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Abstract

Auctions have been proposed as a way to provide economic incentives for primary users to

dynamically allocate unused spectrum to other users in needof it. Previously proposed schemes do

not take into account the fact that the power constraints of users might prevent them from transmitting

their bid prices to the auctioneer with high precision and that transmitted bid prices must travel through a

noisy channel. These schemes also have very high overheads which cannot be accommodated in wireless

standards. We propose auction schemes where a central clearing authority auctions spectrum to users

who bid for it, while taking into account quantization of prices, overheads in bid revelation, and noise

in the channel explicitly. Our schemes are closely related to channel output feedback problems and,

specifically, to the technique of posterior matching. We consider several scenarios where the objective

of the clearing authority is to award spectrum to the bidderswho value spectrum the most. We prove

theoretically that this objective is asymptotically attained by our scheme when the bidders are non-

strategic with constant bids. We propose separate schemes to make strategic users reveal their private

values truthfully, to auction multiple sub-channels amongstrategic users, and to track slowly time-

varying bid prices. Our simulations illustrate the optimality of our schemes for constant bid prices, and

also demonstrate the effectiveness of our tracking algorithm for slowly time-varying bids.

Keywords

Secondary spectrum markets, auctions, posterior matching

I. INTRODUCTION

The increasing interest in cognitive radio systems has led to the development of the IEEE

802.22 and IEEE 802.16h standards [2], [3]. These standardssupport some of the flexible
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and shared spectrum features of cognitive radios. Both these cognitive radio standards have

mechanisms for communication between base stations, whichcan enable sharing of unused

spectrum among unlicensed users who compete for it. In this setting, an economic incentive

might be necessary for spectrum owners to be willing to allocate their unused spectrum to other

users who are in need of it. As a way of providing this incentive to the spectrum owner, secondary

spectrum auctions have been proposed for dynamic spectrum allocation.

Spectrum auctions that account for interference constraints are proposed in [4], [5] and [6].

In [5] and [6], computationally efficient suboptimal schemes have been proposed to allocate

multiple channels, with the objective of maximizing revenue. Online spectrum auctions, where

users can bid for spectrum at any time when they need it, can beprone to manipulation, which

might result in lower revenues for the auctioneer [7]. Spectrum sharing problems have been

viewed from a game theoretic perspective in [8] where fairness and efficiency in spectrum

sharing have been studied. There have also been other papersthat consider pricing in secondary

spectrum markets from a game theoretic perspective [9], [10], [11], [12]. Auction based resource

allocation has been studied for cooperative networks in [13]. While auctions are an economically

appealing method of dynamic spectrum allocation, mechanisms have also been proposed in

dynamic trading of spectrum contracts among primary and secondary users in [14]. Spectrum

sharing based on contracts has also been considered for cooperative networks in [15]. There have

been efforts in modeling secondary spectrum markets as double auction markets [16], whose

structure closely resembles financial markets. In [17], theauthors use a portfolio optimization

approach to spectrum trading.

The drawbacks of the schemes in the current literature become clear when we look at the close

connection between secondary spectrum auctions and user scheduling problems. In a scheduling

problem, a scheduler collects channel quality information(CQI) from the users that it serves.

Based on the CQI and fairness considerations, the schedulerallocates time or frequency slots to

users. It could, for example, assign the next channel use slot to the user with the best signal-to-

noise ratio (SNR). But feedback from users in the form of instantaneous SNR would make such

scheduling algorithms impractical as the number of users increases [18]. This is because the

amount of power and bandwidth required for reliable feedback would be enormous. Therefore,

a number papers have attempted to reduce feedback in user scheduling problems. One method

to reduce feedback from users is for users to transmit quantized SNR information only if their



SNR exceeds a particular threshold [19]. In [18] and [20], the authors study the scenario where

the users transmit SNR information that is quantized using multiple levels. It has been argued

in [20] and [21] that increasing the number of feedback bits results in diminishing improvements

in throughput.

Two other challenges in user scheduling are due to latency and erroneous feedback bits.

In [22], the impact of latency on such schemes is analyzed, where a user could be allowed

to transmit at a time slot based on outdated CQI. Similarly, delay is an important factor in

auction design when feedback loads are high and the bids of the users change with time due to

changing channel quality. The authors of [22] find that system performance degrades significantly

with delay, even when the channel is slowly varying with time. In [23], the authors study the

scheduling problem under a practical scenario where there are errors in the feedback bits, and

show that schemes that improve upon maximum SNR scheduling can be designed when the CQI

is noisy. Literature surveys about limited feedback in wireless communications in general, and

with specific emphasis on adaptive transmission and scheduling can be found in [24] and [25]

respectively.

The challenges tackled in the user scheduling literature also affect the design of schemes

for secondary spectrum auctions. In the context of both secondary spectrum auctions and user

scheduling, users have access only to finite-rate control channels, which is why they compete for

spectrum in the first place. Moreover, power constraints on mobile devices and delay requirements

in the case of slowly time-varying bid prices put forth a strong case for designing auction

mechanisms where users are required to transmit a very smallnumber of bits to the auctioneer

for bid revelation and bid updates.

In this paper, we propose several auction schemes under a scenario where there are two-way

channels between the auctioneer (or clearing authority – abbreviated as CA) and the users.

Our schemes explicitly take into account the practical issues that arise due to quantization

requirements and noise. In such a set-up, the time period of interest is divided into multiple

rounds, where each round consists of an update-and-allocate period and a spectrum use period.

During an update-and-allocate period, each user can only transmit a small, fixed number of

bits to the CA through a noisy channel. This is because users are heavily constrained by the

available power and bandwidth. The CA then chooses a winner for each spectrum unit under

auction. Since the CA does not know the actual bids, it treatsthem as random variables and



makes spectrum award decisions based on its estimates of these random variables. The winners

can use the spectrum awarded to them during the next spectrumuse period. After the spectrum

use period, the CA gets back control of the spectrum and begins the next round of allocations.

A natural objective of the CA is to discover the true values ofthe users and allocate spectrum

to users who value it the most as the number of auction rounds increases.

The central contribution of our paper is a scheme which enables the CA to asymptotically

achieve its objective of discovering the bid prices of the users and allocate spectrum to the

highest bidder. We moreover show that asymptotically, the CA’s revenue can be made arbitrarily

close to the highest bid. At the beginning of an update period, the users send one bit each to the

CA, which is a function of both the bid price and the feedback bits received from the CA. The

bids are estimated by the CA from their posterior distributions, conditioned on the information

available to the CA till that round. The CA then sends two bitsback to each user, one informing

the user whether or not it is the winner for that round, and theother informing the user about

the CA’s new bid estimate. The two bits from the CA to each userare assumed to be received

without error due to the abundant communication resources at the CA’s disposal. In the next

round, the users reply back in the same fashion as before, andthe process continues as long as

the CA has a unit of spectrum to auction.

This scheme is attractive firstly because we prove that it is asymptotically optimal. In other

words, we prove that even under constraints of very limited signaling and noisy transmission

from the users to the CA, our scheme guarantees that the CA asymptotically allocates spectrum

to the highest bidder as the number of auction rounds increases. Secondly due to the small

communication overheads, our scheme can be extended to handle other practical issues like

strategic bidders, auctioning multiple units of spectrum and accounting for time varying bid

prices. Our method is closely related to the technique of posterior matching [26], [27], due to

which we call itmatched auctioning. Since the CA is typically a base station that can transmit

using a large amount of power, we assume that the channel fromthe CA to each user is noiseless

(whereas the user-to-CA channels are noisy). This assumption is critical to the optimality of our

proposed scheme. In the presence of noise in the CA-to-user channels, noise would accumulate

with each round and this case warrants further investigation. The organization and the main

contributions of our paper are as follows:

Auction design under practical communication constraints: We model quantization and



noise for the first time in the context of secondary spectrum auctions and devise schemes for

auctions under practical constraints. In the next section,we describe the system set-up and

provide an outline for single-unit multi-round auctions.

