energy and

processing its reflection from the target. Radar estimates the distances by

computing the round trip time of the short energy burst which reflects off the

surface of the target and combines it with the AOA of the received signal [5].

This work will focus on RFID-based localization system. A brief literature survey

of L&T technique utilizing RFID technology is presented in section 1.4.

1.3 Comparison of Positioning Systems

Table 1 compares different positioning systems based on their accuracy, power

consumption, operation in LOS and NLOS conditions, operating environment (Indoor

(I) / Outdoor (O)), and number of base stations. The following observations can be

made from Table 1:

1 Most of the systems that operate in LOS scenarios are more accurate. Thus,

relying solely on NLOS introduces error in the calculation, decreasing the ac-

curacy.

2 Many existing positioning systems employ multiple base nodes to localize the

target node increasing the overall system cost.
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Table 1: Comparison of positioning systems [1–7]. O = Outdoor, I = Indoor

Positioning
system

Ranging
accuracy

(m)

LOS
NLOS

Operating
environment

Power
consumption

(W)

Number of
base

stations

GPS 1-5 LOS O ≤1 4
INS 5-50 Both O,I 10-200 -

RFID 0.1-5 Both O,I 1-10 3
WLAN 2-30 Both O,I 1-10 3
Vision 1-100 LOS O,I 10-50 1
Radar 1-5 LOS O >200 1

3 Many positioning systems are well-suited for both outdoor and indoor envi-

ronments.

1.4 Literature Survey

Localization is the process of finding the position and bearing of an object with

respect to a reference point. Tracking, on the other hand, is identifying, observing,

and monitoring the path followed by an object. The aim of object tracking using RFID

technology is to gather information from RFID-tagged objects in the vicinity of a

reader and making observations to estimate their current position, predict and correct

future positions, and solve for a path in real time [55]. The information gathered

consists of the characteristics of backscattered RF signals such as received signal

strength (RSS), received signal phase, object identity, and any additional sensory

information from the RF tag [56–58]. The flexibility of combining the identity of an

object with its location makes RFID technology a very powerful tool for localizing

and tracking.

The taxonomy of location and tracking systems can be classified as shown in

Figure 3, [6–43]. Location and tracking (L&T) systems can generally be divided into

two broad categories, RF-based and non-RF-based [8]. RF-based location includes

systems such as radar, RFID, cellular networks, Global Positioning System (GPS),
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Localization
& Tracking

RF-based
Systems

non-RF-based
Systems

Active Systems

Proximity
-based

Distance
-based

Scene Analysis Probabilistic
-based

Heterogeneous
HIMR

For RFID Systems only

Passive / Semi-passive Systems

Figure 3: Taxonomy of localization and tracking techniques for RFID Systems [6–43].
The techniques in the last row are arranged in no particular order.

WiFi, Bluetooth, and ZigBee. The non-RF-based category includes systems based

on cameras / optics, infrared [9], odometry, lasers, inertial, and ultrasound [10, 11].

Although these can be further classified into many sub-categories, in this article we

will only consider the chain that includes RFID-based systems. This category can

be split into active and passive branches. Cellular networks are a classic example

of an active RF-based localization system in which the nodes (cellphones) and the

base stations (towers) communicate with each other to determine a position. RFID

systems and radar are examples of RF-based passive or semi-passive systems in which

the target nodes (RF tags, airplanes) reflect the RF waves to fixed receivers (readers,

radars, etc.). The offshoots from the passive systems branch in Figure 3 highlight

and summarize L&T techniques strictly used by RFID systems.

A comparison of the listed RFID L&T techniques based on their accuracy is

presented in Figure 4. It can be observed that the HIMR provides better and finer

accuracy in the range of 1 to 20 mm, as compared to other schemes. Figure 4

clearly depicts the superiority of the HIMR scheme over the existing schemes. L&T

techniques based on scene analysis, distance-based, and probabilistic approaches have
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.

Figure 4: Range accuracy comparison of the existing L&T techniques with HIMR
[6–46].

an accuracy range above 100 cm. Proximity and Heterogeneous - based techniques

have a wide range of accuracy between 5–400 cm. The HIMR accuracy has been

determined through simulation and experimental results which shall be presented in

later sections. The accuracy range of the other schemes is reported in the text [6–46]

and summarized in Figure 4.

1.4.1 Proximity-based L&T

The proximity-based L&T technique is easy-to-implement. It uses the reference

tags (RTs) which are pre-installed at known locations in some known pattern grid

inside an area of interest. The location on the grid and identification sequence of

each RT is stored in the database of the target reader. When the target object,

which contains a reader, is in the vicinity of an RT, it can identify its own position on

the grid by matching the tag ID and its corresponding location with the database. In

some cases, depending upon the type of installation of RTs at known locations, the

target object can also compute its angle with respect to the reference tag. In another

method for implementation of the proximity technique, the installation pattern can
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be reversed. Instead of RTs, the RFID readers can be installed at known locations

in the region under consideration. The position of the RFID tagged object can be

narrowed in a zone when sensed by the reader receiving maximum signal strength.

This scheme gives an accuracy in the range of 5–160 cm. Several examples of the

proximity-based technique have been referenced in [12–14].

1.4.2 Scene-Analysis-based L&T

In the scene-analysis-based L&T technique, the received signal strength (RSS)

of the domain of interest is mapped with RTs, and single or multiple RFID readers

are installed overlooking the desired domain. The RSS and other parameters, such

as estimated direction of arrival (DOA), of each reference tag are measured and

pre-stored in the reader. When the object of interest with the installed tag moves

inside the domain, its RF fingerprints, i.e. RSS and DOA, are matched with the

database to estimate the location. If the result overlaps the zone of more than one

tag, well known algorithms such as LANDMARC or its improved versions are used to

estimate the location. Often, instead of physically installing the RTs, the user maps

the entire domain virtually to define an approximate RSS of an RT, and the same

procedure is repeated to approximate the location. Scene analysis examples such as

LANDMARC, VIRE, L-VIRT among others are included in citations from [15–19].

As given in Figure 4, these techniques yield an accuracy in the range of 100–300 cm.

1.4.3 Distance-based L&T

The distance-based approach is the most commonly used localization technique.

This approach uses numerous methods such as triangulation, multi-lateration, in-

terferometry, and RSS to estimate the distance between tag and reader. In a few

applications, the information obtained from the aforementioned methods acts as an

input into a probabilistic approach to obtain a more refined distance estimation. Sev-

eral examples for distance based approaches are given in [20–26]. Using this scheme
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results in accuracy on the order of 120–300 cm (Figure 4).

1.4.4 Heterogeneous L&T

The heterogeneous technique makes use of a combination of another RF or non-

RF-based source along with an RFID system to estimate the position of the tag and

to perform its tracking. The information from two systems can be used in a variety

of ways. For example, in [27], a robot explores its vicinity using an RFID system

to get a crude position, and it then uses information from ceiling mounted cameras

to refine its location. In another example, Papapostolou and Chaouchi [30] carry

out simultaneous user-based and network-based localization using RFID and WLAN

systems. The data from both schemes are combined to overcome the individual pitfalls

of each scheme and to get better accuracy. Some of the external sources mentioned

in the literature that have been used along with the RFID systems include WiFi,

laser sensors, odometry sensors, and ZigBee. Examples are given in [27–32]. Since

the heterogeneous techniques are a combination of a variety of sources, the accuracy

varies in a wide range from 5–400 cm as illustrated in Figure 4.

1.4.5 Probabilistic Approach

Multipath fading, interference, measurement and system noise are environmental

dependent factors that change with time, and affect the RSS and phase of received

RF signals. Predefined environmental models can be used along with statistical filters

such Kalman or particle filters to mitigate the effect of these variations. Such filters

have also been implemented for RFID-based L&T [41–43]. These have been classified

under the probabilistic approach in this work and have a reported accuracy in the

range of 50–500 cm (Figure 4). However, the L&T algorithms developed using the

probabilistic approach are complex and difficult to implement in real scenarios.

Unlike heterogeneous schemes where two different radio systems are combined to

get the location, HIMR combines RSS and phase information from the backscattered
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RF signal, and low-power, tag-mounted inertial sensor data, to get the position and

tracking of the RF tag—all as part of the same RFID system without additional

reference tags. Conventional techniques and their applications presented in [6–43,

59–61] use either RSS, phase, or both to perform L&T. Some schemes make use of

an external system and thus are classified as a heterogeneous approach. No existing

techniques for L&T have combined the aforementioned information in a single scheme

to achieve localization. Parr et. al. in [38] combined acceleration from the RFID-

reader-mounted inertial sensor and received signal phase to estimate the location.

But the approach presented in this work is fundamentally different; first, in this

scheme the inertial sensor is installed on an RF-tag instead of on the RFID-reader,

and its information is part of the backscattered data packets. Installation of the

inertial sensor on the object allows us to measure and wirelessly transmit the sensor

information to the reader base station. This would be useful for the wireless motion

capture applications mentioned below. Secondly, no differentiation or integration

operation is performed on the phase or acceleration data; differentiation amplifies the

harmful influence of sensor noise, and integration leads to drift due to measurement

bias, so neither of these operations is consistent with the goal of decaying error.

Lastly, HIMR uses three pieces of information (RSS, phase and inertial) as opposed

to just two pieces of information (phase and inertial) in [38].
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CHAPTER II

ONE-DIMENSIONAL L&T USING HIMR

2.1 RFID System Description

A UHF/microwave RFID system is similar to a radar system that illuminates its

target with RF power. This power reflects back from the target, is received, and

processed to extract the desired information. An RFID system works in an identical

fashion, retrieving digital information from an illuminated RFID tag using a reader .

A generic block diagram of an RFID system is shown in Figure 5.

Tag

Tx

RxR
ea

d
er

Figure 5: Block diagram of a generic bi-static backscatter system employing backscat-
ter modulation.

The reader in Figure 5 transmits (Tx) continuous electromagnetic waves at the

operating frequency towards the tag, which in turn modulates these waves using load

modulation and reflects them back to the reader’s receiver (Rx) antenna. The reflec-

tion of the data from the tag is known as backscattering . This mode of communication

is so power efficient that some RFID tags can be purely passive, operating solely on

energy harvested from the incident RF field [54]. Semi-passive or battery-assisted
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tags employ small, long-lived batteries which allow operation at long ranges with

peripheral sensor circuitry.

The HIMR technique uses a battery-assisted RF tag that is equipped with an ac-

celerometer, which senses the acceleration of the moving tagged object and backscat-

ters the acceleration information in the form of a customized packet. The RFID

system considered in this paper is a prototype system used to validate the HIMR

scheme concept. Therefore, the communication protocol considered in this system is

also customized and does not follow the EPCGlobal Gen2 standard. However, in a

commercialized system, tags capable of working with existing RFID standard commu-

nication protocols could be built. In the current prototype system, the information

packet encoding scheme and data rate are also customized to incorporate the accel-

eration information and to achieve long range. The data structure of the customized

packet is shown in Table 2. It consists of a three-byte preamble, a unique two-byte

tag ID, three-dimensional sensed acceleration data in six bytes, and one-byte cyclic

redundancy check (CRC) information. Each bit in the data packet is encoded using

a binary-offset carrier (BOC) modulated signal with 64 transitions per data bit. The

tags have a switching rate of 5 Mcps (corresponding to a maximum transmission rate

of 78.1 kbit/s), which results in an average packet rate of about 300 packets per second

when accelerometer measurement and input/output times are considered. Complete

details on the data packet structure and the protocol used for its packetizing is given

in [58]. A picture of the tag used for one-dimensional HIMR testing is provided in

Figure 6.

In its current form, the prototype tag continuously backscatters inertially sensed

data, consuming 9.3 mW of power using a coin cell battery with 3 V, 240 mAh ratings.

During laboratory tests, it was found that in continuous operation the prototype tag

lasts for 72–77 hours; when the tag switching rate was reduced to 2 MHz, resulting in

100 packets per sec transmission rate, tag power consumption decreased to 6.6 mW
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(a)

Accelerometer
RF switch

Tag antenna

GyroscopeMicrocontroller

6-axis RF tag

Figure 6: 6-axis RF tag used for one-dimensional HIMR testing. Only the accelerom-
eter was used for preliminary measurements [47, 48], however, in multi-dimensional-
HIMR tests accelerometer together with rotation (gyroscope) and orientation (mag-
netic compass) sensors will be utilized for localization and tracking.

with continuous backscattering. In a commercialized version, the battery life could be

increased by optimally reducing the RF packet transmission rate and introducing tag

sleep, wake-up, and interrogation cycles. Moreover, if required, a customized RFID

chip complying with EPCGlobal Gen2 protocol and containing an inbuilt inertial

sensor may also be considered in a final product, thereby further increasing battery

life. References [62–65] discuss methods for taking data gathered from external sensors

and relaying their information through EPCGlobal Gen2-compliant RF tags.

Table 2: Structure of a backscattered data packet in the HIMR-scheme.

Preamble Tag ID Accelerometer Data CRC

Three bytes Two bytes Six bytes One byte
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2.2 HIMR Setup

For simplicity of understanding, one-dimensional linear motion along the z-axis

will be considered in this chapter. It is assumed that the location of the reader is

known and is taken to be the origin. The tag is installed on one of the arms of a high-

speed positioner, which can simultaneously move its three mutually perpendicular

arms in three dimensions. The entire system with reader, tag, and positioner is

illustrated in Figure 7. Three types of information are sensed at the reader when the

RF tag backscatters the data: the received signal amplitude H(z) which will be used

to compute the approximate position of the tag z relative to the reader; absolute

phase φp(z) which will be used to calculate the approximate tag velocity ż; and the

decoded acceleration data z̈.

Tx

Rx

x

y

z

Positioner arms

Direction of motion

RF TagPositioner arm moved

to a new position

(x , y )r r r, z

(x , y )t t , zt

∆z

Distance

Figure 7: Three dimensional positioner setup. The tag moves towards the reader
along the z-axis. The dotted arm shows its positions after the positioner movement.
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2.2.1 Signal Description

The RF tag switches between two loads to modulate the acceleration information

on the carrier signal and reflects it back to the reader. An inherent advantage of

RFID reader systems is the phase coherence of the carrier frequency because the

same oscillator is used in both the transmitter chain and the receiver chain. Therefore,

the received complex baseband signal S̃(z, t) after the demodulation by the coherent

carrier signal can be written as:

S̃(z, t) = H(z) exp

(
−j
[

4πz

λ
+ φm(t) + φo

])
(1)

where H(z) is the distance-dependent amplitude of the signal, λ is wavelength, φo

is the accumulated phase offsets from the channel, φm(t) is the time varying phase

modulation, switching between 0 and π to represent binary 1s and 0s and 4πz
λ

is

the absolute phase of the signal due to its propagated distance. In a complex base-

band representation, the real part represents the time-varying output of the in-phase

channel and the imaginary part represents the time-varying output of the quadrature

channel of the down-converted (and filtered) backscattered signal.

2.3 Hybrid Inertial Microwave Reflectometry - Sensed Quan-
tities

2.3.1 Position

The amplitude, H(z), of the received signal is dependent on the distance z. It

increases when the tag moves towards the reader and decreases when the tag moves

away from the reader. The received signal amplitude, H(z), can be related to root

mean squared (rms) received power, Prms, through the following relation:

Prms(z) ≈ H2(z)

2R
(2)
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where, R is the impedance of the system. The RMS received power for a co-located

bi-static reader system is given by [66]:

Prms(z) ≈ PTGTGRGt
2λ4X2M

(4πz)4
(3)

where PT is the reader’s transmitted power, GT is the reader’s transmitter antenna

gain, GR is the reader’s receiver antenna gain, Gt is the tag’s antenna gain, λ is

wavelength of the carrier frequency, X is the polarization mismatch between the

reader’s and the tag’s antennas, M is the load modulation factor of the tag, z is the

separation distance between the reader and the tag. Equation (2) together with (3)

are rearranged to approximate the position as follows:

z ≈ 4

√√√√(2PTGTGRGt
2λ4X2MR

(4π)4H2(z)

)
(4)

Using received signal amplitude alone has not resulted in fine-scale localization. Sev-

eral L&T techniques relying on the received signal amplitude have been referenced

and summarized under the proximity-based , scene analysis and distance-based cat-

egories in section I; their ranging accuracy varies widely from 5–300 cm [8-23] as

illustrated in Figure 4.

2.3.2 Velocity

The phase, φp(z) = 4πz
λ

, of the received signal in (1) is closely related to the

motion of the tag. In this work, the change in propagated phase, ∆φp(z), is one of

the quantities that will be used to track the motion of a tagged object by calculating

its approximate, ż, with respect to the direction of motion. These are related by the

following:

ż ≈ λ

4π

∆φp(z)

∆t
(5)

Although the velocity in (5) can accurately discern changes in position but in the

absence of other measurements it is prone to aliasing for fast-moving tags or radio
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channels that have fading or burst noise. Therefore, the additional quantities such as

received signal amplitude and the acceleration of the object are required to track the

positional changes and correct for phase aliasing.

2.3.3 Acceleration

The acceleration z̈ of a tagged object may be measured using an inertial sensor.

In this paper, the RF tag is equipped with a low-power, three-axis accelerometer chip

that provides an approximation of tag acceleration. The acceleration information is

packetized and backscattered along with the tag ID, as described in Table 2 and in

Section 2.3 of [58]. The acceleration information is retrieved from the demodulated

received signal, and it is converted from the body-frame-axis to absolute coordinates

by using a standard rotation matrix.

