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Abstract

We examine the benefits of user cooperation under computdeaward. Much like in network coding, receivers
in a compute-and-forward network recover finite-field lineambinations of transmitters’ messages. Recovery is
enabled by linear codes: transmitters map messages to & lanelebook, and receivers attempt to decode the
incoming superposition of signals to an integer combimatib codewords. However, the achievable computation
rates are low if channel gains do not correspond to a suitéd@r combination. In response to this challenge,
we propose a cooperative approach to compute-and-forwéedievise a lattice-coding approach to block Markov
encoding with which we construct a decode-and-forwardestgimputation strategy. Transmitters broadcast lattice
codewords, decode each other's messages, and then coageitaansmit resolution information to aid receivers in
decoding the integer combinations. Using our strategy, limvsthat cooperation offers a significant improvement
both in the achievable computation rate and in the diversitjtiplexing tradeoff.

Index Terms

Cooperative communications, lattice codes, network apdbiock Markov encoding, diversity-multiplexing
tradeoff

. INTRODUCTION

Interference is the primary obstacle to communicationg exieeless networks. Due to the broadcast nature of
the wireless medium, a transmitter’s signal arrives noy alits intended receiver(s), but also at any terminal in the
vicinity. This fact has proven to be a formidable challerigespite decades of study and a plethora of sophisticated
techniques, the capacity of even the two-user interferehesnel remains unknown in general.

Most approaches to interference entail the minimizationt®ofeffects. A special case of the Han-Kobayashi
schemel[l], in which receivers decode a portion of the iaterice, was recently shown to achieve rates within
one bit of the capacity region of the two-user interferenigannel [2]. Interference alignment, in which interfering
signals are made to lie in a low-dimensional subspace by snefamultiple antennas, changing channel conditions,
or signal-scale techniques, has been shown to provide tti@alplegrees of freedom of the interference channel:
for large signal-to-noise ratios, each transmitter cariesehapproximately half the rate possible in the absence of
interferencel[B]+6]. In a somewhat similar approachjdattodes are used in the many-to-one interference channel
to align interference at the signal scale, allowing the ikereto decode the interference as though it came from
a single receiver [7]. In each of these strategies, the go&b iminimize the effective interference seen by each
receiver.

Compute-and-forward [8], also known asphysical-layer network coding [9] is an innovative technique which
exploits, rather than eliminates, interference. Under mate-and-forward, receivers decode finite-field linear €om
binations of transmitter's messages instead of messagess#ives. If enough linearly independent combinations
are recovered, the individual messages can be recoverthefddownstream” in the network. 10][8] such decoding
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is enabled by lattice codes. Transmitters send out lattomewords, noisy linear combinations of which arrive

at the receivers. Each receiver decodes the incoming sitgnah integer combination of the lattice codewords
corresponding to the desired finite-field linear combirmat®ince an integer combination of lattice points is itself a
lattice point, it can be decoded almost as though it were glesincoming signal. Linear combinations of messages
therefore are often easier to decode than individual messag

The strategy proposed inl[8] requires a correspondenceeketihe channel gains and the desired integer
combinations. If the channels do not produce suitable lireeenbinations of transmitters’ signals, the receivers
cannot easily recover suitable integer combinations ofldftece points. Several solutions to this challenge have
been proposednteger-forcing receivers [10], [11], in which linear receivers are chosen to induceger-valued
equivalent channels, were developed for compute-andai@hwever multiple-input multiple-output (MIMO) chan-
nels. In [12], a number-theoretic approach was developettitivess this problem in the high-SNR regime. Using
technigues from Diophantine approximations, an encodirajegs)y was proposed that achieves the full degrees of
freedom.

We take a different tack. Our approach is based on the ohksmrvtnat, if transmitters were able to encode
their messages jointly, compute-and-forward would redoce multiple-antenna broadcast channel, the capacity of
which is known [13]. Whileperfect cooperation is infeasible, users can coopepaiially by exploiting another
consequence of the broadcast nature: transmitters cahearegach other’s signals and jointly encode portions of
their messages. The aim of this paper therefore is to exathsn@xtent to which user cooperation can improve
the performance of compute-and-forward.

Our main contribution is a cooperative strategy for comyand-forward. We develop a lattice-coding instantiation
of block Markov encoding by decomposing the lattice codédinto two linearly independent, lower-rate constituent
codes, called theesolution codebook and theestigial codebook. Transmitters broadcast lattice codewords, afte
which they decode the codewords of other transmitters. Thewy transmit cooperatively the resolution codewords
corresponding to the linear combinations desired at theivers. Receivers employ a variant of sliding-window
decoding tailored to our lattice decomposition. They dectte resolution information and subtract it from the
original signal; they then need only to decode the vestigisthponent of the desired sum of lattice points. This
strategy allows an improvement in computation rate due tofagtors. First, since cooperating transmitters decode
others’ messages, they can jointly encode portions of tieali combinations directly, relaxing the need for recaiver
to recover the messages from separately-encoded sigreisn& the jointly encoded signals combine coherently
at receivers, resulting in a beamforming gain.

We also present a high-SNR analysis of our approach. Userecation naturally lends itself to diversity gains,
and we show that our approach indeed increases the diversigr under slow Rayleigh fading. We focus on the
case of a single receiver. We prove inner bounds on the diyemailtiplexing tradeoff (DMT) using a combination
of cooperative random coding techniques and our cooperttitice strategy. Random coding achieves full diversity
but performs poorly at high multiplexing gains, whereasidatcoding falls short of full diversity but maintains
performance at high multiplexing gains. Between the twoirtpdtrategies we establish an achievable DMT whose
corner points match the upper bound of a multiple-anteninglesoutput (MISO) system.

A. Related work

Compute-and-forward can be viewed as one of several widtessantiations of network coding. Network coding
was introduced in [14], where it was shown that network cgdiohieves the multicast capacity of wireline networks.
It was later shown that (random) linear network codes arécgerfit for multicast [[15]-[17], and although linear
codes are provably insufficient for general wireline netgo[l8] they remain popular due to their simplicity and



effectiveness. Network coding has been applied to wirehesaorks by several means. Two information-theoretic
technigues are the quantize-map-and-forward of [19] amd“tioisy” network coding of([20], in which relays
compress and re-encode the incoming superposition of Isighhese approaches generalize the discrete-valued,
noiseless combinations of wireline network coding to ammius-valued, noisy combinations over wireless links. For
multicast networks, they come to within a constant gap ofacip. Finally, lattice techniques similar to compute-
and-forward have been used for the two-way and multi-wagyrehannels, again achieving rates within a constant
gap of capacity [21]H[24].

Lattice codes play a fundamental role in compute-and-fotwgarly works on lattice codes [25]-[27] showed
that they are sufficient to achieve capacity for the poiapdnt AWGN channel. The performance of lattice codes
underlattice decoding—in which the receiver quantizes the incoming signal to tearast lattice point—was studied
in [28], and it was shown ir [29] that lattice decoding ackieeapacity. In addition to compute-and-forward, lattice
codes have seen use in a variety of information-theoretiblpms, including source coding [30]-[32], physical-laye
security [33]-[35], and relay networkis [36]—[39].

Finally, our approach relies heavily on the field of user eyagion. Cooperation was first introduced with the
relay channel in[[40]. In[[41] the relay channel is given arthmgh treatment, and the most popular relaying
strategies—now known as decode-and-forward and compratgerward—are presented. More recent work has
focused on the diversity gains of cooperation| [42]-[47hwimg that cooperating transmitters can obtain diversity
gains similar to that of multiple-antenna systems.

B. Notation

We use bold uppercase letters (eAg. to refer to matrices and bold lowercase letters (g)go refer to column
vectors. Forn x m matrix A, a; refers to theith column ofA, i.e. A = [a; - - - a,,]. We denote subvectors of a
vector usingx[a : b = (24, Tas1,--- ,xp)", where(-)” denotes the usual transpose. We (igefor the Euclidean
norm. Leto denote the element-wise or Hadamard product.Hetlenote the finite field of prime characteristic
and let® and® denote addition and (matrix) multiplication, respectyye@hodulop; however, we will occasionally
treat theresult of modular arithmetic as a member of the reals according test. Let[z]T = max{x,0} denote
the positive part ofc. Finally, let

2
Cac(h, P,0?) = BCI{IIl,iP,I} ﬁ log (1 + %)
denote the symmetric-rate capacity of theiser Gaussian multiple-access channel having channes baand
noise variancer?.

C. Organization

In SectiorL 1l we present the system model and define the peafioce metrics used in this paper. In Secfian Il we
formally state our main results and provide intuition abtingir benefits. In Sectiodn IV we introduce lattice codes
and present the lattice subspace decomposition used inlock Markov strategy. In SectionlV we present our
cooperative computation strategies in detail and provettiey achieve the computation rates claimed in Section
[ In Section[Vl we perform a high-SNR analysis of our ségies and prove that they provide the diversity-
multiplexing gains claimed in Sectidnllll. In Sectidn VIl weesent a few numerical examples to showcase the
benefits of our approach. Finally, we conclude with Sedtidh]V



[l. PRELIMINARIES
A. System model

In the cooperative compute-and-forward network, depicted in Figurel1[. transmitters communicate with/ < L
receivers over the wireless medium. Each of thesers hag’ messagesv,(t) € F’;, for 1 <t < T. Structurally,
this network resembles the compound multiple-access etannwhenM = L, the interference channel. However,
unlike those more traditional networks, here each recdivends to decode a finite-field linear combina@cm
the transmitters’ messages:

L
fm(t) = @ Ay, © Wl(t)7 (1)
=1

for a;,,, € Z. Let the matrixA = [a;,,] € Z*M describe the functions computed by the receivers.
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Fig. 1. The cooperative compute-and-forward netwdrkusers cooperatively transmit &/ receivers, which decode the desired linear
functions.

