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Abstract

This paper considers the discrete convexity of a cross-layer on-off transmission control problem

in wireless communications. In this system, a scheduler decides whether or not to transmit in order to

optimize the long-term quality of service (QoS) incurred bythe queueing effects in the data link layer

and the transmission power consumption in the physical (PHY) layer simultaneously. Using a Markov

decision process (MDP) formulation, we show that the optimal policy can be determined by solving a

minimization problem over a set of queue thresholds if the dynamic programming (DP) is submodular.

We prove that this minimization problem is discrete convex.In order to search the minimizer, we consider

two discrete stochastic approximation (DSA) algorithms: discrete simultaneous perturbation stochastic

approximation (DSPSA) andL♮-convex stochastic approximation (L♮-convex SA). Through numerical

studies, we show that the two DSA algorithms converge significantly faster than the existing continuous

simultaneous perturbation stochastic approximation (CSPSA) algorithm in multi-user systems. Finally,

we compare the convergence results and complexity of two DSAand CSPSA algorithms where we

show that DSPSA achieves the best trade-off between complexity and accuracy in multi-user systems.
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Fig. 1. Cross-layer on-off transmission control in wireless communications: A scheduler decides whether or not to transmit a

packet in the queue according to the optimization concerns in both layers, e.g., packet delay and queue overflow in data link

layer and transmission error and spectral efficiency in physical (PHY) layer, in the long run.

I. INTRODUCTION

Consider the communication system in Fig. 1. It is assumed that messages encapsulated in

equal length packets from a higher layer (say, application layer) arrive at data link layer randomly.

The packets are temporarily stored in a first-in-first-out (FIFO) queue before the transmission in

the physical (PHY) layer. The departure of the queue is controlled by a scheduler: If the switch

is open, no packet departs from the queue; If the switch is closed, a unit packet departs from

the queue and is transmitted through the wireless channel. The objective is to find a policy or

decision rule that optimizes packet delay and/or queue overflow in the data link layer and the

transmission error rate and/or spectral efficiency in the PHY layer simultaneously and in the

long run.

The problem in Fig. 1 is a cross-layer transmission control one because it not only incorporates

the idea of rate adaptation in the PHY layer [1], [2] but also takes into account the quality of

service (QoS) incurred by the queueing effects in the data link layer. Since the general cross-

layer rate adaptation problem usually allows the schedulerto choose from a set of transmission

rates [3], [4], the problem in Fig. 1 can be considered as a special case where the scheduler

only makes binary decisions: whether or not to transmit. We call it cross-layer on-off transmis-

sion control. This problem has been presented in some bufferscheduling problems in wireless

communications, e.g., [5], and is commonly seen in studies on network-coded relaying systems,

e.g., [6]–[9].

By assuming ani.i.d. message arrival process and a finite-state Markov chain (FSMC) [10]

modeled channel, the system in Fig. 1 is usually modeled by a Markov decision process (MDP),

and dynamic programming (DP) algorithms are used to search the optimal policy, e.g., [5], [8]. DP

is a classic algorithm for solving MDP modeled sequential decision making problems. However,
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the crucial limitation of DP is that its computation load grows drastically with the cardinalities

of the state sets in MDP. This problem is called thecurse of dimensionality[11] and makes DP

inefficient for solving high dimensional MDP problems. To relieve the complexity, most related

studies, e.g., [5], [7], [12]–[16], focus on proving the monotonicity of the optimal policy in queue

occupancy/state. It is because that in this case the optimalpolicy is a switching curve or plane that

is fully characterized by a set of optimal queue thresholds.These optimal queue thresholds can

be searched by solving a multivariate minimization problemwith much lower complexity than

DP. To approximate the optimizer of this problem, a stochastic approximation (SA) method is

usually considered. The typical examples are the continuous simultaneous perturbation stochastic

(CSPSA) algorithms proposed in [14], [16], [17]. But, thereare two problems with these SA

algorithms. One is that the authors in [14], [16], [17] only apply SA without showing or analyzing

the convexity of the objective function. SA is based on an iterative line search method. When

it applies to a non-convex minimization problem, it may justconverge to the local optimizer

with probability. There are some studies showing the sufficient conditions for the global and/or

almost sure convergence of SA algorithms. But, as pointed out in [18], these conditions are

usually difficult to verify for a non-convex objective function.1 On the other hand, if one can

prove the convexity of the objective function, these conditions are usually straightforwardly

satisfied. In addition, there exists SA algorithms that are exclusively proposed for discrete convex

minimization problems in the literature for which the global and almost sure convergence is

guaranteed, e.g., [22]. The other problem with the SA algorithms in [14], [16], [17] is that