In principle, acceleration information can be used to track an object by integrating

over time, but the resulting integrator drift will result in poor accuracy. The HIMR

scheme does not involve integration of acceleration data; instead, it fuses all three

pieces of information together to overcome their individual drawbacks, resulting in

fine-resolution L&T.

2.3.4 Sensors

The acceleration sensor located on the tag, along with the velocity and position

sensing formulas (4) and (5) evaluated on the reader, constitute a set of measure-

ments that approximately describes tag motion. If the sensory information obtained

from these sources was sufficiently accurate, then the goal of wirelessly detecting the

position trajectory would be achieved without additional signal processing (e.g. only

the position sensing formula would be needed). In reality, all three sensed signals are

corrupted by noise, and hence their direct use cannot fulfill the objective of fine-scale

L&T. In the following section, a mathematical model governing the evolution of the
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true motion signals (z, ż, z̈) will be provided, along with analysis of a state estima-

tion scheme that systematically fuses the sensor outputs so as to enable high-accuracy

position tracking.

2.4 Hybrid Inertial Microwave Reflectometry - Scheme

2.4.1 Modeling

The tagged object is modeled as a point mass experiencing one-dimensional motion

in a direction orthogonal to gravity. The equation of motion is therefore

mz̈ = f (6)

where m denotes the mass of the object, f denotes the resultant of forces applied

to the mass, and z denotes the position of the mass; consequently, the velocity and

acceleration of the mass are denoted by ż and z̈ respectively. The motion of the

tagged object is determined by the ratio of f and m, but neither f nor m is known

or measured. Sensors intended to measure z, ż and z̈ are assumed to be available,

but the measurements provided by these sensors are corrupted by noise.

The tagged object and its sensing system may be expressed in state-space form

by [67]

ẋ = Ax + Bw (7)

y = Cx + v (8)

where the state variables are x1 = z, x2 = ż and x3 = z̈, w = ḟ/m denotes a scalar

disturbance, y denotes a vector of sensor output signals, and v denotes a vector of

sensor noise signals. The coefficient matrices are

A =


0 1 0

0 0 1

0 0 0

 , B =


0

0

1

 , C =


1 0 0

0 1 0

0 0 1

 (9)
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where C is shown for the case where approximate sensing systems are available for

position, velocity and acceleration. It is apparent that there are two types of uncer-

tainty which will ultimately influence the state estimation process; the disturbance

signal w and the noise signal v.

2.4.2 Estimation

The state estimator will be constructed by neglecting the presence of w and v in

(7) and (8), since these signals are not known or measured. The estimated value of

the imperfectly measured state vector x, which is denoted by x̂, will be obtained by

solving the differential equation

˙̂x = Ax̂ + L (y − ŷ) (10)

ŷ = Cx̂ (11)

as time evolves. The estimator state equation (10) incorporates a copy of state equa-

tion (7) with w = 0, and the estimator output equation (11) is a copy of output

equation (8) with v = 0. The assignable gain matrix L multiplies the output error

y− ŷ, and hence two terms combine in (10) to determine future values of x̂; neither of

these terms is sufficient individually, since one neglects w and one neglects v. Gain

matrix L may be adjusted to trade off these competing imperfections; larger L is

desired if w is larger than v, and smaller L is desired if w is smaller than v. A signal

flow diagram of the motion system and its estimator is shown in Figure 8.

The role of L may be more fully understood by considering the state estimation

error, defined by e = x− x̂. Differentiating e, and substituting (7) and (10) into the

result, yields

ė = (A− LC) e + Bw − Lv. (12)

According to (12), the estimator will be stable if and only if all eigenvalues of A−LC

are located in the open left half of the complex plane. Once the sensors have been
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Figure 8: The motion system, characterized by disturbance input w, imperfectly
measured state x, and sensor noise v, and the associated motion estimator which
generates state estimate x̂.

selected both A and C will be known, but L remains as a design variable that may

be adjusted to meet this stability requirement. Determining a stabilizing L, given A

and C, is always possible provided that the matrix pair (A,C) satisfies a property

known as observability, which will now be defined. Assuming that dim{x} = n and

dim{y} = p, the so-called observability matrix

O =



C

CA

...

CAn−1


(13)

has np rows and n columns. The matrix pair (A,C) is observable if and only if

rank{O} = n.
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2.4.3 Sensing

The matrix A has three eigenvalues, all at s = 0, since det(sI−A) = s3; all three

of these eigenvalues are located on the boundary of the stability region, and hence

they must all be relocated into the interior of the stability region in order to achieve

stable estimation. The desirable feature of stable estimation is that, if w = 0 and

v = 0, the estimated x̂ will converge to the imperfectly measured x at an exponential

rate determined by L, for arbitrary initial conditions; even if w 6= 0 and v 6= 0,

stable estimation guarantees exponential convergence of the estimation error to some

non-zero residual level that scales with the size of w and v.

It is of interest to understand how estimator stability will be influenced by the

choice of which sensors are actually used in the estimation process. Considering all

possible permutations of sensors from among those assumed to be available, Table 3

summarizes the results of observability analysis. The number of assignable coefficients

in the matrix L depends on the number of sensors being used; one sensor leads to

three coefficients, two sensors leads to six coefficients, and three sensors leads to nine

coefficients. The rank of observability matrix O measures the extent to which the

eigenvalues of A−LC can be made different from the eigenvalues of A; a rank of one

indicates that one estimator eigenvalue can be made stable, a rank of two indicates

that two estimator eigenvalues can be made stable, and a rank of three indicates

that three estimator eigenvalues can be made stable. The analysis shows that stable

estimation is possible if and only if the estimator incorporates a position sensor. In

this work, all available sensors are used, as indicated by the choice of C in (9).

2.4.4 Tuning

According to (12), both w and v induce estimation error, the former through B

and the latter through L; moreover, L also influences the eigenvalues of the estimation

error dynamics. Hence, the choice of L involves a fundamental trade-off:
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Table 3: Influence of Sensor Set on Estimator Stability

Set x1 x2 x3 rank{O} dim{L} #λ{A− LC} = 0

0 0 — 3
1 X 1 3× 1 2
2 X 2 3× 1 1
3 X X 2 3× 2 1

4 X 3 3× 1 0
5 X X 3 3× 2 0
6 X X 3 3× 2 0
7 X X X 3 3× 3 0

1. If unmodeled disturbance w is large compared to sensor noise v, then improved

estimation accuracy will result if ˙̂x in (10) depends less on Ax̂, which neglects

the influence of w, and more on L (y − ŷ), which introduces the influence of v;

this situation calls for large L.

2. If sensor noise v is large compared to unmodeled disturbance w, then improved

estimation accuracy will result if ˙̂x in (10) depends less on L (y − ŷ), which

introduces the influence of v, and more on Ax̂, which neglects the influence of

w; this situation calls for small L.

Determining a suitable choice of L for a given system involves a tuning process,

and in this work a three-step Riccati equation based tuning process is used.

1. Assign tuning matrices W and V satisfying

W = W′ > 0, V = V′ > 0. (14)

2. Obtain matrix Y by solving

A Y + YA′ −YC′V−1CY + W = 0. (15)

3. Obtain matrix L by solving

L = YC′V−1. (16)
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The matrices W and V are supposed to be real-valued, symmetric and positive

definite; this means that (i) the quadratic forms α′Wα and α′Vα evaluate to strictly

positive scalar values for every nonzero real-valued vector α, and (ii) the eigenvalues

of W and V are all real-valued and strictly positive. Any choices satisfying (14) will

guarantee estimator stability, so even diagonal matrices may be used in practice, as

shown in the experimental results below. If unmodeled disturbance w and sensor

noise v have been statistically characterized, then W and V may be interpreted as

corresponding covariance matrices, in which case the matrix L determined in (16)

can be shown to minimize the steady-state covariance of the estimation error. Once

W and V have been statistically evaluated or otherwise assigned, Y is obtained by

solving the continuous-time algebraic Riccati equation (15); numerical methods for

this calculation are available, e.g. function care of the MATLAB Control System

Toolbox.

For the experimental results reported herein, the tuning matrices were chosen as

W = 5× 104


3 0 0

0 1 0

0 0 1

 , V =


1 0 0

0 1 0

0 0 1

 . (17)

In this case, the weights along the diagonal of W are large compared to the weights

along the diagonal of V, suggesting that the size of w is large compared to the size of

v; this should lead to relatively large gain and relatively fast eigenvalues. Completing

the computations outlined above leads to estimator gain matrix

L =


387.3 0.366 0.00052

0.366 223.6 0.5

0.00052 0.5 223.6

 (18)

and estimator eigenvalue locations

s = −387.3,−223.6± j0.5 (19)

with corresponding settling times on the order of 10 ms.
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2.4.5 Implementation

The physical system is a continuous-time system, but its estimation should be per-

formed on a discrete-time processor. This unavoidable continuous-discrete mismatch

may be dealt with in either of two ways: (i) derive a continuous-time estimator for

the continuous-time physical system, and then approximate the continuous-time es-

timator by a discrete-time estimator; (ii) approximate the continuous-time physical

system by a discrete-time model, and then derive a discrete-time estimator for the

discrete-time model. Both approaches require approximation, and both approaches

will yield similar results under similar hypotheses. In this work, the first approach

is taken, as it allows the continuous-time nature of the physical system to remain in

focus until the final step of estimator implementation.

The estimation algorithm (10)–(11) has been derived using a continuous-time

model of the system, but its implementation requires a discrete-time formulation. To

this end, the state equation of the estimator is transcribed from a differential equation

to a difference equation. There are many methods for doing this, but in the present

work the simplest method, known as the forward Euler method, has been used. The

result of this procedure is

x̂[k + 1] = x̂[k] + T (Ax̂[k] + L (y[k]− ŷ[k])) (20)

ŷ[k] = Cx̂[k] (21)

where T is the fixed time increment between difference equation updates and k is

the iteration index. For each increment of k, new measurements y arrive and new

estimates x̂ are computed. Although matrices A, C and L are unchanged by this

transcription procedure, their influence on estimator updates is scaled by T .

2.4.6 Extensions

In (6), the tagged object has been modeled as a point mass experiencing one-

dimensional motion in a direction orthogonal to gravity. The motivation behind this
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simplifying assumption is to reveal, in the simplest possible context, the fundamen-

tal issues involved when estimating tag motion from disparate sensor measurements.

Nevertheless, it is appropriate to briefly comment on possible extensions of the tech-

nique introduced in this work to other, more general, scenarios. The point of depar-

ture would be a reformulation of (6) to account for multiple axes of tag translation

and the possibility of tag rotation. From this reformulation of tag dynamics, along

with a specification of a more comprehensive sensor set (e.g. incorporating multiple

axes of inertial sensor measurements), a new higher-dimension state-space model of

the form (7)–(8) would be developed. Although a new observability analysis would

be required to guarantee the suitability of the proposed sensor set, the methods re-

ported in this work so far would still apply since they do not inherently rely on an

assumption of one-dimensional motion.

2.5 Simulation Results

The simulation1 analysis of a HIMR system was carried out in Matlab for a tag

and positioner setup as shown in Figure 9. The positioner is capable of moving its

arm in three dimensions and follows trapezoidal motion profiles. For simulations,

the trapezoidal motion profiles were generated in Matlab. The generated profiles

are similar to the actual motion undertaken by the positioner shown in Figure 9. It

was assumed that accelerometer mounted tag is installed on one of the arms and

backscatters inertially sensed acceleration data back to the reader. The purpose of

simulations is to explain the effectiveness of HIMR against realistic noisy measure-

ments. The simulation is done in the following steps:

1 The reference velocity, and acceleration profiles were generated in Matlab.

These profiles are identical to the velocity and acceleration profiles of a 3-D

positioner available at Georgia Tech (Figure 9). It is assumed that the tag

1This work has been published in [47].
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moves away from reader along the x-axis with the accelerometer-mounted-tag.

The tag initially located at a distance of 1 meter from the reader and travels

a distance of 0.61 meters away from the reader. Starting from rest, the tag

accelerated at 7.35 m/s2 (0.75 g) to attain a velocity of 1.2 m/s and then moved

at this constant speed (zero acceleration) for 355 ms before decelerating at a

constant rate of -7.35 m/s2 (0.75 g), decreasing the velocity to zero. This is

illustrated by distance, velocity, and acceleration curves given in Figure 10.
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Figure 9: A picture of the 3-D positioner setup at Georgia Tech. In simulations, it
is assumed that the positioner arm with tag moves a distance of 0.61 m, away from
the reader station along the straight line in one direction and follows a trapezoidal
kind of motion profile during the movement.

2 Additive white Gaussian noise ofN (0, 1) was added to all three profiles as shown

in Figure 11. The scale factors for the noise were randomly picked as 0.03, 0.08,

and 0.05 for noise addition in amplitude, phase difference, and acceleration

profiles respectively. The purpose of adding the noise is to simulate the three

quantities as noisy measurements in the actual system. It is pertinent to note

that the motion profiles explained above are unknowns in the experiment. The

HIMR scheme has no knowledge of the these profiles and only initial conditions
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Figure 10: This figure illustrates the reference profiles generated in the Matlab.
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are given to the HIMR scheme.

3 The discrete form of the HIMR scheme at (20) is run to estimate the states using

the noisy profiles. The HIMR scheme both estimates the states and also reduces

the error to make the system track the actual states. It can be observed from

Figure 12 that noise has been reduced and the simulated curves closely follow

the original reference profile curves. Especially, the resultant distance profile

curve at the top of the Figure 12 leads to the inference that HIMR is capable

of giving millimeter-level accuracy in tracking the position of the object.

2.6 Integration

An important aspect of HIMR technique is that it does not involve integration

or differentiation operation on the sensed information to extract and track the po-

sition. If one chooses to use the acceleration or velocity alone to get the resulting

position using integration, then a slight offset or noise on the sensed data will result

in accumulated drift over time. To illustrate this fact, the noisy acceleration data

generated in the simulation setup was integrated to get the position. As presented in

Figure 13, a drift of 2.5 cm was observed from the actual position over 0.6 m distance.

The accumulated error will increase if observed over a longer time duration. There-

fore, extracting positional information using mathematical integration of the sensed

acceleration data is not a viable option for mm-scale L&T.

2.7 Experimental Results

To substantiate the HIMR simulation results, an experiment was conducted using

the test setup as illustrated in Figure 9. The tests were conducted outdoor on a roof

top and the setup was comprised of a 5.8 GHz RFID system with 9.5 dBi transmit

and receive antenna gains respectively, while a motion capture tag installed with an

accelerometer is mounted on one of the arms of the positioner. The tag-installed
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Figure 11: Gaussian white noise was added to all three profiles. The scale factors for
the noise were randomly picked as 0.03, 0.08, and 0.05 for noise addition in amplitude,
phase difference, and acceleration profiles respectively.
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Figure 12: This figure shows the resultant curves after applying the HIMR scheme
on the noisy data. The red curves closely follow the reference generated curves (blue)
depicting an error of 1 mm in the position track. In practical scenario, the amount
of positional error may increase but it is expected to stay within 1 - 10 mm [48].
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Figure 13: The noisy acceleration data generated in the simulation setup was in-
tegrated to get the position. A drift 2.5 cm was observed from the actual position
over 0.6 m distance. The accumulated error will increase if observed over longer time
duration.

positioner arm moves a distance of 0.61 m along a straight line away from the reader

following the velocity and acceleration specifications outlined in section 2.5. It is rele-

vant to mention that the HIMR scheme has no knowledge of the motion specifications

as these are only fed as inputs to the positioner. Another important point to note

is the SNR of the received signal at both end points of the motion. At a distance of

1 m away from the reader, the SNR of the received signal was 31.6 dB, while at the

other end (1.61 m away) the SNR was 29.4 dB, therefore, we can safely assume this

to be a high SNR scenario. The measured position, velocity and the demodulated

acceleration as approximated from the received signal amplitude, packet-to-packet

phase difference and backscattered accelerometer data are reproduced in Figure 14.

For comparison, the measured approximated position, velocity and acceleration are

plotted with the actual motion parameters undertaken by the positioner. In the next

step, measured data was fed as input to the HIMR algorithm and the results are
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Figure 14: Comparison of measured results vs actual motion undertaken by the
positioner.

plotted in Figure 15. It can be observed that the data fusion under the HIMR algo-

rithm has smoothed the curves and reduced the error. The resultant curves closely

follow the actual motion undertaken by the positioner. Since we are more interested

in tracking the tagged-object, therefore we will focus on the resultant localization

error. The error was computed by subtracting the actual position followed by the

positioner from the position resulted using HIMR. The analysis shows a peak error

of 9 mm as presented in Figure 16. The results depict that the HIMR scheme can be

34



used for fine-scale localization. The error margin may vary a little over longer range

but a feature of the HIMR algorithm is that it continuously tries to minimize the

error by predicting and correcting its estimates. It is, therefore, expected that the

error will stay within millimeters of the ground truth for very long time durations.

Figure 15: Co-processing the positional, velocity and acceleration data under the
HIMR scheme has smoothed the measured curves and reduced the error.
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Figure 16: The error analysis on the positional data shows a peak error of 9 mm
in position estimation. The results depict that the HIMR scheme can be used for
fine-scale localization.

2.8 Conclusion

In this chapter, HIMR-based one-dimensional L&T scheme has been presented.