We divide transmissions int@ + 1 blocks ofn channel uses each. At blo¢k each transmittet broadcasts a
signalx;(t) € R", subject to an average power constraint:

1 2
~Ix@)]]° < P,

=@l <

for some P > 0. The superposition of the transmitters’ signals, scalecgnnel coefficients and corrupted by
noise, arrives at each receiver:

Ym(t) =D himx(t) + n(t), @)

where h;,,, € R is the channel coefficient from transmitterto receiverm, andn(t) is a white, unit-variance
Gaussian random vector. For convenience, we gather thenehaoefficients into the matritl = [hy,,,].
Each transmittel also obtains the noisy superposition of the other tranermsitisignals:

L
zi(t) = grxe (t) + my(t), 3
=1
7

whereg;; € R is the channel coefficient from transmitt#ro transmitter/, andn;(¢) is again white, unit-variance
Gaussian. Again we stack the channel coefficients into aixnétr= [¢;;] with diagonal elements equal to zero.
The choice of zero for the diagonal elements impfigds-duplex operation, meaning that transmitters can transmit
and receive simultaneously. We further assume that chanaeicesH andG are fixed and known globally among
the transmitters and receivers.

Very precisely, receivers compute any obauence of linear combinations since, as we shall skgp — oo as the codeword length
becomes large.



We will refer occasionally to thenon-cooperative compute-and-forward network, which is identical to the
cooperative network except that the transmitters have mesacto each other’s transmissions. We model this
formally by fixing G as the all-zero matrix.

B. Computation capacity

We are interested in theomputation capacity of the network. Since the receivers recover functions obining
messages, rather than the messages themselves, the cionpcapacity is defined somewhat differently than the
capacity of ordinary channels. We endow each transmittér an encodets; : FE*7' x R — R*(I'+1)_ That
is, the encodef; takes as its input the messageg¢) and the received signais(¢t) and generates as its output
the codewords;(t). We impose a causality restriction diy: the output codeword; () may depend on received
signalsz;(s) only for s < t. As usual, the encoding rate is defined as the logarithm ofahéinality of the message
set divided by the number of channel realizations over wiliehmessages are encoded:

_ Tlogy([F3))  Tklogy(p) _ klogy(p)
n(T+1) n(T+1) n
where the approximation holds for largé Note that this is thesymmetric rate among all transmitters.
We endow each receiver with a decodey, : R"*(T+1) IF’;XT, taking as inputs the received signals, (t)
and generating as outputs the estimaigét). Let the absolute probability of error be the probabilityttlany
receiver makes an incorrect estimate of any of the desiredtifans:

(4)

P, =Pr{f,(t) # £, (t),foranyl <m < M,1 <t < T}. (5)

We say that a computation rafeis achievable if for any e > 0 there exists a sequence of encoders with encoding
rate greater tharR — ¢ and decoders such th& — 0 asn — oo. For fixed channel gain¥l, G, function
coefficientsA, and transmit poweP, let R(H, G, A, P) denote the supremum over all achievable computation
rates.

In order to define the computation capacity we need to plawcgaliions on the permissible function coefficients
A. Otherwise we could choose a trivial coefficient matrix, lsas the all-zero matrix, for which the achievable
computation rate is unbounded. We therefore require Ahése a member of the following set:

A={A € ZM . rank(A) = M, ¥ m 3 [ such thata,,; # 0}. (6)

The first condition ensures that the recovered functiorarets much information as possible about the individual
transmitters’ messages; fdr = M it implies that one can recover the individual messages ftieenrecovered
functions. The second condition, which is redundantffice M, ensures that each transmitter is represented in the
recovered messages; the receivers cannot simply ignoemsntitter in order to achieve a higher computation rate.

Finally, we define thecomputation capacity as the supremum of achievable rates over the set of permteissib
coefficient matrices:

C(H,G,P) = sup R(H,G, A, P). 7
AcA

In their seminal work, Nazer and Gastpar developed a cortipntatrategy based on nested lattice codeés [8]. It
achieves the following computation rate:

_ |1 2y 1 2 2 > iy pn |
Rnc(H, P) = rfgﬁgrﬁgM 5 logy (1 + P |lhy %) 5 logs([lam[I” + P([lan]|” [[huy|| laphin[9) |- (8)

The first term in[(8) corresponds to the power in the receivgubs, whereas the second term is a penalty determined



by the gap in the Cauchy-Schwarz inequality betwhgnanda,,,. The closeth,,, anda,, are to being co-linear, the
smaller is the rate penalty. Since the Nazer-Gastpar schesedesigned for a non-cooperative network, the rate
does not depend o&; nevertheless, it serves as a lower bound on the cooperainputation capacit¢'(H, G).

In the sequel we present a cooperative computation strdteggd in part on the Nazer-Gastpar scheme.

C. Diversity-multiplexing tradeoff

One advantage of user cooperation is that cooperatingntiitess can achieve performance similar to that of
a multiple-antenna transmitter. Multiple antennas canrowe performance on two fronts: increased reliability in
the presence of slow channel fading, and increased thramighpthe high-SNR regime, thdiversity-multiplexing
tradeoff quantifies this improvement [48]. Let the elementsHfand G be identically and independently dis-
tributed according to a Rayleigh distribution. Next, suppdhere is a scheme that achieves the computation rate
Rscheme (H, G, P). Then, thediversity order at multiplexing gain r is defined as

d) — i 2P schone(HL G, P) < log(P)}
P—oo log P

9)

In other wordsd(r) is the exponent of the outage probability, with the rate mateehave multiplexing gaim, as
the SNR goes to infinity. The diversity-multiplexing tradfeof the system, denoted by*(r), is the supremum of
d(r) over all possible schemes.

The multiplexing gain for compute-and-forward is studied12]. There it is shown that, using the Nazer-Gastpar
approach, the multiplexing gain can be no higher tl%%@. In other words(r) = 0 for r > LLH for this scheme.
In the sequel we show that we can achieve a better diversitjipiexing tradeoff, including a multiplexing gain
of unity, for both cooperative and non-cooperative netwdrnving a single receiver.

[1l. MAIN RESULTS
A. Upper bounds

First we present two upper bounds on the cooperative coripuiteate, the proofs of which are contained in
the AppendiX_A. We obtain the first bound by supposing thatttaesmitters are capable of perfect cooperation,
which is equivalent to having a genie supply all messagesath éransmitter. The problem then reduces to a
multiple-input, single-output (MISO) broadcast chantie® capacity of which is known_[13]. In the sequel we use
this result to bound the diversity-multiplexing tradeoff.

Theorem 1: Let the capacity region of a Gaussian MISO broadcast chamnelenoted by

1 D) Vi) By
Cmiso(H, P) = conv { {r (T < = log, (1 + —— , (10)
wLeJH 2 B 271 Vi + 1

whereconv{-} is the convex hulllI is the set of permutations frofi, - -- L} to itself, andV,, is a collection of
positive semi-definite matrices such t@t%zl tr(V,,) < NP. Then the computation capacity of the cooperative
compute-and-forward network is bounded above by

C(H,G, P) < R, ,(H, P), (12)

miso
where

R+

miso

(H, P) = sup{r : rl € Cniso(H, P)} (12)

is the symmetric-rate capacity of the Gaussian MISO brostddzannel.



We obtain the next bound by supposing a genie supplies teettevers all messages except for those of a single
transmitterl. Then the receivers need only to recover the messages sfriith@r! in order to compute any suitable
set of functions. This converts the system to a compound ret@nnel in which the other transmitters serve as
dedicated relays; we bound the capacity of this channelgusin-set arguments. This upper bound is somewhat
more realistic thark!. | and we use it in Sectidn VIl for comparisons to our achiewahtes.

Theorem 2: For each transmitter <[ < L, letS; = {1,--- ,l—1,1+1,--- ,1} be the set of transmittexgther
than transmitted. Then the computation capacity of the cooperative compuoteforward network is bounded
above by

CH,G,P) <R . (H G,P),

single
where
R H G,P) = min max min maxmin I(x;, zg; zZge |xge 13
single(H, G, P) = min pax min, p(x) SES (@1, 283 Ym, 250 |25), (13)

wherep(x) is any distribution over the transmitted signéls, - - - x7)” satisfying the input power constraint.

B. Achievable rates

Here we present the computation rates achieved by our catbgerstrategy. Our approach is decode-and-
forward in nature: at one block transmitters send out katticdewords corresponding to their individual messages;
these messages are decoded by other transmitters. At théloek transmitters cooperatively encode resolution
information to assist the receivers. As with any decodefandard strategy, we must contend with the fact that it
may be difficult for transmitters to decode each other’s ragss. We therefore require only some of the transmitters
to cooperatQ.A subset of the transmitters decodes the messages of every otheaiéteemhich they cooperatively
transmit resolution information to the receivers. Trarttemné not in3, not having decoded incoming messages, do
not send any resolution information. We present the dedtdilthis strategy, as well as an achievability proof, in
Section[V.

Theorem 3: Let B C {1,---,L}. In the cooperative compute-and-forward network, theofeihg computation
rate is achievable:

R.(H,G,P) = maxmin{rlniélcmac(gl[l =11+ 1:Ljove[l:l—-1,l+1:L],P1),
€

AcA
1 Phlv,,|?