Unmatched auctioning: To study the behavior of the schemes in the existing literature under

communication constraints, we first propose a scheme to auction one unit of spectrum, where

the users do not utilize the feedback bits from the CA to decide their future transmissions. This

motivating example is suboptimal since it does not provide any allocation guarantees, and is

described in Section III.

Matched auctioning: Our central scheme to auction one spectrum unit among non-strategic

users is described in Section IV. We prove that this scheme isasymptotically optimal in the

sense of getting arbitrarily close to maximizing the CA’s revenue and allocating spectrum to

the highest bidder as the number of auction rounds increases. Following this, we propose three

separate extensions accounting for other practical considerations. These extensions illustrate

the importance of schemes with low communication overheadsand the scalability of matched

auctioning.

Quantized single-unit auctions with strategic users: In Section V we propose a single unit

auction scheme calledtruthful matched auctioningthat can handle strategic users. These are non-

cooperating and rational users that attempt to maximize their payoff. Under truthful matched

auctioning, truthful bid revelation is weakly dominant as the number of update rounds increases.

This result is suggested from our simulation results.

Quantized Vickrey auctions: As the second extension, we propose a scheme to simulta-

neously auction multiple units of spectrum among strategicusers. Simulations of this scheme

also show that truthful bid revelation is a weakly dominant strategy as the number of rounds

increases. Quantized Vickrey auctioning can be viewed as a generalization of truthful matched

auctioning, and is described in Section VI.

Matched auctioning with slowly time-varying bids: Constant bid prices can be a strong

assumption for wireless systems. For example, a user could be a mobile device that wants to

vary its bid due to changing channel conditions. Simulations of the scheme that we propose in

Section VII for this scenario show that our tracking method gives revenues close to the optimal

revenue, and outperforms matched auctioning for a wide range of parameters that govern bid

price dynamics. Our simulation results and the conclusion are presented in Sections VIII and IX



respectively.

II. SYSTEM SET-UP AND SINGLE-UNIT AUCTION SCHEME OUTLINE

Consider the scenario ofN users bidding for one unit of spectrum that is being auctioned by

a central clearing authority — abbreviated as CA. The CA is a base-station and the users could

be wireless devices in a particular cell, or even other base stations.

Fig. 1. Scenarios with different kinds of users and CAs. CAs shown in red.

A. Definitions and preliminaries

Secondary spectrum auctions are modeled asprivate valueauctions, in which theith user

attaches a value (vi) to the object under auction. These values are only known to the respective

users. Prior to receiving any information from the users, the auctioneer models these values as

i.i.d. random variables. In spectrum auctions, this distribution models channel conditions, user

requirements, and other factors which would affect the value of one spectrum unit. The strategy

of the ith user is a mapping from its true valuevi into a bid price i.e.,si(vi) = bi. In a standard

auction, theith user will win the auction if it has the highest bid. The auctioneer then charges an

ask price equal toa, giving the winner a payoff equal tovi−a and zero payoff for the others. A

strategic user is one which behaves so as to maximize its payoff. If a user is non-strategic, then

its strategy is the identity function. A non-strategic useris also assumed to always be truthful

and to adhere to the auction rules, even if deviating from therules would give it higher payoffs.

A natural choice for the ask price that the winner gets charged, is the winning bid itself. Such

an auction is called afirst price auction. Bidding one’s own value in a first price auction would



only guarantee a payoff of zero. Therefore, in general first price auctions, strategic bidders will

not bid their true private values. On the other hand, for a standard auction where the ask price

is equal to the second highest bid, the strategysi(vi) = vi is a weakly dominant strategyfor

each user. This means that irrespective of what other users do, a user would not receive a better

payoff if it did not bid truthfully. This is a good property for an auction to have since each user

knows what to do irrespective of what other users do. The definitions and results introduced

here are standard in the auctions literature [28]. In the next subsection, we describe the outline

of our single-unit auction schemes. The set-up of the multi-unit auction scheme in Section VI is

very similar to the set-up of truthful matched auctioning. So we explain the set-up for quantized

Vickrey auctions in the corresponding section for ease of description and clarity in conveying

the main ideas.

B. Single-unit auction scheme outline

Depending on channel conditions, individual requirementsand their strategies, the users fix

their bids asb1, · · · , bN , which are all assumed to lie in the interval[0, 1]. We assume that

there is a two-way channel between each user and the CA, and there is no interference between

these channels. Since the CA is typically a base station withhigh transmit power and unutilized

bandwidth that is dedicated to control, we assume that the CA-to-user channels are noiseless.

The CA can award spectrum to the highest bidder of each round in one shot if the users could

send their bids to the CA with infinite precision. But in our set-up, we consider quantization

and noise constraints explicitly. This results in the CA refining its estimate of the highest bid

from round to round. Each round is divided into two disjoint intervals: an update-and-allocate

period and a spectrum use period. This is depicted in Fig. 2.

Fig. 2. The CA has control of the spectrum during update-and-allocate period. Users only have control channels to communicate
with the CA. The CA updates its bid estimates and decides to allot spectrum to one of the users for the following spectrum use
period. Based on the updated bid price estimates, the CA updates the ask price it wants to charge the winner. The CA gets back
control of spectrum following the spectrum use period, and the process of update-and-allocate continues as long as the CA is
willing to auction spectrum.

During an update-and-allocate period, the users have severely constrained channels connecting

them to the CA. So each of those periods is meant to refine the CA’s estimate of the user’s bids



while using very limited signaling. We now list the steps that take place in thetth update-and-

allocate period for single-unit auctions.

• At the start of roundt, useri is allowed to send only one bit to the CA, denoted byxit.

In general,xit is a function ofbi and all the other information available to the user until

round t. Due to noise in the user-to-CA channel,xit is received by the CA asyit.

• Since the CA does not know the bids, it models them as independent continuous random

variables{Bi}Ni=1, each uniform over[0, 1].

• Using(y1t, · · · , yNt), and all the bits received during the previous rounds, the CAestimates

each bid and awards spectrum for the corresponding spectrumuse period to the user whose

bid price estimate is the highest. Ties are broken arbitrarily.

• A spectrum ask priceat is fixed by the CA based on its updated bid estimates.

• The CA then sends the first feedback bituit to each useri, which is to inform the user

whether it was awarded spectrum for the following spectrum use period or not. This is

given by

uit =











1 if user i won roundt

0 otherwise.
(1)

We can write this asuit = Iuseri won roundt, whereIA is the indicator function of eventA.

• The second feedback bit sent from the CA to the user iszit = yit. This bit is sent so

that all the users can perform the same updates as the CA and compute the CA’s new bid

estimate. When users are strategic, the CA has to send a thirdbit, ỹit, to enable the users

to compute the ask price. Bits sent by the CA are correctly received by the users due to

noiseless feedback.

• When users are not strategic, the winner has the option to reject spectrum and pay nothing

if the ask price is larger than its bid. If the winner exercises this option, then the CA’s

revenue during roundt would be zero, and spectrum will be unused in the following

spectrum use period. Otherwise the winner will choose to accept spectrum, and the CA

would get a revenue equal to the ask priceat. In truthful matched auctioning though,

winners are not allowed to reject spectrum since they are strategic. Therefore, they always

use spectrum, giving a revenue ofat to the CA during each round.

• Allowing winners to reject spectrum when they are not strategic is beneficial to the winners.



Although it could reduce the revenue of the CA during the initial update rounds, we prove

that the revenue converges to a price close to the maximum bidprice in probability as the

number of update rounds increases. Not allowing winners to reject spectrum in truthful

matched auctioning tackles the problem of strategic bidders at the cost of winners having

to sometimes pay a price larger than their bid. But we will seeusing simulations that

as the number of update rounds increases, the probability ofwinners paying an amount

smaller than their bid converges to one.

