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Abstract

We examine the benefits of user cooperation under compute-and-forward. Much like in network coding, receivers

in a compute-and-forward network recover finite-field linear combinations of transmitters’ messages. Recovery is

enabled by linear codes: transmitters map messages to a linear codebook, and receivers attempt to decode the

incoming superposition of signals to an integer combination of codewords. However, the achievable computation

rates are low if channel gains do not correspond to a suitablelinear combination. In response to this challenge,

we propose a cooperative approach to compute-and-forward.We devise a lattice-coding approach to block Markov

encoding with which we construct a decode-and-forward style computation strategy. Transmitters broadcast lattice

codewords, decode each other’s messages, and then cooperatively transmit resolution information to aid receivers in

decoding the integer combinations. Using our strategy, we show that cooperation offers a significant improvement

both in the achievable computation rate and in the diversity-multiplexing tradeoff.

Index Terms

Cooperative communications, lattice codes, network coding, block Markov encoding, diversity-multiplexing

tradeoff

I. INTRODUCTION

Interference is the primary obstacle to communications over wireless networks. Due to the broadcast nature of

the wireless medium, a transmitter’s signal arrives not only at its intended receiver(s), but also at any terminal in the

vicinity. This fact has proven to be a formidable challenge.Despite decades of study and a plethora of sophisticated

techniques, the capacity of even the two-user interferencechannel remains unknown in general.

Most approaches to interference entail the minimization ofits effects. A special case of the Han-Kobayashi

scheme [1], in which receivers decode a portion of the interference, was recently shown to achieve rates within

one bit of the capacity region of the two-user interference channel [2]. Interference alignment, in which interfering

signals are made to lie in a low-dimensional subspace by means of multiple antennas, changing channel conditions,

or signal-scale techniques, has been shown to provide the optimal degrees of freedom of the interference channel:

for large signal-to-noise ratios, each transmitter can achieve approximately half the rate possible in the absence of

interference [3]–[6]. In a somewhat similar approach, lattice codes are used in the many-to-one interference channel

to align interference at the signal scale, allowing the receiver to decode the interference as though it came from

a single receiver [7]. In each of these strategies, the goal is to minimize the effective interference seen by each

receiver.

Compute-and-forward [8], also known asphysical-layer network coding [9] is an innovative technique which

exploits, rather than eliminates, interference. Under compute-and-forward, receivers decode finite-field linear com-

binations of transmitter’s messages instead of messages themselves. If enough linearly independent combinations

are recovered, the individual messages can be recovered further “downstream” in the network. In [8] such decoding
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is enabled by lattice codes. Transmitters send out lattice codewords, noisy linear combinations of which arrive

at the receivers. Each receiver decodes the incoming signalto an integer combination of the lattice codewords

corresponding to the desired finite-field linear combination. Since an integer combination of lattice points is itself a

lattice point, it can be decoded almost as though it were a single incoming signal. Linear combinations of messages

therefore are often easier to decode than individual messages.

The strategy proposed in [8] requires a correspondence between the channel gains and the desired integer

combinations. If the channels do not produce suitable linear combinations of transmitters’ signals, the receivers

cannot easily recover suitable integer combinations of thelattice points. Several solutions to this challenge have

been proposed.Integer-forcing receivers [10], [11], in which linear receivers are chosen to induce integer-valued

equivalent channels, were developed for compute-and-forward over multiple-input multiple-output (MIMO) chan-

nels. In [12], a number-theoretic approach was developed toaddress this problem in the high-SNR regime. Using

techniques from Diophantine approximations, an encoding strategy was proposed that achieves the full degrees of

freedom.

We take a different tack. Our approach is based on the observation that, if transmitters were able to encode

their messages jointly, compute-and-forward would reduceto a multiple-antenna broadcast channel, the capacity of

which is known [13]. Whileperfect cooperation is infeasible, users can cooperatepartially by exploiting another

consequence of the broadcast nature: transmitters can overhear each other’s signals and jointly encode portions of

their messages. The aim of this paper therefore is to examinethe extent to which user cooperation can improve

the performance of compute-and-forward.

Our main contribution is a cooperative strategy for compute-and-forward. We develop a lattice-coding instantiation

of block Markov encoding by decomposing the lattice codebook into two linearly independent, lower-rate constituent

codes, called theresolution codebook and thevestigial codebook. Transmitters broadcast lattice codewords, after

which they decode the codewords of other transmitters. Theythen transmit cooperatively the resolution codewords

corresponding to the linear combinations desired at the receivers. Receivers employ a variant of sliding-window

decoding tailored to our lattice decomposition. They decode the resolution information and subtract it from the

original signal; they then need only to decode the vestigialcomponent of the desired sum of lattice points. This

strategy allows an improvement in computation rate due to two factors. First, since cooperating transmitters decode

others’ messages, they can jointly encode portions of the linear combinations directly, relaxing the need for receivers

to recover the messages from separately-encoded signals. Second, the jointly encoded signals combine coherently

at receivers, resulting in a beamforming gain.

We also present a high-SNR analysis of our approach. User cooperation naturally lends itself to diversity gains,

and we show that our approach indeed increases the diversityorder under slow Rayleigh fading. We focus on the

case of a single receiver. We prove inner bounds on the diversity-multiplexing tradeoff (DMT) using a combination

of cooperative random coding techniques and our cooperative lattice strategy. Random coding achieves full diversity

but performs poorly at high multiplexing gains, whereas lattice coding falls short of full diversity but maintains

performance at high multiplexing gains. Between the two coding strategies we establish an achievable DMT whose

corner points match the upper bound of a multiple-antenna, single output (MISO) system.

A. Related work

Compute-and-forward can be viewed as one of several wireless instantiations of network coding. Network coding

was introduced in [14], where it was shown that network coding achieves the multicast capacity of wireline networks.

It was later shown that (random) linear network codes are sufficient for multicast [15]–[17], and although linear

codes are provably insufficient for general wireline networks [18] they remain popular due to their simplicity and
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effectiveness. Network coding has been applied to wirelessnetworks by several means. Two information-theoretic

techniques are the quantize-map-and-forward of [19] and the “noisy” network coding of [20], in which relays

compress and re-encode the incoming superposition of signals. These approaches generalize the discrete-valued,

noiseless combinations of wireline network coding to continuous-valued, noisy combinations over wireless links. For

multicast networks, they come to within a constant gap of capacity. Finally, lattice techniques similar to compute-

and-forward have been used for the two-way and multi-way relay channels, again achieving rates within a constant

gap of capacity [21]–[24].

Lattice codes play a fundamental role in compute-and-forward. Early works on lattice codes [25]–[27] showed

that they are sufficient to achieve capacity for the point-to-point AWGN channel. The performance of lattice codes

underlattice decoding—in which the receiver quantizes the incoming signal to the nearest lattice point—was studied

in [28], and it was shown in [29] that lattice decoding achieves capacity. In addition to compute-and-forward, lattice

codes have seen use in a variety of information-theoretic problems, including source coding [30]–[32], physical-layer

security [33]–[35], and relay networks [36]–[39].

Finally, our approach relies heavily on the field of user cooperation. Cooperation was first introduced with the

relay channel in [40]. In [41] the relay channel is given a thorough treatment, and the most popular relaying

strategies—now known as decode-and-forward and compress-and-forward—are presented. More recent work has

focused on the diversity gains of cooperation [42]–[47], showing that cooperating transmitters can obtain diversity

gains similar to that of multiple-antenna systems.

B. Notation

We use bold uppercase letters (e.g.A) to refer to matrices and bold lowercase letters (e.g.x) to refer to column

vectors. Forn ×m matrix A, ai refers to theith column ofA, i.e. A = [a1 · · · am]. We denote subvectors of a

vector usingx[a : b] = (xa, xa+1, · · · , xb)T , where(·)T denotes the usual transpose. We use‖·‖ for the Euclidean

norm. Let◦ denote the element-wise or Hadamard product. LetFp denote the finite field of prime characteristicp,

and let⊕ and⊙ denote addition and (matrix) multiplication, respectively, modulop; however, we will occasionally

treat theresult of modular arithmetic as a member of the reals according to context. Let[x]+ = max{x, 0} denote

the positive part ofx. Finally, let

Cmac(h, P, σ
2) = min

B⊂{1,··· ,I}

1

2|B| log
(

1 +
P
∑

i∈B h2i
σ2

)

denote the symmetric-rate capacity of theI-user Gaussian multiple-access channel having channel gains h and

noise varianceσ2.

C. Organization

In Section II we present the system model and define the performance metrics used in this paper. In Section III we

formally state our main results and provide intuition abouttheir benefits. In Section IV we introduce lattice codes

and present the lattice subspace decomposition used in our block Markov strategy. In Section V we present our

cooperative computation strategies in detail and prove that they achieve the computation rates claimed in Section

III. In Section VI we perform a high-SNR analysis of our strategies and prove that they provide the diversity-

multiplexing gains claimed in Section III. In Section VII wepresent a few numerical examples to showcase the

benefits of our approach. Finally, we conclude with Section VIII.
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II. PRELIMINARIES

A. System model

In thecooperative compute-and-forward network, depicted in Figure 1,L transmitters communicate withM ≤ L

receivers over the wireless medium. Each of theL users hasT messageswl(t) ∈ F
k
p, for 1 ≤ t ≤ T . Structurally,

this network resembles the compound multiple-access channel or, whenM = L, the interference channel. However,

unlike those more traditional networks, here each receiverintends to decode a finite-field linear combination1 of

the transmitters’ messages:

fm(t) =

L
⊕

l=1

alm ⊙wl(t), (1)

for alm ∈ Z. Let the matrixA = [alm] ∈ Z
L×M describe the functions computed by the receivers.

w1

w2

...

wL

...

f1 =
⊕L

l=1 al1 ⊙wi

fM =
⊕L

l=1 alM ⊙wi

Fig. 1. The cooperative compute-and-forward network.L users cooperatively transmit toM receivers, which decode the desired linear
functions.

We divide transmissions intoT + 1 blocks ofn channel uses each. At blockt, each transmitterl broadcasts a

signalxl(t) ∈ R
n, subject to an average power constraint:

1

n
‖xl(t)‖2 ≤ P,

for someP > 0. The superposition of the transmitters’ signals, scaled bychannel coefficients and corrupted by

noise, arrives at each receiver:

ym(t) =

L
∑

l=1

hlmxl(t) + n(t), (2)

wherehlm ∈ R is the channel coefficient from transmitterl to receiverm, andn(t) is a white, unit-variance

Gaussian random vector. For convenience, we gather the channel coefficients into the matrixH = [hlm].