1<m<M 1+ 1,
1 2 1 2 2 2 T N
5108 (1 PR 0 Vol + L) = 5 108 (llamlI* (1 + L) + P (am|* B o Vol = [af, (B 0 vo) 2) ) | ¢ ¢
(14)
where
Iy =P ([ ovol>+ D [hl v (15)
m’#m,0
is the interference power seen at receivers it decodes its resolution information,
[m,v =P Z ‘h;l;mvm’ 2 (16)

m’'#m,0

20Other approaches are possible. For example, in an earlidr [#8] we partitioned the set of transmitters into clustéransmitters would
decode only in-cluster messages. In the interests of rewét discuss only the approach presented in Theddem 3.



is the interference seen at receiveras it decodes the vestigial information, and for any vectors/i,--- ,vas
such that

M
> loml? <1,V (17)
m=0

andwy,, = 0 for [ £ B andm > 0.

The achievable raté€ (1L4) is a bit difficult to parse, so we tiake here to describe each of its three components.
First is the rate of a Gaussian multiple-access channelchwhbrresponds to the rate at which cooperating
transmitters can decode others’ messages. Second is thatrathich each receiver can decode the resolution
information, which is that of a virtual MISO link between quarating transmitters and the receiver; signals unrelated
to the resolution information are treated as noise. Thirthésrate at which the receivers, having already decoded
the resolution information, can decode the vestigial congod of the desired combination of lattice points; this is
the Nazer-Gastpar rate &f| (8), with resolution informatiotended for other receivers treated as noise.

Each transmitter splits its power between sending its owtitéacodewords and cooperatively sending resolution
information. The split is defined by the steering vectegsvy, - -- , vy;. Each element;, dictates the fraction of
power transmittel expends on its own lattice codewords. For cooperating mnétex /, each element;,,, dictates
the fraction of power expended on resolution informationrézeiverm. The steering vectors introduce two separate
notions of alignment. First, we can chooggin order to minimize the Cauchy-Schwarz penaltylinl (14).d®elc we
can choose the remaining vectors, to trade off between increasing the coherence gain at teaded receivers
and decreasing the interference generated at other rezeRiading the optimum steering vectors is a non-covex
problem; for further results and in our simulations we retyafew heuristic means for selecting them.

We can obtain a simpler expression for the achievable ratehbgpsingB = {1,--- , L} and taking the steering
vectorsvy, - - - , vy to be zero-forcing beamformers. Thus the cooperative Egianot interfere at other receivers.

Corollary 1: The following computation rate is achievable for the coapige compute-and-forward network:
(H, G, P) = i i mac(gl:1l—1,1+1:L 1:1-1,14+1:L|,P 1),
Ry ( ) ggjmm{lggC (&1 +1: Lowvol +1:L},P1)
1
min,, |5 108a(1+ Pl 0ol + v, )~

1<m<M

1 2 2 2 T A\ 17
51085 ([lam > + P (llanll” 1 o vol* = laf, (b 0 vo)?) ) | . (28)

for any vectorsvg, vy, --- , vy, satisfying
M
S ol <1 (19)
m=0
and
vlih, =0,Y m#m'. (20)

SinceL > M, it is possible to choose non-trivial zero-forcing beamiorg vectors for almost everi.

Finally, choosing = (), we obtain an achievable rate for both the cooperative amdcooperative compute-
and-forward network. This yields a rate similar ¢ (8), excenat each transmitter can adjust its transmit power in
order to tune the effective channels to match the desiregatifunctions. In fact this rate is a special case of the
“superposition” compute-and-forward presented.in [8, dreen 13].

Corollary 2: In both the non-cooperative compute-and-forward netwarkthe cooperative compute-and-forward



network, the following rate is achievable:

. 1 2
R(H,G,P) = max min |o logy (1 + P(|hum o vol|”))—

1 2 2 2 T A\ 17
51085 (Jlam > + P (llamll” [ o vol* = |af, (b o vo)?) ) |, (2D)

for any v satisfying
lup? <1,V 1<I<L. (22)

C. Diversity-multiplexing tradeoff

Here we present our diversity-multiplexing tradeoff résuthe proofs of which are presented in Secfkioh VI. We
begin with the non-cooperative case.
Theorem 4: For the non-cooperative compute-and-forward network,diversity-multiplexing tradeoff for any
scheme is upper-bounded as follows:
d*(r) < di(r) =1-. (23)

For the case of\f =1, d*(r) = d/.(r).
In other words, the DMT of the non-cooperative compute-Bordrard network is bounded above by that of a scalar
Gaussian channel. In the case of a single receiver, we cdavacthis upper bound with lattice codes and signal
alignment. With the steering vectey chosen such that the equivalent channel vector is a con#tanachievable
rate—and therefore the error probability—is approximateht of a single SISO link.

Next, we look at the DMT of the cooperative compute-and-Bmavnetwork. We start by presenting an upper
bound.

Theorem 5: For the cooperative compute-and-forward network, the rdigemultiplexing tradeoff is upper-
bounded as

d*(r) < df(r)=L(1—r). (24)

In other words, the DMT is upper-bounded by that of a singl&s®llink. In the case of a single receiver, we
derive two lower bounds on the DMT. The first is derived usingather simple strategy employing time sharing
and Gaussian codes.
Theorem 6: For the cooperative compute-and-forward network, theofalhg diversity-multiplexing tradeoff is
achievable:
.

random

(r)=Lmin{l — 2r, (L —1)(1 = 2(L — 1)r)}. (25)

In particular,d_, ,...(0) = L.
Since it involves time sharing, the strategy used in Thed@drmas poor multiplexing performance. It does, however,
achieve the full diversity gain of.. The second bound is derived using the cooperative coniputatrategy of
TheorenB.

Theorem 7: For the cooperative compute-and-forward network, theofalhg diversity-multiplexing tradeoff is

achievable:

Dyygice(r) = 1 =7+ min{[l — 20", [(L — (1 = rL)] " }+

orélf%(l(L —2)min{[1 —z — 7", [(L-1)(1 — (L - 1Dr —2)]", [z —7]T}. (26)

Here,d,....(0) = 2 + £52.
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Here the main difficulty is the Cauchy-Schwarz penalty ienérto lattice coding. It turns out that choosing
vp to align with the channels, as we did in the non-cooperatagecprecludes cooperation with high probability.
We therefore choose, to be constant, taking the Cauchy-Schwarz penalty “on the"ciWe balance the transmit
power between sending fresh information, which helps trattsrs decode others’ messages, and sending resolution
information, which helps the receiver decode the desimeéali combination. Choosing the balance properly, the
benefits of cooperation outweigh the Cauchy-Schwarz pgnbiit only enough to obtain a diversity gain of
approximatelyl /2 per transmitter. Nevertheless, for higher multiplexinghgdattice coding outperforms the strategy
of Theorenl5.

We plot the DMT bounds in Figuig 2. Fdr = 2 lattice coding is sufficient to achieve full diversity, aftDMT
achieved by lattice coding strictly dominates that achdelrg random coding. Fof > 2, lattice coding achieves
better performance only for sufficiently high multipleximgin. Random coding fails altogether at multiplexing
gains higher tharf — 1)/2 due to the need for transmitters to decdde 1 separate messages and the need for
time-sharing. Lattice coding, on the other hand, maintaios-zero diversity for every an§y < r < 1. Between
the two strategies we obtain the corner points of the DMTaegi

L = 2 Transmitters L =5 Transmitters
2, S ..
e —— Non-cooperative lower bound —— Non-cooperative lower bound
‘\ -------- Cooperative random coding R Cooperative random coding
15 | ‘-.“‘\\'n. --- Cooperative lattice coding 47 “|---  Cooperative lattice coding
E So e MISO upper bound E P SR EPPIVE MISO upper bound
© w5 © 3| R
o R o N
2 1 ) = '\
? ;n N
o o 27 \
> > '
D A
0.5 | o \
1 T — 1
0 1 >~ : ; 3 0 : ; ; ; >
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Multiplexing gainr Multiplexing gainr

Fig. 2. Diversity-multiplexing tradeoff fol. = 2, L = 5 transmitters and a single reciever.

IV. LATTICE CODES

In this section we first introduce the basics of lattice coddter which we present the lattice decomposition
employed in our cooperative computation strategy.

A. Capacity-achieving lattice codes

Formally, a latticeA is a discrete additive subgroup &, which implies that for any\;, Ay € A we have
A+ X € Aand )\ — A € A. Any lattice can be generated by taking integer combinatioh(not necessarily
unique) basis vectors. Choosing these basis vectors asmes)uve form thegenerator matrix of A, denoted by
G € R™*"™:

A = Gz". 27)
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We let Qa denote thdattice quantizer, which maps any poink € R™ to the nearest point ir:
QA(x) = argmin [|x — A||. (28)
AEA
The lattice A induces a partition oR™ into the Voronoi regions V() of each lattice poiniA € A:
V(A) ={x e R": Qar(x) = A}, (29)

where ties are broken arbitrarily. In other words, the Vaioregion of A € A is simply the set of points that are
closer to\ than to any other lattice point.
Let V = V(0) be thefundamental Voronoi region of A. The mod operation with respect ta\ returns the
guantization error
x mod A = x — Qx(x), (30)

which is always a member df. The mod operation allows one to draw an analogy with modulo aritheneter
a finite field. Just as modulo arithmetic ensures that theltresmains a member of the finite field, performing
arithmetic moduloA “wraps” the result within). The mod operation obeys the associativity property:

[[x] mod A +y] mod A =[x+ y] mod A. (31)

The second moment o2(A) quantifies the average power of a random variable uniforrgyriduted insideV:

20y 1 / 2
whereVol(A) is the volume of a sel C R". The normalized second moment is defined as:
2
- W (33)
Vol(V)=

The normalized second moment provides a measure of theeefficiof A as a shaping region. The closgris to
being spherical, the small€F(A) is.
The covering radius 7., (A) is the radius of the smallest sphere that covers

Teov(A) = inf{r > 0|V C rB,}, (34)
where,, is the unit sphere iR™. The effective radius r.g(A) be the radius of a sphere with the same volume as
12 )

[ Vol(V) \
™) = (yes ) (@)

Note thatreo, (A) > reg(A).
In order to construct lattice codebooks suitable for prgvimformation-theoretic results, we requisequences
of lattices that asymptotically satisfy several desirgtieperties. For example, we say that a sequence of lattices
{AM™} A e R", is good for covering or Rogers good [50] provided the covering radius approaches the effective
radius:
7”cov(A(n))

Ay

Similarly, a sequence of lattices good for quantization provided
lim G(A™) = €

n—00 o 2me
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Finally, letz ~ A(0,5%T) be a Gaussian random vector. Define Wokume-to-noise ratio u(A, P.) as

(Vol(V)) =

o2

N(A7 Pe) =

)

wherec? is chosen such thatr{z ¢ V} = P.. A sequence of latticea™ is good for AMGN coding or Poltyrev
good if
lim p(A™, P,) = 2re.

n—o0

The existence of such sequences was proven by Poltyrev |nfoithermore, Erez et al. proved that there exist
sequences of lattices that are simultaneously good forromyequantization, and AWGN coding [52].