The 1D-HIMR technique fused the information from three different sensors and re-

sulted in fine-scale localization of the object without the aid of reference tags or

external systems. The chapter also delved into the modeling, implementation of the

HIMR scheme with hints on its extension to higher dimensions. A simulation based

analysis of the HIMR scheme under noisy parameter estimation was also presented.

In the end, the scheme was tested by moving the HIMR tag along a straight line

using a linear positioner and analyzing its backscattered data. It was observed that

the HIMR-based RFID tracking provides millimeter-scale positional tracking.
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CHAPTER III

TWO-DIMENSIONAL MOTION ESTIMATION

3.1 Background

This chapter details the extension of the one-dimensional (1D) hybrid inertial

microwave reflectometry (HIMR)-based object L&T scheme to two-dimensions (2D).

We have presented key differences between the 1D- and 2D-HIMR schemes, design of

a new 9-axis tag, the two-dimensional motion estimation setup, the theoretical model

of 2D-HIMR, and the observability analysis.

Localization of objects in a plane using radio frequency identification (RFID)

technology is a very useful and vital application. We briefly present an additional

literature review for multi-dimensional position estimation techniques using RFID

technology. A number of approaches have been proposed for multi-dimensional local-

ization and identification using RFID technology such as [68–75]. [68] estimated the

position of a surface acoustic wave (SAW)-based RFID tag by calculating the time-

difference-of-arrival (TDOA) of the reflected signal from a SAW tag on three receiver

stations. The receivers were installed on the corners of the field of observation and

the tag position was estimated by determining the point of intersection of the ellipses

drawn from each antenna. The radii of ellipses were estimated by using time delay

information of the received signals. [69] presented a robot localization and orientation

scheme which used a combination of RFID tags installed on the floor at known loca-

tions with angle and distance sensors installed on the robot’s tag readers. Robots cali-

brated their on-board sensor based position by reading the tag IDs installed at known

coordinates. [70,71] introduced a complicated 2D MIMO-based localization technique

of an object by simultaneously evaluating phase-of-arrival (PoA) of the backscattered
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Table 4: Summary of localization accuracy.

Reference # Accuracy range Tag Type Technique
Bechteler et al. [68] 14–21 cm SAW tag TDOA
Munishwar et al. [69] 25 cm Gen2 Hybrid
Scherhaufl et al. [70, 71] 1.1–4 cm Gen2 PoA
Miesen et al. [76] 2 cm Gen2 SA
Arumugam et al. [73–75] 12–110 cm MQS tag CI theory

signals from an array of tags using an antenna array on a single reader. [76] used

the concept of phase-based synthetic apertures (SA) to localize the tagged object. In

this technique, the phase of the backscattered signal was pre-measured using refer-

ence tags at each location of the area of interest creating a synthetic phase picture

of the area that is pre-stored into the reader. When the tagged object moved over

the pre-mapped area, the phase of received signal is compared to the stored value to

estimate the location. Moreover, it was assumed that the tag motion trajectory is

fixed and known.

The performance of RFID tags degrades in the vicinity of lossy objects; to over-

come this [72–75] proposed a multi-dimensional localization technique utilizing a low

frequency quasi static magnetic field which is undisturbed in the presence of lossy

objects such as a human body. In this technique, a magnetoquasistatic (MQS) field

emitting loop was installed on the object of interest and a grid of receiving loops was

used to measure and estimate the position using complex image (CI) theory. Table 4

summarizes the localization accuracy using the techniques mentioned above.

Besides the aforementioned position estimation techniques, a detailed breakdown

of existing tag L&T schemes has been presented earlier in chapter 1 and in [48].

The 2D HIMR-scheme differs from existing L&T schemes in that it does not

require reference tags, it does not require the pre-knowledge of the tag’s trajectory,

and it does not require the pre-mapping of the phase or amplitude behavior in the area

of interest. It also does not utilize SAW or MQS tags, and it does not need antenna
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arrays on the reader. Instead it uses a customized tag mounted with inertial sensors

(accelerometer, gyroscope, and compass) whose data are received at three basestation

readers. The HIMR tag backscatters the inertially measured data in the form of

packets to the basestation readers, which decode this information and fuse it with

received signal strength based radial distances, and packet-to-packet phase difference

based radial velocities, to output the planar position/orientation coordinates. Later

in this work, it will be shown through narrowband experiments at 5.8 GHz that

the localization accuracy of 2D-HIMR converges to 1-2 cm when the tagged object

is observed for two or more seconds. It is also of significance to highlight the key

features that differentiate 2D-HIMR from 1D-HIMR:

1. In the formulation of 1D-HIMR modeling, the tag was considered as a point

mass object whereas in the 2D-HIMR the tag will be considered a rigid body.

This allows us to equip the tag with additional sensors such as a gyroscope and

a magnetometer to sense the rotation and orientation of the object in addition

to an accelerometer for acceleration sensing. This capability will provide extra

degrees of freedom to locate and track tagged object in planar motion profile.

2. For 1D L&T using HIMR, a single pylon was used for modeling and mea-

surements (a pylon, in these experiments, is a transmitter and receiver reader

antenna and the corresponding reader hardware that connects them). The two-

dimensional HIMR requires three pylons to track the tagged object in any type

of planar motion. The need for three pylons ensures system observability at

every possible 2D position, to aid in object localization in the plane, and to add

accuracy and redundancy. For the three-dimensional HIMR experiments in the

future, a four-pylon setup will be explored which allows long-range position es-

timation in 2D and 3D. The ability to get absolute position with mm-precision

from each of the four pylons indicates operation of a 3D localization system

that far surpasses any existing technology in terms of accuracy, simplicity, size,
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and range.

3. As will be evident later, the mathematical model for 2D-HIMR involves nonlin-

earities as compared to simple linear model for the 1D case.

4. Since the 2D-HIMR requires three pylons, and additional inertial sensor there-

fore, the amount of sensory information for 2D L&T is more than in the 1D

case.

5. The 1D-HIMR experiments are based on a 5.8 GHz backscatter tag with 6-axis

accelerometer and gyroscope sensors, depicted in Figure 6. Newer integrated

circuits now exist that simultaneously measure 9-axes of information: 3 dimen-

sions of gyrometry, accelerometry, and magnetometry each. A key goal of this

research is to fold these new and extra degrees of measurement into a next-

generation HIMR technique.

3.2 Sensors

Pictorially the difference between 1D- and 2D-HIMR algorithm inputs is presented

in Figure 17. The one-dimensional HIMR takes in three noisy inputs, approximated

position, velocity, and decoded acceleration. Position and velocity is approximated

using the received signal strength and packet-to-packet phase difference, while the

acceleration is decoded from the accelerometer data which is part of backscatterd

packet. The two dimensional HIMR uses three pylons, with the radial distance from

each pylon approximated using received signal strength at each reader. Similarly, the

radial velocity at each reader is approximated by evaluating packet-to-packet phase

difference at each reader. In addition, three inertially sensed quantities, i.e. accel-

eration, angular velocity, and orientation, act as input to the 2D-HIMR algorithm.

Together these nine quantities - three radial distances, three radial velocities, and
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three inertially sensed quantities - are fused to output a fine-scale position coordi-

nates estimate.

Approximate
position

Decoded
acceleration

Approximate
velocity

Received signal amplitude

Packet-to-packet phase difference
1D

HIMR
Algorithm

Fine scale
position estimate

Three approximate
radial positions
(from 3 readers)

Decoded 2-axis
acceleration

(accelerometer)

Three approximate
radial velocities
(from 3 readers)

Received signal amplitude

Packet-to-packet phase difference

2D
HIMR

Algorithm

Fine scale
position estimate

Decoded angular
velocity

(gyroscope)

Decoded tag
orientation
(compass)

accelerometer

(a) (b)

Figure 17: This figure highlights the input difference between the one- and two-
dimensional HIMR scheme(a) Inputs for 1D-HIMR algorithm (b) Inputs for 2D-HIMR
algorithm

3.3 New 9-axis HIMR tag

A new low power RF tag capable of sensing nine inertial quantities, i.e. three

axis acceleration using a triaxial accelerometer, three axis angular rotation using a

triaxial gyroscope, and three axis orientation using a triaxial magnetic compass, has

been developed for multi-dimensional L&T using 2D-HIMR. A block diagram of the

nine-axis HIMR tag sensor is presented in Figure 18. The tag is equipped with a single

chip sensor which is connected to a microcontroller through an I2C interface. The

2D-HIMR uses a battery-assisted tag that periodically backscatters the data packets

and expends a power of 15 mW using a 3 V, 240 mAh coin cell battery. However, the

battery drainage can be reduced by introducing handshake, sleep and wake-up cycles

41



in an industrial or commercialized system. An InvenSense, MPU9250, 9-axis MEMS

inertial device is mounted on the tag to measure nine inertial quantities mentioned

above. Whereas, a Texas Instruments, MSP430F2619, microcontroller extracts the

data from the inertial sensor, organizes and encodes the data in a packet form, and

then backscatters the data by toggling the tag antenna through an RF switch between

two known RF load states, i.e. open and short. The measured data is arranged in

a structured packet illustrated in Table 5. It comprises pf a three-bytes header,

a unique two-bytes tag identification code, 18-bytes inertial data, and a single-byte

cyclic redundancy check (CRC) to validate the packet integrity. The packet is encoded

using Binary-offset carrier (BOC) with 8 transitions per data bit. The tag chip rate

is 4 Mcps with a packet rate of 141 packets per second. A data encoding scheme is

desired not only to prevent bit errors but also to add coding gain to achieve a long

range on the backscatter link [77].

Table 5: Arrangement of a 9-DOF backscattered data packet in the 2D-HIMR
scheme.

Header Tag ID Accelerometer data Gyroscope data Compass data CRC

3-bytes 2-bytes 6-bytes 6-bytes 6-bytes 1-byte

A photo of the developed 9-DOF tag is given in Figure 19. The size of the

developed tag is 3.5 × 4.6 cm, with a connectorized antenna port to attach different

kinds of directional or omni-directional antennas for testing purposes. The tag was

designed and fabricated on a four layer board of FR408 substrate with εr = 3.66 and

tanδ = 0.0127 at 5 GHz. The layer stackup for four layer board is given in Table 6.

3.4 Two-dimensional Motion Estimation Setup

Before formulating the mathematical model for the 2D-HIMR scheme, it is neces-

sary to understand the two dimensional motion estimation setup illustrated in Figure
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for 9-DOF

Micro-controller

MSP430F2619

Figure 18: Block diagram of 9-DOF RF tag with single chip 9-axis sensor. A Texas
Instruments, MSP430F2619, microcontroller extracts the data from the inertial sen-
sor, MPU9250, organizes and encodes the data in a packet form, and then backscatters
the data by toggling the tag antenna through an RF switch between open and short
load states.

20. As mentioned earlier, the two-dimensional HIMR uses three pylons, to simul-

taneously receive the backscattered packets from the tag moving in a plane. At

each instant of the tag’s planar motion, the three pylons compute approximate radial

distance and radial velocity, and decode triaxial acceleration, angular velocity and ori-

entation angle from the received backscattered signal. Each pylon can be considered

a sensory basestation that senses aforementioned quantities.

In the 2D-HIMR setup, the tag moves in a fixed coordinate system denoted by

(x, y), the location of three pylons is fixed and known, with (x1, y1), (x2, y2), and

(x3, y3) as their coordinates, respectively. The tag is considered to be a rigid body

whose body axes, which are aligned with the on-board sensor’s axes, are represented

by (xB, yB). Since the tag can rotate during planar motion, its orientation angle is

of importance in its tracking. The orientation of the tag body axis with respect to

the fixed plane is designated by θz. Accordingly, for a tag rotating around its z-axis,

the angular velocity is given by ωz. The tag accelerations along its body axes are
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Microcontroller
(msp430f2619)
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(MPU9250)

Figure 19: A photo of the developed 9-DOF RF tag with single chip 9-axis sensor.
The tag was developed on a four layer board with FR408 substrate with εr = 3.66
and tanδ = 0.0127 at 5 GHz.

given by ax and ay, which can be converted into the fixed coordinate system using a

rotation matrix based on the orientation angle θz. The radial distance of the tag from

all three readers is indicated by r1, r2 and r3, respectively. The rates at which the

radial distances between the tag and reader pylons changes during the tag movement

are given by ṙ1, ṙ2 and ṙ3, respectively.

3.4.1 Radial Distance

After introducing the aforementioned quantities, it is also essential to highlight

and recap how to extract these quantities from the backscatterd signal. The radial

distance between the tag and readers can be approximated using the freespace Friis

equation optimized for backscatter communication given by

ru ≈ 4

√√√√(2PTGTGRGt
2λ4MR

(4π)4H2
u

)
, u = 1, 2, 3 (22)

The transmitted power is indicated by PT ; GT , GR, and Gt represent the transmit,

receive, and tag antenna gains; λ is the wavelength; M is the modulation index of the
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Table 6: Four layer board stackup of the RF tag.

Thickness Layer Tolerance
1 mil Solder resist ± 0.2 mil

1.4 mil 1 oz copper
6.7 mil FR408 prepreg ± 0.67 mil
0.7 mil 0.5 oz copper
47 mil FR408 core ± 4.7 mil
0.7 mil 0.5 oz copper
6.7 mil FR408 prepreg ± 0.67 mil
1.4 mil 1 oz copper
1 mil Solder resist ± 0.2 mil

RFID tag; R is the impedance of the RFID system; and Hu is the amplitude of the

received signal at reader u. Note that in 1D-HIMR [48], the equation similar (22) was

used to approximate the linear distance between the reader and the tag moving along

a straight line, however, in 2D-HIMR we call it a radial distance. Approximating the

radial distance alone cannot guarantee the fine-scale position estimation of the tag,

as the received signal amplitude is noise-polluted. Moreover, unlike the conventional

triangulation based localization where the position of an object is determined by

finding a point of intersection of three ellipses or curves drawn from each receiver

based on the approximated radial distances, the 2D-HIMR scheme directly relates

the radial distance from each pylon to the tag’s and pylon’s position coordinates,

respectively, and makes it part of the estimation process which will be evident in the

HIMR modeling section.

3.4.2 Radial Velocity

The radial velocity of the tag, which is the rate of change of the radial distance

of the tag with respect to each pylon, is approximated by computing the packet-to-

packet phase difference of the backscattered signal. The RFID systems are phase

coherent by nature, i.e. the phase of the backscattered signal stays constant if the

tag is static and varies when the tag moves, which can be used to compute the radial
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Figure 20: Two-dimensional motion estimation setup. The three 5.8 GHz RFID
reader pylons are installed at known locations in a pre-defined area with fixed coor-
dinates whose origin is defined by Of . An RF tag considered as a rigid body with its
own body axes moves in the plane. The radial distance to the tag from each pylon is
defined by r1, r2 and r3 respectively.

velocity of the tag by using:

ṙu ≈
λ

4π

∆φp,u
∆t

, u = 1, 2, 3 (23)

where ∆φp,u is the propagated phase difference at reader u over the time interval ∆t.

Phase, in itself, is vulnerable to aliasing for a tag moving at high speeds, however, in

the presence of other sensor quantities such as received signal strength and inertial

measurements, the aliasing can easily be calibrated out.

3.4.3 Inertial Sensors: acceleration, angular Velocity, and orientation

In the 2D-HIMR, a low power, 9-axis sensor chip provides an approximation of

triaxial acceleration, triaxial angular velocity, and orientation of the tag. The infor-

mation from these sensors is part of the backscattered data packet received at each
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reader. The inertial information is retrieved by demodulating and decoding the re-

ceived packet; although all readers receive backscattered data packets, the inertial

information need only be retrieved from one of the readers. To ensure the integrity

of each packet, the CRC of the each packet is verified before the demodulation. In

theory, provided the initial position and orientation are known, the acceleration and

angular velocity can be integrated to get the position and angle position along the

motion path but this operation will add integration drift that will increase over time.

Hence, in 2D-HIMR all the noise contaminated measured quantities will be fused in

a single algorithm to locate and track the tag.

3.4.4 Required Inertial Quantities

Since the tag is in a planar motion in xy-plane, in essence only the accelerations

ax and ay along the tag’s body-axes will be required, however, the information of

z-axis acceleration is necessary since that is used to verify that the tag did not bump

up or down during the motion, affecting the z-axis acceleration. Similarly, for a

planar motion in the xy-plane, only the angular velocity ωz around the z-axis is

required. However, the angular velocities around the other two axes can be used to

establish that the tag did not twist or rotate around the other two axes. Likewise,

magnetometer measurements will be used to approximate the orientation θz of the

tag during the motion.

3.5 2D HIMR–Scheme

This section explains the modeling, estimator, error dynamics, and observability

analysis of the 2D-HIMR scheme.

3.5.1 Modeling

The tag is considered as a rigid body whose motion in the plane is governed by

Newton’s Law with respect to the fixed inertial plane in the form
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mẍ = Fx (24)

mÿ = Fy (25)

Izψ̈ = Tz (26)

where m indicates the mass of the rigid body, ẍ and ÿ are the accelerations along the

x and y-axes of the fixed inertial plane, Fx and Fy are the resultant forces applied to

the mass along the x and y-axes, ψ̈ is the angular acceleration, and Iz and Tz are the

inertial moment and resultant torque around the z-axis, respectively. The force/mass

and torque/inertia ratios determine the multi-dimensional tag motion, but these are

not measured or known. Moreover, this new scenario for multi-dimensional object

tracking complicates the system model by adding output nonlinearities, resulting in

the state-space model

ẋ = Ax + Bw (27)

y = h(x) + v (28)

where the x vector is composed of the position and orientation state variables and

the corresponding velocity and acceleration state variables, y denotes the vector of

noisy sensor outputs, vector h(x) describes the nonlinear dependence between system

states and noise-free sensor outputs, A is a 9 × 9 coefficient matrix, B is a 9 × 3

coefficient matrix, w is the disturbance vector which accounts for the forces ( Ḟx

m
, Ḟy

m
)

and torques ( Ṫz
Iz

) causing tag motion, and v is vector of sensor noise signals.