CSPSA is originally proposed for continuous minimization problems. When it is applied to

discrete ones, one needs to solve the problem of how to estimate the value of the objective

function at real-valued points. One solution as proposed in[14], [17] is to use a projection

function to project the real-valued points to integer ones.But, the projection function adds extra

complexity when implementing the CSPSA algorithms. In addition, if the discrete convexity of

the minimization problem is proved, one does not know if the projection function has an effect

on the existence of discrete convexity or the accuracy of gradient estimation in SA algorithms.

1Spall showed in [19] the sufficient conditions for SPSA [20] to converge almost surely in a continuous optimization problem.

They require the objective function to be differentiable and the estimation sequence generated by a gradient descent method to

converge to the optimizer. Most of the discrete SPSA algorithms are adapted from [20], e.g., [21]. Usually, the convergence

performance is conditioned on certain property of the subgradient and is not easy to verify, e.g., Theorem1 in [17].
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The main purpose of this paper is to prove the discrete convexity of the on-off transmission

control problem in Fig. 1 and show that this problem can be solved more efficiently by discrete

stochastic approximation (DSA) algorithms than CSPSA. In this paper, we first follow the

same approach as in [14], [16]: We prove that the optimal transmission policy is monotonic

in queue states and can be expressed by a queue threshold vector if DP is submodular. We

formulate the optimal transmission control problem in Fig.1 as a multivariate minimization

problem over a set of queue thresholds. But, before proposing the solutions, we observe the

shape of the objective function and prove that it is discreteconvex. We then consider two

discrete stochastic approximation (DSA) algorithms for searching the optimal policy: discrete

simultaneous perturbation stochastic approximation (DSPSA) [23] andL♮-convex SA [18]. We

run experiments on three systems to show the convergence performance of two DSA algorithms.

The results are compared to a CSPSA algorithm. The main results in this paper are listed as

follows:

• For the transmission control problem in Fig. 1, we derive a sufficient condition for the

optimal policy to be nondecreasing in queue states: the submodularity of DP function. We

show that the monotonic optimal transmission policy can be determined by a queue threshold

vector. Each dimension of this vector determines the queue state when the transmission

policy changes from ‘not transmit’ to ‘transmit’ when the channel is in a certain state.

• We convert DP to a stochastic minimization problem over queue threshold vectors and prove

that the objective function is both discrete separable convex andL♮-convex.

• We present a DSPSA algorithm and anL♮-convex SA algorithm. Due to the discrete

convexity of the minimization problem under consideration, both of them are able to

converge almost surely to the optimal queue threshold vector. We run the two algorithms in

single-user and two multi-user on-off transmission control systems. The results are compared

to a CSPSA algorithm that uses the projection function proposed in [17].

• We also analyze the accuracy and complexity of two DSA algorithms and the CSPSA

algorithm based on numerical experiment results. There is atradeoff between accuracy and

complexity: DSPSA and CSPSA requires less measurements of the objective function in

each iteration but converges slower thanL♮-convex SA;L♮-convex SA generates more accu-

rate estimation sequence of the optimizer but requires moremeasurements of the objective
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function than DSPSA and CSPSA. Also, DSPSA converges fasterthan CSPSA in multi-user

systems. These results can be used to guide the implementation of SA algorithms in real

applications: If one can prove the discrete convexity of an on-off cross-layer transmission

control problem, DSPSA andL♮-convex SA are more efficient than CSPSA; If the system

is a multi-user one, DSPSA achieves the best trade-off between complexity and accuracy.

A. Organization

The rest of the paper is organized as follows. In Section II, we describe the MDP formulation,

state the objective and present the DP algorithm for the system model in Fig. 1. In Section III,

we prove the monotonicity of the optimal transmission policy and formulate a discrete convex

optimization problem based on the submodularity of DP. In Section IV, we present DSPSA

and L♮-convex SA algorithms and describe their implementation details. In Section V, we

apply DSPSA,L♮-convex SA and CSPSA algorithms to single-user and multi-user systems.