Lattice codebooks are constructed usiegied lattices, as depicted in Figuf€ 3. Here we review the construction of
codebooks sufficient to achieve capacity for the AWGN péarpoint channel, which is the model for codebooks
to be used throughout this paper. L&i") be a sequence daghaping lattices that are good for covering and
AWGN coding and satisfyrz(Agn)) =1, and IetGﬁ”) denote generator matrices for each lattice in the sequence.
Then, following [53], we adapt Construction A [28] to constr a sequence of coding Iattic&") D Aﬁ"). The
construction process goes as follows:

1) For eachn, choose an integét and a primep. Draw an x k matrix Fﬁ") € ngk randomly and uniformly.
2) Construct the linear codebook ovgy defined byFﬁ"):

¢ — pOIEE

3) “Lift" the codebook((™ to R™ by defining the lattice

~

AP = p=1c™ 7,
4) Finally, rotateA™ so that it is nested insida!”:
A = GIAM,

We form the lattice codebook by taking the intersection @ tloding lattice with the fundamental Voronoi region
of the shaping lattice:
¢ = A QY.

The rate of this codebook is

R = llogQ yc(n)’ — M.
n n

It is shown in [8] that choosing such that:/p — 0 asn — oo guarantees that the sequence of coding Iam‘r%é
is good for AWGN coding. For any desired raie> 0, we can construct an appropriate sequence of codebooks
by choosingp = nlog,(n) andk = Llogfp)J.

In essence, the preceding codebook construction allow® take a linear block code ovét, and to create
a corresponding linear code over Euclidean space. If theenlyidg linear code achieves capacity, as does the
ensemble of random linear codes, so too does the resultiticel@odebook. We can use any linear code in place
of the one chosen above; the performance cost is only theayeppacity of the linear code chosen.

For the lattice compute-and-forward proposed[ih [8], andngmt fact is that there exists a mapping from
finite-field messages to lattice codewords that preservesfity. That is, the mapping sends finite-field linear
combinations of messages to integer sums of lattice poinduio the shaping lattice. Formally, this implies that

there is an isomorphism between the additive group of fiedthehts and the group of lattice codewords modulo
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Fig. 3. Nested lattice codes. White dots are elements of adeng lattice, and black dots are elements of the shapitigdatEach lattice
point inside the shaded Voronoi regidi is a member of the codebook.

the shaping lattice. We state this result in the followingnhea.
Lemma 1: There exists an isomorphism: Fr — €, namely

o(w) = [Gg")p_lF((:")w] mod Ag”). (36)

Proof: We need to show that is a bijection and that it respects the group operation; iat(w; @ wsy) =
[p(wW1) + ¢(w2)] mod A for any wi, wp € F’;. That ¢ is a bijection was shown in_[8, Lemma 5]. To see that
¢ respects the group operation, we resort to direct computati

d(w1 ®ws) =[G p 'FM) (wy @ wy)] mod A (37)
= [GMp~ (FI) (wi + w2) + pi)] mod ALY, (38)

wherei € Z™ is a vector of integers corresponding to the discrepanaydest real-valued and modujoarithmetic.
Continuing, we get

P(w1 ® wa) = [Gp ' F (wy + w) + G{i] mod A (39)
= [Gg”)p_ng”) (w1 4+ wg)] mod Ag”) (40)
= [p(w1) + B(ws)] mod A, (41)

where the last equality is due to the fact th}x&”)i € Aﬁ") and that adding a member mﬁ") does not change the
result of the arithmetic modulﬂé"). [ ]

B. Lattice subspaces

In our cooperative computation strategy, we tailor blockké& encoding to lattice codes. To do so, we introduce
a key ingredient of our approach: the decomposition of tligcécodebook into subspaces. Lgt < k, and let
F,(n") € ng’“ denote the matrix composed of the fidst columns ofFﬁ"). Similarly, letk, = k — k,, and let
Ff,”) € FZX’% denote the matrix of the remaining, columns. Then define theesolution lattice A, and the
vestigiaIIB lattice A, as

AP = G ERE + 27

T

n n —1n(n)mk, n
AP =G (p ' FMIEE 7z,

(2

3This terminology is intended to convey the fact that thisidatcomponent encodes the “residual” or “leftover” infation bits. We use
this less-common synonym in order to minimize notationaifasion.
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Since these sequences of lattices are special cases ofttibe tonstruction from the previous subsection, each
sequence is individually good for AWGN coding. By constioetA ™ = A™ 4 A™ andA™ Afn"),Az(,") c AW,
Define the resolution and vestigial codebooks

an) — A,(,”) NVyo,

having rates

R, = — 10g2p
n
ko

R, =— 10g2 p.
n

By constructionR, + R, = R.. Furthermore, for any < R, < R, we can choosé, = L%J to achieve the
desired resolution codebook rate. For any message FX, we can define th@rojection onto the resolution and
vestigial codebook as follows:

br (W) = [Gep 'F,w[l : k,]] mod A,
bp(W) = [Gsp 'Fywlk, + 1 : k]] mod A,.
Using these projections, we can define a linear decompnositidhe lattice codebook, as depicted in Figure 4.

Lemma 2: For anyw € F¥,
o(w) = [6r(W) + 6y (w)] mod AL, (42)
Proof: This result follows from Lemmal1. By definitiow = (w”[1 : k.]07 )7 & (07 w” [k, + 1: k])7, so
o(w) = (W' L+ k], 05 )" & (0, Wk + 1+ K])T)
= [o((w' L2 k], 08)T) + 6 (0%, w [ky + 1+ K)T)] mod ALY
= [6r(w) + ¢u(w)] mod A",

where the last equality follows from the definition E‘ﬁ”) and Fg,"); zeroing out the unwanted portions of is
equivalent to discarding the associated column¥ @f. [ |

Fig. 4. Lattice subspace decomposition. Each lattice coctiin C™ is the sum of a point g™ (left) and a point incS™ (right). The
shaded regiorV; defines the codebook, whereas the strip-shaped Voron@n®yi- andV, define the decoding regions of the resolution
and vestigial codebooks, respectively.
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The codewordp(w) € C™ is therefore the sum of two linearly independent latticenf®is, (w), which we
call theresolution information and which encodes the firt log, p bits of the message, ang (w), which we call
the vestigial information and which encodes the remainikglog, p bits. Furthermore, the decomposition is linear
in the sense that the decomposition of sums of lattice pasntise same as the sum of decompositions.

Lemma 3: Let w; andw, be messages ¥, and letw = w; @ w». Then

dr(W) = [¢r(W1) + ¢r(W2)] mod ALY, (43)

and
Do(W) = [po(W1) + dy(W2)] mod A, (44)

Proof: This follows directly from the fact thap is an isomorphism:

¢7’(W) = ¢7‘(W1 ©® W2) (45)

= (Z5(W1[1 : kr] D Wg[l : kr]) (46)

= [p(wi[1 : ky]) + ¢(wa[l : ky])] mod AV (47)

= [¢y(W1) + ¢y (W2)] mod A, (48)

A similar argument holds fop,,. [ |

The preceding decomposition permits a lattice-codingaim#ation of block Markov encoding. After the trans-
mission of a lattice codeword, cooperating users can traritim lower-rate resolution component. The intended
receiver first decodes the resolution component and subtitafrom the received signal; the receiver then needs
only to decode the lower-rate vestigial component. AltHourg this paper we apply the technique to compute-
and-forward, it can be applied to a variety of relay systeRw. example, in a related work [39] an innovative
lattice list decoding technique is proposed to show that lattice codes can acliieveapacity of the physically
degraded three-terminal relay channel. Using our teclmiius straightforward to construct an alternative stggte
that establishes the same result.

V. COOPERATIVE COMPUTATION: ENCODING STRATEGY AND ACHIEVABLE RATE

In this section we describe our cooperative computaticetesgly and derive its achievable rate, which amounts
to a proof of Theorerh]3. Our approach is based on the latticerdposition described in Sectibn 1V-B. Messages
are communicated in two stages. In the first stage, eachntitias sends the lattice codeword corresponding to
its message; this codeword is decoded by a subset of the wHremitters. In the second stage, transmitters
cooperatively transmit the resolution component of thedincombinations desired at the receivers. Similarly,
receivers decode in two stages. They first decode the r@soladbmponent, which they then subtract away from
the received signal. Then they need only to decode the vastigmponent, which is easier to decode due to its
lower rate.