• Subsequent to the corresponding spectrum use period, the CAgets back control of the

spectrum and the users will sendxi,t+1, just like in the previous round. This procedure

continues as long as the CA has a unit of spectrum to auction. The steps in one update-

and-allocate period for single-unit auctions are illustrated in Fig. 3. In this section, we have

left out the exact equations that are used by each scheme to computexit and at. These

will be addressed in the corresponding sections. We will also address the computation of

ỹit in Section V on truthful matched auctions.

• In practice, the final payments can be made to the CA at the end of the auction. When

users are strategic, the CA has to remember only the winner information and collect the

corresponding ask price from the winners of each round. Whenusers are non-strategic,

we additionally assume that the winners remember their usage information and pay the

CA truthfully.

While the CA-to-user channels are assumed to be noiseless, we model the user-to-CA channels

as non-interfering binary symmetric channels (BSC). If theinput to a BSC is 1, then it will be

received erroneously as 0 with probabilityp. Similarly, an input of 0 will be received as 1 with

probability p. BSCp is used to denote a BSC with cross-over probabilityp.

C. Accounting and payment method

There needs to be a mechanism for the CA to get paid at the end ofthe time horizon or at the

time when it decides to stop auctioning spectrum. This can betaken care of by the CA storing

winner information and the users storing usage information. For example, if the CA allocates

spectrum to users3, 4, 4, 4, 4, 5 during rounds1− 6, then the CA stores this information. If user

4 accepts during rounds 3, 5 and rejects during rounds 2, 4, then it stores the sequence0, 1, 0, 1.

At the time of payment, which is the end of all update-and-allocate rounds, the user sends this



1 2

3

3 steps within an

update-and-allocate

round

Fig. 3. Update period outline for single-unit auctions: Users (the five devices in black) send 1 bit each to the CA (the base
station in green). The bit can be a function of the user’s bid and all the other information available to the user. The actual form
of xit depends on the specific scheme. CA updates the bid and ask price estimates. It then sends the received bit and winner
information back to the users. The third bitỹit, highlighted in red, is only required to convey the ask priceto strategic users in
truthful matched auctioning. This bit is not needed in single-unit auctions with non-strategic bidders.

sequence reliably to the CA, for instance, using an open-loop channel code. The CA then charges

the user based on the ask prices during the rounds in which spectrum was accepted. Here we

assume that users are non-strategic, an assumption that we use throughout the paper and relax

only in Sections V, VI and VIII-B, where we deal with quantized auction schemes for strategic

users. When users are strategic, winners are not allowed to reject spectrum and therefore pay

the ask price during each round. So it is enough if the CA remembers the winner information.

III. QUANTIZED AUCTION EXAMPLE : UNMATCHED AUCTION

As a motivating example for quantized auctions and as a way tocompare our schemes with

the schemes in the literature that assume noiseless user-to-CA transmission, we now propose

a quantized version of single unit auctions with non-strategic users. In this simple quantized

auction, useri sends one bit per update-and-allocate period without usingthe second feedback

bit (zit) it has received from the CA. The sequence of bits is obtainedby converting the bid

into its binary equivalent. For example, if useri’s bid is 0.76, then the binary equivalent is

0.1100001 · · · . The sequence of bits obtained from the binary equivalent forms the sequence



{xi1, xi2, · · · }. Therefore, the first three transmissions from useri would be1, 1, 0. The CA’s

estimate of the bid prices at each update round is obtained byconverting the binary sequence it

has received from each user until that point, into the corresponding decimal fraction. For example,

if the transmitted sequence1, 1, 0 is received with an erroneous third bit as1, 1, 1, then the CA’s

estimate of the bid after the third reception would be1× 2−1 + 1× 2−2 + 1× 2−3 = 0.875. In

any roundt, the CA awards spectrum to the user with the highest estimateand sets this estimate

as the ask price for that round. It then sends the two feedbackbits uit and zit to inform the

users about the result of thetth update-and-allocate round and about the CA’s estimate of its bid

price. Since the users knowyit, the winner also knows the ask price set by the CA. Based on

this information, the winner chooses either to accept or reject spectrum for thetth spectrum use

period. The winners can be given this choice since we assume that the users are non-strategic.

When there is noise in the user-to-CA channel, this scheme would, on the average, result in

sub-optimal allocations even after many update rounds. In other words, on the average, the CA

is not guaranteed to allocate spectrum to the highest bidder, as illustrated in Section VIII-A. In

order to overcome this, one approach would be to view this as an open-loop channel coding

problem and use sophisticated channel coding schemes to quantize the bids so that the CA’s

estimate is arbitrarily close to the actual bid. Although there exist techniques by which users

can encode their bids to be received by the CA with arbitrarily low error probabilities, such

techniques would require large block length open-loop codes that can cause severe overhead,

resulting in the CA taking many rounds to converge to the optimal allocation. Suchopen-loop

schemes also do not scale well with multi-unit auctions and with time-varying bids.

IV. M ATCHED AUCTION SCHEME

For single-unit auctions with non-strategic users and constant bid prices, an alternative ap-

proach to unmatched auctioning is to exploit the noiseless feedback from the CA to the users. In

this section, we devise such a scheme, where as the number of rounds increases, the probability

that the CA allocates spectrum to the highest bidder approaches one and the CA’s revenue

converges to a price that is close to the maximum bid price.

Posterior matching and channel output feedback problems: Since this scheme is closely

related to the iterative scheme in Horstein’s paper [27], wediscuss it briefly. Horstein’s scheme

is a specific case of the more general framework of posterior matching. It achieves the point-to-



point capacity for a BSC with noiseless feedback. In this scheme, the transmitter represents the

sequence it wants to transmit using amessage point. The receiver knows the prior distribution

of the message point, which is continuous and uniform over the interval[0, 1]. The transmitter

knows that the receiver’s prior model for the distribution of the message point is uniform over

[0, 1]. Both the transmitter and the receiver maintain and update the posterior distribution of the

message point conditioned on all the bits observed at the receiver. In each round, the transmitter

tells the receiver whether or not the message point is below the posterior median. The receiver

uses this bit to update its posterior distribution and sendsthe same bit back to the transmitter. The

feedback bit is received error-free because of the noiseless feedback. Therefore, the transmitter

can perform the same posterior update as the receiver. In thenext round, the transmitter sends

one bit according to the same rule as in the previous round. Asthe number of rounds increases,

the receiver becomes more and more confident about its estimate of the message point, and

the posterior cumulative distribution of the message pointconverges to a unit step at the actual

message point.

In our scheme, theN bid prices act asN message points and are represented as random

variables{Bi}Ni=1. The users act as transmitters, while the CA acts as the receiver and maintains

posterior distributions for each of these bid prices. At thebeginning of roundt, the users inform

the CA whether their bids are at least as large as the posterior median1 Mit at the beginning of

that round:

xit =











1 if bi ≥ Mit

0 otherwise.
(2)

Each of these bits passes through a BSCp and is received by the CA asyit. Depending on the

information it receives from the users, the CA updates its distribution of{Bi}Ni=1 and its estimate

of each bid, which is set to be the updated posterior medianMi,t+1. The winner for thetth round

is picked usingargmaxi{Mi,t+1}, and the ask price is set to beat = maxi{Mi,t+1} − h, where

h is a small positive number. The numberh specifies how much less than the highest bid the

CA will asymptotically get in revenue. The larger it is, the better it insures that the winner does

not reject spectrum ast increases, resulting in a faster convergence of the CA’s revenue. The

1The medianm of a continuous random variableX is defined byP{X ≤ m} = 1/2. The medianm of a discrete random
variableX is defined byP{X ≤ m} ≥ 1/2 andP{X ≥ m} ≥ 1/2. To make the median unique in the discrete case, we pick
the smallestm such that it also has non-zero probability mass.



role of h would become clear in the proof of Proposition 2. The CA then sendsuit, identical to

the definition in (1) andzit = yit so that all the users can perform the same update as the CA

and compute the updated posterior distribution. The winnerthen decides whether or not to use

spectrum during the corresponding spectrum use period, based on its bid price and the new ask

price.