The accuracy and complexity of these three algorithms are analyzed.

B. Notation

In this paper, we useR+ andZ to denote nonnegative real number set and integer number

set, respectively. In TABLE I, we list the descriptions of symbolic notations that are used in

Sections II, III and IV. In the MDP formulation in Section II,we use superscript(t) to denote the

variable at decision epocht, e.g.,γ(t) denotes the instantaneous SNR value att. In the multi-user

systems in Section V, we use the subscripti to denote the variable of useri, e.g.,γ(t)i denotes

the instantaneous SNR value of the channel of useri at t.

II. MDP FORMULATION AND DYNAMIC PROGRAMMING

Consider the transmission control system with wireless multipath fading channel in Fig. 1.

Let time be divided into small intervals, calleddecision epochsand denoted byt. The decision

making process is infinitely long, i.e.,t ∈ {0, 1, . . . ,∞}. We assume the followings in this

system.

Assumption 2.1:Let {f (t)} be an i.i.d. random message arrival process, wheref (t) denotes

the number of packets that arrive at the FIFO queue att. The scheduler knows the statistics of

{f (t)}.
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TABLE I

NOTATIONS

symbol description

t decision epoch

f the number of inflow packets

L queue length (in packets)

γ signal-to-noise ratio (SNR)

Γk the kth SNR boundary in FSMC

K the number of channel states in FSMC

h,H channel state, channel state set

b, B queue state/occupancy, queue state set

x, X system state, system state set

a, A action, action set

Phh′ channel state transition probability fromh to h′

P a
bb′ queue state transition probability fromb to b′ under actiona

P a
xx

′ system state transition probability fromx to x
′ under actiona

cq(b, a) immediate cost in the data link layer

ctr(h, a) immediate cost in the PHY layer

c(x, a) immediate cost in the entire system

θ(x) stationary and deterministic policy

Vθ(x) expected long-term cost under policyθ

β discount factor

φ queue threshold vector

φh thehth tuple inφ

φ̃
(n)

thenth estimation of the minimizer

g(φ̃
(n)

) descent direction at̃φ
(n)

A, B, C, α, γ step size parameters

J(φ) objective function atφ

Ĵ(φ) noisy measurement ofJ

J̃(φ) piecewise linear interpolation (PLI) ofJ
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Assumption 2.2:Denoteγ(t) the instantaneous signal-to-noise ratio (SNR) of the fading chan-

nel. Let {γ(t)} be a random process that is independent of{f (t)}. The full variation range of

γ(t) is partitioned intoK non-overlapping regions{[Γ1,Γ2), [Γ2,Γ3), . . . , [ΓK ,ΓK+1)}, where

ΓK+1 = ∞. Region[Γk,Γk+1) is called channel statek. Denoteh(t) as the channel state variable

at decision epocht. We say thath(t) = k if γ(t) ∈ [Γk,Γk+1). Let the channel be modeled by

an FSMC [10], wherePh(t)h(t+1) = Pr(h(t+1)|h(t)), the channel state transition probability, is

determined by channel parameters and statistics and is stationary (time invariant). The scheduler

knows the statistics of{h(t)} and has the real-time information on channel state, the value of

h(t), to support the decisions.

Assumption 2.3:Let a(t) ∈ A = {0, 1} be the action taken by the scheduler att, where0

denotes ‘not transmit’ and1 denotes ‘transmit’. Whenevera(t) = 1, one packet is sent.

A. MDP Modeling

Let the system in Fig. 1 be modeled by a discounted infinite-horizon MDP. The system state at

t is x(t) = (b(t), h(t)) ∈ X = B×H, where× denotes the Cartesian product. LetL be the queue

length, the maximum number of packets that can be stored in the queue.b(t) ∈ B = {0, 1, . . . , L}

is called the queue occupancy/state that denotes the numberof packets stored in the queue at

t. h(t) ∈ H = {1, 2, . . . , K} is the channel state as described in Assumption 2.2. The state

transition probabilityP a(t)

x(t)x(t+1) = Pr(x(t+1)|x(t), a(t)) is given by

P a(t)

x(t)x(t+1) = P a(t)

b(t)b(t+1)Ph(t)h(t+1). (1)

P a(t)

b(t)b(t+1) is the queue state transition probability that is derived asfollows.