Proof of Theorem[3 Our proof goes in three parts: a description of the encodaigmme, a description of
the decoding scheme, and an analysis of the probability rof.er

Encoding: Each transmitter employs identical lattice codeb@aikhaving rateRR.. The codebook decomposes
into resolution and vestigial codebooks and C, which have respective rate8,. and R,. As noted in Section
IV-B] we haveR,. = R, + R,.

“Technically we have a sequence of lattice codebooks indeyed In the interest of notational simplicity we drop the sueiss.
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Transmitters encode their messages over + 1 blocks as depicted in Tablé I. At block each transmittet
has a message;(t), which it encodes by mapping it to the corresponding coddvioC:

Au(t) = ¢(wi(t)). (49)

By Lemmal2, each lattice codeword can be decomposed by firgjeanto the resolution and vestigial codebooks:

When transmitting the lattice codeword, each udiginers the lattice point over the shaping region; this ensures
that the codebook looks approximately Gaussian as well desnthe codewords of each transmitter statistically
independeﬁt We therefore define the effective codeword

Cl(t) = [)\l(t) + tl(t)] mod AS, (50)

wheret,;(¢) is a dither drawn randomly and uniformly ovet, independent for each< [ < L and1 <t <T.
Each receivern intends to recover the finite-field linear combinatibn(¢) = @f:l aym Wi (t), which corresponds
to the lattice point

L
Am(t) = ¢(£(t)) = [Z almkl(t)] mod A,. (51)
=1
As with the individual codewords, we can decompaggt) into resolution and vestigial components:
/\r,m(t) = ¢r(fm(t)) (52)
Av,m(t) = ¢v(fm(t)) (53)

The transmitters irB will cooperatively transmit\,. ,,,(¢) to each receiver, again dithering the lattice point oMgr
The effective codeword is
Crm = [Arm(t) + s (t)] mod Ag, (54)

where, similar to befores,,(t) is a dither drawn uniformly oveY; and independent for each< m < M, and
1<t T.
At block t = 1, each transmitter simply sends its own lattice codeword:

xi(1) = VPuyge(t). (55)

For subsequent blocks< ¢t < T', each transmitter i sends a combination of “fresh” information corresponding
to its own message;(¢) and resolution information corresponding to the messagesis the previous time slot.
Suppose that each transmitterinhas successfully decodeg (¢t — 1) for eachi’ # I. Then each transmitter i

can construct every,, (t) and, by extension, every, ,,(t). Every transmitter sends its own lattice codeword, and
transmitters inB send the resolution components for each receiver:

VP (vlocl(t) + M e (t — 1)) , forleB

. (56)
vV Puycy(t), otherwise

Xl(t) =

Finally, at blockt = T + 1 there is no new fresh information for the transmitters todsdéfach transmitter i

SFor further discussion of the need for dithers, $eé [54]
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sends only the resolution information corresponding takld, and the other transmitters send nothing:

vVPYM VimCrpym(T), forlieB

x(T+1) = )
0 otherwise

(57)

TABLE |
SUPERPOSITIONBLOCK MARKOV ENCODING FORTHEOREM[3|

t=1 t=2 = t=T+1
X1 (t), 1eB Ulocl(l) V10C1 (2) + an\/{:l Ulmcr,m(l) s Zn]\le 'Ulmcr,m(T)
Xg(t), 2 §7§ B 2)2002(1) U20C2(2) s 0
XL(t), L S B ’ULQCL(l) UL()CL(2) + Zm:l ULanm(l) e Zm:l ’ULanm(T)

Note that, since\; has normalized second moment equal to unity, and since therdiare independently and
uniformly drawn fromVs, we have with high probability
M
(O = P Y viy < P. (58)

m=0

1
n
Thus the transmit signals obey the average power constraint
Decoding: Decoding proceeds in three stages. Each transmitter de¢beenessages of every other transmitter,
the receivers decode the resolution information send aqatigely by the clusters, and finally the receivers decode
the vestigial information. Having decoded both componeftthe desired lattice point, the receiver can recover
the desired linear function.

At block ¢t = 1 each transmitter receives the superposition of all therdathasmitters’ signals, scaled by channel
gains and corrupted by noise:

z(1) = VP wvpogmer(1) + ny(t). (59)
U#l
Each transmitter forms estimateg;;(1) for every !’ = [ via typical sequence decoding: if there is a unique
collection of messages jointly typical with the receivedrsil, that collection is taken as the estimate; otherwise
an error is declared. Note that in this case the transmittersot employ lattice decoding.
For blocks2 < ¢t < T the situation is similar. Each transmitter receives theegppsition of other transmitters’
signals, but in this case the received signals also conémiolution information:

M
Zl(t) = \/ﬁ Zgl/l’ul/ocl/ (t) + Z Z gl/l’ul/mcr,m(t — 1) + nl(t). (60)

Il reBm=1

Supposing that each transmitter has successfully dectdethéssages from bloagk— 1, it knows the resolution
information. It therefore can subtract this component cegulting in the effective signal

M
Z;(t) = zl(t) - \/ﬁ Z Z gl’lvl’mcr,m(t - 1) (61)
l’'eBm=1
=VP>_ grvrocy () + my(t) (62)

V£l
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Now, just as fort = 1, each transmitter can form estimats,;(¢) of the other transmitters’ messages via typical
sequence decoding.

Next we turn to the receivers. To decode the funcfig(¢), each receiver first decodes the resolution information
from the signal received in block+ 1:

L M
ym(t+1) = \/ﬁz himvioe(t + 1) + VP Z Z Pt Ut €1 (1) +
=1

m'#m 1B
VP himimCrm(t) + i (t + 1), (63)
leB
Each receiver decodes the resolution information tredtieginterference—in this case the fresh information from
each transmitter and the resolution information intendadother receivers—as noise. Each estim&,t,a%(t) is
formed via lattice decoding as outlined in [29]. The recesvist apply MMSE scaling to the incoming signal and
subtract off the dither. Let

L M
n,(t+1) = VPY hpoci(t+1) + VP D> > hup Uiy iy (£) + 0 (4 1) (64)
=1 m'#£m leB

be the sum of the interference and noise at receiveilhen the scaled signal is
Ym(t+1) = [ym(t + 1)ym(t +1) —sm(t +1)] mod A, (65)

mod A (66)

Y+ DVP D MV Crm (£) +yn), (£ + 1) — spa (£ + 1)
leB

= [)\nm(t +1)+ <7m(t + 1)\/?2 R Ut — 1) Crm(t) +ym(t+1)n),(t+1)| mod As (67)
leB
= [Am(+1)+n),(t+1)] mod A, (68)
where
n (t+1) = <7m(t + VP higim — 1) Crom(t) + Y (t + D)0l (t 4 1) (69)
leB

is the effective noise, including thermal noise, interfex® and self-noise associated with MMSE scaling. Then,
the estimate is formed by lattice quantization:

A (t) = Qa, (Y1t + 1), (70)
After decoding the resolution information, each receivens toy,, (¢) to decode the vestigial component,,, (t).
First, we note that, supposing that each receiver has ssfatlgsdecoded the resolution information from the
previous block, it can subtract that portion of the intezfare, yielding:

y;n(t) = ym(t) - \/ﬁz hlmvlmcr,m(t - 1) (71)
leB
L
= \/ﬁz himviocy(t) + VP Z Z RimVim/ Cr.my (t—1) 4 n,(2). (72)
=1 m’'#m leB

Furthermore, supposing that the resolution informatios decoded successfully, each receiver can subiragtt)
from the received signal modulo the shaping lattice. Finatl preparation for lattice decoding, we apply MMSE
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scaling to the signal and subtract the dithers as in [8],.[28}
=VP Y ) him i Cr (t — 1) + npt) (73)
m’'#m leB

be the sum of the interference and noiseyip(t). The resulting signal is then

Yo () = | am @)y (t) = Ao (t) = > ammty(t) | mod Ag (74)
. -
= Z(am(t)\/ﬁhlmvlocl(t) — agti(t)) — A (t) + am(t)n;n(t)] mod Ag (75)
Li= 1
L
= Zalm c(t) — (1)) — )+ Z \/—hlmvlm am)ey(t) + am(t)n;n(t)] mod A; (76)
1=1
r L
= [An(®) = A () + > (n()V Phivim — agm)er(t) + o ()0}, ()| mod A, (77)
L =1
r L
= )+ Z \/—hlmvlm — ap)cy(t) + am(t)n;n(t)] mod Ag (78)
L I=1
= [Aom(t) + 1), (t)] mod A,, (79)
where .
n//(t) = Z(am (t)\/ﬁhlmvlm - alm)cl(t) + am (t)n;n(t) (80)

=1
is the effective noise, including thermal noise, interfexe from other transmitters and clusters, and self-noise
associated with MMSE scaling. Each receiver decodes thmaetﬁ\v,m(t) by quantizing to the nearest point in
Ay:
Ao () = Qu, (Y (t)). (81)
Finally, having recovered both the resolution and vedtigismponents, each receiver constructs its estimate of
the desired lattice codeword, from which it can recover thsirgd finite-field message:

nl®) = 67 () = 67" ([Mran(®) + A ()] mod A,). (82)

Probability of error: An error occurs when (a) any of the transmitterdsifails to decode the other transmitters’
messages, (b) any of the receivers fails to decode corralyncoming resolution information, or (¢) when any
of the receivers fails to decode correctly the vestigiabinfation associated with the desired lattice point. By the
union bound, the probability of error follows

P <3S Pr{fa(t) £ £a(0) 3
t=1 m=1
T
SZ Zpr{wll( ?éwl’ }‘i’zzpr{/\rm ?é/\rm }+ZZPY{>\vm ?é/\vm( )}
t=1 leB I'#l t=1 m=1 t=1 m=1

(84)

Here we show that as long as the rates satlsfy (14), eachterrarin [84) goes to zero exponentially. We start
with the first summation. Each transmitter decodes the ngesswithin its cluster via typical sequence decoding
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while treating all out-of-cluster interference as noisg LBmma® the joint mutual information between the transmit
codewordsc;(t) and the receive signaf () approaches that of a Gaussian multiple-access channelchithnel
coefficientsg;v;o, transmit powerP, and unit noise power. Therefore, so long as

R<rlnillglCmaC(gl[1:l— L,l+1:Ljovg[l:1—1,14+1:L],P1), (85)
€

thenPr{w;(t) # wy(t)} — 0 exponentially for eacth and’ # I.