After the following spectrum use period, the users reply back to the CA in the same fashion

as in the previous round using (2) and the process continues as long as the CA is willing to sell

spectrum. These steps are illustrated in Fig. 5. In all our auction schemes, the payment to the

i

Fig. 4. Useri-to-CA step at the beginning of roundt.

i

i

Fig. 5. This figure shows the Useri-to-CA step at the beginning of thetth update round and CA-to-useri step at the end of the
tth update round.

CA is settled at the end of all update-and-allocate rounds asoutlined in Section II-B. In the next

two sub-sections, we provide a detailed description of our algorithm and the posterior update

step.

A. Algorithm description and pseudocode

The pseudocode for the matched auction scheme is in Fig. 6, which contains calls to functions

ONEROUNDUSER and ONEROUNDCA, both of which are shown in Fig. 8. Function ONER-

OUNDUSER is executed by each useri in every update-and-allocate roundt, to mimic the CA’s



t← 1 % t denotes the current update-and-allocate round
while (CA has a unit of spectrum to auction)do

for (i = 1; i ≤ N ; i++) do
useri executes ONEROUNDUSER(i, t)

end for
CA executes ONEROUNDCA(t)
t← t + 1

end while

Fig. 6. Overall flow of the auction procedure.

posterior median calculations and determinexit according to (2). Moreover, if spectrum has been

awarded to the user, this function decides whether or not to use the spectrum based on whether or

not its bid is abovemit−h. Note that the posterior distribution of useri’s bid and the particular

realization of its median calculated by the CA, are denoted by Fit andmit, respectively; whereas

their replicas calculated and maintained by useri are denoted, respectively,F u
it andmu

it.

Function ONEROUNDCA is executed by the CA in every update-and-allocate roundt, in

order to update the posterior distribution of each user’s bid, determine the auction winner, and

calculate the two bits to be sent back to each user. Before getting any information from the users,

the CA’s initial estimate of theith user’s bid is the prior median ofBi, i.e., 1/2. Both functions

ONEROUNDUSER and ONEROUNDCA use the functionUPDATEDISTRIBUTION shown in Fig. 9.

This function computes the update of the posterior distribution of useri’s bid, based on the latest

bit received by the CA from useri. The update equations used by this function are given in the

next subsection.

B. Posterior update step

All the bits sent by useri until the beginning of roundt are received by the CA as(yi1, · · · , yit) =
Yi,t. We denote the posterior distribution ofBi, conditioned onYi,t, using

Fit(b) = P{Bi ≤ b|Yi,t}. (3)

As stated earlier, we denote the posterior median ofBi at the beginning of roundt usingMit

defined as

Mit = Median(Bi|Yi,t−1).



function ONEROUNDUSER(i, t)
if t <= 2 then

% Initialize the distribution to uniform
F u
i,t−2 ← uniform[0, 1]

else
retrieve previously storedF u

i,t−2

end if
mu

it ← Median(F u
i,t−2)

if t > 1 then
receive bitsui,t−1 andzi,t−1 from the CA
Fu
i,t−1 ← UPDATEDISTRIBUTION(Fu

i,t−2, zi,t−1)

storeF u
i,t−1

mu
it ← Median(F u

i,t−1)
if (uit = 1 & mu

it − h ≤ bi) then
use spectrum
storet
store the amountmu

it − h to be paid
end if

end if
xit ← Ibi≥mu

it

sendxit to the CA
end function

Fig. 7. Algorithm at the useri during thetth round.

Mit is a random variable since it is a function of the random vector Yi,t−1. We denote bymit

the particular realization ofMit computed by the CA from a specific observation ofYi,t−1. We

assume that each user-to-CA channel is a BSCp, that the channel noise is temporally independent,

and that the channel noise is independent of the bid prices.

Our model and convergence analysis in Section IV-C are basedon assuming that prices

are continuous random variables. However, our simulationsin Section VIII reflect a more

practical scenario where prices are discrete. We thereforederive posterior update equations that

are applicable to both the continuous and the discrete cases. Specifically, we assume that the

discretization interval for the bid prices is∆. In the continuous case,∆ = 0. In the discrete

case,∆ > 0, and the bids are integer multiples of∆, with probability 1. We define

m′
it = mit −∆.



function ONEROUNDCA(t)
for (i = 1; i ≤ N ; i++) do

if t == 1 then
% Initialize the distribution to uniform
Fi,t−1 ← uniform[0, 1]

else
retrieve previously storedFi,t−1

end if
receiveyit from useri
Fit ← UPDATEDISTRIBUTION(Fi,t−1, yit)
storeFit

mi,t+1 ← Median(Fit)
end for
Winner← argmaxi{mi,t+1}
store Winner
for (i = 1; i ≤ N ; i++) do

uit ← Ii=Winner

zit ← yit
senduit andzit to useri

end for
end function

Fig. 8. Pseudo-code of the algorithm at both the user and CA during the tth round.

Note that, in the continuous case,m′
it = mit. In the discrete case,m′

it is equal to the highest

possible bid price which is belowmit.

Proposition 1. The equations needed to calculate the posterior distribution Fit from Fi,t−1 and

the bit yit received from useri in round t, are as follows.

Case 1:b < mit and yit = 1

Fit(b) =
pFi,t−1(b)

1− p− (1− 2p)Fi,t−1(m
′
it)

. (4)

Case 2:b < mit and yit = 0



function Fit ←UPDATEDISTRIBUTION(Fi,t−1 , yit)
if (yit == 1) then

ComputeFit using (4) and (6).
else

ComputeFit using (5) and (7).
end if

end function

Fig. 9. Function to update the posterior distribution.

Fit(b) =
(1− p)Fi,t−1(b)

p+ (1− 2p)Fi,t−1(m′
it)

. (5)

Case 3:b ≥ mit and yit = 1

Fit(b) =
(1− p)Fi,t−1(b) + (2p− 1)Fi,t−1(m

′
it)

1− p+ (2p− 1)Fi,t−1(m′
it)

. (6)

Case 4:b ≥ mit and yit = 0

Fit(b) =
pFi,t−1(b) + (1− 2p)Fi,t−1(m

′
it)

p+ (1− 2p)Fi,t−1(m
′
it)

. (7)

Proof is in Appendix X-A.

The posterior update procedure is implemented in the function UPDATEDISTRIBUTION(Fi,t−1, yit)

shown in Fig. 9. Its inputs are the posterior distributionFi,t−1 after roundt− 1 and the bityit

sent by useri to the CA at the beginning of roundt. Its output is the updated posteriorFit.

C. Convergence and asymptotic optimality

Lemma 1. Under matched auctioning, the posterior median of each bid price converges to the

respective bid price in probability.

Proof: This result is based on the proof of Theorem 1 on page 3 of [29],where it is shown

that under posterior matching, the posterior distributionof the message point computed by the

receiver (in our case, the CA) converges in probability to the unit step at the actual message



point sent by the transmitter (in our case, theith user). Using the notation from (3) for the CA’s

posterior distribution of theith user’s bid, we have the following for anyω > 0 andδ > 0:

P{|Fit(Bi + δ)− Fit(Bi − δ)− 1| < ω} → 1,

where the probability is evaluated using the joint distribution of CA’s prior model forBi and

the channel outputs. Usingω = 1/2, we have that for anyδ > 0 there existst0 > 0 such that

for all t > t0,

P{|Fit(Bi + δ)− Fit(Bi − δ)− 1| < 1/2} > 0.

Equivalently,

P{1/2 < Fit(Bi + δ)− Fit(Bi − δ) < 3/2} > 0.

This implies that for anyδ > 0 there existst0 > 0 such that for allt > t0,

P{Fit(Bi + δ) > 1/2 + Fit(Bi − δ)} > 0. (8)

SinceFit is a cumulative probability distribution, bothFit(Bi+δ) andFit(Bi−δ) must be between

0 and 1 with probability 1. Therefore, it follows from (8) that, for all t > t0, Fit(Bi− δ) < 1/2

andFit(Bi+δ) > 1/2 with probability 1. To see this, suppose that there is a non-zero probability

thatFit(Bi − δ) ≥ 1/2 for some valuet > t0. Then (8) would imply a non-zero probability for

Fit(Bi + δ) > 1, which is a contradiction. A similar argument shows thatFit(Bi + δ) > 1/2

with probability 1.