Each transmitterl also obtains the noisy superposition of the other transmitters’ signals:

zl(t) =

L
∑

l′=1
l′ 6=l

gl′lxl′(t) + nl(t), (3)

wheregl′l ∈ R is the channel coefficient from transmitterl′ to transmitterl, andnl(t) is again white, unit-variance

Gaussian. Again we stack the channel coefficients into a matrix G = [gl′l] with diagonal elements equal to zero.

The choice of zero for the diagonal elements impliesfull-duplex operation, meaning that transmitters can transmit

and receive simultaneously. We further assume that channelmatricesH andG are fixed and known globally among

the transmitters and receivers.

1Very precisely, receivers compute any of asequence of linear combinations since, as we shall see,k, p → ∞ as the codeword length
becomes large.
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We will refer occasionally to thenon-cooperative compute-and-forward network, which is identical to the

cooperative network except that the transmitters have no access to each other’s transmissions. We model this

formally by fixing G as the all-zero matrix.

B. Computation capacity

We are interested in thecomputation capacity of the network. Since the receivers recover functions of incoming

messages, rather than the messages themselves, the computation capacity is defined somewhat differently than the

capacity of ordinary channels. We endow each transmitter with an encoderEl : F
k×T
p × R

n×T → R
n×(T+1). That

is, the encoderEl takes as its input the messageswl(t) and the received signalszl(t) and generates as its output

the codewordsxl(t). We impose a causality restriction onEl: the output codewordxl(t) may depend on received

signalszl(s) only for s < t. As usual, the encoding rate is defined as the logarithm of thecardinality of the message

set divided by the number of channel realizations over whichthe messages are encoded:

R =
T log2(|Fk

p|)
n(T + 1)

=
Tk log2(p)

n(T + 1)
≈ k log2(p)

n
, (4)

where the approximation holds for largeT . Note that this is thesymmetric rate among all transmitters.

We endow each receiver with a decoderDm : Rn×(T+1) → F
k×T
p , taking as inputs the received signalsym(t)

and generating as outputs the estimatesf̂m(t). Let the absolute probability of error be the probability that any

receiver makes an incorrect estimate of any of the desired functions:

Pe = Pr{f̂m(t) 6= fm(t), for any 1 ≤ m ≤ M, 1 ≤ t ≤ T}. (5)

We say that a computation rateR is achievable if for any ǫ > 0 there exists a sequence of encoders with encoding

rate greater thanR − ǫ and decoders such thatPe → 0 as n → ∞. For fixed channel gainsH,G, function

coefficientsA, and transmit powerP , let R(H,G,A, P ) denote the supremum over all achievable computation

rates.

In order to define the computation capacity we need to place limitations on the permissible function coefficients

A. Otherwise we could choose a trivial coefficient matrix, such as the all-zero matrix, for which the achievable

computation rate is unbounded. We therefore require thatA be a member of the following set:

A = {A ∈ Z
L×M : rank(A) = M, ∀ m ∃ l such thataml 6= 0}. (6)

The first condition ensures that the recovered functions retain as much information as possible about the individual

transmitters’ messages; forL = M it implies that one can recover the individual messages fromthe recovered

functions. The second condition, which is redundant forL = M , ensures that each transmitter is represented in the

recovered messages; the receivers cannot simply ignore a transmitter in order to achieve a higher computation rate.

Finally, we define thecomputation capacity as the supremum of achievable rates over the set of permissible

coefficient matrices:

C(H,G, P ) = sup
A∈A

R(H,G,A, P ). (7)

In their seminal work, Nazer and Gastpar developed a computation strategy based on nested lattice codes [8]. It

achieves the following computation rate:

Rnc(H, P ) = max
A∈A

min
1≤m≤M

[

1

2
log2(1 + P ‖hm‖2)− 1

2
log2(‖am‖2 + P (‖am‖2 ‖hm‖2 − |aTmhm|2))

]+

. (8)

The first term in (8) corresponds to the power in the received signal, whereas the second term is a penalty determined
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by the gap in the Cauchy-Schwarz inequality betweenhm andam. The closerhm andam are to being co-linear, the

smaller is the rate penalty. Since the Nazer-Gastpar schemewas designed for a non-cooperative network, the rate

does not depend onG; nevertheless, it serves as a lower bound on the cooperativecomputation capacityC(H,G).

In the sequel we present a cooperative computation strategybased in part on the Nazer-Gastpar scheme.

C. Diversity-multiplexing tradeoff

One advantage of user cooperation is that cooperating transmitters can achieve performance similar to that of

a multiple-antenna transmitter. Multiple antennas can improve performance on two fronts: increased reliability in

the presence of slow channel fading, and increased throughput. In the high-SNR regime, thediversity-multiplexing

tradeoff quantifies this improvement [48]. Let the elements ofH and G be identically and independently dis-

tributed according to a Rayleigh distribution. Next, suppose there is a scheme that achieves the computation rate

Rscheme(H,G, P ). Then, thediversity order at multiplexing gain r is defined as

d(r) = lim
P→∞

log Pr{Rscheme(H,G, P ) < r
2 log(P )}

log P
. (9)

In other words,d(r) is the exponent of the outage probability, with the rate taken to have multiplexing gainr, as

the SNR goes to infinity. The diversity-multiplexing tradeoff of the system, denoted byd∗(r), is the supremum of

d(r) over all possible schemes.

The multiplexing gain for compute-and-forward is studied in [12]. There it is shown that, using the Nazer-Gastpar

approach, the multiplexing gain can be no higher than2L+1 . In other words,d(r) = 0 for r > 2
L+1 for this scheme.

In the sequel we show that we can achieve a better diversity-multiplexing tradeoff, including a multiplexing gain

of unity, for both cooperative and non-cooperative networks having a single receiver.

III. M AIN RESULTS

A. Upper bounds

First we present two upper bounds on the cooperative computation rate, the proofs of which are contained in

the Appendix A. We obtain the first bound by supposing that thetransmitters are capable of perfect cooperation,

which is equivalent to having a genie supply all messages to each transmitter. The problem then reduces to a

multiple-input, single-output (MISO) broadcast channel,the capacity of which is known [13]. In the sequel we use

this result to bound the diversity-multiplexing tradeoff.

Theorem 1: Let the capacity region of a Gaussian MISO broadcast channelbe denoted by

Cmiso(H, P ) = conv

{

⋃

π∈Π

{

r : rm ≤ 1

2
log2

(

1 +
hπ(m)Vπ(m)h

T
π(m)

hπ(m)

∑m−1
i=1 Vπ(i)h

T
π(m) + 1

)}}

, (10)

whereconv{·} is the convex hull,Π is the set of permutations from{1, · · ·L} to itself, andVm is a collection of

positive semi-definite matrices such that
∑M

m=1 tr(Vm) ≤ NP . Then the computation capacity of the cooperative

compute-and-forward network is bounded above by

C(H,G, P ) ≤ R+
miso(H, P ), (11)

where

R+
miso(H, P ) = sup{r : r1 ∈ Cmiso(H, P )} (12)

is the symmetric-rate capacity of the Gaussian MISO broadcast channel.
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We obtain the next bound by supposing a genie supplies to the receivers all messages except for those of a single

transmitterl. Then the receivers need only to recover the messages of transmitterl in order to compute any suitable

set of functions. This converts the system to a compound relay channel in which the other transmitters serve as

dedicated relays; we bound the capacity of this channel using cut-set arguments. This upper bound is somewhat

more realistic thanR+
miso, and we use it in Section VII for comparisons to our achievable rates.

Theorem 2: For each transmitter1 ≤ l ≤ L, let Sl = {1, · · · , l− 1, l+1, · · · , l} be the set of transmittersother

than transmitterl. Then the computation capacity of the cooperative compute-and-forward network is bounded

above by

C(H,G, P ) ≤ R+
single(H,G, P ),

where

R+
single(H,G, P ) = min

1≤l≤L
max
A∈A

min
m,alm 6=0

max
p(x)

min
S∈Sl

I(xl, xS ; ym, zSC |xSC ), (13)

wherep(x) is any distribution over the transmitted signals(x1, · · · xL)T satisfying the input power constraint.

B. Achievable rates

Here we present the computation rates achieved by our cooperative strategy. Our approach is decode-and-

forward in nature: at one block transmitters send out lattice codewords corresponding to their individual messages;

these messages are decoded by other transmitters. At the next block transmitters cooperatively encode resolution

information to assist the receivers. As with any decode-and-forward strategy, we must contend with the fact that it

may be difficult for transmitters to decode each other’s messages. We therefore require only some of the transmitters

to cooperate.2 A subsetB of the transmitters decodes the messages of every other user, after which they cooperatively

transmit resolution information to the receivers. Transmitters not inB, not having decoded incoming messages, do

not send any resolution information. We present the detailsof this strategy, as well as an achievability proof, in

Section V.

Theorem 3: Let B ⊂ {1, · · · , L}. In the cooperative compute-and-forward network, the following computation

rate is achievable:

Rc(H,G, P ) = max
A∈A

min

{

min
l∈B

Cmac(gl[1 : l − 1, l + 1 : L] ◦ v0[1 : l − 1, l + 1 : L], P, 1),

min
1≤m≤M

{

1

2
log2

(

1 +
P |hT

mvm|2
1 + Im,r

)

+

[

1

2
log2(‖Phm ◦ v0‖2 + Im,v)−

1

2
log2

(

‖am‖2 (1 + Im,v) + P
(

‖am‖2 ‖hm ◦ v0‖2 − |aTm(hm ◦ v0)|2
))

]+}}

,

(14)

where

Im,r = P



‖hm ◦ v0‖2 +
∑

m′ 6=m,0

|hT
mvm′ |2



 (15)

is the interference power seen at receiverm as it decodes its resolution information,

Im,v = P
∑

m′ 6=m,0

|hT
mvm′ |2 (16)

2Other approaches are possible. For example, in an earlier work [49] we partitioned the set of transmitters into clusters; transmitters would
decode only in-cluster messages. In the interests of brevity we discuss only the approach presented in Theorem 3.
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is the interference seen at receiverm as it decodes the vestigial information, and for any vectorsv0,v1, · · · ,vM

such that
M
∑

m=0

|vlm|2 ≤ 1,∀l (17)

andvlm = 0 for l 6= B andm > 0.

The achievable rate (14) is a bit difficult to parse, so we taketime here to describe each of its three components.