The state and output vectors x and y are written as

x =

[
x ẋ ẍ y ẏ ÿ ψ ψ̇ ψ̈

]′
y =

[
r1 ṙ1 r2 ṙ2 r3 ṙ3 θz ωz ax ay

]′
where x and y denote the position coordinates and ψ denotes the noiseless orientation
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angle, expressed in the fixed reference frame. According to Figure 20, the state-to-

output map has the form

h(x) =

[
h1 ḣ1 h2 ḣ2 h3 ḣ3 h4 h5 h6 h7

]′
where

hu =
√

(x− xu)2 + (y − yu)2, u = 1, 2, 3

ḣu =
(x− xu)ẋ+ (y − yu)ẏ√

(x− xu)2 + (y − yu)2
, u = 1, 2, 3

h4 = ψ

h5 = ψ̇

h6 = ẍ cosψ + ÿ sinψ

h7 = −ẍ sinψ + ÿ cosψ

The coefficient matrices are

A =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0



, B =



0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1


3.5.2 Estimation

The problem of estimating the states of a dynamical system from outputs and pos-

sibly inputs (commonly known as observing the state, hence the name observer) is

an important problem in the theory of systems [78]. For linear systems, this problem
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has been extensively studied and the results developed are complete. For nonlin-

ear systems, the theory of observers is not as complete or successful. A number of

methods have been proposed, such as (i) Lyapunov-based method [79], (ii) extended

linearization method [80], (iii) Lie-algebraic approach [81], and (iv) nonlinear least-

squares-based estimation [82]. Each of these approaches has its own pros and cons.

The Lyapunov-based methods are complicated and require a trial and error search for

a Lyapunov function. The extended linearization approach relies on an equilibrium

manifold and hence may fail when quasi steady-state operation does not apply. The

Lie-algebraic approach reduces the nonlinear observer problem to one that can be

handled by linear techniques; the drawbacks are that for this technique to be appli-

cable, the nonlinear system must satisfy non-generic conditions [83] (not mentioned

here), and even when this is so, finding the necessary state transformation will most

likely be a difficult problem in itself.

In this work, a very simple approach is presented for state estimation of system

(27)–(28). The state estimator will be constructed by neglecting the presence of w

and v in (27) and (28), since these signals are not known or measured. The estimated

value of the unmeasured state vector x, which is denoted by x̂, will be obtained by

solving the differential equation

˙̂x = Ax̂− L (ŷ − y) (29)

ŷ = h(x̂) (30)

as time evolves. The estimator state equation (29) incorporates a copy of state equa-

tion (27) with w = 0, and the estimator output equation (30) is a copy of output

equation (28) with v = 0. The assignable gain matrix L multiplies the output error

ŷ − y, and hence two terms combine in (29) to determine future values of x̂; neither

of these terms is sufficient individually, since one neglects w and one neglects v. Gain

matrix L may be adjusted to trade off these competing imperfections; a larger L is
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desired if w is larger than v, and a smaller L is desired if w is smaller than v. The

9× 10 gain matrix L would be preferably constant, in order to maintain simplicity of

implementation; analysis leading to its appropriate choice is provided in the following

section.

The estimator gain matrix L, assumed here to be constant, must be chosen such

that x̂ remains bounded and converges to a suitably small neighborhood of the un-

measured state x as time proceeds. One complication that arises in the gain selection

process is the nonlinearity of h(x). For the proof-of-concept experiments presented

in this work, we have relied on the classical result that the qualitative behavior of the

estimation error (x̂ − x), which satisfies a nonlinear time-varying differential equa-

tion, is determined by the eigenvalues of the matrix A − LC(x) where C(x) is the

Jacobian matrix associated with h(x) at x, provided that the rate-of-change of x

is sufficiently small. By analysis, we established that the frozen-in-time eigenvalues

remained inside the open left-half of the complex plane for all anticipated values of x,

provided that the constant matrix L is obtained by solving a matrix Riccati equation

using a straightforward selection of tuning parameters. Stability analysis using the

linearization method, for time-invariant and slowly-varying time-varying systems (as

in this case), is discussed in [84].

A signal flow diagram of the motion system and its estimator is shown in Figure

21.

3.5.3 Error Dynamics

The state estimation error is defined by e = x̂ − x. Differentiating e and using

(27) and (29) results in

ė = Ae− L(h(e + x)− h(x))−Bw + Lv (31)

which is a nonlinear differential equation forced by w and v, and parameterized by

x. Since w and v are exogenous signals, they will not influence estimator stability
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Figure 21: Signal flow diagram of motion system and its estimator.

(even if they do influence estimator performance). Hence, focusing on the special case

w = 0 and v = 0, the unforced nonlinear estimation error dynamics

ė = Ae− L(h(e + x)− h(x)) (32)

has an equilibrium point at e = 0, irrespective of x which may vary with time, since

at this point the term h(e + x) − h(x) reduces to zero. For estimator design, the

goal is to determine, if possible, a constant matrix L such that the equilibrium point

of (32) at e = 0 is (locally) exponentially stable. According to Lyapunov’s indirect

method, this goal will be achieved if the linear approximation of (32) at e = 0 has all

eigenvalues in the open left-half of the complex plane. The coefficient matrix of the

unforced linear approximate model is

∂ė

∂e

∣∣∣∣
e=0

= A− LC(x) (33)

where

C(x) =
∂h

∂x
(34)
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where in the rest of the text C(x) will be wriiten as C for the sake of simplicity. The

stability of the error dynamics at equilibrium point e = 0 is given by

ė = Ae− L(h(x + e)− h(x))

=

(
A− L

∂h(x)

∂x

)
e

= (A− LC) e

(35)

where ∂h(x)
∂x

= C. According to (35), the estimator is stable if and only if all eigen-

values of (A− LC) are in the open left half plane. The C can be found by carefully

choosing points in the fixed coordinate system with zero velocities and accelerations,

but L remains as a design variable that may be adjusted to meet this stability re-

quirement. Determining a stabilizing L, given A and C, is always possible provided

that the matrix pair (A,C) satisfies observability property, which will now be defined.

Assuming that dim{x} = n and dim{y} = p, the so-called observability matrix

O =



C

CA

...

CAn−1


(36)

has np rows and n columns. The matrix pair (A,C) is observable if and only if

rank{O} = n.

3.5.4 The C–Matrix

As discussed earlier the C matrix can be calculated by finding the Jacobian of the

output equation h(x) given by

C =
∂h(x)

∂x
(37)
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which yields the following 10 × 9 matrix:

C =



C11 0 0 C14 0 0 0 0 0

C21 C22 0 C24 C25 0 0 0 0

C31 0 0 C34 0 0 0 0 0

C41 C42 0 C44 C45 0 0 0 0

C51 0 0 C54 0 0 0 0 0

C61 C62 0 C64 C65 0 0 0 0

0 0 C73 0 0 C76 C77 0 0

0 0 C83 0 0 C86 C87 0 0

0 0 0 0 0 0 C97 0 0

0 0 0 0 0 0 0 C108 0



(38)

Each entry of the equation (38) is given in appendix B.

3.5.5 Observability Analysis

The observability matrix calculated using C and A in (36) is given in appendix B.

The coefficient matrix A is a nilpotent whose A3 is all zeros, therefore, the size of the

observability matrix is 30 × 9. To find whether the observability matrix has full rank,

we can reduce it to row echelon form, which may not be a suitable approach since

it may involve dividing certain rows by a factor which under some conditions could

be zero resulting in an undefined number. The other approach is to carefully choose

certain rows to solve for a nonzero determinant of the observability matrix, implying

that the matrix has a full rank. However, different combinations of rows could result

in a long and complicated determinant form. The goal is to find a simplest nonzero

determinant by carefully choosing different combinations of the matrix rows. It was

found during the analysis that the test setup is composed of three readers but the

system is observable under any choice of two receivers. This allows flexibility to

observability analysis such that if the determinant is zero at a certain point on the
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straight line joining the two readers, then by choosing another combination of the

readers, it is ensured that the system stays observable. The simplest formulation of

the determinants for all combinations of the readers is given in (39)–(44)

3.5.5.1 Receiver 1 and Receiver 2

For the combination of the receivers 1 and 2, the determinant is

D1 = −C97C108
2 (C11C34 − C14C31)

3 (39)

where D1 is the determinant formed by choosing rows R1, R3, R9, R10, R11, R13,

R20, R21, and R23 of the observability matrix (97). Using the definitions of the C

matrix entries from appendix B, the determinant D1 is more elaborately written as

D1 =

((
x− x1
h1

)(
y − y2
h2

)
−
(
y − y1
h1

)(
x− x2
h2

))3

(40)

The determinant D1 is zero at the coordinates
(
x1+x2

2
, y1+y2

2

)
, which is the mid-

point on the straight line joining receivers 1 and 2, in which case the system is still

observable by using the other pair of receivers 2 and 3 or receivers 1 and 3.

3.5.5.2 Receiver 2 and Receiver 3

For the combination of the receivers 2 and 3, the determinant is

D2 = −C97C108
2 (C31C54 − C34C51)

3 (41)

where D2 is the determinant formed by choosing rows R3, R5, R9, R10, R13, R15,

R20, R23, and R25 of the observability matrix (97). Using the definitions of the C

matrix entries from appendix B, the determinant D2 is more elaborately written as

D2 =

((
x− x2
h1

)(
y − y3
h2

)
−
(
y − y2
h1

)(
x− x3
h2

))3

(42)

Similar to the previous case, the determinant D2 is zero at the coordinates(
x2+x3

2
, y2+y3

2

)
, which is the midpoint on the straight line joining receivers 2 and 3,

in which case the system is still observable by using the combination of other pair of

receivers 1 and 2 or receivers 1 and 3.
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3.5.5.3 Receiver 1 and Receiver 3

For the combination of the receivers 1 and 3, the determinant is

D3 = −C97C108
2 (C11C54 − C14C51)

3 (43)

where D3 is the determinant formed by choosing rows R1, R5, R9, R10, R11, R15,

R20, R21, and R25 of the observability matrix (97). Using the definitions of the C

matrix entries from appendix B, the determinant D3 is more elaborately written as

D3 =

((
x− x1
h1

)(
y − y3
h2

)
−
(
y − y1
h1

)(
x− x3
h2

))3

(44)

Likewise, the determinant D3 is zero at the coordinates
(
x1+x3

2
, y1+y3

2

)
, which is

the midpoint on the straight line joining receivers 1 and 3, in which case the system is

still observable by using the combination of other pair of receivers 1 and 2 or receivers

2 and 3.

3.5.6 Riccati Equation

The steps to find the gain matrix L are similar to the 1D-HIMR case, which are

as follows:

1. Assign tuning matrices W and V satisfying

W = W′ > 0, V = V′ > 0. (45)

2. Obtain matrix Y by solving

A Y + YA′ −YC′V−1CY + W = 0. (46)

3. Obtain matrix L by solving

L = YC′V−1. (47)
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The matrices W and V are supposed to be real-valued, symmetric and positive

definite; this means that (i) the quadratic forms α′Wα and α′Vα evaluate to strictly

positive scalar values for every nonzero real-valued vector α, and (ii) the eigenvalues

of W and V are all real-valued and strictly positive. Any choices satisfying (45)

will guarantee estimator stability, so even diagonal matrices may be used in practice,

as shown in the experimental results below. If the unmodeled disturbance w and

the sensor noise v have been statistically characterized, then W and V may be

interpreted as corresponding covariance (or tuning) matrices, in which case the matrix

L determined in (47) can be shown to minimize the steady-state covariance of the

estimation error. Once W and V have been statistically evaluated or otherwise

assigned, Y is obtained by solving the continuous-time algebraic Riccati equation

(46); numerical methods for this calculation are available, e.g. function care of the

MATLAB Control System Toolbox.

3.5.7 Model Reduction to One-dimensional Case

Assuming the tag to be a point mass object moving along a straight line on the

x-axis towards reader # 1, then the h(x) vector only consists of h1, ḣ1, and h4. Since,

in the 1D-case we only used one reader, therefore, h2, ḣ2, h3, and ḣ3 are not required.

Also, the tag is assumed to be a point mass with ψ = 0 implying that h5, h6 and

h7 are also zero. Moreover, the x vector also reduces to x, ẋ, and ẍ. The modified

definition of the entries of the reduced h(x) vector are given as

h1 = x− x1 (48)

ḣ1 = ẋ (49)

h4 = ẍ (50)

Finding the Jacobian of h(x), the coefficient matrix C, and the reduced coefficient

matrices A and B are given as
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A =


0 1 0

0 0 1

0 0 0

 , B =


0

0

1

 , C =


1 0 0

0 1 0

0 0 1

 (51)

These are exactly the same matrices used for 1D-HIMR in [48] and fulfill the observ-

ability criteria, proving the generality of the proposed 2D-HIMR model.
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CHAPTER IV

EXPERIMENTS AND ANALYSIS

4.1 Experimental Setup

This chapter explains the experimental layout, the equipment used, the experi-

mental results, and their analysis. Seven different cases were discussed during the

analysis where a localization accuracy between 10 - 21 mm was achieved for x and y

position coordinates respectively for a tag accelerating and decelerating at 5 m/s2 in

an interval of less than 2 s.

The layout consists of three 5.8 GHz RFID systems in the arrangement illustrated

in Figure 22. The three readers were arranged in such away that the tag is contin-

uously illuminated by all the readers throughout its motion. The readers operated

on three different frequencies of 5.79 GHz, 5.8 GHz and 5.81 GHz, to avoid mutual

interference. The readers were also time synchronized using a common reference and

timing source for simultaneous measurements. The experiment was conducted in a

rectangular area of 4 × 3 meters on the roof of the Van Leer building. The lower left

edge of the area is considered as the origin of the fixed xy-coordinate system. The

location of the readers is given in Table 7. A 9-DOF tag was installed on one edge of

0.31 m long boom mounted on top of a motor shaft.

The motor rotates the boom in the horizontal plane at a pre-programed speed

in both counterclockwise and clockwise directions, however, during the analysis and

presentation of results, only one stroke of the complete 360◦ rotation in counter-

clockwise direction will be considered. This is shown by the circular track inside the

rectangular area of interest in Figure 22. The dotted portion of the first quarter of

circular track in the figure is to emphasize the fact that the radial distance of the tag
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with respect to each reader changes during the course of the motion. The reason to

choose a circular motion, which is just a single instance of generic planar motion, is

to ensure that measurements from all the sensors aboard the tag could be utilized for

the position estimation, since in a circular motion all the inertial sensors, i.e. the ac-

celerometer, the gyroscope and the compass, would be affected respectively. A photo

of the experimental setup is shown in Figure 23.

An omnidirectional monopole antenna was used on the tag for continuous tag illu-

mination and backscatter of the tag data during its rotation. The motion apparatus

fixture consists of a motor mounted on heavy metal plates to avoid unnecessary jitter

during the rotation, moreover, it was also ensured that the boom is horizontally level.

Table 7: Location coordinates of the three RFID systems.

RFID System # Location (x,y) - m
1 – (x1,y1) (-0.1, 1.5)
2 – (x2,y2) (2, 3.05)
3 – (x3,y3) (2.7, -0.03)

4.1.1 Motor’s Motion Trajectory

The motor was programmed to follow a trapezoidal motion profile in the horizontal

plane during one complete revolution, i.e. initially static, it accelerates up to a

target velocity, then cruises with uniform speed for a small period of time, and then

decelerates back to a static condition. It is pertinent to note that although the

motor is pre-programmed to move at certain velocity and acceleration, none of this

information is known to the readers for position estimation. The localization is solely

based on the available sensory information explained earlier in the modeling section.

The mathematical details of the motor’s motion trajectory are given in appendix C.

For the experiment, the motor was programed to accelerate and decelerate for 0.5

s respectively, whereas it cruised for 0.2 s. However, there was a slight delay of 150

ms between the programmed reference trajectory and the one actually undertaken
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Figure 22: Illustration of the experimental setup to test planar HIMR theory. The
measurements were made in a rectangular area of 4 × 3 m. The readers were installed
at the positions given in the Table 7. The tag is installed on one edge of a motor
mounted boom that moves the tag in a circular track as depicted above. The radial
distances from each pylon varies as the tag rotates.

by the motor. The programmed vs the actual trajectory followed by the motor are

presented in Figure 24. All the results will be compared with the actual trajectory

undertaken by the motor.