But the fact thatMi,t+1 is the median ofFit means thatFit(Mi,t+1) = 1/2. So, we get:

Fit(Bi − δ) < Fit(Mi,t+1) < Fit(Bi + δ),

for all t > t0, with probability 1. This implies

Bi − δ < Mi,t+1 < Bi + δ,

with probability 1 and

P(|Mi,t+1 −Bi| < δ) = 1,

for all t > t0. Since sucht0 exists for anyδ, this shows thatMit converges toBi in probability



as t→∞, completing our proof of Lemma 1.

Proposition 2. For any h > 0, the probability of allocating spectrum to the highest bidder

converges to one and the CA’s revenue converges toB(N) − h in probability, whereB(N) is the

largest of theN bids.

Proof: We showed in Lemma 1 that the posterior medianMij will eventually be withinδ

of the bid priceBi with probability 1, for anyδ. Suppose that, for two usersi and j, we have

the following realizations of the bid prices:Bi = bi andBj = bj , and bi > bj . Then, applying

Lemma 1 withδ = (bi− bj)/2, we see that there existstij such that for anyt > tij , the posterior

medianMit is larger than the posterior medianMjt with probability 1. Now for a particular

realization of the bid prices, letk be the index of the maximum bid price, and let

t1 = maxj:j 6=k{tkj}.

(Without loss of generality, we are assuming here that only one bidder has the maximum bid.)

Then for anyt > t1, the posterior medianMkt corresponding to the maximum bid will be larger

than any other posterior median, with probability 1. Therefore, for anyt > t1, spectrum will be

awarded to the highest bidder with probability 1, and the CA’s revenue will only depend on the

posterior median of the highest bidder.2

We denote the highest bid and the corresponding median afterthe tth update usingb(N) and

M(N),t+1 respectively. Recall that we set the ask price tomaxi{Mi,t+1}−h, whereh > 0. From

Lemma 1 and the preceding paragraph, for anyδ > 0, we have that there existst2 > t1 such

that for all t > t2,

P{b(N) − h− δ < M(N),t+1 − h < b(N) − h+ δ} = 1.

Case (i): If δ ≤ h, for all t > t2,

P{b(N) − h− δ < Ask price at timet < b(N) − h + δ} = 1

2It must be noted here thatt1 will depend on the particular realization of the bid prices:if two largest bids are very close,
then it would take a larget1 for their respective posterior medians to get ordered correctly with probability 1. On the other
hand, if two largest bids are very close, then awarding spectrum to the second-highest bidder would be nearly optimal forthe
CA.



Since the ask price is smaller than the maximum bid, this is equivalent to

P{b(N) − h− δ < Revenue at timet < b(N) − h+ δ} = 1.

For δ = h, let the corresponding timet2 be th.

Case (ii): If δ > h,

P{b(N) − h− δ < Revenue at timet < b(N) − h+ δ} ≥

P{b(N) − 2h < Revenue at timet < b(N)}.

But if t > th, then

P{b(N) − 2h < Revenue at timet < b(N)} = 1.

Therefore, for this case, we can pick anyt2 > th. Combining these two cases, we have that

revenue at timet converges tob(N) − h in probability, where all the probabilities are computed

conditioned on a realization of bids. Since this is true for any realization of the bid prices, we

can remove the conditioning on the bids to obtain that revenue at timet converges toB(N)−h in

probability, where this probability is over the joint distribution of bids and channel realizations.

The last operation, where we exchange the integral with respect to the joint density of the bids

and the limit ont, is possible due to the dominated convergence theorem [30].3 Although h

is an arbitrarily small positive number, a smaller value ofh would result in a larger number

of rounds for the CA’s revenue to converge toB(N) − h. In other words, the more the CA is

willing to give up in revenue compared to the highest bid, themore quickly it’s revenue would

converge toB(N) − h.

V. SINGLE-UNIT AUCTIONS WITH STRATEGIC USERS: TRUTHFUL MATCHED AUCTION

In our exposition so far, we have assumed that users are not strategic. Strategic users act

rationally and aim to maximize their payoff. So using matched auctioning for strategic users

may lead to inefficient allocations, where the user who values spectrum the most is not allocated

the resource even after many update-and-allocate rounds. In this section, we address the issues

3The revenue converges tob(N) − h for all bid price realizations, probability is bounded and the joint density of the bids is
also bounded and well defined. Therefore, the conditions needed to apply dominated convergence hold.



posed by strategic bidders by extending the current matchedauction set-up to atruthful matched

auction. We know from [28] that for a standard auction where the winner pays the second highest

bid, bidding truthfully is a weakly dominant strategy for strategic users who want to maximize

their payoff. Truthful matched auctioning tries to replicate a second price sealed bid auction

under the current set-up. To recollect, in the matched auction setup, the CA maintains posterior

distributions of the bids of each user. In each round, the CA awards spectrum to the user with

the highest posterior median and sets the ask price close to the highest posterior median, which

the winner can compute.

In truthful matched auctioning, identifying the highest bidder works in the same way as in

matched auctioning. Additionally, the CA and all the users maintain an ask price distribution

(At), whose median (at) is taken to be the ask price for that round. The CA has to send the bits

it receives from the second highest bidder back to the users,so that they can compute the ask

price from the posterior distribution of the second highestbid price. But at the outset, the CA

does not know who the two highest bidders are. To overcome this difficulty, the CA treats the

second highest posterior median as the message point at eachstep. It sends one additional bit

to each user, denoted using̃yit, which is equal to 1 if the second highest posterior median is

larger than the median of the ask price distribution and 0 otherwise. To recall, this is the same

ỹit introduced in Section II-B and illustrated in Fig. 3.

ỹit = ISecond highest posterior median> Median of ask distribution (9)

The modification is shown in Fig. 10.

i CA

1. Send

2. Receive 

3. Update N posteriors for bids

4. Find winner, generate 

5. Generate         for ask posterior

6. Update ask posterior

7. Send 

8. Update bid distribution

9. Generate

10. Update ask distribution

11. If                   use spectrum 

and pay ask price

Fig. 10. Actions taken by useri and CA in roundt.

Posterior updates on the ask distribution are carried out bythe CA and by all the users

as if this bit has been received from avirtual user through a BSCp in each round. So, the

virtual user sends the bit̃yit according to the position of a message point–which is equal to the



second highest posterior median at that round–and a posterior distribution–which is equal to the

distribution of the ask price. The update equations are the same as given in Proposition 1, where

we replaceyit, mit, m
′
it, Fi,t−1, Fit with ỹit, ait, a

′
it, Ai,t−1, Ai,t respectively. As in the case of the

bid distributions, the ask price distribution is assumed tohave a uniform prior over[0, 1]. In

Section VIII-B, we show by simulation that in truthful matched auctioning, the revenue of the

CA tends to the second highest bid price in probability.

We have previously mentioned in Section II that strategic winners also pose the problem of

using spectrum and claiming to have rejected it. This could happen when the users are base

stations that do not need the help of the CA in order to communicate during the spectrum use

period. In this section, we avoid this problem by not allowing winners to reject spectrum. This

is to assume that winners are always able to pay the ask price,even if it is larger than their

private values. Although winners may initially have to pay aprice more than their private values,

we shall see using simulations that as the number of update-and-allocate rounds increases, the

winner’s payoff converges to the true theoretical payoff inprobability. Since this replicates a

second price sealed bid auction, the payoff of the highest bidder converges in probability to the

absolute difference between the two highest bids. The payoff of the other bidders converges in

probability to zero.