First is the rate of a Gaussian multiple-access channel, which corresponds to the rate at which cooperating

transmitters can decode others’ messages. Second is the rate at which each receiver can decode the resolution

information, which is that of a virtual MISO link between cooperating transmitters and the receiver; signals unrelated

to the resolution information are treated as noise. Third isthe rate at which the receivers, having already decoded

the resolution information, can decode the vestigial component of the desired combination of lattice points; this is

the Nazer-Gastpar rate of (8), with resolution informationintended for other receivers treated as noise.

Each transmitter splits its power between sending its own lattice codewords and cooperatively sending resolution

information. The split is defined by the steering vectorsv0,v1, · · · ,vM . Each elementvl0 dictates the fraction of

power transmitterl expends on its own lattice codewords. For cooperating transmitter l, each elementvlm dictates

the fraction of power expended on resolution information for receiverm. The steering vectors introduce two separate

notions of alignment. First, we can choosev0 in order to minimize the Cauchy-Schwarz penalty in (14). Second, we

can choose the remaining vectorsvm to trade off between increasing the coherence gain at the intended receivers

and decreasing the interference generated at other receivers. Finding the optimum steering vectors is a non-covex

problem; for further results and in our simulations we rely on a few heuristic means for selecting them.

We can obtain a simpler expression for the achievable rate bychoosingB = {1, · · · , L} and taking the steering

vectorsv1, · · · ,vM to be zero-forcing beamformers. Thus the cooperative signals do not interfere at other receivers.

Corollary 1: The following computation rate is achievable for the cooperative compute-and-forward network:

Rzf (H,G, P ) = max
A∈A

min

{

min
1≤l≤L

Cmac(gl[1 : l − 1, l + 1 : L] ◦ v0[1 : l − 1, l + 1 : L], P, 1),

min
1≤m≤M

[

1

2
log2(1 + P (‖hm ◦ v0‖2 + |hT

mvm|2))−

1

2
log2

(

‖am‖2 + P
(

‖am‖2 ‖hm ◦ v0‖2 − |aTm(hm ◦ v0)|2
))

]+}

, (18)

for any vectorsv0,v1, · · · ,vM satisfying
M
∑

m=0

|vlm|2 ≤ 1 (19)

and

vT
mhm′ = 0,∀ m 6= m′. (20)

SinceL ≥ M , it is possible to choose non-trivial zero-forcing beamforming vectors for almost everyH.

Finally, choosingB = ∅, we obtain an achievable rate for both the cooperative and non-cooperative compute-

and-forward network. This yields a rate similar to (8), except that each transmitter can adjust its transmit power in

order to tune the effective channels to match the desired linear functions. In fact this rate is a special case of the

“superposition” compute-and-forward presented in [8, Theorem 13].

Corollary 2: In both the non-cooperative compute-and-forward network and the cooperative compute-and-forward
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network, the following rate is achievable:

R(H,G, P ) = max
A∈A

min
1≤m≤M

[

1

2
log2(1 + P (‖hm ◦ v0‖2))−

1

2
log2

(

‖am‖2 + P
(

‖am‖2 ‖hm ◦ v0‖2 − |aTm(hm ◦ v0)|2
))

]+

, (21)

for anyv0 satisfying

|vl0|2 ≤ 1,∀ 1 ≤ l ≤ L. (22)

C. Diversity-multiplexing tradeoff

Here we present our diversity-multiplexing tradeoff results, the proofs of which are presented in Section VI. We

begin with the non-cooperative case.

Theorem 4: For the non-cooperative compute-and-forward network, thediversity-multiplexing tradeoff for any

scheme is upper-bounded as follows:

d∗(r) ≤ d+nc(r) = 1− r. (23)

For the case ofM = 1, d∗(r) = d+nc(r).

In other words, the DMT of the non-cooperative compute-and-forward network is bounded above by that of a scalar

Gaussian channel. In the case of a single receiver, we can achieve this upper bound with lattice codes and signal

alignment. With the steering vectorv0 chosen such that the equivalent channel vector is a constant, the achievable

rate—and therefore the error probability—is approximately that of a single SISO link.

Next, we look at the DMT of the cooperative compute-and-forward network. We start by presenting an upper

bound.

Theorem 5: For the cooperative compute-and-forward network, the diversity-multiplexing tradeoff is upper-

bounded as

d∗(r) ≤ d+c (r) = L(1− r). (24)

In other words, the DMT is upper-bounded by that of a single MISO link. In the case of a single receiver, we

derive two lower bounds on the DMT. The first is derived using arather simple strategy employing time sharing

and Gaussian codes.

Theorem 6: For the cooperative compute-and-forward network, the following diversity-multiplexing tradeoff is

achievable:

d−random(r) = Lmin{1− 2r, (L− 1)(1 − 2(L− 1)r)}. (25)

In particular,d−random(0) = L.

Since it involves time sharing, the strategy used in Theorem6 has poor multiplexing performance. It does, however,

achieve the full diversity gain ofL. The second bound is derived using the cooperative computation strategy of

Theorem 3.

Theorem 7: For the cooperative compute-and-forward network, the following diversity-multiplexing tradeoff is

achievable:

d−lattice(r) = 1− r +min{[1− 2r]+, [(L− 1)(1 − rL)]+}+
max
0≤x≤1

(L− 2)min{[1 − x− r]+, [(L− 1)(1 − (L− 1)r − x)]+, [x− r]+}. (26)

Here,d−lattice(0) = 2 + L−2
2 .
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Here the main difficulty is the Cauchy-Schwarz penalty inherent to lattice coding. It turns out that choosing

v0 to align with the channels, as we did in the non-cooperative case, precludes cooperation with high probability.

We therefore choosev0 to be constant, taking the Cauchy-Schwarz penalty “on the chin.” We balance the transmit

power between sending fresh information, which helps transmitters decode others’ messages, and sending resolution

information, which helps the receiver decode the desired linear combination. Choosing the balance properly, the

benefits of cooperation outweigh the Cauchy-Schwarz penalty, but only enough to obtain a diversity gain of

approximately1/2 per transmitter. Nevertheless, for higher multiplexing gains lattice coding outperforms the strategy

of Theorem 6.

We plot the DMT bounds in Figure 2. ForL = 2 lattice coding is sufficient to achieve full diversity, and the DMT

achieved by lattice coding strictly dominates that achieved by random coding. ForL > 2, lattice coding achieves

better performance only for sufficiently high multiplexinggain. Random coding fails altogether at multiplexing

gains higher than(L− 1)/2 due to the need for transmitters to decodeL− 1 separate messages and the need for

time-sharing. Lattice coding, on the other hand, maintainsnon-zero diversity for every any0 ≤ r ≤ 1. Between

the two strategies we obtain the corner points of the DMT region.
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Fig. 2. Diversity-multiplexing tradeoff forL = 2, L = 5 transmitters and a single reciever.

IV. L ATTICE CODES

In this section we first introduce the basics of lattice codes, after which we present the lattice decomposition

employed in our cooperative computation strategy.

A. Capacity-achieving lattice codes

Formally, a latticeΛ is a discrete additive subgroup ofRn, which implies that for anyλ1, λ2 ∈ Λ we have

λ1 + λ2 ∈ Λ andλ1 − λ2 ∈ Λ. Any lattice can be generated by taking integer combinations of (not necessarily

unique) basis vectors. Choosing these basis vectors as columns, we form thegenerator matrix of Λ, denoted by

G ∈ R
n×n:

Λ = GZ
n. (27)
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We letQΛ denote thelattice quantizer, which maps any pointx ∈ R
n to the nearest point inΛ:

QΛ(x) = argmin
λ∈Λ

‖x− λ‖ . (28)

The latticeΛ induces a partition ofRn into theVoronoi regions V(λ) of each lattice pointλ ∈ Λ:

V(λ) = {x ∈ R
n : QΛ(x) = λ}, (29)

where ties are broken arbitrarily. In other words, the Voronoi region ofλ ∈ Λ is simply the set of points that are

closer toλ than to any other lattice point.

Let V = V(0) be the fundamental Voronoi region of Λ. The mod operation with respect toΛ returns the

quantization error

x mod Λ = x−QΛ(x), (30)

which is always a member ofV. Themod operation allows one to draw an analogy with modulo arithmetic over

a finite field. Just as modulo arithmetic ensures that the result remains a member of the finite field, performing

arithmetic moduloΛ “wraps” the result withinV. Themod operation obeys the associativity property:

[[x] mod Λ + y] mod Λ = [x+ y] mod Λ. (31)

The second moment σ2(Λ) quantifies the average power of a random variable uniformly distributed insideV:

σ2(Λ) =
1

nVol(V)

∫

V
‖x‖2 dx, (32)

whereVol(A) is the volume of a setA ⊂ R
n. The normalized second moment is defined as:

G(Λ) =
σ2(Λ)

Vol(V) 2

n

. (33)

The normalized second moment provides a measure of the efficiency ofΛ as a shaping region. The closerV is to

being spherical, the smallerG(Λ) is.

The covering radius rcov(Λ) is the radius of the smallest sphere that coversV:

rcov(Λ) = inf
r
{r > 0|V ⊂ rBn}, (34)

whereBn is the unit sphere inRn. The effective radius reff(Λ) be the radius of a sphere with the same volume as

V:

reff(Λ) =

(

Vol(V)
Vol(Bn)

)
1

n

. (35)

Note thatrcov(Λ) ≥ reff(Λ).

In order to construct lattice codebooks suitable for proving information-theoretic results, we requiresequences

of lattices that asymptotically satisfy several desirableproperties. For example, we say that a sequence of lattices

{Λ(n)},Λ(n) ∈ R
n, is good for covering or Rogers good [50] provided the covering radius approaches the effective

radius:

lim
n→∞

rcov(Λ
(n))

reff(Λ(n))
= 1.

Similarly, a sequence of lattices isgood for quantization provided

lim
n→∞

G(Λ(n)) =
1

2πe
.
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Finally, let z ∼ N (0, σ2I) be a Gaussian random vector. Define thevolume-to-noise ratio µ(Λ, Pe) as

µ(Λ, Pe) =
(Vol(V)) 2

n

σ2
,

whereσ2 is chosen such thatPr{z /∈ V} = Pe. A sequence of latticesΛ(n) is good for AWGN coding or Poltyrev

good if

lim
n→∞

µ(Λ(n), Pe) = 2πe.

The existence of such sequences was proven by Poltyrev in [51]. Furthermore, Erez et al. proved that there exist

sequences of lattices that are simultaneously good for covering, quantization, and AWGN coding [52].

Lattice codebooks are constructed usingnested lattices, as depicted in Figure 3. Here we review the construction of

codebooks sufficient to achieve capacity for the AWGN point-to-point channel, which is the model for codebooks

to be used throughout this paper. LetΛ
(n)
s be a sequence ofshaping lattices that are good for covering and

AWGN coding and satisfyσ2(Λ
(n)
s ) = 1, and letG(n)

s denote generator matrices for each lattice in the sequence.