Next we turn to the resolution information. Here each resetlecodes,, ,,(t) via lattice decoding oiy,,, (¢ +1).
In [29] it is shown that lattice decoding is sufficient to ame the capacity of the Gaussian channel. Friom (64)
we compute that the the interference powenlp(t + 1) is

1 2
Ly = ~El|[n,(t + DJ" = P { B ovol®+ > v, . (86)
m'#m,0
Similarly, we compute that the power of the resolution infiation iny,,, (t41) is P|h”v,,|?. Putting these together,

we find that if . ,
1 Plh;, v,
R, < min —log, <1 + |2mv | TR ) , (87)
1§m§M2 1+P(”hmOVOH +Zm’;ﬁm’hmvm’ )

thenPr{\,.(t) # Ar.m(t)} — 0 exponentially for eachm.
Finally, we look at the vestigial information. Here eacheaiger decodes\, ,,(t) by lattice decoding the sum
of multiple incoming lattice points, so we borrow the maisuk from [8]. We compute the interference power in

(Z3) to be

Imwy =P > [hlvp|?, (88)

m'#£m

and the effective channel gains [0 {79) drg o vo. Applying these to the rate inl(8), we find that if

1 1 *
Ry < |51085(|Ph © Vo> + L) = 51085 (lamll® (1 + L) + P ([l [ o ol = [af, (b o vO>|2))J :
(89)
thenPr{\, () # Am(t)} — 0 exponentially.
Recall thatR. = R, + R, andR = %fi. ChoosingT" arbitrarily large, we obtain the desired result. [ |

VI. ESTABLISHING THE DIVERSITY-MULTIPLEXING TRADEOFF

In this section we detail the signaling strategies thathb#ista our diversity-multiplexing claims. We begin with
the non-cooperative case. Our approach is to choose théngteectorv, such that the effective channel vector is
constant and has unit gain. It turns out that this approaith dpproximately as often as does a single SISO link.

Proof of Theorem[4 First we prove the upper bound. For the non-cooperative,dass shown in [8,
Theorem 13] that the computation capacity is upper-bouryed

1
H P)< in — log, (1 + Ph? 90
C(H, )—%“é‘ﬁ min ogy(1 + Phy,,) (90)
ahn;éo
1

where! and m can be chosen arbitrarily such that, # 0. Then the computation capacity is bounded by the
Shannon capacity of a single SISO link, which is proven if f[d$have diversity-multiplexing tradeoff*(r) = 1—r.
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The compute-and-forward network therefore has DMT bourded
d*(r) <df.(r)=1-r. (92)

To prove the lower bound foM = 1, we invoke the non-cooperative rate of Corollaty 2, chogsip to align
with the channels. For multiplexing gain we choosea = 1 andv? = P"~!/h2, resulting in the achievable rate

1 1
R(H,P) = 3 logy (14 LP") — 3 logy(L) (93)
1 14+ LP"
=3 log, (T) (94)
> S log(P"). ©5)

Outage occurs only when we cannot seto the specified value. Since we are constrained to hgve 1, this
occurs whem? < P! The probability of outage is therefore
L L
P, <Pr {U h < P’"‘l} < Pr{nf<pP'l=LP (96)
=1 =1

Therefore, our scheme gives a diversity order at multipigxdainr of
log(F,)

dnc(r) = Ploo log(P) ©7)
(1 —r)log(P) —log(L)
>
2 log(P) (98)
=1-r (99)
Since this matches the upper bound, the DMT is established. |

Next we prove the results for the cooperative network. Firstprove the upper bound.

Proof of Theorem[B: We invoke the MISO outer bound on the computation capacaynfiTheoreniIl. The
symmetric-rate capacity of the MISO broadcast channehigliy upper bounded by the capacity of the single-user
MISO link between the source and any destination. Thus thd dVupper-bounded by that of a singleantenna
MISO link, which is shown in[[48] to be&*(r) = L(1 —r). Thus the DMT of the cooperative compute-and-forward
network is bounded by

d*(r) < d(r) = L(1 7). (100)

[ |
Next we prove Theorernl 5, for which we need first to establistaemievable rate using random codes and
time-sharing.
Lemma 4: Let B C {1,---,L}. In the cooperative compute-and-forward network with = 1 receiver, the
following computation rate is achievable:

1 1
Riandom(H, G, P) = min {rlmél §Cmac(gl[1 l—-1,1+1:L],P1), 1 logs(1 + P(hgl)z)} . (101)
€

Proof: The encoding scheme is simple, so we only sketch the proefd®ithe transmission into two equal
time blocks. At the first block, each transmitter encodes brahdcasts its message using a random Gaussian
codebook of powe. The transmitters il decode the incoming messages using typical sequence dgcdthis
is nothing more than a Gaussian multiple-access channedesading is successful as long as the rate is below the
first term in [101). The multiple-access rate is cut in halé do time sharing.
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At the second block, the transmitters fhdirectly encode and broadcast the linear combination eesit the
receiver, again using a random Gaussian codebook of pé&werhe receiver decodes the desired function from
the signal received in the second block only. This is eqaivalo a MISO channel with equal beamformer weights,
so decoding is successful as long as the rate is below thedeeon in [101). Again the MISO rate is cut in half
due to time sharing. [ |

Now we are in a position to prove Theorém 6.

Proof of Theorem[@ We construct an achievable scheme based on the strategylLffomrmal4. We allows3
to vary according to the channel realizations, giving usabkievable rate

R(H,G, P) = maxmin {rlniél %C’mac(gl[l l—1,l+1:1],P1), ilogz(l + P(hf};1)2)} (102)
€
1 1
> mgxmin {Ilnlél §C'mac(gl[1 l—1,1+1:L],P1), 1 log, (1 + P(thHz)} . (103)
€

Let each rate term i _(103) be denoted By(H, G, P). Then define the event in which a particular cooperation
modality fails:
Op = {RB(H, G,P) < glog(P)}. (104)

Outage occurs when each cooperation modality fails simetasly:

O = ﬂ Op (105)
B
L

c () Ou- (106)
=1

That is, we consider only the events in which a single trattemdecodes the messages. Each terni_in](103) has
two components, the failure of either of which results in thiéure of the cooperation modality. Therefore, define
two events(;, the event that transmittérfails to decode the other transmitters’ messages,dndhe event that,
even if transmitterl decodes successfully, the receiver fails to decode tharlifiecnction. The first event can be
expressed as

1 r
Cl = {gcmac(glap> 1) < 5 IOg(P)} (107)
1 r
- U {M log, <1 +P Z 912f1> <3 log(P)} (108)
L£c{1,---,LY\{l} el
~ U {Z g < P“'H} (109)
cc{t, L)\ \rec
< U { N {st < P2'“‘1}} : (110)
L£c{1,-,LI\{i} \reL
The second event can be expressed as
1
N = {1 log, (1+ Ph?) < glogQ(P)} (112)
~ {1} < P71 (112)

Since each cooperation modality involves a different sebainnel coefficients, the failure evedisare independent.
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Therefore we can bound the outage probability by

L
Pr(0) < [[Pr(Ci UM (113)
=1
L
<11 <Z [ Prgis < PP=1) + Pr(nf < P2’”_1)> (114)
=1 L Vel
L
P2|z\r el 4 p2r-1 (115)
\c| 1
L
~( max  plel@L | pr- 1) . (116)
1<|£\<L 1

To find the terms with the largest error exponent, we need tbtfie value of £| that maximizes the quadratics in
(118). For instance, it is clear that for= 0 the maximizer is/£| = 1. In general, since the quadratics in question
are positive, the maximizer is eithef| = 1 or |£| = L — 1. This gives us

Pr(0) < (max {P(L—l)(Z(L—l)r—l)’P2r—1} +P2r—1)L (117)
~ (max {P(L—l)(2(L—1)r—1)’P2r—1})L‘ (118)
Finally, plugging [(1IB) into the definition of the DMT, we get
d*(r) = Pli_r)noo % (119)
> Lmin{l —2r, (L —1)(1 = 2(L — 1)r)}. (120)
[

Next we prove the lower bound achieved by cooperative &ttioding. Tuningvy to the channel vectoh
makes it too difficult for transmitters to decode others’ sagges, so we takey, = P~*, wherex depends on the
multiplexing gain. Increasing, decreases the error probability at the transmitters, birciteases the Cauchy-
Schwarz penalty and therefore the error probability at #eeiver. Forr = 0, choosingz = 1/2 is optimal, which
gives us a diversity gain of approximately2 for each transmitter.