At each decision epocht, the scheduler makes a decisiona(t), and thenf (t) packets flow into

the queue. If the queue is full, the overflow packets will be dropped. Let[x]+ = max{x, 0}. The

variation of queue state can be described by the Lindley equation [24]

b := min{[b− a]+ + f, L}. (2)

The queue state transition probabilityP a(t)

b(t)b(t+1) = Pr(b(t+1)|b(t), a(t)) can be determined by the

statistics of{f (t)} as

P a(t)

b(t)b(t+1) =











Pr
(

f (t) = b(t+1) − [b(t) − a(t)]+
)

b(t+1) < L

∑

l=L−[b(t)−a(t)]+ Pr(f (t) = l) b(t+1) = L
. (3)
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The immediate costc : X ×A 7→ R+ is the cost incurred immediately after the actiona(t) and

is defined as

c(x(t), a(t)) = cq(b
(t), a(t)) + ctr(h

(t), a(t)). (4)

c(x, a) contains two parts:cq quantifies the loss in the data link layer;ctr quantifies the loss in

the PHY layer. We definecq as

cq(b
(t), a(t)) = wEf

[

[

[b(t) − a(t)]+ + f (t) − L
]+

]

, (5)

wherew > 0 is a weight factor.2 cq is proportional to the expected number of lost packets due

to the queue overflow. We definectr as

ctr(h
(t), a(t)) =

a(t)(erfc−1(2P̄b))
2

Γh(t)

. (6)

ctr is an estimation of the minimum power required to transmit a packet with binary phase-shift

keying (BPSK) modulation in channel stateh that will result in an average bit-error-rate (BER)

no greater than̄Pb.3

B. Long-term Objective and Dynamic Programming

Let θ : X 7→ A be a stationary deterministic policy. Denote the expected total discounted cost

under policyθ as

Vθ(x) = E

[ ∞
∑

t=0

βtc(x(t), θ(x(t)))
∣

∣

∣
x(0) = x

]

. (7)

Here,β ∈ [0, 1) is the discount factor that ensures the convergence of the infinite series. It also

describes how farsighted a decision-maker is sinceβt assigns exponentially decaying weights

to the costs in the future [11]. The objective of the transmission control problem in Fig. 1 is to

minimize the long-term losses incurred in data-link and PHYlayers, which can be described as

min
θ
Vθ(x), ∀x ∈ X . (8)

2Weight factorw can be considered as the priority of minimizing the loss incurred in the data-link layer as opposed to the

loss incurred in the PHY layer.

3ctr is derived based on̄Pb = 1
2
erfc(

√
Ptrγ), which determines the average BER when transmitting BPSK packets with

powerPtr through a channel whose SNR isγ.
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It is shown in [25] that (8) can be solved by DP [11]

V (x) := min
a

{

c(x, a) + β
∑

x′

P a
xx′V (x′)

}

, ∀x. (9)

Let n denote the iteration index. The sequence{V (n)(x)} generated by (9) converges for allx

[26]. Usually, a small thresholdǫ > 0 is applied so that iteration (9) terminates if|V (N−1)(x)−

V (N)(x)| ≤ ǫ for all x with N < ∞. In this paper, we useǫ = 10−4. The optimal policyθ∗ is

determined by

θ∗(x) = argmin
a∈A

{

c(x, a) + β
∑

x′

P a
xx′V (N)(x′)

}

, ∀x, (10)

To assist the analysis in Section III, we define an auxiliary functionQ as the minimand in (9),

i.e.,

Q(x, a) = c(x, a) + β
∑

x′

P a
xx′V (x′). (11)

Since the MDP under consideration is stationary, we drop thenotationt in (9) to (11) and use

x andx′ to denote variables at the current and next decision epochs,respectively. We will do

so in the rest of the paper.

Consider the DP algorithm described in (9). In each iteration, to do the minimization in (9),

every combination of the state variables must be considered, which give rise to two problems. One

is the curse of dimensionality [11]: The time complexity grows drastically with the cardinality or

the dimension of the state space in MDP. The other is that the full knowledge (including the state

space and the state transition probabilities) of MDP shouldbe known before running DP, which

makes DP unsuitable for online applications. In the next section and Section IV, we show that

problem (8) can be solved by DSA algorithms. The DSA algorithms involve lower complexity

than DP and are suitable for online applications since they are simulation-based algorithms. We

will discuss the advantages of DSA algorithms over DP in detail in Section V-C.