Then, following [53], we adapt Construction A [28] to construct a sequence of coding latticesΛ(n)
c ⊃ Λ

(n)
s . The

construction process goes as follows:

1) For eachn, choose an integerk and a primep. Draw an× k matrix F
(n)
c ∈ F

n×k
p randomly and uniformly.

2) Construct the linear codebook overFp defined byF(n)
c :

Ĉ(n) = F(n)
c F

k
p

3) “Lift” the codebookĈ(n) to R
n by defining the lattice

Λ̂(n)
c = p−1Ĉ(n) + Z

n.

4) Finally, rotateΛ̂(n)
c so that it is nested insideΛ(n)

s :

Λ(n)
c = G(n)

s Λ̂(n)
c .

We form the lattice codebook by taking the intersection of the coding lattice with the fundamental Voronoi region

of the shaping lattice:

C(n) = Λ(n)
c ∩ V(n)

s .

The rate of this codebook is

R =
1

n
log2 |C(n)| = k log2(p)

n
.

It is shown in [8] that choosingp such thatn/p → 0 asn → ∞ guarantees that the sequence of coding latticesΛ
(n)
c

is good for AWGN coding. For any desired rateR > 0, we can construct an appropriate sequence of codebooks

by choosingp = n log2(n) andk = ⌊ nR
log2(p)

⌋.
In essence, the preceding codebook construction allows us to take a linear block code overFp and to create

a corresponding linear code over Euclidean space. If the underlying linear code achieves capacity, as does the

ensemble of random linear codes, so too does the resulting lattice codebook. We can use any linear code in place

of the one chosen above; the performance cost is only the gap to capacity of the linear code chosen.

For the lattice compute-and-forward proposed in [8], an important fact is that there exists a mapping from

finite-field messages to lattice codewords that preserves linearity. That is, the mapping sends finite-field linear

combinations of messages to integer sums of lattice points modulo the shaping lattice. Formally, this implies that

there is an isomorphism between the additive group of field elements and the group of lattice codewords modulo
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Vc

Vs

Fig. 3. Nested lattice codes. White dots are elements of the coding lattice, and black dots are elements of the shaping lattice. Each lattice
point inside the shaded Voronoi regionVs is a member of the codebook.

the shaping lattice. We state this result in the following lemma.

Lemma 1: There exists an isomorphismφ : Fk
p → C(n), namely

φ(w) = [G(n)
s p−1F(n)

c w] mod Λ(n)
s . (36)

Proof: We need to show thatφ is a bijection and that it respects the group operation; thatis, φ(w1 ⊕w2) =

[φ(w1) + φ(w2)] mod Λ
(n)
s for anyw1,w2 ∈ F

k
p. Thatφ is a bijection was shown in [8, Lemma 5]. To see that

φ respects the group operation, we resort to direct computation:

φ(w1 ⊕w2) = [G(n)
s p−1F(n)

c (w1 ⊕w2)] mod Λ(n)
s (37)

= [G(n)
s p−1(F(n)

c (w1 +w2) + pi)] mod Λ(n)
s , (38)

wherei ∈ Z
n is a vector of integers corresponding to the discrepancy between real-valued and modulo-p arithmetic.

Continuing, we get

φ(w1 ⊕w2) = [G(n)
s p−1F(n)

c (w1 +w2) +G(n)
s i] mod Λ(n)

s (39)

= [G(n)
s p−1F(n)

c (w1 +w2)] mod Λ(n)
s (40)

= [φ(w1) + φ(w2)] mod Λ(n)
s . (41)

where the last equality is due to the fact thatG
(n)
s i ∈ Λ

(n)
s and that adding a member ofΛ(n)

s does not change the

result of the arithmetic moduloΛ(n)
s .

B. Lattice subspaces

In our cooperative computation strategy, we tailor block Markov encoding to lattice codes. To do so, we introduce

a key ingredient of our approach: the decomposition of the lattice codebook into subspaces. Letkr ≤ k, and let

F
(n)
r ∈ F

n×kr

p denote the matrix composed of the firstkr columns ofF(n)
c . Similarly, let kv = k − kr, and let

F
(n)
v ∈ F

n×kv

p denote the matrix of the remainingkv columns. Then define theresolution lattice Λr and the

vestigiall3 lattice Λv as

Λ(n)
r = G(n)

s (p−1F(n)
r F

kr

p + Z
n)

Λ(n)
v = G(n)

s (p−1F(n)
v F

kv

p + Z
n).

3This terminology is intended to convey the fact that this lattice component encodes the “residual” or “leftover” information bits. We use
this less-common synonym in order to minimize notational confusion.
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Since these sequences of lattices are special cases of the lattice construction from the previous subsection, each

sequence is individually good for AWGN coding. By constructionΛ
(n)
c = Λ

(n)
r +Λ

(n)
v andΛ(n)

s ⊂ Λ
(n)
r ,Λ

(n)
v ⊂ Λ

(n)
c .

Define the resolution and vestigial codebooks

C(n)
r = Λ(n)

r ∩ VΛ(n)
s

C(n)
v = Λ(n)

v ∩ VΛ
(n)
s
,

having rates

Rr =
kr
n

log2 p

Rv =
kv
n

log2 p.

By constructionRr + Rv = Rc. Furthermore, for any0 ≤ Rr ≤ R, we can choosekr = ⌊ nRr

log2(p)
⌋ to achieve the

desired resolution codebook rate. For any messagew ∈ F
k
p, we can define theprojection onto the resolution and

vestigial codebook as follows:

φr(w) = [Gsp
−1Frw[1 : kr]] mod Λs

φv(w) = [Gsp
−1Fvw[kr + 1 : k]] mod Λs.

Using these projections, we can define a linear decomposition of the lattice codebook, as depicted in Figure 4.

Lemma 2: For anyw ∈ F
k
p,

φ(w) = [φr(w) + φv(w)] mod Λ(n)
s , (42)

Proof: This result follows from Lemma 1. By definitionw = (wT [1 : kr]0
T
kv
)T ⊕ (0Tkr

wT [kr + 1 : k])T , so

φ(w) = φ((wT [1 : kr],0
T
kv
)T ⊕ (0Tkr

,wT [kr + 1 : k])T )

= [φ((wT [1 : kr],0
T
kv
)T ) + φ((0Tkr

,wT [kr + 1 : k])T )] mod Λ(n)
s

= [φr(w) + φv(w)] mod Λ(n)
s ,

where the last equality follows from the definition ofF(n)
r andF

(n)
v ; zeroing out the unwanted portions ofw is

equivalent to discarding the associated columns ofF(n).

Vr

Vs

Vv

Vs

Fig. 4. Lattice subspace decomposition. Each lattice codeword in C(n) is the sum of a point inC(n)
r (left) and a point inC(n)

v (right). The
shaded regionVs defines the codebook, whereas the strip-shaped Voronoi regionsVr andVv define the decoding regions of the resolution
and vestigial codebooks, respectively.
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The codewordφ(w) ∈ C(n) is therefore the sum of two linearly independent lattice points: φr(w), which we

call theresolution information and which encodes the firstkr log2 p bits of the message, andφv(w), which we call

the vestigial information and which encodes the remainingkv log2 p bits. Furthermore, the decomposition is linear

in the sense that the decomposition of sums of lattice pointsis the same as the sum of decompositions.

Lemma 3: Let w1 andw2 be messages inFk
p, and letw = w1 ⊕w2. Then

φr(w) = [φr(w1) + φr(w2)] mod Λ(n)
s , (43)

and

φv(w) = [φv(w1) + φv(w2)] mod Λ(n)
s . (44)

Proof: This follows directly from the fact thatφ is an isomorphism:

φr(w) = φr(w1 ⊕w2) (45)

= φ(w1[1 : kr]⊕w2[1 : kr]) (46)

= [φ(w1[1 : kr]) + φ(w2[1 : kr])] mod Λ(n)
s (47)

= [φr(w1) + φr(w2)] mod Λ(n)
s . (48)

A similar argument holds forφv.

The preceding decomposition permits a lattice-coding instantiation of block Markov encoding. After the trans-

mission of a lattice codeword, cooperating users can transmit the lower-rate resolution component. The intended

receiver first decodes the resolution component and subtracts it from the received signal; the receiver then needs

only to decode the lower-rate vestigial component. Although in this paper we apply the technique to compute-

and-forward, it can be applied to a variety of relay systems.For example, in a related work [39] an innovative

lattice list decoding technique is proposed to show that lattice codes can achievethe capacity of the physically

degraded three-terminal relay channel. Using our technique, it is straightforward to construct an alternative strategy

that establishes the same result.

V. COOPERATIVE COMPUTATION: ENCODING STRATEGY AND ACHIEVABLE RATE

In this section we describe our cooperative computation strategy and derive its achievable rate, which amounts

to a proof of Theorem 3. Our approach is based on the lattice decomposition described in Section IV-B. Messages

are communicated in two stages. In the first stage, each transmitter sends the lattice codeword corresponding to

its message; this codeword is decoded by a subset of the othertransmitters. In the second stage, transmitters

cooperatively transmit the resolution component of the linear combinations desired at the receivers. Similarly,

receivers decode in two stages. They first decode the resolution component, which they then subtract away from

the received signal. Then they need only to decode the vestigial component, which is easier to decode due to its

lower rate.

Proof of Theorem 3: Our proof goes in three parts: a description of the encoding scheme, a description of

the decoding scheme, and an analysis of the probability of error.

Encoding: Each transmitter employs identical lattice codebooks4 C having rateRc. The codebookC decomposes

into resolution and vestigial codebooksCr and Cv which have respective ratesRr andRv. As noted in Section

IV-B, we haveRc = Rr +Rv.

4Technically we have a sequence of lattice codebooks indexedby n. In the interest of notational simplicity we drop the superscripts.
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Transmitters encode theirT messages overT + 1 blocks as depicted in Table I. At blockt, each transmitterl

has a messagewl(t), which it encodes by mapping it to the corresponding codeword in C:

λl(t) = φ(wl(t)). (49)

By Lemma 2, each lattice codeword can be decomposed by projecting onto the resolution and vestigial codebooks:

λr,l(t) = φr(wl(t))

λv,l(t) = φv(wl(t)).