4.1.2 Readers Network

This subsection explains the networking details of the three RFID systems. Each

RFID system is composed of a pair of transceiver antennas connected to a transceiver

board whose inphase (I) and quadrature phase (Q) outputs go to the universal soft-

ware radio peripheral (USRP) device for signal processing. All the three USRPs are

required to be synchronized through common 10 MHz reference and 1 pulse per sec-

ond (PPS) timing signals to have time synchronized measurements. The processed
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Figure 23: Picture of the experimental layout on the roof top of the Van Leer
building. A rectangular area of 4 × 3 m was marked on the roof and the RFID
systems were positioned on the three sides of the area for the position estimation.
The tag is installed on a boom on top of motor placed inside rectangular area. The
tag rotates with motor at pre-programed trapezoidal motion profile.

data from each USRP device is simultaneously collected on a single host computer

through a gigabit Ethernet connection. A block diagram of the network is provided

in Figure 25. For the purpose of the experiment, the 10 MHz reference signal was

generated using an external signal generator by installing a three way 0◦ RF splitter

at its output to provide one reference to each USRP. Whereas, the 1 PPS signal was

provided through a three channel arbitrary waveform generator. Both the arbitrary

waveform generator and the signal generator shared a common 10 MHz reference

clock for synchronized signal generation.

In a practical scenario, many other methods can be used to make meaningful

measurements without synchronizing the readers with a single reference source. One

example is to add a particular sequence in each backscattered packet that can be

used to relate the packets decoded at each reader. This is similar to time-stamping

the packets and will help in computing the correct phase, amplitude and inertial
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Figure 24: Comparison of the programmed reference trajectory vs the actual trajec-
tory undertaken by the motor.

information at a particular instant. It will also help to avoid expensive equipment and

long cables required in readers synchronization and make the system more deployable

for practical measurements.

4.2 Experimental Results

This section presents a breakdown of the experimental results of the 2D-HIMR

theory. The motor spins the tag whose backscattered data is received at three time

synchronous readers. In this work, the data is time stamped and recorded for post

processing. The position of the tag will be expressed in terms of its (x, y) coordinates

and its orientation. Seven different cases were studied to analyze different aspects

of the algorithm, where all cases are variant of the main case (Case 1) as briefly

introduced below.

• Case 1–All Measured Data: This is the most fundamental case in which it is
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Figure 25: Network of the USRP devices in three RFID systems. All the devices
share the same 10 MHz reference signal and 1 PPS timing signal to synchronously
make the measurements.

assumed that all the sensed data is always available for the position estimation.

Therefore, the data from all the RF and inertial sensors will be used to estimate

the position of the tag.

• Case 2–Repetition of Last Measurement: In this case, an interesting scenario is

investigated in which it is assumed that the RF link between the reader and the

tag is temporarily disrupted due to excessive blockage of a tag or the presence

of a strong interference. During the tag blockade, no data is exchanged between

the reader and the tag, however, when tag data is properly decoded after a brief

period of submersion, normal exchange of the data is reestablished between the

tag and reader station. We call this phenomenon of temporary RF link loss

as submarining and analyze its effect on the position estimation. During the

submarining period, the last measured value of each sensed quantity, in the first

set of experiments, will be repeated until the tag resurfaces and the new data

is received. During the analysis, the effect of submarining was investigated by

intentionally replacing a 360 ms length of data (50 data packets) with the last
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measured value between 0.39–0.75 s, which is almost one-fourth of the total

motion time.

• Case 3–Linear Interpolation based estimation: This is an extension of the pre-

vious case of submarining where instead of repeating the last measured value of

each sensed quantity, the estimation is carried using linear interpolation until

the new data is received after the RF link is reestablished. This was done to in-

vestigate which approach yields the best results when faced with submarining,

i.e. repetition of last measured value as in previous case or linear interpola-

tion. The duration and time interval for linear interpolation based estimation

is identical to the previous case.

The linear estimation approach is simple in which the gain matrix L is assumed

to be zero for the duration of link loss, resulting the product L(h(x̂)−h(x)) to

be zero in (29), reducing the estimator equation to linear form as

˙̂x = Ax̂ (52)

A benefit of this simplification is that the algorithm does not need to linearly

interpolate the measured sensor quantities y, as it is not required in the estima-

tion thereby simplifying the process. Also, all the eigenvalues of the A matrix

are zero, implying that in general the estimator will not explode and will stay

in equilibrium.

Although in this work, post-processing was done on the data to estimate the

states, the entire HIMR modelling is generic and should work both in the real

time and offline. The first three cases particularly address the real time imple-

mentation of the HIMR scheme.

• Case 4–Linear Interpolation for Offline Reconstruction: In this approach, it

is assumed that the measured data is recorded on the readers and reused in
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an offline scenario to analyze and reconstruct the track of the tagged object.

Hence, the measured data is linearly interpolated between the two end points

of the link breakage, i.e. the last values before the link loss and the first values

after the link is reestablished.

• Case 5–Inertial data replay: In this case it is assumed that the tag has enough

memory to store on board inertial sensor data during the submarining period.

The inertial sensor data is wirelessly replayed and backscattered by the tag

when its connection is reestablished with the reader. However, the RF data

such as the received signal strength and the phase of received packet is still lost

during the submarining period for this segment of the data. In our analysis,

measurements based on the RF link such as approximated distance and radial

velocities will repeat the last measured value of the quantities until the link is

reestablished. However, instead of repetition, a linear interpolation approach

could also be applied in future investigations. This investigation is also useful

for offline reconstruction of the estimated position.

• Case 6–Packet rate reduction: The 9-DOF RF tag used for the 2D experiment

backscatters 141 packets per sec. This case probes the effect of reduction in the

number of available data samples on the 2D-HIMR-based positional estimation.

For this purpose, the available data was reused by choosing every other packet,

thereby emulating the case of 70 packets per second, which is half of the actual

packet rate.

• Case 7–Two readers case: This case investigated the performance of the 2D-

HIMR estimator by using the data from two readers instead of all three readers.

This scrutiny was based on the fact that the system is observable using two

RFID systems as was analyzed in the observability analysis. The observable

system means that the states of the dynamic system can be recovered from the
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measured sensory data. Therefore, it was necessary to investigate this fact.

The measured quantities and estimated position results for each case are discussed

in the following sections.

4.3 Case 1: All measurements

This section discusses the results when all of the measured data is available for

estimation, i.e. no data is missing or lost during the measurements due to absence of an

RF link. First, the measured quantities are presented followed by position estimation

results by using the measured quantities. The tag is installed on a boom mounted

on top of a motor shaft which rotates the tag in the horizontal plane. During the

motion the tag’s on-board single chip-based inertial sensors, i.e. the accelerometer, the

gyroscope, and the compass would measure the linear acceleration, angular velocity,

and orientation of the tag, respectively. The data is continuously fetched by the

microcontroller, packetized, and backscattered to the readers by toggling the RF

switch. The readers extract two types of information from the received signal, the

received signal strength to approximate the radial distance of the tag from the reader,

and the received signal phase to approximate the the radial velocity, and then decode

the received packet to extract the inertial information data.

During the rotation the radial distance of the tag varies with respect to each pylon.

The radial distance decreases as the tag moves towards a pylon and it increases as

the tag moves away from the pylon. This is depicted in Figure 26, which shows

the approximated measured distance based on the received signal strength. The blue

curve shows the radial distance r1 from the first reader, the red curve shows the radial

distance r2 from the second reader, and the black curve shows the radial distance r3

from the third reader. All the curves are noisy as the received signal fluctuates due

to noise and multipath.

Figures 27–29 depict the radial velocities ṙ1, ṙ2 and ṙ3 of the tag respectively,
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Figure 26: Radial distance of the tag with respect to each pylon approximated from
the received signal strength.

approximated using packet-to-packet phase difference of the received signal. Positive

velocity means the tag is moving away from the respective pylon whereas the negative

velocity means it moves towards the respective pylon. This depends upon the direc-

tion of phase rotation on a constellation diagram. The phase rotates in the clockwise

direction when the tagged object moves towards a pylon, resulting in a negative radial

velocity, whereas the phase rotates in the counterclockwise direction as the tag moves

away from the pylon resulting in a positive radial velocity [85].

Figure 30 shows the measured acceleration ax and ay along xB and yB-axes of

the tag. The tag is mounted on the radial boom in such a way that during the

counterclockwise rotation its positive yB-axis is always tangent to its circular motion

trajectory while the negative xB-axis points towards the center of the circular motion

trajectory. The tag experiences an acceleration and deceleration of ± 5 m/s2 (0.5 g)

along the yB-axis whereas it experiences an acceleration of approximately -21 m/s2

along its xB-axis. The linear accelerations measured by the accelerometer are related
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Figure 27: Radial velocity of the tag with respect to the first pylon. Radial velocity
is approximated using packet-to-packet phase difference of the received signal.

to angular acceleration by the factor of radius of the circular trajectory.

Figure 31 shows the measured angular velocity ωz of the tag around its z-axis

measured using an on board gyroscope. The tag attains a maximum angular velocity

of 8.5 rads per sec.

The last measured quantity is the orientation of the tag with respect to the fixed

coordinate axis. The orientation of the tag is measured using the tag’s on board

compass. In our experiment the orientation of the tag is given by the direction of the

tangential velocity vector which is along the tag’s yB-axis which is at angle of 180

degrees or π rads at the start of the motion as illustrated in Figure 22. The measured

orientation angle is presented in Figure 32.

4.4 2D HIMR - Implementation

This section describes the steps taken to implement the two dimensional HIMR

scheme. The estimation algorithm (29)–(30) has been derived using a continuous-time
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Figure 28: Radial velocity of the tag with respect to the second pylon.

model of the system, but its implementation requires a discrete-time formulation. To

this end, the state equation of the estimator is transcribed from a differential equation

to a difference equation. There are many methods for doing this, but in the this work

the simplest method, known as the forward Euler method, has been used. The result

of this procedure is

x̂[k + 1] = x̂[k] + T (Ax̂[k] + L (y[k]− ŷ[k])) (53)

ŷ[k] = h(x̂[k]) (54)

where T is the fixed time increment between difference equation updates and k is

the iteration index. For each increment of k, new measurements y arrive and new

estimates x̂ are computed. Although matrices A and L are unchanged by this tran-

scription procedure, their influence on estimator updates is scaled by T .

4.4.1 Choice of the C matrix

In this work, a linear approximation has been used to estimate the states of the

system by using a fixed gain matrix L. For calculating the gain matrix, we need the
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Figure 29: Radial velocity of the tag with respect to the third pylon.

two coefficient matrices A and C and the covariance matrices W and V. To this

end, we calculated a C matrix by choosing a set of coordinates close to the motor

coordinates and choosing reasonable motion parameters. To calculate C matrix we

need carefully picked position coordinates of the tag, position coordinates of the three

pylons, ẋ, ẏ, ẍ, ÿ, and the initial orientation of the tag. For our analysis purpose we

chose the parameters listed in Table 8.

The resultant C matrix using its elements definition from appendix B is given

below:
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Figure 30: Measured linear acceleration of the tag during the circular motion. Ac-
celeration ax is along the negative xB-axis of the tag pointing towards the circular
trajectory’s center while acceleration ay is along the yB-axis of the tag which is tan-
gential at every point during the tag’s rotation.

C =



0.9936 0 0 0.1129 0 0 0 0 0

0 0.9936 0 0 0.1129 0 0 0 0

0.0767 0 0 −0.9971 0 0 0 0 0

0 0.0767 0 0 −0.9971 0 0 0 0

−0.3194 0 0 0.9476 0 0 0 0 0

0 −0.3194 0 0 0.9476 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0



(55)
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Figure 31: Measured angular velocity of the tag around tag’s z-axis using on board
gyroscope.

4.4.2 Choice of Tuning Matrices

The next step in the calculation of the gain matrix is to carefully choose the tuning

matrices W and V. The role of tuning matrices is to converge the estimator close

to actual states, and reduce the error between the estimated and the actual state.

To start with, both the tuning matrices were chosen to be an identity matrix. We

only need to tune one matrix to achieve convergence of the estimated state to the

actual state. For this purpose we tuned the W matrix by changing the numbers

along the diagonal. Choosing an excessively high number for all entries may excite

oscillations and result in large errors. One such case is discussed here, in which the

identity matrix W when multiplied by a factor of 965, generated the oscillations in

the estimated x and y coordinates resulting in undesirable errors. This is shown

in Figures 33 and 34 where the magenta is the actual position of the tag while the

blue is the estimated position. Throughout the discussion of the 2D-HIMR-based

estimation results, the magenta curve with cross markers will represent the actual
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Figure 32: Tag orientation angle measured using compass.

state of the tag while the blue, black, or red curves will represent the estimated state.

To start the estimation, the estimator was given an initial conditions of the tag’s

actual coordinates (2, 1.8048) m, its orientation of π rads, and zero velocity (implies

the tag is at rest). Later in the discussion we will also analyze the impact of different

initial conditions on the estimator. In Figures 33 and 34, although the estimator

performed much better on the y coordinates than the x coordinates, however, we

can observe the undesirable oscillations on both the estimated states. The matrices

W and L for the oscillations case are given in section D.1 of appendix D and the

eigenvalue analysis is given in section D.3 of appendix D. It can be observed from

Figure 82 that for the oscillations case that the real part of eigenvalues becomes

positive between 0.41 - 0.78 s. Considering that the eigenvalue analysis was carried

out using the programmed reference trajectory of the motor and that there is a

slight delay between the programmed vs the actual motion undertaken by the motor,

therefore, the oscillations also occurred with a slight delay due to positive values real

part of the eigenvalues.
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Table 8: Parameters to calculate the matrix C. A pylon, in these experiments, is a
transmitter and receiver reader antenna and the corresponding reader hardware that
connects them.

Parameter Value Units Remarks
(x,y) (2.1, 1.75) m

(x1,y1) (-0.1, 1.5) m pylon # 1
(x2,y2) (2, 3.05) m pylon # 2
(x3,y3) (2.7, -0.03) m pylon # 3
ẋ 0 m/s
ẏ 0 m/s
ẍ 0 m/s2

ÿ 0 m/s2

ψ π rads

To resolve this, the implementation of the 1D-HIMR scheme was revisited [48],

where it was learnt that the W-matrix does not have equal weighting across the

diagonal; instead the position’s state has double the weighting than the velocity and

acceleration state. Similarly in the 2D case, when the weighting of the x and y

position states in the tuning matrix was changed to a factor of 4 as compared to their

velocities and accelerations respectively, no oscillations were observed while much

better estimation was achieved as presented in Figures 35–37. This makes sense

as during the process of formulating the C matrix we assumed zero velocities and

accelerations, therefore giving these states higher weight in the tuning matrix may

result in undesirable results. The gain and tuning matrices along with the eigenvalues

for this case are given in section D.2 and section D.3, respectively, of appendix D which

will used for Cases 1 – 6.

Figure 35 shows the x-coordinate estimation results with the modified tuning

matrix. It can be observed that as the time progresses the x-estimated position

curve (blue curve) converges to the x-actual position curve (magenta curve with

cross markers). Figure 36 shows the y-coordinate estimation results. Unlike the x-

coordinates, the estimator performed much better in estimating the y-coordinates

as the estimated curve quickly converged to the actual y-position curve. Figure 37
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Figure 33: Estimated x-coordinates, oscillations observed in the estimated coordi-
nates because of excessively high values used in W. The initial conditions for the
estimator are given in the legend.

presents the results of orientation angle estimation, where it can be observed that the

estimator quickly converges to the actual orientation. The orientation of the tag has

direct impact on the position estimation of the tag. Minor orientation error in the

beginning, approximately between 0.1–0.7 secs, may have affected the relatively slow

convergence of x coordinates as compared to y-coordinates.

4.4.3 Initial Conditions

This section discusses the performance of the estimator under two additional ini-

tial conditions. In practical implementation, the HIMR-estimator may be given any

random initial position and orientation of the tag which may not match the exact

location and orientation of the tag or tagged object. Therefore, it is necessary to test

the estimator for other initial conditions as well. The initial conditions with the most

impact are the position coordinates and the orientation of the tag. Therefore, only

these were varied during the analysis. Three sets of initial conditions used for the

76



x

x

x

x

x

x

x

x

x

x

x

x

Figure 34: Estimated y-coordinates, oscillations observed in the estimated coordi-
nates because of excessively high values used in W.

analysis are given in Table 9.

The estimated results for the initial conditions given in Table 9 are presented

in Figures 38–40. The estimated x-position is given in Figure 38 where the solid

curve represents the estimated results for the first set of initial conditions, the dashed

curve represents the second, and the dashed-dot curve represents the third. It can

be observed that curves for all three conditions converge to one another within 0.2 s

Table 9: List of initial conditions (IC) used for testing the 2D-HIMR.

Parameter IC # 1 IC # 2 IC # 3 Units
(x,y) (2, 1.8048) (1, 1) (2.5, 2.3) m
ẋ 0 0 0 m/s
ẏ 0 0 0 m/s
ẍ 0 0 0 m/s2

ÿ 0 0 0 m/s2

ψ π π
2

3π
2

rads

ψ̇ 0 0 0 rads/s

ψ̈ 0 0 0 rads/s2
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Figure 35: Case 1: Estimated x-coordinates. The estimator’s initial conditions are
given in the graph’s legend. The estimator converged to the actual position after
almost 0.8 s.

and together these converge to actual x position within 0.8 s. This depicts that the

estimator performs equally well for all initial conditions.

Figure 39 presents the estimated y-position for the three initial conditions which

converge within 0.2 s and follow the actual position curve. Figure 40 presents the

estimated orientation angle. It can be observed that the convergence time for the

estimated curves is 0.35 s, which is greater than the positional estimation curves.

However, all estimated results closely follow the actual orientation curve. From here

onwards, for all the other cases, we will present the combined results for all initial

conditions, just like Figures 38–40.