III. D ISCRETE CONVEX OPTIMIZATION

In this section, we show that problem (8) can be converted to adiscrete convex optimization

problem due to the submodularity of DP.
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A. Preliminaries

We first introduce some concepts concerning the definition ofdiscrete convexity. For a mul-

tivariate discrete function, there are different ways to define the convexity. We consider two of

them: discrete separable convexity andL♮-convexity.

Definition 3.1 (discrete separable convexity [27]):Let f(x) =
∑D

d=1 fd(xd), wheref : ZD 7→

R+, fd : Z 7→ R+ for all d andx = (x1, . . . , xD). f(x) is discrete separable convex function if

fd is convex4 for all d.

Definition 3.2 (submodularity [28], [29]):Let ei ∈ Z
D be aD-tuple with all zero entries

except theith entry being one.f : ZD 7→ R+ is submodular iff(x + ei) + f(x + ej) ≥

f(x) + f(x+ ei + ej) for all x ∈ Z
D and1 ≤ i, j ≤ D.

Definition 3.3 (L♮-convexiy [28]): f : ZD 7→ R+ is L♮-convex if ψf (x, ζ) = f(x − ζ1) is

submodular in(x, ζ), where1 = (1, 1, . . . , 1) ∈ Z
D and ζ ∈ Z.

Separable convexity is the simplest case in multivariate discrete convexity, the minimization

of which is easy to solve: the minimizer can be searched inD directions one-by-one [27].L♮-

convexity is defined based on the mid-point discrete convexity [28]: An L♮-convex functionf

satisfies

f(x) + f(y) ≥ f
(⌊x+ y

2

⌋)

+ f
(⌈x+ y

2

⌉)

(12)

for all x,y ∈ Z
D, where⌊x⌋ and⌈x⌉ are the largest integer less thanx and the smallest integer

greater thanx, respectively.5 Every discrete separable function is alsoL♮-convex [27].

B. Monotonic Optimal Policy

In this section, we show the monotonicity of optimal transmission policyθ∗ in the queue state

b.

Proposition 3.4:Q(x, a) is submodular in(b, a) for all h.

Proof: FunctionQ(x, a) in (11) can be rewritten as

Q(x, a) = Q(b, h, a)

= ctr(h, a) +
∑

h′

Phh′Ef

[

w
[

[b− a]+ + f − L
]+

+ βV (min{[b− a]+ + f, L}, h′)

]

.

4A univariate discrete functionf : Z 7→ R+ is convex iff(x+ 1) + f(x− 1) ≥ 2f(x) for all x ∈ Z.

5Let x,y ∈ R
D wherex = (x1, . . . , xD) andy = (y1, . . . , yD). We say thatx ≥ y if xd ≥ yd for all d ∈ {1, . . . , D}.
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(a) the optimal policyθ∗ as a function of queue stateb

and channel stateh

1
20

5
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h

φ
∗ h

(b) the optimal queue thresholdsφ∗
h = min{b : θ∗(b, h) =

1}

Fig. 2. The optimal policy and queue threshold vector in a single-user system (Fig. 1), wherew = 4, f (t) ∼ Bernoulli(0.5)

for all t, P̄b = 0.01 andL = 10. The channel is modeled by a2-state FSMC.

Here,Q is nondecreasing inb and submodular in(b, a) for all V (b′, h′) that is nondecreasing

and convex inb′ (see proof in Appendix A);V (b, h) = minaQ(b, h, a) is nondecreasing and

convex inb for all Q(b, h, a) that is nondecreasing inb and submodular in(b, a) (see proof in

Appendix B). Assume that DP starts withV (0)(x) = 0 for all x. Then, by induction, Theorem 3.6

holds. The optimal policyθ∗ is nondecreasing inb for all h.

Remark 3.5:Submodularity is a commonly seen property of queue departure controlled prob-

lems. One can refer to [5], [13]–[15] for the proofs of submodularity of Q(x, a) when different

definitions ofcq and ctr are used, e.g.,cq = b
E[f ]

as in [13].

Based on Proposition 3.4, we can prove the monotonicity of the optimal policy in queue state

as follows.