When transmitting the lattice codeword, each userdithers the lattice point over the shaping region; this ensures

that the codebook looks approximately Gaussian as well as makes the codewords of each transmitter statistically

independent5. We therefore define the effective codeword

cl(t) = [λl(t) + tl(t)] mod Λs, (50)

wheretl(t) is a dither drawn randomly and uniformly overVs, independent for each1 ≤ l ≤ L and1 ≤ t ≤ T .

Each receiverm intends to recover the finite-field linear combinationfm(t) =
⊕L

l=1 almwm(t), which corresponds

to the lattice point

λm(t) = φ(f(t)) =

[

L
∑

l=1

almλl(t)

]

mod Λs. (51)

As with the individual codewords, we can decomposeλm(t) into resolution and vestigial components:

λr,m(t) = φr(fm(t)) (52)

λv,m(t) = φv(fm(t)). (53)

The transmitters inB will cooperatively transmitλr,m(t) to each receiver, again dithering the lattice point overVs.

The effective codeword is

cr,m = [λr,m(t) + sm(t)] mod Λs, (54)

where, similar to before,sm(t) is a dither drawn uniformly overVs and independent for each1 ≤ m ≤ M , and

1 ≤ t ≤ T .

At block t = 1, each transmitter simply sends its own lattice codeword:

xl(1) =
√
Pvl0cl(t). (55)

For subsequent blocks2 ≤ t ≤ T , each transmitter inB sends a combination of “fresh” information corresponding

to its own messagewl(t) and resolution information corresponding to the messages sent in the previous time slot.

Suppose that each transmitter inB has successfully decodedλl′(t− 1) for eachl′ 6= l. Then each transmitter inB
can construct everyλm(t) and, by extension, everyλr,m(t). Every transmitter sends its own lattice codeword, and

transmitters inB send the resolution components for each receiver:

xl(t) =







√
P
(

vl0cl(t) +
∑M

m=1 vlmcr,m(t− 1)
)

, for l ∈ B
√
Pvl0cl(t), otherwise

. (56)

Finally, at blockt = T + 1 there is no new fresh information for the transmitters to send. Each transmitter inB
5For further discussion of the need for dithers, see [54]
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sends only the resolution information corresponding to block T , and the other transmitters send nothing:

xl(T + 1) =







√
P
∑M

m=1 vlmcr,b(l)m(T ), for l ∈ B
0 otherwise

. (57)

TABLE I
SUPERPOSITIONBLOCK MARKOV ENCODING FORTHEOREM 3

t = 1 t = 2 · · · t = T + 1

x1(t), 1 ∈ B v10c1(1) v10c1(2) +
∑M

m=1 v1mcr,m(1) · · · ∑M
m=1 v1mcr,m(T )

x2(t), 2 /∈ B v20c2(1) v20c2(2) · · · 0
...

...
...

...
...

xL(t), L ∈ B vL0cL(1) vL0cL(2) +
∑M

m=1 vLmcr,m(1) · · · ∑M
m=1 vLmcr,m(T )

Note that, sinceΛs has normalized second moment equal to unity, and since the dithers are independently and

uniformly drawn fromVs, we have with high probability

1

n
‖xl(t)‖2 → P

M
∑

m=0

v2lm ≤ P. (58)

Thus the transmit signals obey the average power constraint.

Decoding: Decoding proceeds in three stages. Each transmitter decodes the messages of every other transmitter,

the receivers decode the resolution information send cooperatively by the clusters, and finally the receivers decode

the vestigial information. Having decoded both componentsof the desired lattice point, the receiver can recover

the desired linear function.

At block t = 1 each transmitter receives the superposition of all the other transmitters’ signals, scaled by channel

gains and corrupted by noise:

zl(1) =
√
P
∑

l′ 6=l

vl′0gl′lcl′(1) + nl(t). (59)

Each transmitter forms estimateŝwl′l(1) for every l′ 6= l via typical sequence decoding: if there is a unique

collection of messages jointly typical with the received signal, that collection is taken as the estimate; otherwise

an error is declared. Note that in this case the transmittersdo not employ lattice decoding.

For blocks2 ≤ t ≤ T the situation is similar. Each transmitter receives the superposition of other transmitters’

signals, but in this case the received signals also contain resolution information:

zl(t) =
√
P





∑

l′ 6=l

gl′lvl′0cl′(t) +
∑

l′∈B

M
∑

m=1

gl′lvl′mcr,m(t− 1)



+ nl(t). (60)

Supposing that each transmitter has successfully decoded the messages from blockt− 1, it knows the resolution

information. It therefore can subtract this component out,resulting in the effective signal

z′l(t) = zl(t)−
√
P
∑

l′∈B

M
∑

m=1

gl′lvl′mcr,m(t− 1) (61)

=
√
P
∑

l′ 6=l

gl′lvl′0cl′(t) + nl(t) (62)



18

Now, just as fort = 1, each transmitter can form estimatesŵl′l(t) of the other transmitters’ messages via typical

sequence decoding.

Next we turn to the receivers. To decode the functionfm(t), each receiver first decodes the resolution information

from the signal received in blockt+ 1:

ym(t+ 1) =
√
P

L
∑

l=1

hlmvl0cl(t+ 1) +
√
P

M
∑

m′ 6=m

∑

l∈B

hlmvlm′cl,m′(t)+

√
P
∑

l∈B

hlmvlmcr,m(t) + nm(t+ 1). (63)

Each receiver decodes the resolution information treatingthe interference—in this case the fresh information from

each transmitter and the resolution information intended for other receivers—as noise. Each estimateλ̂r,m(t) is

formed via lattice decoding as outlined in [29]. The receivers first apply MMSE scaling to the incoming signal and

subtract off the dither. Let

n′
m(t+ 1) =

√
P

L
∑

l=1

hlmvl0cl(t+ 1) +
√
P

M
∑

m′ 6=m

∑

l∈B

hlmvlm′cl,m′(t) + nm(t+ 1) (64)

be the sum of the interference and noise at receiverm. Then the scaled signal is

y′
m(t+ 1) = [γm(t+ 1)ym(t+ 1)− sm(t+ 1)] mod Λs (65)

=

[

γm(t+ 1)
√
P
∑

l∈B

hlmvlmcr,m(t) + γn′
m(t+ 1)− sm(t+ 1)

]

mod Λs (66)

=

[

λr,m(t+ 1) +

(

γm(t+ 1)
√
P
∑

l∈B

hlmvlm − 1

)

cr,m(t) + γm(t+ 1)n′
m(t+ 1)

]

mod Λs (67)

=
[

λr,m(t+ 1) + n′′
m(t+ 1)

]

mod Λs, (68)

where

n′′
m(t+ 1) =

(

γm(t+ 1)
√
P
∑

l∈B

hlmvlm − 1

)

cr,m(t) + γm(t+ 1)n′
m(t+ 1) (69)

is the effective noise, including thermal noise, interference, and self-noise associated with MMSE scaling. Then,

the estimate is formed by lattice quantization:

λ̂r,m(t) = QΛr
(y′

m(t+ 1)). (70)

After decoding the resolution information, each receiver turns toym(t) to decode the vestigial componentλv,m(t).

First, we note that, supposing that each receiver has successfully decoded the resolution information from the

previous block, it can subtract that portion of the interference, yielding:

y′
m(t) = ym(t)−

√
P
∑

l∈B

hlmvlmcr,m(t− 1) (71)

=
√
P

L
∑

l=1

hlmvl0cl(t) +
√
P
∑

m′ 6=m

∑

l∈B

hlmvlm′cr,m′(t− 1) + nm(t). (72)

Furthermore, supposing that the resolution information was decoded successfully, each receiver can subtractλr,m(t)

from the received signal modulo the shaping lattice. Finally, in preparation for lattice decoding, we apply MMSE
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scaling to the signal and subtract the dithers as in [8], [29]. Let

n′
m(t) =

√
P
∑

m′ 6=m

∑

l∈B

hlmvlm′cr,m′(t− 1) + nm(t) (73)

be the sum of the interference and noise inym(t). The resulting signal is then

y′′
m(t) =

[

αm(t)y′
m(t)− λv,m(t)−

L
∑

l=1

almtl(t)

]

mod Λs (74)

=

[

L
∑

l=1

(αm(t)
√
Phlmvl0cl(t)− almtl(t))− λr,m(t) + αm(t)n′

m(t)

]

mod Λs (75)

=

[

L
∑

l=1

alm(cl(t)− tl(t))− λr,m(t) +

L
∑

l=1

(αm(t)
√
Phlmvlm − alm)cl(t) + αm(t)n′

m(t)

]

mod Λs (76)

=

[

λm(t)− λr,m(t) +

L
∑

l=1

(αm(t)
√
Phlmvlm − alm)cl(t) + αm(t)n′

m(t)

]

mod Λs (77)

=

[

λv,m(t) +

L
∑

l=1

(αm(t)
√
Phlmvlm − alm)cl(t) + αm(t)n′

m(t)

]

mod Λs (78)

=
[

λv,m(t) + n′′
m(t)

]

mod Λs, (79)

where

n′′(t) =

L
∑

l=1

(αm(t)
√
Phlmvlm − alm)cl(t) + αm(t)n′

m(t) (80)

is the effective noise, including thermal noise, interference from other transmitters and clusters, and self-noise

associated with MMSE scaling. Each receiver decodes the estimate λ̂v,m(t) by quantizing to the nearest point in

Λv:

λ̂v,m(t) = QΛv
(y′′

m(t)). (81)

Finally, having recovered both the resolution and vestigial components, each receiver constructs its estimate of

the desired lattice codeword, from which it can recover the desired finite-field message:

f̂m(t) = φ−1(λ̂m(t)) = φ−1
([

λ̂r,m(t) + λ̂v,m(t)
]

mod Λs

)

. (82)

Probability of error: An error occurs when (a) any of the transmitters inB fails to decode the other transmitters’

messages, (b) any of the receivers fails to decode correctlythe incoming resolution information, or (c) when any

of the receivers fails to decode correctly the vestigial information associated with the desired lattice point. By the

union bound, the probability of error follows

Pe ≤
T
∑

t=1

M
∑

m=1

Pr{f̂m(t) 6= fm(t)} (83)

≤
T
∑

t=1

∑

l∈B

∑

l′ 6=l

Pr{ŵl′l(t) 6= wl′(t)}+
T
∑

t=1

M
∑

m=1

Pr{λ̂r,m(t) 6= λr,m(t)}+
T
∑

t=1

M
∑

m=1

Pr{λ̂v,m(t) 6= λv,m(t)}.