4.4.4 Case 1: Error Analysis

Before proceeding further it is important to analyze the accuracy of the estimator

by finding the error between the actual and the estimated states. Since we are more

interested in the position coordinates, only the error in x and y coordinates have been
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Figure 36: Case 1: Estimated y-coordinates. The estimator showed good convergence
for the y-coordinates except slight divergence between 0.8–1.15 s possibly because the
actual y curve started changing its slope.

presented here. Further, for the sake of clarity and comparison only the error for the

first initial condition has been been presented throughout this work, since estimated

curves for the all the initial conditions were close to one another. Figure 41 presents

the x-position error. The error is initially 10 cm (0.1 m) but, as the time progresses,

the error reduces to less than 2 cm. Similarly, Figure 42 presents the y-position error,

which reduces to 1 cm near the end of the motion. It is observed that since the error

reduces over time, if the system under observation runs for a longer duration, such

as more than 5 s, it is expected that error will further reduce to less than 1 cm for

the position coordinates. Finding a mean error may not be the best figure of merit

since the error does not fluctuate around zero; rather the error continuously reduces

as time advances.
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Figure 37: Case 1: Estimated orientation angle. Estimated and actual curves show
close agreement.

4.5 Case 2: Tag Submarining - Repeating last measurement

Under an ideal scenario, it is expected that the RF link between tag and the

readers is always active meaning that the data from the tag is backscattered at regular

intervals. However, practically there can be a scenario under which the RF link is

briefly lost or disrupted either due to tag occlusion or interference. This section

discusses the performance of the proposed HIMR scheme under such scenarios. In

the absence of RF link, the measured data from the tag is not available for the state

estimation. This can be dealt by a number of approaches such as:

• By repeating the last measured value of each sensor during the link breakage

time. This scenario is discussed in this section (section 4.5).

• By linearly interpolating between the last measured value before the link loss

and the first measured value when the link is available. This scenario is discussed

in section 4.6 and 4.7.
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Figure 38: Case 1: Estimated x-position for three different initial conditions. The
conditions are given in the figure’s legend for reference. The estimator performs
equally well for all initial conditions.

• By storing the tag’s data in an on board memory and wirelessly replaying the

inertial data when the the link is reestablished. This scenario is discussed in

section 4.8.

To emulate the first case of tag submarining, a 360 ms length of measured data

from each RF and inertial sensor to be used for estimation was intentionally replaced

with the last measured value between 0.39–0.75 s, which is almost one fourth of the

total motion time. Pictorially, the flawed data from each sensor with repeated last

value is shown in Figures 83 – 89 in appendix E.

The estimated position coordinates and orientation results using flawed measured

quantities are exhibited in Figures 43 – 45. The results are presented for all three

initial conditions considered earlier for the estimator. It can be observed from Figure

43 that the estimated x-position curves converge to the actual position curve in almost

0.1 s after the link is reestablished. However, during the link blockage the estimates
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Figure 39: Case 1: Estimated y-position for three different initial conditions. The
conditions are given in the figure’s legend for reference. The estimator performs
equally well for all initial conditions.

stayed constant as the same last state was repeated in each sensed quantity used

for estimation. This is expected as repeating the values in the sensed quantities are

equivalent to giving a new set of initial conditions during the estimation process and

should not affect the estimation process much. Similar results are observed for the

estimated y-position and the orientation angle which converged back to actual curves

within reasonable time of within 0.2 s after the link is reestablished.

4.5.1 Case 2: Error Analysis

This section details the error analysis of the second case under investigation. The

error is only computed for the first initial condition, as mentioned in the error analysis

of the previous case. It can be observed from Figures 46 and 47 that the error increases

especially for the y-position where it jumps up to 0.5 m during the link breakage but

reduces quickly when the link is reestablished and finally decreases down to within

2 cm for the both the position coordinates. Moreover, the amount of error may also
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Figure 40: Case 1: Estimated orientation angle for all initial conditions. The con-
vergence time for the estimated curves is 0.35 s, which is greater than the positional
estimation curves.

correspond to timing and duration of the link loss.

4.6 Case 3: Tag Submarining - Linear Interpolation

This section continues the investigation of the second approach to mitigate the

effects of the link loss. The second approach performs the linear estimation without

interpolating the data in the duration of link breakage. The linear estimation was

performed between 0.39 s and 0.75 s.

The estimated position and orientation results for this approach are exhibited

in Figures 48 – 50. This approach offers modest improvements on the y-position

estimation (Figure 49) whose maximum error is reduced to 0.3 m as compared to 0.5

m maximum error on the y-estimate in the previous case. The error on both x and y

coordinates converges to within 2 cm over time.
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Figure 41: Case 1: Error in x-coordinates.

4.6.1 Case 3: Error Analysis

The graph of the computed positional error for the linear interpolation case is

shown in Figures 51 and 52. The maximum error on the x-position is 16 cm which

reduces to less than 2 cm over time whereas the maximum error on y-position is 0.3

m which also reduces to less than 2 cm as the motor comes to rest.
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Figure 42: Case 1: Error in y-coordinates.
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Figure 43: Case 2: Estimated x-position for all initial conditions using value repeti-
tion approach on the flawed sensed quantities.
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Figure 44: Case 2: Estimated y-position for all initial conditions using value repeti-
tion approach on the flawed sensed quantities.
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Figure 45: Case 2: Estimated orientation angles for all initial conditions using the
value repetition approach on the flawed sensed quantities.

86



Figure 46: Case 2: Error in x-position due to the value repetition approach as
explained above.

Figure 47: Case 2: Error in y-position due to the value repetition approach as
explained above.
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Figure 48: Case 3: Estimated x-position for all initial conditions using the linear
interpolation approach.
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Figure 49: Case 3: Estimated y-position for all initial conditions using a linear
interpolation approach.
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Figure 50: Case 3: Estimated orientation angles for all initial conditions using a
linear interpolation approach.

Figure 51: Case 3: Error in x-position using a linear interpolation approach.
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Figure 52: Case 3: Error in y-position using a linear interpolation approach.
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4.7 Case 4: Tag Submarining - Linear Interpolation for of-
fline reconstruction

This section analyzes an “offline” approach to reconstruct the tag’s position by

using the recorded measurement data. It linearly interpolates the data between two

end points of the duration of a link breakage instead of repeating the last measured

value of the sensed quantity. The linear interpolation was performed between 0.39 s

and 0.75 s. Pictorially, the flawed data from each sensor with the linear interpolation

approach is shown in Figures 90 – 96 in appendix F.

The estimated position and orientation results for this approach are exhibited

in Figures 53 – 55. This approach offers improvement on both the positions and

orientation estimation as compared to the previous cases, especially, on y-position

estimation (Figure 54) whose curve now closely follows the actual y-position curve

similar to Case # 1 where the RF link was always established. The estimated x-

position also has visibly less error than the previous cases while the orientation angle

estimation outperforms the previous case.

4.7.1 Case 4: Error Analysis

The graph of the computed positional error for the linear interpolation case is

shown in Figures 56 and 57. The maximum error in the x-position is 10 cm which

reduces to less than 2 cm over time whereas the maximum error in the y-position is

5 cm which also reduces to less than 2 cm as the motors comes to rest.

4.8 Case 5: Tag Submarining - Inertial Data Available

This section describes the results of the another approach in the event of link

breakage between the tag and the reader. In this approach, it is assumed that the tag

has enough memory to store on board inertial sensor data during the submarining

time. The inertial sensor data is replayed and backscattered by the tag when its

connection is reestablished with the reader. However, the RF data such as the received
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Figure 53: Case 4: Estimated x-position for all initial conditions using a linear
interpolation approach on the flawed sensed quantities.

signal strength and the phase of received packet is still lost during the submarining

time. In our analysis of this case, the last measurements based on the RF link such as

the approximated distance and radial velocities before the link loss will be repeated

until the link is reestablished.

The curves for the measured quantities are similar to the one given for Case 2

(radial distance and radial velocity curves) and Case 1 (inertial data curves). Large

errors are observed in the position coordinates because of the approach that repeats

the last measured value of RF-based sensed quantities. The error can be reduced by

using a linear interpolation approach for the RF-based sensed data. It also emphasizes

that inertial data alone cannot be used for fine scale position estimation, rather a

fusion of both RF and inertial based sensing would yield better accuracy.

The estimated position and orientation results for this case are shown in Figures

58 – 60.
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Figure 54: Case 4: Estimated y-position for all initial conditions using a linear
interpolation approach on the flawed sensed quantities.

4.8.1 Case 5: Error Analysis

The error graphs of positional accuracy for this case are given in Figures 61 and

62. The error margins are similar to the Case 2 approach based on repeated last

measured values. It emphasizes that RF-based sensing is crucial for accurate position

sensing. The errors could be reduced using a linear interpolation approach.

4.9 Case 6: Packet rate reduction

This section demonstrates the effect of lower packet rates (< 100 packets per

sec) on the HIMR-based 2D position estimation. The 9DOF RF tag used for the

2D experiment backscatters 141 packets per sec. For the purpose of analysis, the

available data was reused by choosing every other packet, thereby emulating the

case of 70 packets per second which is half of the actual packet rate. The packet

rate is determined by a number of factors such as the clocking rate of the tag’s

microcontroller, the time taken by thet microcontroller to access the inertial sensor’s
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Figure 55: Case 4: Estimated orientation angles for all initial conditions using a
linear interpolation approach on the flawed sensed quantities.

data, the arrangement of data to form packets and the time taken to backscatter a

single packet.

The estimated position and orientation results for a 70 packets per sec data rate

are given in Figures 63 – 65. The rate of convergence of the estimator depends upon

two factors, the tuning matrices and the number of available data samples for a given

system’s states. For fixed tuning matrices, the higher the number of available samples

for a given state means earlier convergence of the estimated to the actual state and

vice versa. This can be observed from the x and y position estimates which converge

to the actual state after almost 1.2 s as compared to all previous cases where x

converges in about 0.8 s and y converged instantly.

4.9.1 Case 6: Error Analysis

The x and y positional error graphs for the packet reduction case are shown in

Figures 66 and 67. The maximum error in the x-position goes up to 13 cm before

reduction to within a 2 cm range. Whereas, the maximum error in the y-position goes
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Figure 56: Case 4: Error in x-position using a linear interpolation approach.

Figure 57: Case 4: Error in y-position using a linear interpolation approach.
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Figure 58: Case 5: Estimated x-position for all initial conditions where inertial data
is available while RF-based data is not available.

up to 8 cm before reduction to within a 1 cm range. The error is large up to 1.2 s

after which the estimated position converges to the actual position thereby reducing

the error.

4.10 Comparison Cases 1–5

This section compares the results of the first five cases. We present the com-

parison of estimated x and y-positions and their respective errors for all four cases

under the first initial condition of the estimator in Figures 68 – 71. Case 1 where all

the measured quantities were used for estimation, results in the lowest error whereas

the linear interpolation approach gives the best estimation among the link breakage

cases. In the legend of all comparison figures, AM means all measurements used for

estimation without link loss, 360ms means the duration for which the last measured

measurements were repeated in each sensed quantity, LI means that the linear inter-

polation approach was used and IDP means that the approach where inertial data is

available for estimation while RF-based quantities were not used.
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Figure 59: Case 5: Estimated y-position for all initial conditions where inertial data
is available while RF-based data is not available.

4.11 Case 7: Estimation using Two Readers

The observability analysis in section 3.5.5 showed that the 2D-HIMR dynamical

system is observable by using two readers implying that the states can be estimated

using the measured data from two readers. This section presents the estimation

results using the pair of readers 1 and 2. For the analysis purpose, we used the

reduced order C-matrix from (55) by deleting its rows 5 and 6 which are related to

the third reader. This reduced the order of the modified C-matrix to 8 × 9 (from 10

× 9), which required modifying the tuning matrices, and correspondingly computing

the new gain matrix. The modified tuning matrices along with the new gain matrix

are given in appendix D under the case 7 section.

The estimated position and orientation results for the current case are given in

Figures 72 – 74. It can be observed that the estimated x and y-position curves

converged to actual position curves in almost 1.1 s. Unlike Cases 1 – 5, the estimated

y- position also took longer to converge to the actual position. These observations
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Figure 60: Case 5: Estimated orientation angle for all initial conditions where inertial
data is available while RF-based data is not available.

lead to conclusion that although the dynamical system states can be estimated using

two readers, using all three readers leads to early convergence of estimated to actual

states and reduces overall error by providing an extra set of measurements.

4.11.1 Case 7: Error Analysis

The positional error curves for this case are presented in Figures 75 and 76. The

maximum error in the x-position goes up to 13.5 cm before reducing down to within 2

cm after almost 1.1 s. Similarly, the maximum error in the y-position is 10 cm before

reducing down to within 2 cm after 1.1 s.

4.12 Conclusion

This chapter presented the theory and experimental results of the 2D-HIMR

scheme based tag L&T, and discussed various cases that could arise during the im-

plementation of the technique. A 2 cm positional accuracy on both the x and y

coordinates was achieved for all cases using the HIMR algorithm without the use of
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Figure 61: Case 5: Error in x-position.

Figure 62: Case 5: Error in y-position.
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Figure 63: Case 6: Estimated x-position for a lower packet rate scenario.

any reference tags or any other pre-stored, pre-sorted, or pre-measured information.

The HIMR scheme provided L&T accuracy based on fusion of RF- and inertial-based

measurement data including radial distance approximated through received signal

strength, radial velocity approximated through received signal phase, acceleration,

angular velocity and compass measurements.
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Figure 64: Case 6: Estimated y-position for a lower packet rate scenario.
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Figure 65: Case 6: Estimated orientation angle for a lower packet rate scenario.
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Figure 66: Case 6: Error in x-position

Figure 67: Case 6: Error in y-position
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Figure 68: Comparison of the estimated x-positions. All the results are presented
for a single initial condition for estimator with (2, 1.8048) m coordinates and π rads
orientation.
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Figure 69: Comparison of the estimated y-positions. All the results are presented
for a single initial condition for estimator with (2, 1.8048) m coordinates and π rads
orientation.
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Figure 70: Comparison of error in estimated x-positions vs actual position.
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Figure 71: Comparison of error in estimated y-positions vs actual position.
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Figure 72: Case 7: Estimated x-position using measured data from two readers.
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Figure 73: Case 7: Estimated y-position using measured data from two readers.
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Figure 74: Case 7: Estimated orientation angle using measured data from two read-
ers.

Figure 75: Case 7: Error in x-position.
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Figure 76: Case 7: Error in y-position.
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CHAPTER V

CONCLUSION

5.1 Concluding Remarks

The ubiquitous presence of RFID-based devices permits the utilization of this

technology for localization applications. We presented a new type of fine-scale wireless

2D position estimation technology that provides both unprecedented precision and

range. Hybrid inertial microwave reflectometry (HIMR), is a wireless localization

technique that powerfully illustrates the concept of sensor fusion – using multiple,

disparate sensor measurements to synthesize a single, superior estimation of position.

In HIMR, a microwave reader retrieves multi-axis inertial data from a low-energy

microwave backscatter sensor. The HIMR algorithm then fuses both inertial data

and the RF signature of the backscattered signal to produce a motion-capture grade

estimate of position and/or orientation. Narrowband experiments at 5.8 GHz have

demonstrated a system that can produce a one-dimensional accuracy of 2 mm and

two-dimensional accuracy within 20 mm.

A motion-capture grade wireless localization system could revolutionize smart-

phone applications, augmented reality experiences, autonomous vehicle navigation,

and unmanned aerial vehicle way-fairing, as well as adding a complete new dimension

of functionality to emerging internet-of-things (IoT) devices. As one usage scenario,

we envision a low-powered, light-weight drone equipped with an HIMR tag that can

effortlessly navigate, monitor, and inventory a vast shipping container field at a port.

Another usage could be sport players equipped with tiny HIMR tags that capture

the entire choreography of a match for scientific or entertainment purposes. Ubiqui-

tous, motion-capture grade localization technology unlocks an uncountable number
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of future applications.

Our work investigated, introduced, and extended the nascent HIMR concept to

a three-dimensional technique (adding multiple readers), while adding extra sensor

data (gyrometry and mangetometry), enhanced orientation sensing (designing multi-

antenna tags [85]), additional RF signature information (through frequency hopping

[86]), and overall range (sensors equipped with QTRs [87]).

The HIMR technique is intrinsically cross-cutting and multi-disciplinary. This

proposed research cultivates concepts, expertise, skills, and potential inventions that

align with exploding consumer and industry interest in low-powered telemetry, ultra-

connected sensors, and IoT applications. The results from this work promise to

disrupt existing motion-capture grade localization technologies – which have severe

range and environmental limitations – using hardware and antennas that already

exist in every smartphone. Today’s smartphones are already equipped with 9-axis

position sensing, a microwave antenna, and RF switches. With little modification,

these phones could become HIMR tags; with long-range, ultra-precise localization

and orientation capability. An entirely new class of low-powered sensors could also

be deployed throughout our environment and incorporated into a next-generation

cellular network.

5.2 Major Contributions

Major contributions of this work are as follows:

1. Motion capture tags: During the course of research, 6-DOF and 9-DOF

motion capture tags were developed for experiments. As per the conducted

literature survey, no one has developed such an RFID tag before which can

provide the motion parameters such as acceleration, rotation and orientation to

be used for L&T. Therefore, the developed motion capture tags are the first of

their kind.
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2. Two 5.8 GHz RFID systems: A total of three RFID systems were required

for the experiment and analysis of the two-dimensional HIMR algorithm. Two

additional RFID systems were developed besides the one already available in

the laboratory. All the systems were networked and integrated using a single

reference and timing source for time synchronized measurements at all RFID

nodes.