Theorem 3.6:The optimal policyθ∗, the solution of (8), is nondecreasing inb for all h, i.e.,

θ∗ is in the form of

θ∗(b, h) = I{b≥φ∗
h}

=











1 b ≥ φ∗
h

0 b < φ∗
h

, (13)

whereφ∗
h is the optimal queue threshold associated with channel state h.

Proof: We use the following property of submodular functions [30]:If Q is submodular

in (b, a) for all h, the minimizera∗(x) = argminaQ(x, a) is nondecreasing inb for all h.

According to Proposition 3.4,Q(x, a) = c(x, a) + β
∑

x′ P a
xx′V (N)(x′) is submodular in(b, a)

for all h. Therefore,θ∗ is nondecreasing inb. Theorem holds.
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C. Discrete Convex Minimization Problem

Let φ∗
h = min{b : θ∗(x) = 1}. It follows that the optimal monotonic policyθ∗ is fully charac-

terized by the optimal queue thresholdsφ∗
h for all h if Theorem 3.6 holds. There is an example

of optimal queue thresholdφ∗
h in Fig. 2. Letθ ba a deterministic policy that is nondecreasing in

b. Define a threshold vectorφ = (φ1, φ2, . . . , φ|H|), whereφh = min{b : θ(b, h) = 1} ∈ B. We

show in the following theorem that (8) can be converted to a queue threshold vector optimization

problem with a discrete convex objective function.

Theorem 3.7:Let Φ = B|H|. If Theorem 3.6 holds, then (8) is equivalent to

min
φ∈Φ

J(φ), (14)

where the objective function

J(φ) =
∑

x

E

[ ∞
∑

t=0

βtc(x(t), I{b(t)≥φ
h(t)

})
∣

∣

∣
x(0) = x

]

(15)

is both discrete separable convex andL♮-convex inφ.

Proof: Let θ be the policy determined byφ throughθ(b, h) = I{b≥φh}. According to (7),

we haveJ(φ) =
∑

x
Vθ(x). Therefore, (8) is equivalent tominφ J(φ). Define Vb(h, φh) =

∑

bQ(b, h, I{b≥φh}). Due to the submodularity ofQ in (b, a), we have

Vb(h, φh + 1) + Vb(h, φh − 1)− 2Vb(h, φh)

= Q(φh, h, 0)−Q(φh − 1, h, 0) +Q(φh − 1, h, 1)−Q(φh, h, 1) ≥ 0. (16)

So,Vb is convex inφh for all h. SinceJ can be expressed in the form of

J(φ) =
∑

h

∑

b

Q(b, h, I{b≥φh})

=
∑

h

Vb(h, φh). (17)

By Definition 3.1,J is discrete separable convex inφ. Since every discrete separable convex

function isL♮-convex,J is alsoL♮-convex inφ.

Problem (14) is different from the conventional convex optimization problems. Firstly, (14)

is an integer programming, or discrete optimization, problem where most of the techniques

designed for continuous optimization may not be directly applicable. Secondly, the objective

functionJ in (14) is an expectation, i.e., (14) is a stochastic optimization problem rather than a

deterministic one. Therefore, we consider DSA algorithms,the SA algorithms that is exclusively

proposed for discrete stochastic minimization problems, for solving (14) in the next section.
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Algorithm 1: DSA [18], [23]

input : initial guessφ̃
(0)

(a D-tuple), total number of iterationsN , step size parametersA, B andα

output: [φ̃
(N)

], the closest integer point tõφ
(N)

by Euclidean distance.

begin

for n=1 to N do

a(n) = A
(B+n)α ;

obtaing at φ̃
(n−1)

by usingĴ ;

φ̃
(n)

= φ̃
(n−1)

− a(n)g(φ̃
(n−1)

);

endfor

end

IV. D ISCRETE STOCHASTIC APPROXIMATION

This section focuses on two DSA algorithms, DSPSA [23] andL♮-convex SA [18], for solving

problem (14). They are specifically designed for discrete convex minimization problems where

almost sure convergence performance is achievable. But, itshould be pointed out that the solution

to problem (14) is not restricted to DSA methods. With the objective function being discrete

convex, there may exist many methods that converge with probability 1 [31], e.g., random search

[32], simulated annealing [33]. This paper considers two such methods where the conditions for

almost sure convergence for problem (14) are straightforwardly satisfied.