(84)

Here we show that as long as the rates satisfy (14), each errorterm in (84) goes to zero exponentially. We start

with the first summation. Each transmitter decodes the messages within its cluster via typical sequence decoding
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while treating all out-of-cluster interference as noise. By Lemma 6 the joint mutual information between the transmit

codewordscl(t) and the receive signalz′(t) approaches that of a Gaussian multiple-access channel withchannel

coefficientsgl′lvl′0, transmit powerP , and unit noise power. Therefore, so long as

R < min
l∈B

Cmac(gl[1 : l − 1, l + 1 : L] ◦ v0[1 : l − 1, l + 1 : L], P, 1), (85)

thenPr{ŵl′l(t) 6= wl′(t)} → 0 exponentially for eachl and l′ 6= l.

Next we turn to the resolution information. Here each receiver decodesλr,m(t) via lattice decoding onym(t+1).

In [29] it is shown that lattice decoding is sufficient to achieve the capacity of the Gaussian channel. From (64)

we compute that the the interference power inn′
m(t+ 1) is

Im,r =
1

n
E[
∥

∥n′
m(t+ 1)

∥

∥

2
] = P



‖hm ◦ v0‖2 +
∑

m′ 6=m,0

|hT
mv′

m|2


 . (86)

Similarly, we compute that the power of the resolution information inym(t+1) is P |hTvm|2. Putting these together,

we find that if

Rr < min
1≤m≤M

1

2
log2

(

1 +
P |hT

mvm|2
1 + P (‖hm ◦ v0‖2 +

∑

m′ 6=m |hT
mv′

m|2)

)

, (87)

thenPr{λ̂r,m(t) 6= λr,m(t)} → 0 exponentially for eachm.

Finally, we look at the vestigial information. Here each receiver decodesλv,m(t) by lattice decoding the sum

of multiple incoming lattice points, so we borrow the main result from [8]. We compute the interference power in

(73) to be

Im,v = P
∑

m′ 6=m

|hT
mvm′ |2, (88)

and the effective channel gains in (79) arehm ◦ v0. Applying these to the rate in (8), we find that if

Rv <

[

1

2
log2(‖Phm ◦ v0‖2 + Im,v)−

1

2
log2

(

‖am‖2 (1 + Im,v) + P
(

‖am‖2 ‖hm ◦ v0‖2 − |aTm(hm ◦ v0)|2
))

]+

,

(89)

thenPr{λ̂v,m(t) 6= λv,m(t)} → 0 exponentially.

Recall thatRc = Rr +Rv andR = TRc

T+1 . ChoosingT arbitrarily large, we obtain the desired result.

VI. ESTABLISHING THE DIVERSITY-MULTIPLEXING TRADEOFF

In this section we detail the signaling strategies that establish our diversity-multiplexing claims. We begin with

the non-cooperative case. Our approach is to choose the steering vectorv0 such that the effective channel vector is

constant and has unit gain. It turns out that this approach fails approximately as often as does a single SISO link.

Proof of Theorem 4: First we prove the upper bound. For the non-cooperative case, it is shown in [8,

Theorem 13] that the computation capacity is upper-boundedby

C(H, P ) ≤ max
A∈A

min
l,m

alm 6=0

1

2
log2(1 + Ph2lm) (90)

≤ 1

2
log2(1 + Ph2lm), (91)

where l and m can be chosen arbitrarily such thatalm 6= 0. Then the computation capacity is bounded by the

Shannon capacity of a single SISO link, which is proven in [48] to have diversity-multiplexing tradeoffd∗(r) = 1−r.
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The compute-and-forward network therefore has DMT boundedby

d∗(r) ≤ d+nc(r) = 1− r. (92)

To prove the lower bound forM = 1, we invoke the non-cooperative rate of Corollary 2, choosing v0 to align

with the channels. For multiplexing gainr, we choosea = 1 andv2l = P r−1/h2l , resulting in the achievable rate

R(H, P ) =
1

2
log2(1 + LP r)− 1

2
log2(L) (93)

=
1

2
log2

(

1 + LP r

L

)

(94)

≥ 1

2
log2(P

r). (95)

Outage occurs only when we cannot setvl to the specified value. Since we are constrained to havev2l ≤ 1, this

occurs whenh2l ≤ P r−1. The probability of outage is therefore

Po ≤ Pr

{

L
⋃

l=1

hl ≤ P r−1

}

≤
L
∑

l=1

Pr
{

h2l ≤ P r−1
}

≈ LP r−1. (96)

Therefore, our scheme gives a diversity order at multiplexing gainr of

d−nc(r) = lim
P→∞

− log(Po)

log(P )
(97)

≥ lim
P→∞

(1− r) log(P )− log(L)

log(P )
(98)

= 1− r. (99)

Since this matches the upper bound, the DMT is established.

Next we prove the results for the cooperative network. Firstwe prove the upper bound.

Proof of Theorem 5: We invoke the MISO outer bound on the computation capacity from Theorem 1. The

symmetric-rate capacity of the MISO broadcast channel is trivially upper bounded by the capacity of the single-user

MISO link between the source and any destination. Thus the DMT is upper-bounded by that of a singleL-antenna

MISO link, which is shown in [48] to bed∗(r) = L(1−r). Thus the DMT of the cooperative compute-and-forward

network is bounded by

d∗(r) ≤ d+(r) = L(1− r). (100)

Next we prove Theorem 5, for which we need first to establish anachievable rate using random codes and

time-sharing.

Lemma 4: Let B ⊂ {1, · · · , L}. In the cooperative compute-and-forward network withM = 1 receiver, the

following computation rate is achievable:

Rrandom(H,G, P ) = min

{

min
l∈B

1

2
Cmac(gl[1 : l − 1, l + 1 : L], P, 1),

1

4
log2(1 + P (hT

B1)
2)

}

. (101)

Proof: The encoding scheme is simple, so we only sketch the proof. Divide the transmission into two equal

time blocks. At the first block, each transmitter encodes andbroadcasts its message using a random Gaussian

codebook of powerP . The transmitters inB decode the incoming messages using typical sequence decoding. This

is nothing more than a Gaussian multiple-access channel, sodecoding is successful as long as the rate is below the

first term in (101). The multiple-access rate is cut in half due to time sharing.
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At the second block, the transmitters inB directly encode and broadcast the linear combination desired at the

receiver, again using a random Gaussian codebook of powerP .. The receiver decodes the desired function from

the signal received in the second block only. This is equivalent to a MISO channel with equal beamformer weights,

so decoding is successful as long as the rate is below the second term in (101). Again the MISO rate is cut in half

due to time sharing.

Now we are in a position to prove Theorem 6.

Proof of Theorem 6: We construct an achievable scheme based on the strategy fromLemma 4. We allowB
to vary according to the channel realizations, giving us theachievable rate

R(H,G, P ) = max
B

min

{

min
l∈B

1

2
Cmac(gl[1 : l − 1, l + 1 : L], P, 1),

1

4
log2(1 + P (hT

B1)
2)

}

(102)

≥ max
B

min

{

min
l∈B

1

2
Cmac(gl[1 : l − 1, l + 1 : L], P, 1),

1

4
log2(1 + P (‖hB‖2)

}

. (103)

Let each rate term in (103) be denoted byRB(H,G, P ). Then define the event in which a particular cooperation

modality fails:

OB =
{

RB(H,G, P ) <
r

2
log(P )

}

. (104)

Outage occurs when each cooperation modality fails simultaneously:

O =
⋂

B

OB (105)

⊂
L
⋂

l=1

O{l}. (106)

That is, we consider only the events in which a single transmitter decodes the messages. Each term in (103) has

two components, the failure of either of which results in thefailure of the cooperation modality. Therefore, define

two events:Cl, the event that transmitterl fails to decode the other transmitters’ messages, andNl, the event that,

even if transmitterl decodes successfully, the receiver fails to decode the linear function. The first event can be

expressed as

Cl =
{

1

2
Cmac(gl, P, 1) <

r

2
log(P )

}

(107)

=
⋃

L⊂{1,··· ,L}\{l}

{

1

4|L| log2

(

1 + P
∑

l′∈L

g2l′l

)

<
r

2
log(P )

}

(108)

≈
⋃

L⊂{1,··· ,L}\{l}

{

∑

l′∈L

g2l′l < P 2|L|r−1

}

(109)

⊂
⋃

L⊂{1,··· ,L}\{l}

{

⋂

l′∈L

{

g2l′l < P 2|L|r−1
}

}

. (110)

The second event can be expressed as

Nl =

{

1

4
log2

(

1 + Ph2l
)

<
r

2
log2(P )

}

(111)

≈
{

h2l < P 2r−1
}

. (112)

Since each cooperation modality involves a different set ofchannel coefficients, the failure eventsOl are independent.
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Therefore we can bound the outage probability by

Pr(O) ≤
L
∏

l=1

Pr(Cl ∪ Nl) (113)

.

L
∏

l=1

(

∑

L

∏

l′∈L

Pr(g2l′l < P 2|L|r−1) + Pr(h2l < P 2r−1)

)

(114)

≈





L−1
∑

|L|=1

(P 2|L|r−1)|L| + P 2r−1





L

(115)

≈
(

max
1≤|L|≤L−1

P |L|(2|L|r−1) + P 2r−1

)L

. (116)

To find the terms with the largest error exponent, we need to find the value of|L| that maximizes the quadratics in

(116). For instance, it is clear that forr = 0 the maximizer is|L| = 1. In general, since the quadratics in question

are positive, the maximizer is either|L| = 1 or |L| = L− 1. This gives us

Pr(O) .
(

max
{

P (L−1)(2(L−1)r−1), P 2r−1
}

+ P 2r−1
)L

(117)

≈
(

max
{

P (L−1)(2(L−1)r−1) , P 2r−1
})L

. (118)

Finally, plugging (118) into the definition of the DMT, we get

d∗(r) = lim
P→∞

log(Pr(O))

log(P )
(119)

≥ Lmin{1− 2r, (L− 1)(1 − 2(L− 1)r)}. (120)

Next we prove the lower bound achieved by cooperative lattice coding. Tuningv0 to the channel vectorh

makes it too difficult for transmitters to decode others’ messages, so we takev0 = P−x, wherex depends on the

multiplexing gain. Increasingv0 decreases the error probability at the transmitters, but itincreases the Cauchy-

Schwarz penalty and therefore the error probability at the receiver. Forr = 0, choosingx = 1/2 is optimal, which

gives us a diversity gain of approximately1/2 for each transmitter.