VI. M ULTI -UNIT AUCTIONS WITH STRATEGIC USERS: QUANTIZED V ICKREY AUCTIONS

In current wireless standards, there are hard constraints on the number of bits per CQI (channel

quality information). In general, if there areK bits per CQI, then we can extend the preceding

one-bit truthful matched auction scheme into aK-bit scheme to simultaneously auctionK sub-

channels. The usual assumption in multi-unit auctions is that the units are all identical, and they

have diminishing marginal values for every user. A user who wants to bid forK sub-carriers

would, instead of having a single value, have a value profile given byVi = (vi1, · · · , viK) such

that vik ≥ vi(k+1). The components of the vectorVi specify marginal values, which means user

i’s value for one unit of spectrum isvi1. For two units, it isvi1+ vi2 and so on. We assume that

the ith value profile is jointly distributed as the order statisticsof K random variables that are

i.i.d. uniform over[0, 1].

A strategy in this case is(si1(vi1), · · · , siK(viK)) = (bi1, · · · , biK), which maps the value

vector into a bid vector. The components of the bid vector areequal to marginal bid prices.



The multi-unit analogue of a second price auction is called Vickrey auction, where the topK

bids are awarded one unit of spectrum each, and if useri is awardedki units of spectrum,

then it is charged an amount equal to theki highest losing bids excluding its own bids. The

payoff of the useri is therefore its value forki units minus the ask price that it is charged. For

example, if there are 4 units of spectrum and 4 users with bid profiles (21, 15, 5, 3), (32, 18,

15, 10), (25, 23, 15, 12) and (30, 20, 10, 8), then the top 4 bidsare 32, 30, 25, 23. So user

1 gets zero units, user 2 gets one unit, user 3 gets two units and user 4 gets one unit. In this

example, user 1 gets nothing and pays nothing. User 2 pays 21,user 3 pays 21+20 and user 4

pays 21 as per the payment rules stated before. The payoffs ofthe users are respectively equal

to 0, 11, 7 and 9. It can be shown that for a Vickrey auction, thetruthful strategy given by

(si1(vi1), · · · , siK(viK)) = (vi1, · · · , viK) is weakly dominant [28].

Quantized Vickrey auctions can be implemented along the same lines as truthful matched

auctions, but with a few more modifications. The first difference here is that for each user,

posterior updates are carried out on each of theK marginal bids, which are distributed apriori

as the order statistics ofK independent and uniform random variables over[0, 1]. Secondly, each

user has a separate ask price that can take values in[0, K]. So each user maintains and updates

a separate ask price distribution that is apriori uniform over [0, K]. Thirdly, in each round, the

ith user sends theK-bit vectorxit, whose components are calculated using the corresponding

marginal bid and the corresponding posterior median. More explicitly, the kth component ofxit

is equal to

Ikth marginal bid of useri > Posterior median ofkth marginal bid of useri.

TheseK bits are used to update theK marginal bid posteriors of useri. Fourthly, the CA sends

2K +1 feedback bits to each user. The firstK of these bits are equal toyit, whose components

are theK received bits so that the users can perform the same updates as the CA. The nextK

bits are denoted usinguit. The kth component ofuit denotes whether theith user won thekth

unit of spectrum or not. The updated bid price estimates are used to decide the winners and the

ask price for that spectrum use period, as per the rules of Vickrey auction outlined earlier. The

last bit of feedback (̃yit) is used to convey the updated ask distribution to the user.

ỹit = IUser i’s ask price in roundt > Median of useri’s ask distribution in roundt (10)



While updating the ask price posterior, this bit is again treated by the user and by the CA as

if it has been received from a virtual user through a BSCp. Apart from these four changes,

the update procedure and update equations are identical to the truthful single-unit auctions. In

Section VIII-B, we show by simulation that in our implementation of quantized Vickrey auctions,

the revenue of the CA and the payoffs of the users tend to the true theoretical revenue and the

true payoff in probability. This in turn shows that asymptotically, it is weakly dominant for each

user to truthfully reveal its value profile.

VII. M ATCHED AUCTIONING WITH TIME-VARYING BIDS

In this section, we return to the matched auctioning algorithm with non-strategic users, and

extend it for time-varying bids. When the bids are allowed tovary with time, it is possible

under matched auctioning, that the CA becomes overconfidentabout its estimates of the bid

prices. By this we mean that when a user’s bid changes after remaining constant for many

update-and-allocate rounds, the posterior distribution of the bid would be very close to the unit

step at the previous price. Consequently, the corrections sent by the user would not affect the

CA’s estimate of the price significantly. This would result in the matched auctioning algorithm

tracking bid prices very slowly, or completely failing to track them. So, the CA’s revenue could

be substantially lower than the highest bid. In this section, the system set-up and the auction

scheme are the same as in matched auctioning, except for the bid-drift model and a significant

modification to the posterior update step in Section IV-B.

A. Bid-drift model

For each useri, bids are represented as independent discrete-time randomprocessesBi(t),

and an additive model is used to represent their dynamics.

Bi(t+ 1) =











min{max{Bi(t) + ni(t+ 1), 0}, 1} w. p. q

Bi(t) w. p. 1− q
(11)

In (11),Bi(1) is uniformly distributed in[0, 1], ni(t+ 1) is independently uniform over a small

interval [−ǫ, ǫ] andq is the probability that the bid price changes in the next round. So for any

update roundt and useri, P{ith bid changes att+ 1} = q, andq is assumed to be constant and

identical for all the users.



B. Posterior update algorithm for time-varying bids

After each posterior distribution update, if the posteriordistribution of any bid price is

sufficiently close to the unit step function at the respective posterior median, then the CA approx-

imates the distribution as another distribution that is more spread-out than the unit step function.

Therefore, our main idea to enable the CA to track moving bidsis to perform posterior updates

while not allowing the individual posterior distributionsto collapse into the unit step function.

The distribution that we use for approximation must be such that most of the corresponding

density is concentrated about the posterior median but at the same time, all values in[0, 1] have

non-zero density. Although the approximation comes at the cost of the CA not knowing exactly

what the bid price is, we show by simulation that this is effective in achieving revenues that are

close to the maximum bid and outperforms matched auctioningwhen the bids are time-varying.

As an approximation of the unit step atb0 ∈ [0, 1], we take a cumulative distribution function

F (b; b0, λ, µ) with medianb0. The corresponding probability density is denoted usingf(b; b0, λ, µ).

The shape parameters of the distribution,0 < λ≪ 1 and0 < µ≪ 1, control how closeF is to

the unit step atb0. We use a piecewise linearF , whose shape is illustrated in Fig. 11 for a few

parameter values. The exact equations for the three cases depicted in Fig. 11 are shown in (12),

(13) and (14).

Fig. 11. Shape ofF (b; b0, λ, µ) for 3 possible locations ofb0.
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We assume that at the end of roundt, the posterior density ofBi is fit, with medianmi. For a

thresholdθ > 0, if D(fit(b)||f(b;mi, λ, µ)) < θ, then we approximate the posterior distribution

usingF (b;mi, λ, µ). As a measure of divergence (D) we use the Bhattacharyya distance [31].

If f1(b) and f2(b) are probability density functions of continuous random variables, then the

Bhattacharyya distance between them is given by

D(f1(b)||f2(b)) = − log

(
∫

√

f1(b)f2(b)db

)

(15)

In the case of discrete probability mass functionsp1 andp2, the Bhattacharyya distance between

the two mass functions is

D(p1(b)||p2(b)) = − log

(

∑

b

√

p1(b)p2(b)

)

(16)

If we useUPDATETRACK for posterior updates, it is possible for the posterior median to be

substantially larger than the bid price even after many update-and-allocate rounds have been

completed. This means that if we set the ask price very close to the posterior median of the



function Fit ←UPDATETRACK(Fi,t−1 , yit)
Fit ← UPDATEDISTRIBUTION(Fi,t−1, yit)
mi,t+1 ← Median(Fit)
fit ← density corresponding toFit

if D
(

fit(·)||f(·|mi,t+1, λ, µ)
)

< θ then
Fit(·)← F (· ;mi,t+1, λ, µ)

end if
end function

Fig. 12. Posterior updates adjusted for bid-drift.

winner, then the winner could reject spectrum even after many rounds. Therefore, the CA sets

the ask price to be equal tomaxi{Mi,t+1} − µ, whereµ is the same as shown in Fig. 11.