Both DSPSA andL♮-convex SA are based on a line search method. They assume thata noisy

measurement ofJ ,

Ĵ(φ) = J(φ) + z, (18)

is obtainable. Here,z is the random measurement noise. They follow the procedure of DSA

algorithm as shown in Algorithm 1. Each of them generates a sequence of estimations{φ̃(n)}

by a line search iteration

φ̃ := φ̃− ag(φ̃). (19)

For problem (14),D is the dimension of̃φ
(n)

, and φ̃
(n)

∈ Φ̃ = [0, L]D. The two algorithms

differ in how they obtain the gradientg(φ̃
(n)

).

March 3, 2022 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 14

0

1

2

3

0

1

2

3
0

50

100

150

200

φ1
φ2

f
(a) anL♮-convex functionf : {0, . . . , 3}2 7→ R+

0

1

2

3

0

1

2

3
0

50

100

150

200

φ̃1
φ̃2

f̃

(b) the PLI functionf̃ : [0, 3]2 7→ R+

Fig. 3. An example of PLI function. Letφ = (φ1, φ2) ∈ {0, . . . , 3}2 and φ̃ = (φ̃1, φ̃2) ∈ [0, 3]2. According to [18], [28],

minφ f(φ) = minφ̃ f̃(φ̃) andargminφ f(φ) = argminφ̃ f̃(φ̃).

A. Discrete Simultaneous Perturbation Stochastic Approximation [23]

Let ∆ = (∆1, . . . ,∆D) with each tuple∆d ∈ {−1, 1} being independent Bernoulli random

variables with probability0.5. Thedth entry ofg(φ̃
(n)

) is obtained by

gd(φ̃
(n)

) =

[

Ĵ
(

⌊φ̃
(n)

⌋+
1 +∆

2

)

− Ĵ
(

⌊φ̃
(n)

⌋+
1−∆

2

)

]

∆−1
d . (20)

As explained in [23],g is obtained as the gradient based on the discrete mid-point convexity. For

separable discrete convex minimization problem, the sequence {φ̃
(n)

} converges almost surely

if the standard conditions6 are satisfied [23].

B. L♮-convex Stochastic Approximation [18]

L♮-convex SA is in fact applied to the piecewise linear interpolation (PLI) of the discrete

objective function. The PLI of anL♮-convex function is defined as follows.

6The standard conditions area(n) > 0, limn→∞ a(n) = 0,
∑

n a(n) = ∞,
∑

n(a
(n))2 < ∞ and z has zero mean and

uniformly bounded variance.

March 3, 2022 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 15

Let φ̃ ∈ Φ̃ . Denotep = ⌊φ̃⌋, q = φ̃− p and

Ud =











∅, d = 0

{σ(1), . . . , σ(d)}, d 6= 0
, (21)

where σ is the permutation of(1, . . . , D) such thatσ(d) is the index of thedth largest of

q1, . . . , qD, the components inq. Let χUd
∈ {0, 1}D be a characteristic vector whosedth entry

is 1 whend belongs toUd and0 otherwise. IfJ is a discrete function inφ, its PLI function J̃

is defined by

J̃(φ) =(1− qσ(1))J(p) + (qσ(1) − qσ(2))J(p+ χU1
) . . .

+ qσ(D)J(p+ χUD
). (22)

If J is anL♮-convex function inφ, J̃ is a continuous convex function iñφ, and the minimizers and

minima of J̃ agree with those ofJ [27] (See Fig. 3 for an example). Therefore, the minimizers

of J can be approximated by a line search algorithm applied toJ̃ . In L♮-convex SA,g(φ̃
(n)

) is

obtained as a subgradient7of J̃ . This subgradient is calculated by using the noisy measurements

Ĵ as follows.

DefineY (d) such that

Y (0) = Ĵ(p(n)),

Y (d) = Ĵ(p(n) + χUd
), (23)

wherep(n) = ⌊φ̃
(n)

⌋ andχUd
is obtained by usingq(n) = φ̃

(n)
−p(n). Thedth entry of subgradient

g at φ̃
(n)

is

gd(φ̃
(n)

) = Y (σ(d))− Y (σ(d)− 1). (24)

Unlike DSPSA,L♮-convex SA does not using random perturbations to estimateg. Instead, it

usesD + 1 measurements of̂J to get more accurate estimate of the descent direction. If the

standard conditions are satisfied, the sequence{φ̃
(n)

} converges almost surely forL♮-convex

minimization problems [18]. It is also shown in [35] that{φ̃
(n)

} converges with a rate of1/n

on average.