Proof of Theorem 7: The proof follows a similar outline to that of Theorem 6, except that we use the rates

proved in Theorem 3 using lattice codes. Again we allow the subset of cooperating usersB to vary according to

the channel realizations, and we choosea = 1, resulting in the following achievable rate

R(H,G, P ) = max
B

min

{

min
l∈B

Cmac(gl[1 : l − 1, l + 1 : L] ◦ v0[1 : l − 1, l + 1 : L], P, 1),

[

1

2
log2(1 + P (‖h ◦ v0‖2 + |hTv1|2))−

1

2
log2

(

L+ P
(

L ‖h ◦ v0‖2 − |1T (h ◦ v0)|2
))

]+}

. (121)

Similar to before, we let each term in (121) be denoted byRB(H,G, P ) and define the events corresponding to

the failure of each cooperation modality:

OB =
{

RB(H,G, P ) <
r

2
log(P )

}

. (122)
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Outage occurs when each cooperation modality fails simultaneously:

O =
⋂

B

OB (123)

⊂ O{1,...,L} ∩
L
⋂

l=1

O{l} ∩ O∅. (124)

Here we consider the events in whichall transmitters cooperate, in whichL− 2 individual transmitters cooperate,

and in which no one cooperates. WhenB = ∅, we use the strategy outlined in the proof of Theorem 4, choosing

v2l = P r−1/h2l . Following that line of analysis, the non-cooperative modality fails only when every channel gain

is too low:

O∅ ⊂
{

L
⋃

l=1

hl < P r−1

}

. (125)

For B 6= ∅, we choosevl0 = P−xB/2 for every l, andvl1 = 1 − P−xB/2 for every l ∈ B; otherwisev1l = 0.

Using this, we can bound the rate as follows:

RB(H,G, P ) ≥ min

{

min
l∈B

Cmac(gl[1 : l − 1, l + 1 : L], P 1−xB , 1),

[

1

2
log2

(

1 + P
∑

l∈B

|hl|2
)

− 1

2
log2

(

L+ P 1−xB

(

L ‖h‖2 − ‖h‖2
))

]+}

. (126)

For largeP , we get

RB(H,G, P ) ≥ min

{

min
l∈B

Cmac(gl[1 : l − 1, l + 1 : L], P 1−xB , 1),
1

2
log2

(

P xB
∑

l∈B |hl|2
(L− 1) ‖h‖2

)}

. (127)

As before we define events corresponding to the failure of either term in (127):CB, the event that the transmitters

in B fail to decode the other transmitters’ messages, andNB, the event that, even if the transmitters decode each

other properly, the receiver fails to decode its linear function at the required rate. The first event can be expressed

as

CB =
⋃

l∈B

{

Cmac(gl[1 : l − 1, l + 1 : L], P 1−xB , 1) <
r

2
log(P )

}

(128)

=
⋃

l∈B

⋃

L⊂{1,··· ,L}\{l}

{

1

2|L| log2

(

1 + P 1−xB

∑

l′∈L

g2l′l

)

<
r

2
log(P )

}

(129)

≈
⋃

l∈B

⋃

L⊂{1,··· ,L}\{l}

{

∑

l′∈L

g2l′l < P |L|r+xB−1

}

(130)

⊂
⋃

l∈B

⋃

L⊂{1,··· ,L}\{l}

{

⋂

l′∈L

{

g2l′l < P |L|r+xB−1
}

}

. (131)

For B = {1, · · · , L}, the second event can be expressed as

N{1,··· ,L} =

{

1

2
log2

(

P xB ‖h‖2

(L− 1) ‖h‖2

)

<
r

2
log2(P )

}

(132)

= {P x{1,··· ,L} < (L− 1)P r} . (133)

Based on (133), we choosex{1,··· ,L} = r+ǫ for anyǫ > 0. As P → ∞, this forcesN{1,··· ,L} → ∅ deterministically.
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For B = {l}, we can express the second event as

N{l} =

{

1

2
log2

(

P x{l}h2l
(L− 1) ‖h‖2

)

<
r

2
log2(P )

}

(134)

=

{

h2l
(L− 1) ‖h‖2

< P r−x{l}

}

(135)

⊂
{

h2l < P r−x{l}−ǫ
}

∪
{

‖h‖2 ≥ P ǫ

L− 1

}

(136)

⊂
⋂

l∈B

{

h2l < P r−x{l}−ǫ
}

∪
{

‖h‖2 ≥ P ǫ

L− 1

}

. (137)

Combining the above with (124), we get

O ⊂









⋃

l∈{1,··· ,L}

⋃

L⊂{1,··· ,L}\{l}

⋂

l′∈L

{

g2l′l < P |L|r+r+ǫ−1
}







∩

⋂

l∈{1,··· ,L}









⋃

L⊂{1,··· ,L}\{l}

⋂

l′∈L

{

g2l′l < P |L|r+x{l}−1
}



 ∪
({

h2l < P r−x{l}−ǫ
})



∩

{

L
⋃

l=1

h2l < P r−1

}

∪
{

‖h‖2 ≥ P ǫ

L− 1

}

. (138)

Equation (138) contains too many terms to enumerate in full.Since we are concerned with asymptotic behavior,

we need only look at the term with the highest error exponent.This term contains one channel failure inC{1,··· ,L},
L−2 failures inC{l}∩N{l}, and one failure inN∅. The final error event, in which‖h‖2 is too large, has negligible

contribution to the error probability. Combining these, weget

Pr(O) . Pr





⋃

L⊂{1,··· ,L}\{1}

⋂

l′∈L

{

g2l′1 < P |L|r+r+ǫ−1
}



Pr
({

h22 < P r−1
})

×

L
∏

l=3

Pr





⋃

L⊂{1,··· ,L}\{l}

⋂

l′∈L

{

g2l′l < P |L|r+x{l}−1
}

∪
{

|hl|2 < P r−x{l}−ǫ
}



 . (139)

Since each term in (139) is independent, we can evaluate the probabilities separately, yielding

Pr(O) .





∑

L⊂{1,··· ,L}\{1}

(P |L|r+x+ǫ−1)|L|



 (P r−1)





∑

L⊂{1,··· ,L}\{3}

(P |L|r−x−1)|L| + P r−x−ǫ





L−2

(140)

= P r−1





∑

L⊂{1,··· ,L}\{1}

(P |L|(|L|r+x+ǫ−1)









∑

L⊂{1,··· ,L}\{3}

(P |L|(|L|r−x−1)) + P r−x−ǫ





L−2

, (141)

where we have chosenx{l} = x for every l. Similar to the proof Theorem 6, the maximizer of the quadratics in

(141) is either|L| = 1 or |L| = L− 1. This gives us

Pr(O) . P r−1
(

max
{

P 2r−1+ǫ, P (1−L)(1−rL)+(L−1)ǫ
})(

max
x

min
{

P r+x−1, P (1−L)(1−(L−1)r−x), P r−x−ǫ
})L−2

.

(142)

Finally, plugging (142) into the definition of the DMT, taking the supremum over allǫ > 0, and taking the maximum
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over all x yields

d−c (r) = lim
P→∞

log(Pr(O))

log(P )
(143)

≥ 1− r +min{[1 − 2r]+, [(L− 1)(1 − rL)]+}+
max
0≤x≤1

(L− 2)min{[1− x− r]+, [(L− 1)(1 − (L− 1)r − x)]+, [x− r]+}. (144)

Although their proofs are similar, the strategies Theorems6 and 7 achieve very different diversity-multiplexing

tradeoffs. With random coding, transmitters decode and cooperatively transmit at separate blocks; such time division

enables full diversity, but it leads to poor multiplexing performance. With lattice coding, on the other hand, we need

to balance transmit power in order to ameliorate the effectsof signal misalignment; the balance costs us diversity

gain, but the multiplexing performance is improved. The overall message is that transmit cooperation improves

diversity and multiplexing for compute-and-forward, and as we saw in Figure 2 the two approaches combined

achieve the corner points of the DMT region.

VII. N UMERICAL EXAMPLES

In this section we examine a few example scenarios in which todemonstrate the benefits of our approach.

Example 1: The first example, depicted in Figure 5, comprisesL = 2 transmitters and a single receiver. The

channels are symmetric, with the forward coefficients constanth1 = h2 = 1 and the inter-transmitter coefficients a

variableg12 = g21 = g, which we vary such that the gaing2 ranges between−10dB and30dB. We set the transmit

SNR atP = 10dB. Since the channel gains are symmetric, either both transmitters can decode the other’s message

or neither of them can; therefore we choose eitherB = {1, 2} or B = ∅ for cooperative computation. Similarly,

by symmetry it is easy to see that the optimal choice for the linear function isa = (1, 1)T and that the optimal

steering vectorsv0 andv1 are constant. We find the optimal tradeoff betweenv0 andv1 numerically.

gg

1

1

Fig. 5. Example 1: A two-by-one computation network with symmetric channel gains.

In Figure 6 we plot the achievable rate of our cooperative scheme against the upper bound of Theorem 2,

using the Nazer-Gastpar rate of (8) as a baseline. The trendsare easy to appreciate. When the channels between

transmitters are weak, decoding each other’s messages is too difficult, and the cooperative rate collapses to (8). As

the inter-transmitter gains become stronger it becomes easier for the transmitters to decode, and cooperation can

improve the computation rate and eventually approaches theupper bound. We note a “dimple” in the cooperative

rate asg2 becomes large. For sufficiently largeg2, the optimal strategy is to turn the steering vectorv0 down far

enough that the Nazer-Gastpar component of the cooperativerate is zero, meaning that only the jointly-encoded

resolution information carries information to the receiver. At this value ofg2 we see the dimple, after which the

rate quickly converges on the upper bound.

Example 2: Next we examine a scenario in which channel gains are chosen randomly, as depicted in Figure

7. We place a single receiver at the origin and placeL = 3 transmitters randomly and uniformly on a segment
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Fig. 6. Achievable rates as a function of inter-transmitterchannel gains for Example 1.

of the circle having specified arclength. From the geometricconfiguration of the network, we compute channel

magnitudes according to a path-loss model:

arclength= π arclength= π/2

Fig. 7. Example 2: Three users are placed along a segment of the unit circle, while the receiver is placed at the origin.

gij =

√

1

d(i, j)α
, hi =

√

1

d(i, 0)α
,

whered(i, j) is the Euclidean distance between usersi andj and. We chooseP = 10dB and a path-loss exponent

of α = 4.

For each realization we calculate the cooperative computation rate. Since the gains from transmitters to receiver

are equal,a = (1, 1, 1)T is the optimal choice. The steering vectors and the clustersare optimized numerically.

We run 500 simulations each for arclengths varying from 0 toπ, and plot the average computation rates in Figure

8. Again the trends are easy to appreciate. Cooperation offers the greatest improvement when transmitters are

close together. Even as we spread transmitters further apart, on average enough transmitters can cooperate that our

approach garners a noticeable improvement.