3. Georgia Tech wireless motion capture protocol: A Georgia Tech wireless

motion capture protocol was developed for motion capture tags to extract the

information from inertial sensors and backscatter it in the form of customized

packets.

4. Survey of state-of-the-art L&T techniques: A literature survey was con-

ducted to investigate the various methods of RFID-based L&T techniques and

the position estimation accuracies that were obtained. Using these data, a

performance benchmark for HIMR was obtained.

5. Theoretical model for single and multidimensional HIMR-based L&T:

This work presented the theoretical model and subsequent observability analysis

of the single and multidimensional HIMR estimator, which is the first of its kind

to be used for L&T of tagged objects.

6. Experimental setup and results: The experimental setup required to test

the HIMR scheme was presented in detail along with subsequent results. The

analysis showed that the proposed HIMR scheme provides orders of magnitude

better positional accuracy.

7. Theoretical CRLBs for magnitude and phase difference: Theoretical

CRLB were derived for the estimation of magnitude and phase difference pa-

rameters from the received signal under different SNRs scenarios. These are
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given in appendix A.

8. Easily tunable Sigma-dipole antenna: An easily tunable Sigma-dipole an-

tenna at 915 MHz was designed, developed and integrated with existing toll

tag circuitry for Intel Corporation. The Sigma-dipole antenna is being used by

Intel on their products.
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CHAPTER VI

FUTURE WORK

The following future steps are proposed to enhance and continue the research on

the HIMR technique:-

• In this work, the data was recorded and post-processed for analysis. It is recom-

mended that the HIMR algorithm may be incorporated in the reader’s software

for real time processing of localization and tracking of the tag.

• This work presented the L&T of a tagged object in a plane. In future, the

HIMR scheme may be extended for localization and tracking of objects in three

dimensions. The state-space model may be developed to incorporate the third

dimension and its associated sensory information. Although a new observability

analysis would be required to guarantee the suitability of the proposed sensor

set, the methods reported in this work would still apply.

Two-dimensional HIMR requires three pylons to track the tagged object in any

type of planar motion. For the three-dimensional HIMR experiments in future,

a four-pylon setup may be explored which allows long-range localization and

tracking in 2D and 3D. The ability to get absolute position with mm-precision

from each of the four pylons indicates operation of a 3D position estimation sys-

tem that far surpasses any existing technology in terms of accuracy, simplicity,

size, and range.

• Interference and tag collision are the common problems in RFID systems which

can hamper the HIMR scheme based L&T. This could be mitigated by using fre-

quency hopping RFID systems which are not only more resilient to interference
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but also provide an additional set of information that can be used to improve

localization accuracy. Frequency hopping capability will also make system more

resilient to multipath and fading.

The current reader unit at Georgia Tech works on a single, static frequency

within the unlicensed 5.8 GHz band. However, it is flexible and can be pro-

grammed to run in a frequency-hopping mode. It is envisioned that a frequency-

hopping algorithm will derive more localization information and estimation re-

liability in the HIMR scheme. Moreover, it would also be suitable for avoiding

any potential interferer in this band such as wireless networking signals.

A key task will be to incorporate a frequency-hopping algorithm for the cus-

tom Georgia Tech 5.8 GHz frequency synthesizer boards. The existing Georgia

Tech 5.8 GHz reader has a programmable microcontroller that drives a crystal-

disciplined voltage-controlled oscillator with programmable phase-locked loop

controller. The unit can be programmed with a designed frequency-hopping al-

gorithm that uses the full 150 MHz of unlicensed spectrum across the 5.8 GHz

band for data collection. Synchronizing the frequency with the data acquisition

will allow the collection of truly coherent broadband measurements.

• A tunnel diode-based load modulating HIMR tag using quantum tunneling

reflection [87] may be developed and utilized in the investigation of long-range

HIMR.

• A stochastic based HIMR-scheme may be investigated in future study and its

results may be compared with the work presented in this thesis.

• The efficiency of HIMR may be tested with multiple tagged objects.

• The CRLBs for multi-dimensional HIMR in the presence of colored noise may

be developed.
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• In this work, three pylons were simultaneously used to perform the RF channel

data (received signal amplitude and phase) and inertial measurements, based on

monostatic measurement where RF information is only recorded at the pylon of

origin of the CW signal. In this current work, a bistatic RF tag scatter between

different pylons is not measured. Thus, for a three-pylon system, there are 3

monostatic links and 6 additional bistatic links that could provide localization

information.

In the future, inclusion of bistatic link measurements could also be incorporated

in the estimation process. This will not only add another sensing variable and

but will help in mitigating the fading due to interference.
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APPENDIX A

AMPLITUDE AND PHASE DIFFERENCE ESTIMATION

BOUNDS FOR MULTISENSOR BASED TRACKING OF

RFID TAGS

A.1 Introduction

Radio frequency identification (RFID) systems with their inexpensive technology,

easy deployment, and maintenance offer practicable solutions for object L&T [88].

The accuracy performance of L&T related applications of RFID technology can be

greatly improved by fusing information from multiple sensors [48].

L&T of RFID systems in itself can be regarded as an application of parameter

estimation where we estimate the position of an object by gathering the positional

data from various sensing sources [89]. To evaluate the accuracy of any estimator,

the Cramer-Rao Lower Bound is perceived as a well-established and crucial refer-

ence [90]. This chapter presents the Cramer-Rao Lower Bounds (CRLB) for the

backscattered signal amplitude and backscattered packet-to-packet phase difference

due to propagation in an RFID system. Before formulating the CRLBs, the prob-

ability density functions (PDFs) of the above quantities will be discussed in high

and low signal-to-noise ratio (SNR) scenarios, respectively. Consequently, the cor-

responding CRLBs will be derived for both SNR cases. The HIMR scheme uti-

lizes the received signal strength (RSS), received signal phase difference, and iner-

tially sensed backscattered accelerometer data to track and locate the RFID-tagged

object. It is therefore essential to determine the lower bounds on the estimation

of these parameters used for L&T in HIMR. A large number of bounds such as

Hammersley-Chapman-Robbins, Cramer-Rao, McAulay-Hofstetter, Kendall-Stuart,
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Bhattacharyya, Seidman, Ziv-Zakai, Bobrovsky-Zakai, Weiss-Weinstein and Kiefer

exist in the literature [90–95]. However, CRLB is a more commonly referenced and

easily computable bound.

As mentioned earlier, the CRLB is the most commonly referenced bound for lo-

calization techniques; therefore, a vast amount of research literature is available for

calculating and applying this bound, where a subset relevant to RFID is referenced

here [96–101]. [96] introduced the fundamental information on statistical signal pro-

cessing for localization in wireless sensor networks. The authors discussed in detail

the procedures to work out the CRLB on location estimation using a given set of

measured position data. [97] used an RSS-based, unscented Kalman filter to locate

RF tags and compared its performance with a predefined posterior CRLB for the

RSS. [98] studied the accuracy of various RSS-based RFID localization algorithms.

For comparison, they derived CRLB using a frequency-dependent path loss model

with log-normal PDF. In [99], the authors discussed the performance of their local-

ization estimators in the presence of Gamma and Rayleigh fading. The localization

is performed using time-of-arrival-based measurements and compared by deducing

the CRLB for such measurements. It was concluded that fading has an adverse ef-

fect on the CRLB in such localization scenarios. The effectiveness of target position

estimation using coherent Multiple-Input-Multiple-Output (MIMO) radars has been

examined in [100], and the CRLB for coherent processing was investigated. It was

inferred that the accuracy of the estimation is inversely proportional to the carrier

frequency and signal bandwidth. [101] argues the significance of using complex and

magnitude data to estimate the signal amplitude and noise variance for maximum

likelihood (ML) method.

This chapter calculates CRLB for received signal amplitude and phase difference

for RFID tag localization and tracking. Section A.2 discusses probability density

functions for amplitude and phase difference for high and low SNR cases. Section
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A.3 briefly introduces CRLB followed by derivation of bounds for the parameters and

discussion on CRLB.

A.2 Probability Density Function

A.2.1 Received Signal Amplitude

In RFID systems, the received signal has both amplitude and phase and can be

expressed by (56), where V is the complex received signal with an in-phase component

I and quadrature-phase component Q. It is assumed that both I and Q are modeled

as the superposition of a large amplitude components with independent, identically-

distributed (i.i.d.) AWGN of variance σ2.

V = I + jQ (56)

The magnitude of the measured noisy received signal is calculated by taking the root

of the sum of squared I and Q denoted by v =
√
I2 +Q2. This nonlinear mapping

results in a Rician distribution function for the magnitude v. Such a case occurs when

there are strong line-of-sight components along with zero mean AWGN. The PDF of

the measured noisy signal denoted by fv(v) is given by the following [102]:

fv(v) =
v

σ2
exp

(
−(v2 + Vo

2)

2σ2

)
I0

(
vVo
σ2

)
(57)

where Vo is the amplitude of the noiseless signal and I0(.) is the zeroth order modified

Bessel function of the first kind. The plot of fv(v) for SNR values, Vo
σ

is illustrated

in Figure 77. It is evident from Figure 77 that at low SNR, (SNR = Vo
σ

), fv(v)

resembles a Rayleigh distribution shape but for higher SNR, (i.e. as Vo
σ

increases),

fv(v) converges to Gaussian distribution with mean and variance properties described

by N (
√
Vo

2 + σ2, σ2) [103]. Therefore, the approximated Gaussian distribution for

large SNR can be written as

fv(v) ≈ 1√
2πσ2

exp

(
−(v −

√
Vo

2 + σ2)2

2σ2

)
(58)
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Figure 77: Effect of SNR is illustrated on the Rician distribution. It is observed that
for larger Vo

σ
the Rician distribution converges to Gaussian curve.

[103] also discusses in detail the Gaussian approximation of Rician distribution along

with the discussion on the effect of the Rician factor which is given as K = Vo2

2σ2 .

A.2.2 Received Signal Phase

Using the phase coherence feature of RFID transceivers, the noisy phase φ of the

received signal can be deciphered using

φ = arctan

(
Q

I

)
(59)

[104] described the PDF of the noisy phase fφ(φ) under the nonlinear arctangent

function by the following expression:

fφ(φ) =
1

2π
exp

(
−Vo2

2σ2

)(
1 +

Vo
σ

√
2π cosφ exp

(
Vo

2cosφ2

2σ2

)
[
1−Qf

(
Vo cosφ

σ

)])
(60)

where Qf (·) describes a Q-function. The intricate expression in (60) can be plotted

for various SNR values as illustrated in Figure 78. As evident from Figure 78, for

very low and zero SNRs, (60) is simplified to a uniform distribution, which implies

120



Figure 78: Effect of SNR is illustrated on the phase PDF. It is observed that for
larger Vo

σ
the distribution approximates to Gaussian curve whereas for zero SNR it

converges to uniform distribution.

that every phase value is equally likely [102].

fφ(φ) =
1

2π
−π < φ < π (61)

While, as the SNR increases, the noise will have little effect on the variation of φ, as

a result fφ(φ) approximates to a Gaussian distribution (Figure 78), which after some

manipulation of (60) can be written as [105]

fφ(φ) ≈ 1√
2π( σ

Vo
)2

exp

(
− φ2

2( σ
Vo

)2

)
(62)

which shows that for high SNR, the phase distribution expression in (60) is simplified

to zero mean Gaussian distribution.

A.2.3 Phase Difference

The HIMR scheme in [48] employs the backscattered packet-to-packet phase dif-

ference to discern the velocity of the tagged object. Therefore, the PDF analysis

of the phase difference is of more interest than the simple phase itself. The phase

difference between the two packets is represented by ϕ = φk − φk−1 where k ∈ N.

For the case of large SNR, both φk and φk−1 are i.i.d. zero mean Gaussian random
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variables, therefore, the resultant phase difference ϕ is also zero mean Gaussian under

linear difference operator. The distribution is exactly represented by (62) where φ is

replaced by ϕ. Moreover, we can represent the noiseless phase difference estimate by

ϑ.

However, for the low SNR case, both φk and φk−1 are i.i.d. uniform random vari-

ables. The difference of two independent standard uniform random variables has the

standard triangular distribution [106]. Under this case, the PDF for ϕ is expressed

by (63) with zero mean and variance of π2

6
, and is shown in Figure79.

fϕ(ϕ) =
(π− | ϕ |)

π2
U (π− | ϕ |) − π < ϕ < π (63)

where U(.) is the unit step function.
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Figure 79: PDF for the phase difference ϕ for the case Vo = 0 and Vo � σ.

A.3 Cramer-Rao Lower Bound

Cramer and Rao devised a method to extract the lower bound (CRLB) on the

variance of the unbiased estimators that estimate stochastic parameters [107]. The

CRLB states that the variance of an unbiased estimate α̂ of parameter α is greater

122



than or equal to its CRLB i.e. σ2(α̂) ≥ CRLB(α) [90]. The CRLB is used to

judge the performance of a proposed estimator where an it is not categorized as a

good estimator if its variance does not approach its CRLB. On the other hand, if an

estimator attains its CRLB, then it is considered as the minimum variance unbiased

estimator. The CRLB of an estimator for any parameter α with PDF fp(p;α) is

determined by the following [90]:

CRLB(α) =
1

−E
[
∂2 ln fp(p;α)

∂α2

] (64)

where E[.] is the expectation taken with respect to fp(p;α). In our case, we want

Vo (noiseless estimate of the received signal amplitude) and ϑ (noiseless estimate of

the phase difference), therefore we will use fv(v;Vo) and fϕ(ϕ;ϑ) PDFs for multiple

observations.

A.3.1 CRLB - Received Signal Amplitude Estimation

First, we consider the N independent magnitude data points given by:

v = (v1, v2, ..., vN) (65)

with Rician distribution to estimate the amplitude of the signal Vo. The joint Rician

distribution can be written as

fv(v;Vo) =
N∏
n=1

vn
σ2

exp

(
−(vn

2 + Vo
2)

2σ2

)
I0

(
vnVo
σ2

)
(66)

Applying the definition given in (64) on (66), we can find the CRLBa(Vo) for the low

SNR case as

CRLBa(Vo) =
σ2

N

(
E

[
v2I1

2
(
V0v
σ2

)
σ2I0

2
(
V0v
σ2

)]− Vo
2

σ2

)−1
(67)

where CRLBa(Vo) is the CRLB of received signal amplitude for low SNR case and

I1(.) is the first order modified Bessel function of the first kind. Similarly, for high SNR

we consider the N independent magnitude data points with Gaussian distribution for
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estimated amplitude of the signal Vo. The joint Gaussian distribution can be written

as

fv(v;Vo) ≈
N∏
n=1

1√
2πσ2

exp

(
−(vn − Vo)2

2σ2

)
(68)

Applying (64) on (68), the CRLBb(Vo) for high SNR case is derived as

CRLBb(Vo) =
σ2

N
(69)

where CRLBb(Vo) is the CRLB of received signal amplitude for high SNR case.

A.3.2 CRLB - Phase Difference Estimation

Again considering N phase difference data points given by:

ϕ = (ϕ1, ϕ2, ..., ϕN) (70)

the joint triangular distribution for noiseless phase difference estimate ϑ can be writ-

ten as

fϕ(ϕ;ϑ) =
N∏
n=1

(π− | ϕn | −ϑ)

π2
U (π− | ϕn |) − π < ϕn < π (71)

The CRLBc(ϑ) for low SNR case can be found using the definition given in (64) on

(71), we get

CRLBc(ϑ) =
ϑ2

N
(72)

where CRLBc(ϑ) is the CRLB of the phase difference for low SNR case. Similarly

for high SNR, the joint Gaussian distribution for noiseless phase difference estimate

ϑ can be written as

fϕ(ϕ;ϑ) ≈
N∏
n=1

1√
2π( σ

Vo
)2

exp

(
−(ϕn − ϑ)2

2( σ
Vo

)2

)
(73)

We get the CRLBd(ϑ) for high SNR case as

CRLBd(ϑ) =
σ2

NVo
2 (74)
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where CRLBd(ϑ) is the CRLB of the phase difference for high SNR case. In matrix

form, the combined CRLBs for the amplitude and the phase difference for both SNR

cases can be summarized as follows:

Low SNR case

CRLB =

CRLBa(Vo) 0

0 CRLBc(ϑ)

 (75)

High SNR case

CRLB =

CRLBb(Vo) 0

0 CRLBd(ϑ)

 (76)

A.3.3 Discussion

It can be observed from all CRLB equations that the CRLB is inversely propor-

tional to the number of observations considered for the estimation of the amplitude

and phase difference parameters. For the high SNR case, the magnitude CRLB (69)

is dependent on the variance and number of the observation points while the phase

difference CRLB (74) is dependent on the variance, number of observations, and es-

timated magnitude of the data. For the low SNR case, the magnitude CRLB (67) is

dependent on the SNR, the number of observations, and the Bessel functions-based

expected value which can be evaluated using Monte Carlo simulations. The phase

difference CRLB (72) is dependent upon the phase difference itself and the number

of observations.