Proof of Theorem[7t The proof follows a similar outline to that of Theordm 6, excéhat we use the rates
proved in Theorem]3 using lattice codes. Again we allow tHesetiof cooperating usef to vary according to
the channel realizations, and we choase 1, resulting in the following achievable rate

RH,G,P) = mgxmin{rlnillgqcmac(gl[l l—=1,l+1:Ljove[l:1—-1,l+1:L],P1),
€

1 1 *
5 om0+ P ool + 7)) = Gloms (L4 P (LhovalP - 1T ovo))) |} a2y

Similar to before, we let each term in_(121) be denotedAp(H, G, P) and define the events corresponding to
the failure of each cooperation modality:

Op = {RB(H, G,P) < glog(P)}. (122)
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Outage occurs when each cooperation modality fails simetasly:

0=()0s (123)
B

L
C O3 N[O N Op. (124)
=1

Here we consider the events in whiah transmitters cooperate, in whidh— 2 individual transmitters cooperate,
and in which no one cooperates. WhBn= (), we use the strategy outlined in the proof of Theotém 4, cingos
v? = P"~1/h2. Following that line of analysis, the non-cooperative miitgdails only when every channel gain

is too low: .
Op C {U h < P’”—l} . (125)
=1

For B # (), we choosevyy = P~*5/2 for everyl, andv;; = 1 — P~*5/2 for everyl € B; otherwisev; = 0.
Using this, we can bound the rate as follows:

Rp(H, G, P) > min { rlnig Coac(gi[1:1—1,14+1: L], P25 1),
€

+
B log, <1+P2|hl|2> - %10g2 (£+ P (L n)* - Hh\|2>>] } (126)

leB
For large P, we get
1 Pre 3 s h?
Rp(H, G, P) > min § min C, 1:1—1,1+1:L],P5.1),= 1o (¢ . 127
(L, G. P) = min { i Coc 11 R e (127)
As before we define events corresponding to the failure bieiterm in [(12l7)Cg, the event that the transmitters
in B fail to decode the other transmitters’ messages, Apdthe event that, even if the transmitters decode each

other properly, the receiver fails to decode its linear fiorcat the required rate. The first event can be expressed
as

— . . 1—:1,‘13 r
Cs = g{cmac(gl[l =10+ 15 I, PR ) < Dlog(P) | (128)

= U {ﬁ logs (1 + pl-es Zg}%l> < glog(P)} (129)

1eB {1, LN\{l} rec

~J U {Z g < P“T”B‘l} (130)

leBoc{l, L1y \rec

| U {ﬂ {gﬁl < Pﬁ|r+x5—1}}. (131)

l1eB e, L)\{1y \rec
ForB={1,---,L}, the second event can be expressed as
N, {110g ( il L1 ) < Zlog (P)} (132)
1, Ly = 508 | 77—, 2 5 1082
te ez e -y 2
={p*o 1 <(L-1)P"}. (133)

Based on[(133), we choosg; ... 1} = r+¢ for anye > 0. As P — oo, this forcesNy; ... 1y — 0 deterministically.
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For B = {i}, we can express the second event as

1 Pri k2 T
Ny = {—10g2 <7l> < —1og2(P)} (134)
2 (L=1)|n|*/ 2
hl2 T—X
= —L__ < prrm (135)
(L —1) [l
PE
c {hl2 < Pr—x{z}—e} U {Hh”2 > ﬁ} (136)
c () {r <P~ =<} u{|h|? > R (137)
leB R

Combining the above witH (124), we get

(U U e

le{1, L} LC{1,- ,L}\{I} l'eL

N K U m{gzlwmm1})u<{h%<w~ﬁ})]m

1e{1,,L} | \cc{1,,.L)\{1}'eL
L pe
Uhi<pPthu {Hhu2 > } . (138)
e L—1

O C

Equation [(13B) contains too many terms to enumerate in 8itice we are concerned with asymptotic behavior,
we need only look at the term with the highest error exporiEimis term contains one channel failuredp, ... 1,

L —2 failures inCy;; NNy, and one failure inVjy. The final error event, in whichh||? is too large, has negligible
contribution to the error probability. Combining these, get

Pr(0) < Pr ( U M {gﬁl < P“+"+61}> Pr({n3 < P"1}) x

LC{1, L\{1} Ve

L
HPr ( U ﬂ {gl2/l < P\E|r+x{z}—1} U {|hl|2 < PT:B{z}e}) ‘ (139)

1=3 Lc{l, L)} e

Since each term ir_(1B89) is independent, we can evaluaterdimbpilities separately, yielding

L—2
PI‘(O) g ( Z (P£r+m+el)£) (Pr—l) ( Z (P\£|r—x—1)\£| +Prme) (140)

Lc{1,-,LY\{1} L£c{1,-,L}\{3}

L—2
_ pr-1 ( Z (PE(Cr-i-:c-l-el)) ( Z (plll\(lll\r—:v—l)) +p7”~’06) , (141)

L£c{1,,LY\{1} L£c{1,,LY\{3}
where we have chosery;, = x for every!. Similar to the proof Theorern 6, the maximizer of the qu&dsain
(I47) is either£| =1 or |£| = L — 1. This gives us
PI‘(O) S pr-1 (max {P27’—1+E’P(l—L)(l—rL)-‘r(L—l)E}) (maxmin {Pr+x—l7P(l—L)(l—(L—l)r—x)’Pr—x—e})
(142)

L-2

Finally, plugging [(14R) into the definition of the DMT, takjrihe supremum over adl> 0, and taking the maximum
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over all z yields

de(r) = im EOED) (143)
>1—r+min{[l — 2], [(L - 1)(1 —rL)]"}+

Orgnjgl([/ —2)min{[1 =z — 7], [(L - 1)1 — (L - 1)r —2)]", [z — 7]} (144)

|

Although their proofs are similar, the strategies Theor@hand[Y achieve very different diversity-multiplexing
tradeoffs. With random coding, transmitters decode angheraiively transmit at separate blocks; such time division
enables full diversity, but it leads to poor multiplexingrfsemance. With lattice coding, on the other hand, we need
to balance transmit power in order to ameliorate the effe€signal misalignment; the balance costs us diversity
gain, but the multiplexing performance is improved. Therallemessage is that transmit cooperation improves
diversity and multiplexing for compute-and-forward, and as we saw in Fegl@ the two approaches combined
achieve the corner points of the DMT region.

VIlI. NUMERICAL EXAMPLES

In this section we examine a few example scenarios in whidalketnonstrate the benefits of our approach.

Example 1: The first example, depicted in Figuré 5, comprides= 2 transmitters and a single receiver. The
channels are symmetric, with the forward coefficients camist; = ho = 1 and the inter-transmitter coefficients a
variableg;s = go1 = g, which we vary such that the gay? ranges between 10dB and30dB. We set the transmit
SNR atP = 10dB. Since the channel gains are symmetric, either bothriraress can decode the other's message
or neither of them can; therefore we choose eitBer {1,2} or B = () for cooperative computation. Similarly,
by symmetry it is easy to see that the optimal choice for thedi function isa = (1,1)” and that the optimal
steering vectorsg andvy are constant. We find the optimal tradeoff betwegrand v, numerically.

Fig. 5. Exampldll: A two-by-one computation network with sgetric channel gains.

In Figure[6 we plot the achievable rate of our cooperativeesth against the upper bound of Theorem 2,
using the Nazer-Gastpar rate 0f (8) as a baseline. The tramdeasy to appreciate. When the channels between
transmitters are weak, decoding each other's messages difficult, and the cooperative rate collapses[io (8). As
the inter-transmitter gains become stronger it becomeierefas the transmitters to decode, and cooperation can
improve the computation rate and eventually approachesipper bound. We note a “dimple” in the cooperative
rate asg’> becomes large. For sufficiently largé, the optimal strategy is to turn the steering veotgrdown far
enough that the Nazer-Gastpar component of the cooperatigeis zero, meaning that only the jointly-encoded
resolution information carries information to the receivt this value ofg> we see the dimple, after which the
rate quickly converges on the upper bound.

Example 2: Next we examine a scenario in which channel gains are chasmomly, as depicted in Figure
[7. We place a single receiver at the origin and pldce- 3 transmitters randomly and uniformly on a segment
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Fig. 6. Achievable rates as a function of inter-transmitfeannel gains for Exampld 1.

of the circle having specified arclength. From the geometaofiguration of the network, we compute channel
magnitudes according to a path-loss model:

arclength= arclength= /2

Fig. 7. ExampldR: Three users are placed along a segmene afrih circle, while the receiver is placed at the origin.

S S S
d(i,j)’ "\ d(i,0)’

whered(i, j) is the Euclidean distance between useasd; and. We choosé@ = 10dB and a path-loss exponent
of o« = 4.

For each realization we calculate the cooperative comiputaate. Since the gains from transmitters to receiver
are equala = (1,1,1)7 is the optimal choice. The steering vectors and the clustegsoptimized numerically.
We run 500 simulations each for arclengths varying from @ tand plot the average computation rates in Figure
[B. Again the trends are easy to appreciate. Cooperatiomsoffee greatest improvement when transmitters are
close together. Even as we spread transmitters furthet, agpaaverage enough transmitters can cooperate that our
approach garners a noticeable improvement.

Example 3: In the next example we examine the variation in cooperatvaputation rate with respect to the
channel gain between transmitters and receivers. As @spiot Figure 9, we again have = 2 and M = 1, but
now we set every channel gain to unity except/igs. Since the channels between transmitters and receiveoare n
symmetric, we cannot take = (1,1)” or vy andv; to be constant. Instead, we iterate manually through plessib
choices ofa and numerically optimize over the sBtof cooperating transmitters and the steering vectgrand

9ij =



28

o
(%2}
5
T Lt
c 3 AN
& .
C s ~
o R ~
o el
2 TTTe-l --a
0 2+ 0 TTTEe=e
2
)
®
= 1 . .
S —— Non-cooperative computatign
= --- Cooperative computation
=1
g

0 ¢ - - - |
O

0 /4 /2 /4 &

Distance between users

Fig. 8. Average computation rate vs. angle between tratersifor Examplé12.