Example 3: In the next example we examine the variation in cooperative computation rate with respect to the

channel gain between transmitters and receivers. As depicted in Figure 9, we again haveL = 2 andM = 1, but

now we set every channel gain to unity except forh12. Since the channels between transmitters and receiver are not

symmetric, we cannot takea = (1, 1)T or v0 andv1 to be constant. Instead, we iterate manually through possible

choices ofa and numerically optimize over the setB of cooperating transmitters and the steering vectorsv0 and
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Fig. 8. Average computation rate vs. angle between transmitters for Example 2.

v1.

11

1

h21

Fig. 9. Example 3: A two-by-one computation network with asymmetric channel gains.

In Figure 10 we plot the cooperative rate alongside (8) for a variety of transmit signal-to-noise ratiosP . We make

a few observations. First, the non-cooperative rate is low for h21 near to zero. Since we require the function to

contain elements from both transmitters’ messages, it becomes difficult for the receiver to decode such a function.

In the cooperative case, however, the rates do not fall, since transmitter 1 can decodew2 and transmit the desired

function to the receiver. This result hints at the diversitygains inherent to the cooperative approach; even when

one link fails, successful computation is possible.

Furthermore, in the cooperative case we get the full multiplexing gain as the SNR becomes large. In the non-

cooperative case we observe “peaks”; these correspond to rational channel gains with low denominator. The further

h21 is from a low-denominator rational, the harder it is to alignthe function with the channels and the higher

the Cauchy-Schwarz penalty in (8). However, we can always choosev0 such that the equivalent channel vector is

rational, allowing us to completely eliminate the Cauchy-Schwarz penalty. We note that this is not explicitly due

to the cooperative nature of our approach; as shown in 4 non-cooperative transmitters can get the full multiplexing

gain using lattice codes. However, our cooperative approach does permit the transmitters to use the remaining power

to secure rate and diversity gains.

Example 4: Finally, we examine the system depicted in Figure 11. Here wehaveL = M = 2, and again we set

all channel gains to unity except forh21. Again asymmetry prevents us from choosinga and the steering vectors

easily. We iterate manually over the possible choices fora, choose zero-forcing beamformers forv1 andv2, and

numerically optimize overv0. In order for zero-forcing to succeed, we chooseB = {1, 2}.

In Figure 12 we plot the cooperative rate alongside (8), again for a variety of signal-to-noise ratios. Again we

make a few observations. In contrast to the previous scenario, here the rate drops whenh12 ≈ 1; this is because

the channel matrix becomes increasingly ill-conditioned.Similar to before, in the cooperative case the rate remains
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Fig. 10. Achievable rates as a function ofh21 andP for Example 3.

non-zero, but here it occurs because the transmitters can cooperatively send a full-rank set of equations even though

the channel matrix is nearly singular. However, in this example cooperation does not obtain the full multiplexing

gain. The freedom to choosev0 allows us to mitigate the peakiness of the achievable rate, but we cannot eliminate

the Cauchy-Schwarz penalty at both receivers simultaneously. Even for high SNR, however, wedo get considerable

robustness to channel variation.

VIII. C ONCLUSION

We have studied the impact of user cooperation on compute-and-forward. Constructing a lattice-coding version of

block Markov encoding, we presented a strategy that introduces a “decode-and-forward” element into computation
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Fig. 11. Example 4: A two-by-two computation network with asymmetric channel gains.

coding. Transmitters decode each other’s messages, enabling them to transmit resolution information cooperatively to

the receivers. Our strategy achieves higher computation rates than previous approaches, since transmitters can jointly

encode part of their messages, and coherent signals benefit from a beamforming gain. Additionally, cooperation

enables an improvement in the diversity-multiplexing tradeoff, achieving full diversity when there is a single receiver.

In the case of multiple receivers, however, we have not established an achievable diversity-multiplexing tradeoff.

The difficulty of aligning lattice codewords at multiple receivers suggests that lattice coding is insufficient for the

task. A promising approach may be to introduce a cooperativeelement into the signal-alignment strategy of [12].

Since this approach achieves the full multiplexing gain formultiple receivers, we expect to be able to obtain a

non-trivial characterization of the DMT regardless of the number of receivers.

Finally, we note that our techniques can be applied to any situation in which one needs to merge lattice codes

with decode-and-forward style cooperation. Our block Markov approach is rather general; as mentioned earlier, it

can be used to achieve the capacity of the physically degraded relay channel or to achieve the decode-and-forward

rates of the cooperative multiple-access channel. We therefore expect our techniques to be useful for developing

new strategies and establishing new results in areas where lattice codes and cooperation are applied, such as

physical-layer security [55]–[59] and interference channels [60]–[62].

APPENDIX A

PROOFS OFUPPERBOUNDS

Our first task is to prove Theorem 1, for which we need a quick lemma.

Lemma 5: Let w1, · · · ,wL ∈ F
k
p be independently and uniformly distributed messages. Then, the functions

f1, · · · , fM are also independent and uniformly distributed acrossF
k
p.

Proof: Since the finite-field linear combinations infl are taken element-wise, it is sufficient to show the

result for an arbitrary element of both messages and functions. Therefore, letw = (w11, · · · , wL1)
T and f =

(f11, · · · , fM1)
T = Aw. We need to show that the elements off are independent and uniformly distributed.

Sincew is uniformly distributed overFL
p , its probability mass function is

p(w) = p−L. (145)

The conditional pmf off is

p(f |w) = δ(f −Aw), (146)
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Fig. 12. Achievable rates as a function ofh21 andP for Example 4.

whereδ(·) is the Kronecker delta function. Next we compute the marginal pmf for f :

p(f) =
∑

w∈FL
p

p(f |w)p(w) (147)

= p−L
∑

w∈FL
p

δ(f −Aw) (148)

= p−L
∣

∣ {w|Aw = f}
∣

∣ (149)

= p−LpL−M = p−M , (150)
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where (149) follows becauseA is full rank. Since the pmfp(f) does not depend onf , the elements are independent

and uniformly distributed.

With Lemma 5, it is straightforward to prove Theorem 1.

Proof of Theorem 1: Suppose that a genie provides the messageswl(t) to each of the transmitters. Then the

transmitters each can compute the functionsfm(t). By Lemma 5 these functions are independent and uniformly

distributed, the scenario is equivalent to anL-transmitter antenna havingM independent messages to send toM

users. In [13] the capacity region is shown to be (10). Since we define the computation capacity in terms of

achievablesymmetric rate, it cannot exceed the symmetric-rate MISO capacity given in (12).

Next we prove the upper bound in Theorem 2.

Proof of Theorem 2: Choose a transmitterl, and suppose that a genie supplies the messageswl′(t) to the

receivers for everyl′ 6= l. By the crypto lemma [29], eachfm(t) such thatalm 6= 0 is statistically independent of

the messageswl′(t), so the receivers remain equivocal as to the desired functions. Thus the scenario is equivalent

to a compound relay channel, with transmitterl acting as the source, the transmittersl′ acting as relays, and each

receiverm such thatalm 6= 0 acting as destinations all needing the messageswl(t). The capacity of the compound

relay channel can be bounded using cut-set arguments. For any cut S ∈ Sl, the capacity of the compound relay

channel, and thus the computation capacity of the cooperative compute-and-forward network, is bounded by

C(H,G, P ) ≤ max
p(x)

min
m,alm 6=0

I(xl, xS ; ym, zSC |xSC ) (151)

≤ min
m,alm 6=0

max
p(x)

I(xl, xS ; ym, zSC |xSC ). (152)

Taking the minimum over all transmitters and all cutsS, we obtain the result.

APPENDIX B

ENTROPY OF DITHERED LATTICES OVER THE MULTIPLE-ACCESS CHANNEL

Here we prove that the mutual information between dithered lattice codewords and any receiver approaches that

of a Gaussian multiple-access channel.

Lemma 6: Let

xl =
√
P [λl + tl] mod Λs (153)

be a collection of independent lattice codewords, ditheredacross the shaping lattice, for1 ≤ l ≤ L. Let

y =

L
∑

l=1

hlxl + n, (154)

be a noisy sum of the codewords, where the noisen has i.i.d. elements with varianceσ2. Then, for any set

B ∈ {1, · · · , L}, the normalized mutual information between the transmit signals and the receive signal approaches

at least that of a Gaussian multiple-access channel:

lim
n→∞

1

n
I(xB;y|xBC ) ≥ 1

2
log2

(

1 +
P
∑

l∈B h2l
σ2

)

. (155)

Whenn is Gaussian, this bound is tight.

Proof: Since y is the sum of transmitted signals, conditioning entails only subtracting away the known

component. Therefore, letting

yB =
∑

l∈B

hlxl + n, (156)
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the mutual information is

lim
n→∞

1

n
I(xB;y|xBC ) = lim

n→∞

1

n
I(xB;yB) = lim

n→∞

1

n
(h(yB)− h(n)), (157)

whereh(·) is the differential entropy. Since the Gaussian distribution maximizes the differential entropy for a given

variance, we have
1

n
h(n) ≤ 1

2
log(2πeσ2). (158)

To boundh(yB), we note that in [8, Lemma 8] it was shown that the density function fyB
is bounded by

fyB
≤ ec(n)nfy∗ , (159)

wherey∗ is an i.i.d. Gaussian vector with varianceP
∑

l∈B h2l + σ2, and c(n) is a term approaching zero from

above asn → ∞. Plugging this into the definition of differential entropy,we have, for sufficiently highn,

1

n
h(yB) ≥ − 1

n

∫

ec(n)nfy∗ log(ec(n)nfy∗) (160)

= − 1

n
ec(n)n

∫

fy∗ log(fy∗)− 1

n
ec(n)nc(n)n (161)

= ec(n)n
(

1

n
h(y∗)− c(n)

)

(162)

≥ 1

n
h(y∗)− c(n) (163)

→ 1

n
h(y∗) (164)

=
1

2
log

(

2πe

(

P
∑

l∈B

+σ2

))

, (165)

where (163) follows becauseec(n)n ≥ 1 and for sufficiently highn the term 1
nh(y

∗)− c(n) is positive. Combining

(158) and (165), we get that

lim
n→∞

1

n
I(xB;y|xBC ) ≥ 1

2
log

(

2πe

(

P
∑

l∈B

h2l + σ2

))

− 1

2
log(2πeσ2) (166)

=
1

2
log2

(

1 +
P
∑

l∈B h2l
σ2

)

. (167)

Whenn is Gaussian, it is well-known that Gaussian inputs are optimal and result in the same mutual information

as the bounds just established. In this case the bound is tight.
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