A.4 Conclusion

In this chapter, the probability density functions of the received signal amplitude

and the received signal phase were investigated under low and high SNR cases. Under

low SNR scenarios, the received signal magnitude showed Rician distribution, while

the received signal phase depicted a uniform distribution. Whereas under high SNR
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scenarios, both the received signal magnitude and received signal phase showed Gaus-

sian distribution behavior. Moreover, the phase difference required for estimation of

the velocity showed triangular and Gaussian distribution in low and high SNR cases

respectively. Correspondingly, the CRLB was derived for estimation of received signal

amplitude and received signal phase difference. The CRLB was found to be inversely

proportional to the number of data points used for the desired parameter estimation.
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APPENDIX B

C AND THE OBSERVABILITY MATRIX

This appendix details the C-matrix entries and the observability matrix.
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B.1 C-matrix entries

C11 = C22 =
(x− x1)
h1

(77)

C14 = C25 =
(y − y1)
h1

(78)

C21 =
(y − y1) ((y − y1)ẋ− (x− x1)ẏ)

h1
3 (79)

C24 =
(x− x1) ((x− x1)ẏ − (y − y1)ẋ)

h1
3 (80)

C31 = C42 =
(x− x2)
h2

(81)

C34 = C45 =
(y − y2)
h2

(82)

C41 =
(y − y2) ((y − y2)ẋ− (x− x2)ẏ)

h2
3 (83)

C44 =
(x− x2) ((x− x2)ẏ − (y − y2)ẋ)

h2
3 (84)

C51 = C62 =
(x− x3)
h3

(85)

C54 = C65 =
(y − y3)
h3

(86)

C61 =
(y − y3) ((y − y3)ẋ− (x− x3)ẏ)

h3
3 (87)

C64 =
(x− x3) ((x− x3)ẏ − (y − y3)ẋ)

h3
3 (88)

C73 = cosψ (89)

C76 = sinψ (90)

C77 = −ẍ sinψ + ÿ cosψ (91)

C83 = − sinψ (92)

C86 = cosψ (93)

C87 = −ẍ cosψ − ÿ sinψ (94)

C97 = 1 (95)

C108 = 1 (96)
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where (x1, y1), (x2, y2) and (x3, y3) are the fixed coordinates of the three readers.

B.2 Observability Matrix

The observability matrix is calculated using C and A in (36). The coefficient

matrix A is a nilpotent whose A3 is all zeros, therefore, the size of the observability

matrix is 30 × 9. The observability matrix is as follows:
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O =



C11 0 0 C14 0 0 0 0 0

C21 C11 0 C24 C14 0 0 0 0

C31 0 0 C34 0 0 0 0 0

C41 C31 0 C44 C34 0 0 0 0

C51 0 0 C54 0 0 0 0 0

C61 C51 0 C64 C54 0 0 0 0

0 0 C73 0 0 C76 C77 0 0

0 0 C83 0 0 C86 C87 0 0

0 0 0 0 0 0 C97 0 0

0 0 0 0 0 0 0 C108 0

0 C11 0 0 C14 0 0 0 0

0 C21 C11 0 C24 C14 0 0 0

0 C31 0 0 C34 0 0 0 0

0 C41 C31 0 C44 C34 0 0 0

0 C51 0 0 C54 0 0 0 0

0 C61 C51 0 C64 C54 0 0 0

0 0 0 0 0 0 0 C77 0

0 0 0 0 0 0 0 C87 0

0 0 0 0 0 0 0 C97 0

0 0 0 0 0 0 0 0 C108

0 0 C11 0 0 C14 0 0 0

0 0 C21 0 0 C24 0 0 0

0 0 C31 0 0 C34 0 0 0

0 0 C410 0 C44 0 0 0

0 0 C51 0 0 C54 0 0 0

0 0 C61 0 0 C64 0 0 0

0 0 0 0 0 0 0 0 C77

0 0 0 0 0 0 0 0 C87

0 0 0 0 0 0 0 0 C97



(97)

130



APPENDIX C

MOTOR MOTION TRAJECTORY

C.1 Modeling

The motion apparatus is shown in the photo below (80). The motor shaft is

vertically oriented, and a plastic beam is symmetrically attached so that rotation of

the beam will occur in the horizontal plane; since the construction of the apparatus

is imperfect, the rotational motion will not be precisely confined to the horizontal

plane. The beam is quite thick and long, and hence it is characterized by a significant

inertia. In order to accurately control the motion of the beam, it is necessary to

determine both the inertia and the speed-dependent damping of the apparatus.

The dynamics of the apparatus are ideally governed by Newton’s law in the hori-

zontal plane along with the quasi-steady-state relationship between armature voltage

and armature current. The resulting differential equation is

J
dω

dt
= K

(
v −Kω
R

)
−Bω

where ω is the angular speed, v is the armature voltage, J and B are the inertia and

viscous friction coefficient of the rotor and load, K is the magnetic coupling coefficient,

and R is the armature resistance. This differential equation may be rewritten in the

form

dω

dt
= −αω + βv, α =

BR +K2

JR
, β =

K

JR

where two coefficients, α and β, summarize the influence of the various physical

parameters. These two remaining parameters may be identified by a step response

test. If a constant voltage V is applied with no initial rotation then the resulting
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Figure 80: Picture of the motion apparatus. The motor shaft is vertically oriented,
and a plastic beam is symmetrically attached so that rotation of the beam will occur
in the horizontal plane.

Figure 81: Motor Parameters

response will be the exponential function

ω(t) = V
β

α

(
1− e−αt

)
, t ≥ 0.

Values for α and β in this response formula may be adjusted so as to approximately

match measured step response behavior. The result of such an effort is shown in the

plot comparison below; the noise on the speed measurement arises from the need to

differentiate the quantized position measurement. This comparison is based on V = 8

[V], and results in the approximated parameters

α =
1

3
[rad/s], β =

3

2
[rad/s2/V].
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C.2 Trajectories

The motion of the apparatus is commanded by a reference trajectory for angular

position. There is a positive acceleration region, a cruise region, and a negative

acceleration region. Both acceleration regions occur on a time interval of length

taccel, with constant accelerations equal to ±θ̈accel. The cruise region occurs on a time

interval of length tcruise and corresponds to a cruise speed equal to θ̇cruise. Motion

begins with position θi at time ti and ends with position θf at time tf . This motion

profile is specified in terms of the interrelated coefficients taccel, θ̈accel, tcruise, θ̇cruise,

tf−ti and θf−θi. By integrating acceleration to obtain speed, one constraint becomes

θ̇cruise = θ̈acceltaccel.

By integrating speed to obtain position, another constraint becomes

θf − θi = θ̇cruise (taccel + tcruise) .

Simultaneous solution of these two constraints results in

θ̇cruise =
θf − θi

taccel + tcruise
, θ̈accel =

θf − θi
taccel (taccel + tcruise)

.

Therefore, if the user specifies the parameters taccel, tcruise, θi and θf , then the reference

trajectory for angular position, denoted by r(t), may be expressed in the form

r(t) =


θi + 1

2
θ̈accel(t− ti)2 , t ∈ {positive acceleration time interval}

1
2

(θi + θf) + θ̇cruise
(
t− 1

2
(ti + tf)

)
, t ∈ {cruise time interval}

θf − 1
2
θ̈accel(tf − t)2 , t ∈ {negative acceleration time interval}

using precomputed values for θ̇cruise and θ̈accel.

The above type of single-stroke reference trajectory has been implemented with

periodic cycling between an initial position θi and a final position θf . The travel time of

a single stroke is 2taccel + tcruise, and an additional dwell time tdwell is placed at the end

of each single stroke, resulting in a round-trip cycle time of 2 (2taccel + tcruise + tdwell).

133



A representative reference trajectory of this type is shown in the plot below, along

with its Matlab implementation.

%% user input

d_trv = pi/4;

t_acc = 0.1;

t_crz = 0.1;

t_dwl = 0.2;

%% dependent parameters

spd = d_trv/(t_acc+t_crz);

acc = spd/t_acc;

t_trv = 2*t_acc+t_crz;

t_half = t_trv+t_dwl;

t_full = 2*t_half;

%% time trajectory

t = 0:0.001:2*t_full;
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r = NaN(1,length(t));

for i = 1:length(t);

tmod_full = mod(t(i),t_full);

if tmod_full < t_half

di = 0;

df = d_trv;

s = spd;

a = acc;

else

di = d_trv;

df = 0;

s = -spd;

a = -acc;

end

tmod_half = mod(t(i),t_half);

if tmod_half < t_acc

r(i) = di+0.5*a*tmod_half^2;

elseif tmod_half < t_acc+t_crz

r(i) = 0.5*d_trv+s*(tmod_half-0.5*t_trv);

elseif tmod_half < t_trv

r(i) = df-0.5*a*(t_trv-tmod_half)^2;

else

r(i) = df;

end
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end

%% result plot

subplot(211), plot(t,r,’LineWidth’,2)

xlabel(’time [s]’), ylabel(’position [rad]’)

title(strcat([...

’d_{trv} = ’, num2str(d_trv), ’ rad, ’,...

’t_{acc} = ’, num2str(t_acc), ’ s, ’,...

’t_{crz} = ’, num2str(t_crz), ’ s, ’,...

’t_{dwl} = ’, num2str(t_dwl), ’ s’]))
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APPENDIX D

CHOICE OF TUNING MATRICES

D.1 Oscillations

The following tuning and resultant gain matrices were used which generated os-

cillations in the estimated states.

W =



965 0 0 0 0 0 0 0 0

0 965 0 0 0 0 0 0 0

0 0 965 0 0 0 0 0 0

0 0 0 965 0 0 0 0 0

0 0 0 0 965 0 0 0 0

0 0 0 0 0 965 0 0 0

0 0 0 0 0 0 965 0 0

0 0 0 0 0 0 0 965 0

0 0 0 0 0 0 0 0 965



(98)

L =



30.2 0.48 0.004 4.98 0.1 6.6× 10−4 −1.1× 10−16 −2.83× 10−15 −1.4× 10−14

0.48 30.2 0.49 0.1 4.98 0.07 −7.7× 10−16 −2.4× 10−15 −1.63× 10−16

−0.1 −0.03 −3.63× 10−5 −22.53 −0.27 −0.003 −2.14× 10−15 −1.31× 10−16 −1.11× 10−15

−0.03 −0.1015 0.015 −0.27 −22.53 −0.42 3.573× 10−15 3.21× 10−15 −4.72× 10−16

−7.33 −0.09 −9.25× 10−4 20.82 0.24 0.003 2.2× 10−15 8.24× 10−16 4.61× 10−15

−0.09 −7.33 −0.14 0.24 20.82 0.4 −3.31× 10−15 −2.56× 10−15 5.01× 10−16

−0.004 −0.4911 −31.07 −3.36× 10−4 −0.023 −4× 10−4 −2.5× 10−15 3.54× 10−15 3.86× 10−15

−3.36× 10−4 −0.023 −4× 10−4 −0.003 −0.422 −31.06 1.04× 10−14 1.1× 10−15 1.34× 10−14

−3.51× 10−16 −3.67× 10−16 2.51× 10−15 2.12× 10−15 −3.62× 10−15 −1.04× 10−14 31.08 0.52 0.48

−2.84× 10−15 −1.97× 10−15 −3.54× 10−15 −8.66× 10−17 −3.37× 10−15 −1.1× 10−14 0.52 32.05 31.07


(99)
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D.2 Cases 1–6

W =



579 0 0 0 0 0 0 0 0

0 137 0 0 0 0 0 0 0

0 0 149 0 0 0 0 0 0

0 0 0 479 0 0 0 0 0

0 0 0 0 127 0 0 0 0

0 0 0 0 0 119 0 0 0

0 0 0 0 0 0 191 0 0

0 0 0 0 0 0 0 67 0

0 0 0 0 0 0 0 0 67



(100)

L =



23.38 0.32 0.01 3.6 0.065 0.0017 1.26× 10−17 −3.42× 10−17 8.89× 10−18

0.32 11.4 0.5 0.065 1.83 0.07 8× 10−16 −8.92× 10−17 5.2× 10−16

−0.004 −0.02 −1.6× 10−4 −15.88 −0.19 −6.6× 10−3 −1.91× 10−17 1.07× 10−17 8.1× 10−17

−0.021 −0.024 0.016 −0.181 −8.2 −0.42 3.53× 10−16 −6.81− 16 1.16× 10−15

−5.75 −0.06 −2.1× 10−3 14.64 0.16 0.006 1.56× 10−17 −2.02× 10−18 −8.15× 10−17

−0.06 −2.78 −0.14 0.16 7.57 0.4 −5.41× 10−16 6.88× 10−16 −1.26× 10−15

−0.01 −0.5 −12.2 −8.6× 10−4 −0.023 −1.1× 10−3 7.6× 10−16 −7.74× 10−16 −3.6× 10−15

−9.5× 10−4 −0.024 −1.1× 10−3 −6.7× 10−3 −0.42 −10.9 −4.26× 10−16 −3.3× 10−16 5× 10−15

1.04× 10−17 8.4× 10−16 −7.6× 10−16 2× 10−17 −2.9× 10−16 4.25× 10−16 13.85 0.42 0.35

−3.3× 10−17 −1.7× 10−16 7.8× 10−16 −1.32× 10−17 6.7× 10−16 3.3× 10−16 0.42 9.12 8.2


(101)

D.3 Eigenvalue Analysis

This section discusses the eigenvalue analysis of the circular motion undertaken by

the motor. The analysis was carried out by evaluating the C-matrix at every point of

the programmed reference trajectory of the motor. This would help in evaluating the

systems stability for different choices of tuning and gain matrices. The result of the

analysis using the tuning (W) and gain matrices (L) given in the previous sections

using the C-matrix at each point of the programmed motion trajectory is illustrated
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in Figure 82. For the simplicity of understanding only the maximum value od the real

part of each eigenvalue out all nine eigenvalues is plotted here. It is observed that

for the tuning and gain matrices choice of section D.1 that resulted in oscillations

on the estimated x and y positions (33 and 34) was due the positive real part of the

eigenvalues. However, when the tuning matrices were properly chosen this defect was

overcome as the resultant real part of the eigenvalues stayed negative throughout the

programmed trajectory resulting in stable estimation of the state variables as evident

from the results of Cases 1–6.

Figure 82: Eigenvalues analysis of oscillations versus stable case. For the simplicity
of understanding only the maximum values of the real part of each eigenvalue out
all nine eigenvalues is plotted here. It can be observed that for the oscillations case
the real part of eigenvalues becomes positive momentarily and swing back to negative
whereas for the stable case it stays negative throughout the motion.

D.4 Case 7

The V matrix for this case is an 8 x 8 identity matrix where the W is unchanged

from the previous case. However, since the C and V have changed, the gain matrix

is also different than the previous cases. The new gain matrix k of size 8 x 9 is given

below:
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L =



23.98 0.33 0.01 2.06 0.027 9× 10−4 3.77× 10−17 −5.2× 10−17 1.83× 10−16

0.33 11.68 0.51 0.027 1.07 0.051 −1.47× 10−17 −1.23× 10−16 −1.3× 10−15

2.27 0.038 9.2× 10−4 −21.81 −0.34 −9.82× 10−3 −1.36× 10−17 6.55× 10−17 5.7× 10−17

0.038 1.11 0.044 −0.34 −11.25 −0.49 −8.69× 10−16 −2.95× 10−16 2.14× 10−15

−9.5× 10−3 −0.51 −12.2 1.9× 10−4 4.3× 10−3 1.2× 10−4 −8.27× 10−16 −1.95× 10−15 9.12× 10−16

2.12× 10−4 4.7× 10−3 1.9× 10−4 −9.8× 10−3 −0.49 −10.9 −2.55× 10−16 −2.4× 10−15 1.1× 10−15

3.61× 10−17 −1.13× 10−16 8.27× 10−16 1.64× 10−17 8.63× 10−16 2.55× 10−16 13.85 0.42 0.35

−4.45× 10−17 −1.56× 10−16 −1.95× 10−15 −6.9× 10−17 2.84× 10−16 2.4× 10−15 0.42 9.2 8.2


(102)

Corresponding eigenvalues of A− LC and their plot are given below:

−24.05,−21.88,−13.81,−11.98± 0.43j,−11.1± 0.45,−8.2,−1.01 (103)
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APPENDIX E

TAG SUBMARINING DATA - REPEAT LAST

MEASUREMENT

This appendix displays the graphs of the measured data of tag’s submarining case

where the last measured value of each quantity to be used for estimation is repeated

in the duration of the link absence.

Figure 83: Radial distance with respect to each pylon in the absence of the RF link.
The last measured radial distance valued, before the link loss, is repeated during the
tag blockade.
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Figure 84: Radial velocity with respect to the first pylon.

Figure 85: Radial velocity with respect to the second pylon.
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Figure 86: Radial velocity with respect to the third pylon.

x

x

x

x

x

x

x

x

x

Figure 87: Measured linear acceleration of the tag from on board accelerometer
during the circular motion.
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Figure 88: Measured angular velocity of the tag around tag’s z-axis using on board
gyroscope.

Figure 89: Tag orientation angle measured using on board compass.
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APPENDIX F

TAG SUBMARINING - LINEAR INTERPOLATION

Measurements for Linear Interpolation

Figure 90: Radial distance with respect to each pylon in the absence of the RF link.
The last measured radial distance valued, before the link loss, is repeated during the
tag blockade.
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Figure 91: Radial velocity with respect to the first pylon.

Figure 92: Radial velocity with respect to the second pylon.
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Figure 93: Radial velocity with respect to the third pylon.
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Figure 94: Measured linear acceleration of the tag from on board accelerometer
during the circular motion.

147



Figure 95: Measured angular velocity of the tag around tag’s z-axis using on board
gyroscope.

Figure 96: Tag orientation angle measured using on board compass.
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