In the following round, theith user replies back to the CA, knowing that the CA’s estimate

of the posterior median and consequently the ask price, is based on this modified procedure.

Therefore, the ability to track moving bid prices comes at the cost of setting the ask price to

a value that is lower than in the case of constant bid prices. But in the next section, we see

that despite the approximation and setting the ask price low, the revenue of the CA is still very

close to the ideal case of perfect tracking. Therefore, to adjust for tracking, we simply replace

UPDATEDISTRIBUTION in Figs. 6 and 8 withUPDATETRACK shown in Fig. 12 and useµ in

place ofh while setting the ask price.

VIII. S IMULATION SET-UP AND RESULTS

In Section IV-B, we have derived recurrence relations for updating the posterior distribution

of bid prices. But deriving these updates in closed form is difficult even for simple prior

distributions. In order to circumvent this problem and to account for prices being discrete, we

discretize the[0, 1] interval such that bid prices are integer multiples of∆.

A. Convergence of matched auctioning

Fig. 13 shows the convergence of the revenue toB(N) − h, with ∆ = 10−5 andh = 10−3.

Here again,B(N) is used to denote the maximum of theN bids. We show for a few values ofδ,

thatP{|Revenue at timet−B(N) + h| < δ} → 1, where probabilities are estimated as empirical

probabilities overR = 1000 independent joint realizations of bid prices and channel outputs.



As opposed to this behavior, we see that the mean revenue for our first scheme of unmatched

auctioning explained in Section III is significantly smaller than the mean maximum bid. This is

shown in Fig. 14 along with standard error bars. The length ofthe error bars in each round is equal

to 2σ̂/
√
R, whereσ̂ is the estimated standard deviation of the revenue in that particular round,

andR = 104 is the number of Monte-Carlo rounds over which the averagingwas performed.
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Fig. 13. Convergence of revenue for matched auctioning withN = 10.
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Fig. 14. Average revenue of unmatched auctioning with errorbars for different values ofN andp.



B. Convergence of auctions with strategic users

From Sections V and VI, we can see that truthful matched auctioning is exactly the same as

quantized Vickrey auctions forK = 1. We show by simulation the convergence properties of

quantized Vickrey auctions for 10 users andK = 1 or K = 4 units. The left panel of Fig. 15

illustrates the convergence of the CA’s revenue to the true theoretical revenue in probability.

Unlike matched auctioning where all the probabilities start very close to zero, we sometimes

have non-zero probabilities starting at the very first roundsince in Vickrey auctions, we do

not allow winners to reject spectrum. We also show that the average user payoff converges to

the true theoretical average, where the averaging is done over users. This is depicted in the

right panel of Fig. 15. From this figure we infer that asymptotically, quantized Vickrey auctions

behave identically to Vickrey auctions. Therefore, as the number of auction rounds increases, it

is weakly dominant for the users to reveal their bids truthfully.

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of auction rounds (t)

P
{ 

|P
a
y
o
ff
 i
n
 r

o
u
n
d
 t
 −

 T
ru

e
 t
h
e
o
re

ti
c
a
l 
p
a
y
o
ff
| 
<
δ

}

K=1, p=0.1, δ=0.005

K=1, p=0.1, δ=0.01

K=1, p=0.05, δ=0.005

K=1, p=0.05, δ=0.01

K=4, p=0.1, δ=0.005

K=4, p=0.1, δ=0.01

K=4, p=0.05, δ=0.005

K=4, p=0.05, δ=0.01

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of auction rounds (t)

P
{ 

|R
e
v
e
n
u
e
 i
n
 r

o
u
n
d
 t
 −

 T
ru

e
 t
h
e
o
re

ti
c
a
l 
re

v
e
n
u
e
|<
δ

}

K=1, p=0.1, δ = 0.005

K=1, p=0.1, δ=0.01

K=1, p=0.05, δ=0.005

K=1, p=0.05, δ=0.01

K=4, p=0.1, δ=0.005

K=4, p=0.1, δ=0.01

K=4, p=0.05, δ=0.005

K=4, p=0.05, δ=0.01

Fig. 15. Convergence of revenue and payoff to their true theoretical values in quantized Vickrey auctions forN = 10 users.

C. Comparison between matched auction and matched auction adjusted for bid-drift

When bids are allowed to vary with time according to the modelproposed in Section VII-A, we

show that the tracking algorithm proposed in Section VII-B performs better than the case when

there is no tracking. In order to compare the tracking algorithm with matched auctioning, we

compare theefficiency ratio, which is the ratio of the average revenue to the average maximum

bid, averaged over the update-and-allocate rounds and thenaveraged over Monte Carlo rounds.

If the CA is able to perfectly track the bids, then we expect this ratio to be 1 for all values of

q andǫ, defined in Section VII-A. But in reality, forN = 5, we observe the behavior shown in

Fig. 16. The left and right panels of this figure depict the ratio as a function ofq for ǫ = 0.01



and as a function ofǫ for q = 0.02, respectively. In these experiments we use∆ = 1/5000,

h = 1/1000, and for the piecewise linear approximation shown in Fig. 11, we take the parameters

to beλ = 0.005 andµ = 0.005. We take the threshold on the Bhattacharyya distanceθ = 0.3.

We see from the left panel of Fig. 16 that with tracking, the ratio is still very close to 1 till
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Fig. 16. (Avg. revenue)/(Avg. maximum bid) vs.q, for ǫ = 0.01 (left panel), and vs.ǫ, for q = 0.02 (right panel)

aroundq = 0.1. We also observe that the improvement achieved by matched auctioning with

tracking is most pronounced whenq is between10−2 and10−1. For very small values ofq, the

bids do not drift too much and the two methods are equally good. In contrast, for very large

values ofq, both methods are unable to track effectively. The right panel of Fig. 16 also shows

matched auctioning with tracking performing better than without tracking forǫ > 5× 10−3.

D. Sensitivity of tracking algorithm to parameter settings

In this subsection, we examine the sensitivity of the efficiency ratio with respect to the tracking

parametersλ, θ andµ. For these simulations, we fixN = 5, p = 0.05 and sweep over one of

the parameters while keeping the other two constant. For thecase where we sweepλ over the

interval [0.001, 0.01], the results show very little sensitivity to the value ofλ as seen in the left

panel of Fig. 17. Similarly, the plot in the middle panel of Fig. 17 does not show much sensitivity

to θ. In contrast to these results, while sweepingµ over [0.001, 0.01], we observe that for small

values ofµ, the performance is significantly degraded as seen in the right panel of Fig. 17. The

reason for this is that low values ofµ result inF being too close to the unit step, which causes

tracking to be very slow. Moreover, small values ofµ would result in more rejections by the

winner if the bid price happens to decrease.
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E. Comparison of overheads in open-loop and closed-loop schemes

The bits used for bid revelation go through a noisy channel. Hence they must be encoded

to correct errors. Without encoded bits, the scheme would correspond to unmatched auctioning

which is highly inefficient as seen in Section VIII-A. The encoding can either use channel

output feedback, like we have done in our scheme, or ignore feedback and use an open-loop

scheme. We argue here that if a state-of-the-art open-loop scheme is used, then the number

of bits required for reliable bid revelation is much higher than for our proposed scheme. For

simplicity, we consider the case of a single unit auction anda single user revealing its bid to the

CA. Open-loop schemes in the form of block codes encode a message that isk bits long into a

codeword ofn > k bits. The receiver uses a noisy received codeword to determine which one

of the 2k equally likely messages was sent. The message point perspective cannot be directly

compared with the block coding perspective since the message point is a continuous random

variable, whereas the message in block coding is discrete. Nevertheless, we endeavor to develop

a fair comparison by mapping the message point perspective to the block coding perspective

here. For simulating posterior matching, we divide the[0, 1] interval into K equally spaced

intervals. Now the message point is a discrete random variable whose observed value can be one

of K equally likely messages. If we usen transmissions, then we define the rate of the code to

be log2(K)/n. Popular open-loop codes like LDPC codes use the definition of rate to bek/n,

where the message isk bits long and the codeword isn bits long. The code is evaluated using

the frame error rate (FER), which is the probability that a message would get decoded into an

incorrect message by the receiver. Similarly, in the message point perspective, we say that a

frame error occurs when|θ− θ̂| > 1/(2K), where the message point isθ and the estimate of the



TABLE I. COMPARISON OFOPEN-LOOP AND CLOSED-LOOPSCHEMES

p FER open-loop (code 2 from [32]) FER closed-loop (from our simulations)
0.05 > 10

−1
0.018

0.06 > 10
−1

0.031

0.1 > 10
−1

0.049

message point aftern transmissions iŝθ. Here θ̂ is the posterior median aftern transmissions.