Vi.

' -~ "ha1

.

Fig. 9. ExampldB: A two-by-one computation network with msyetric channel gains.

In Figure[10 we plot the cooperative rate alongside (8) foaety of transmit signal-to-noise ratids We make
a few observations. First, the non-cooperative rate is lowhb; near to zero. Since we require the function to
contain elements from both transmitters’ messages, ithesdifficult for the receiver to decode such a function.
In the cooperative case, however, the rates do not fallesiremsmitter 1 can decode, and transmit the desired
function to the receiver. This result hints at the divergigins inherent to the cooperative approach; even when
one link fails, successful computation is possible.

Furthermore, in the cooperative case we get the full meltiiply gain as the SNR becomes large. In the non-
cooperative case we observe “peaks”; these correspontidaabchannel gains with low denominator. The further
hs1 is from a low-denominator rational, the harder it is to aligne function with the channels and the higher
the Cauchy-Schwarz penalty inl (8). However, we can alwayp®sév, such that the equivalent channel vector is
rational, allowing us to completely eliminate the Cauclyyw8arz penalty. We note that this is not explicitly due
to the cooperative nature of our approach; as shovim in 4 noperative transmitters can get the full multiplexing
gain using lattice codes. However, our cooperative apfrdaes permit the transmitters to use the remaining power
to secure rate and diversity gains.

Example 4: Finally, we examine the system depicted in Figure 11. Herdnawee L = M = 2, and again we set
all channel gains to unity except fén,. Again asymmetry prevents us from choosi@nd the steering vectors
easily. We iterate manually over the possible choicesafochoose zero-forcing beamformers for andv,, and
numerically optimize ovewx,. In order for zero-forcing to succeed, we chodse- {1, 2}.

In Figure[12 we plot the cooperative rate alongside (8), raf@i a variety of signal-to-noise ratios. Again we
make a few observations. In contrast to the previous sagnlagre the rate drops wheén, = 1; this is because
the channel matrix becomes increasingly ill-conditiongumilar to before, in the cooperative case the rate remains
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Fig. 10. Achievable rates as a function /of; and P for Example[8.

non-zero, but here it occurs because the transmitters agecatively send a full-rank set of equations even though
the channel matrix is nearly singular. However, in this egbmntooperation does not obtain the full multiplexing
gain. The freedom to choosg allows us to mitigate the peakiness of the achievable ratewb cannot eliminate
the Cauchy-Schwarz penalty at both receivers simultariedergen for high SNR, however, wdo get considerable
robustness to channel variation.

VIIl. CONCLUSION

We have studied the impact of user cooperation on computdeaward. Constructing a lattice-coding version of
block Markov encoding, we presented a strategy that intedwa “decode-and-forward” element into computation
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Fig. 11. Examplél4: A two-by-two computation network withyasnetric channel gains.

coding. Transmitters decode each other's messages, eg#idim to transmit resolution information cooperatively t
the receivers. Our strategy achieves higher computaties than previous approaches, since transmitters catyjoint
encode part of their messages, and coherent signals benoefitaf beamforming gain. Additionally, cooperation
enables an improvement in the diversity-multiplexing &aif, achieving full diversity when there is a single reegiv

In the case of multiple receivers, however, we have not #skagal an achievable diversity-multiplexing tradeoff.
The difficulty of aligning lattice codewords at multiple edeers suggests that lattice coding is insufficient for the
task. A promising approach may be to introduce a cooperalment into the signal-alignment strategy lof/[12].
Since this approach achieves the full multiplexing gain rffaultiple receivers, we expect to be able to obtain a
non-trivial characterization of the DMT regardless of thenber of receivers.

Finally, we note that our techniques can be applied to amasitn in which one needs to merge lattice codes
with decode-and-forward style cooperation. Our block Marlpproach is rather general; as mentioned earlier, it
can be used to achieve the capacity of the physically dedreelay channel or to achieve the decode-and-forward
rates of the cooperative multiple-access channel. We fitvere@xpect our techniques to be useful for developing
new strategies and establishing new results in areas whéreel codes and cooperation are applied, such as
physical-layer security [55]=[59] and interference chelari60]-[62].

APPENDIX A
PROOFS OFUPPERBOUNDS

Our first task is to prove Theorelm 1, for which we need a quichnia.
Lemma 5: Let wq,--- ,wy € F’; be independently and uniformly distributed messages. ,Tten functions
fi,--- ,fy are also independent and uniformly distributed ac@ﬁs
Proof: Since the finite-field linear combinations #ip are taken element-wise, it is sufficient to show the
result for an arbitrary element of both messages and fumctiZherefore, letw = (wiy,--- ,wr1)? andf =
(fi1,---, fan)T = Aw. We need to show that the elementsfadire independent and uniformly distributed.
Sincew is uniformly distributed ovefrZ, its probability mass function is

p(w)=p L. (145)

The conditional pmf off is
p(flw) =6(f — Aw), (146)
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whered(-) is the Kronecker delta function. Next we compute the matgimaf for f:

p(F) = 3 pEiw)p(w)

weFL

=p ") 6(f - Aw)
weFL

= p *[{w|Aw = f}|

= pLpl=M _ =M
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(147)

(148)

(149)
(150)
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where [14D) follows because is full rank. Since the pmj(f) does not depend ofy the elements are independent
and uniformly distributed. [ |
With Lemmal®, it is straightforward to prove Theorém 1.

Proof of Theorem[Il Suppose that a genie provides the messagés to each of the transmitters. Then the
transmitters each can compute the functiép$t). By Lemmalb these functions are independent and uniformly
distributed, the scenario is equivalent to Astransmitter antenna havinly independent messages to send\fo
users. In[[1B] the capacity region is shown to bel (10). Sineedsfine the computation capacity in terms of
achievablesymmetric rate, it cannot exceed the symmetric-rate MISO capacitgrgin [12). [ |

Next we prove the upper bound in Theorem 2.

Proof of Theorem[2 Choose a transmitte; and suppose that a genie supplies the messagé&g to the
receivers for every’ # [. By the crypto lemmal[29], each),(t) such thata,,,, # 0 is statistically independent of
the messages; (t), so the receivers remain equivocal as to the desired furgtibhus the scenario is equivalent
to a compound relay channel, with transmitteacting as the source, the transmittéracting as relays, and each
receiverm such thata;,,, # 0 acting as destinations all needing the messagé@g. The capacity of the compound
relay channel can be bounded using cut-set arguments. Focwrs € S;, the capacity of the compound relay
channel, and thus the computation capacity of the cooperatmpute-and-forward network, is bounded by

CH,G,P) <max min I(x;,2g5;Ym,2sc|rsc) (151)
P(X) m,aim
< min max I(z;, xs;Ym, 25c|Tg0). (152)
m,a;m7#0 p(x)
Taking the minimum over all transmitters and all cistswe obtain the result. [ |
APPENDIX B

ENTROPY OF DITHERED LATTICES OVER THE MULTIPLEACCESS CHANNEL

Here we prove that the mutual information between ditheatiicE codewords and any receiver approaches that
of a Gaussian multiple-access channel.
Lemma 6: Let
x; = VP[\ + t;] mod A, (153)

be a collection of independent lattice codewords, dithexass the shaping lattice, for< | < L. Let
L
y=)> hx +n, (154)
=1

be a noisy sum of the codewords, where the naisbas i.i.d. elements with varianag®. Then, for any set
Be{1,---,L}, the normalized mutual information between the transngitais and the receive signal approaches
at least that of a Gaussian multiple-access channel:

.1 1
lim —I(xp;y|xgc) > 3 log, (1 + 2

n—oo N

Whenn is Gaussian, this bound is tight.
Proof: Sincey is the sum of transmitted signals, conditioning entailsyosilibtracting away the known
component. Therefore, letting

Y5 =Y hx +n, (156)
=
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the mutual information is

lim —1 (s ylxse) = lim ~I(xsiys) = lm —(h(ys) — h(n)) (157)

n—oo n con n—oo n

whereh(-) is the differential entropy. Since the Gaussian distridnutinaximizes the differential entropy for a given
variance, we have

lh(n) < 11og(27rea?). (158)
n 2
To boundh(ygs), we note that in[[8, Lemma 8] it was shown that the density fiencf,, is bounded by
fya < e fye, (159)

wherey* is an i.i.d. Gaussian vector with varianégy, 5 h? + o2, andc(n) is a term approaching zero from
above as: — oo. Plugging this into the definition of differential entropye have, for sufficiently high,

Thiy) 2~ [ EOn gy tog(en s, ) (160
= —ecton / fy-Tos(fy-) — e () (161)
n
% ") - (163)
—>% ) (164)
Ll <2m (P > 4o )) , (165)
2 leB

where [I6B) follows becausé™" > 1 and for sufficiently highn the term%h(y*) —¢(n) is positive. Combining
(I58) and[(165), we get that

.1 ) 1 2, 2 1 2
nh_)nolo EI(x&y\xlgc) > 3 log <27T6 (P;hl +o )) ~3 log(2mec®) (166)
P h?
= 11og2 <1 + %) . (167)
2 o

Whenn is Gaussian, it is well-known that Gaussian inputs are agtiamd result in the same mutual information

as the bounds just established. In this case the bound is tigh [ |
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