One problem with this comparison is due to the usage of a discrete posterior distribution,

whereas posterior matching needs a continuous posterior distribution for its convergence re-

sults. Therefore, our simulations–which are actually an approximation of the posterior matching

scheme–would give FERs that are an upper bound on the FERs with a continuous posterior

distribution. Table I shows a comparison of the closed-loopscheme with an LDPC code depicted

in Fig. 2 of [32]. In the table, the second column shows the error rates of the open-loop code

from [32] and the third column shows the error rate of the codeused in our paper. The open-

loop code has parametersk = 35, n = 210 and a rate of 35/210. The rate is lower–and hence

more conservative–than the rate of our closed-loop code, which has ratelog2(K)/n = 0.332, for

K = 100000 andn = 50. From the table, we infer that the closed-loop scheme does better in

terms of FER even when we use a discrete approximation and fora much smaller block length.

Hence multi-bit versions of our scheme would outperform open loop schemes and would also

scale better for applications such as multi-unit auctions and time-varying bid prices.

IX. CONCLUSION

We have presented a realistic micro-level view of auctions in secondary spectrum markets

by explicitly modeling the process by which bidders convey their bids to a clearing authority.

Specifically, we have modeled quantization and noise for thefirst time in this context. In the

constant bid scenario, we have proved that our scheme is optimal in the sense of asymptotically

maximizing the CA’s revenue. We have also extended the scheme to accommodate strategic

bidders, to auction multiple spectrum units among strategic bidders and to track slowly varying

bid prices. For the case of strategic users, we develop quantized auction schemes that make

truthful bidding a weakly dominant strategy. Our simulations verify the theoretical results that

we proved in Section IV-C. Further, the simulations also show the effectiveness of our tracking



procedure and its robustness to different parameters of thebid-drift model. Our extensions

illustrate the importance of low rate feedback since our schemes scale well in both situations,

whereas open-loop schemes would have prohibitive overheads.

X. APPENDIX

A. Update equations for matched auctioning

We assume that the discretization interval for the bid prices is∆. In the continuous case,∆ = 0.

In the discrete case,∆ > 0, and the bid prices are integer multiples of∆ with probability 1.

We fix a useri and derive the procedure for computing the posterior distribution Fi,t from

Fi,t−1 and yi,t. To make the notation lighter, we drop the indexi and denote the posteriors by

Ft andFt−1, respectively, and the bit received by the CA from thei-th user in roundt by yt.

We denote bymt the specific realization of the median ofFt−1, computed by the CA. We let

m′
t = mt −∆.

To relateFt to Ft−1 andyt, we use the Bayes rule and the total probability theorem:

Ft(b) =P{B ≤ b|Yt}

=P{B ≤ b|yt,Yt−1}

=
P{yt|B ≤ b,Yt−1}P{B ≤ b|Yt−1}

P{yt|Yt−1}

=
P{yt|B ≤ b,Yt−1}Ft−1(b)

P{yt|Yt−1}

= P{yt|B≤b,Yt−1}Ft−1(b)
P{yt|B≤b,Yt−1}Ft−1(b)+P{yt |B>b,Yt−1}[1−Ft−1(b)]

. (17)

We now evaluate the two terms that occur in the denominator of(17). We consider two cases

separately:b < mt and b ≥ mt.

Case 1: b < mt.

In this case, eventB ≤ b implies that the bid priceB is below the medianmt, and therefore

xt = 0. Hence, the first term in the numerator of (17) can actually berewritten as follows:

P{yt|B ≤ b,Yt−1} = P{yt|xt = 0, B ≤ b,Yt−1}. (18)

Recall that we assume the channel noise to be both temporallyindependent and independent of

the users’ messages. Therefore, givenxt = 0, the received bityt is conditionally independent



of both the bid priceB and all the past received messagesYt−1. This means that (18) can be

rewritten asP{yt|xt = 0}. This is equal to the probability of error in BSCp if yt = 1 and to the

probability of correct reception ifyt = 0. We denote this quantity byrt:

P{yt|B ≤ b,Yt−1} = pyt + (1− p)(1− yt) ≡ rt. (19)

The second term in the denominator of (17) is

P{yt|B > b,Yt−1}P{B > b|Yt−1} = P{yt, B > b|Yt−1}

= P{yt, b < B < mt|Yt−1}+P{yt, B ≥ mt|Yt−1}

= P{yt|b < B < mt,Yt−1}P{b < B < mt|Yt−1}

+P{yt|B ≥ mt,Yt−1}P{B ≥ mt|Yt−1}

= rt [Ft−1(m
′
t)− Ft−1(b)] + (1− rt) [1− Ft−1(m

′
t)]

= −rtFt−1(b) + (2rt − 1)Ft−1(m
′
t) + 1− rt. (20)

We now substitute (19) and (20) back into (17) to obtain the update formula for the caseb < mt

Ft(b) =
rtFt−1(b)

1− rt + (2rt − 1)Ft−1(m′
t)

=















(1− p)Ft−1(b)

p+ (1− 2p)Ft−1(m
′
t)

if yt = 0,

pFt−1(b)

1− p+ (2p− 1)Ft−1(m′
t)

if yt = 1.
(21)

Case 2: b ≥ mt.

We proceed similarly to evaluate the two terms in the denominator of (17). We start with the

second term:

P{yt|B > b,Yt−1} =P{yt|xt = 1}

=(1− p)yt + p(1− yt)

=1− rt. (22)



For the first term, we have:

P{yt|B ≤ b,Yt−1}Ft−1(b) = P{yt, B ≤ b|Yt−1}

= P{yt, mt ≤ B ≤ b|Yt−1}+P{yt, B < mt|Yt−1}

= P{yt|mt ≤ B ≤ b,Yt−1}P{mt ≤ B ≤ b|Yt−1}

+P{yt|B < mt,Yt−1}P{B < mt|Yt−1}

= (1− rt) [Ft−1(b)− Ft−1(m
′
t)] + rtFt−1(m

′
t)

= (1− rt)Ft−1(b) + (2rt − 1)Ft−1(m
′
t). (23)

Substituting (22) and (23) into (17), we obtain the update formula for the caseb ≥ mt:

Ft(b) =
(1−rt)Ft−1(b)+(2rt−1)Ft−1(m′

t)

(1−rt)Ft−1(b)+(2rt−1)Ft−1(m′

t)+(1−rt)(1−Ft−1(b))

=
(1− rt)Ft−1(b) + (2rt − 1)Ft−1(m

′
t)

1− rt + (2rt − 1)Ft−1(m
′
t)

=















pFt−1(b) + (1− 2p)Ft−1(m
′
t)

p+ (1− 2p)Ft−1(m′
t)

if yt = 0,

(1− p)Ft−1(b) + (2p− 1)Ft−1(m
′
t)

1− p+ (2p− 1)Ft−1(m′
t)

if yt = 1.
(24)
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