7ρ(x) is called the subgradient off at x if f(y)− f(x) ≥ ρ(x)(y−x) [34]. For a nonsmooth function, there may be more

than one subgradient atx. The work in [18] shows how to calculate one such subgradient.
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C. Implementation of DSA Algorithms

We list below the implement details when we apply two DSA methods to produce the results

in Section V.

1) Step Size:The step size parameters,A, B and α, in Algorithm 1 are crucial for the

convergence performance of DSA algorithms. As aforementioned, they must be chosen to satisfy

the standard conditions. We adopt the method of choosingA, B andα suggested in [36] for

practical problems where the computation budgetN , the total number of iterations, is fixed:

B = 0.095N , α = 0.602 andA is chosen so thatA/(B + 1)α‖g(φ̃
(0)
)‖ achieves the desired

change ofφ̃
(1)

. In all the experiments in Section V, we assigñφ
(0)

= 0 and N = 500.

Therefore,B is fixed to 47.5. We assume the desired value ofA/(B + 1)α‖g(φ̃
(0)
)‖ is 0.1.

Before each time we implement DSPSA orL♮-convex SA, we run100 repetitions to obtain a

reliable estimation of‖g(φ̃
(0)
)‖ (the value averaged over repetitions) and then selectA such

that A/(B + 1)α‖g(φ̃
(0)
)‖ = 0.1. Since‖g(φ̃

(0)
)‖ varies with each system and DSA method,

we show the value ofA for each experiment in Section V.

2) Obtaining Ĵ : The method of obtaininĝJ at φ is to simulate the state sequence{x(t)}.

Here,x(t) varies according to the Markov chain that is governed by the transition probability

Pr(x(t+1)|x(t)) = P
θ(x(t))

x(t)x(t+1), whereθ(x) = I{b≥φh}. We obtainĴ as

Ĵ(φ) =
1

Nr

∑

x(0)∈X

Nr
∑

i=1

T
∑

t=0

βtc(x(t), I{b(t)≥φh}
), (25)

i.e., Ĵ is the value averaged overNr simulations.8 We fix Nr to 100. The simulation lengthT

depends onβ, i.e., the simulation stops until the increments over several successive decision

epochs is blow a small threshold (10−4). In this paper,β is fixed to0.95.

V. NUMERICAL RESULTS

In this section, we run experiments in three cross-layer on-off transmission control systems,

one single-user and two multi-user systems. In each system,we implement two DSA algo-

rithms, DSPSA andL♮-convex SA. Their convergence performances are compared toa CSPSA

algorithm.

8Most SPSA algorithms just require a single simulation to obtain Ĵ(φ). We use repetition because the average value of

multiple simulations was suggested in [18], [19] to improvethe convergence performance.
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The CSPSA algorithm is an SA algorithm that is originally proposed for continuous stochastic

minimization problems. It follows the same procedure as in Algorithm 1. It uses the same

perturbation vector∆ as in DSPSA to obtain the gradientg. But, thedth entry ofg(φ̃
(n)

) is

given by

gd(φ̃
(n)

) =
Ĵ(Γ(φ̃

(n)
+∆d))− Ĵ(Γ(φ̃

(n)
−∆d))

2c(n)∆d

,

wherec(n) = C
nρ andΓ is the projection function proposed in [17] and is given by

Γ(φ̃) =











⌊φ̃⌋ w/ prob. ⌈φ̃⌉−φ̃

⌈φ̃⌉−⌊φ̃⌋

⌈φ̃⌉ w/ prob. φ̃−⌊φ̃⌋

⌈φ̃⌉−⌊φ̃⌋

. (26)

The method to implementΓ(φ̃) is: The scheduler adopts⌊φ̃⌋ sometimes and⌈φ̃⌉ the other times

so that in the long run it chooses policy⌊φ̃⌋ with probability ⌈φ̃⌉−φ̃

⌈φ̃⌉−⌊φ̃⌋
and⌈φ̃⌉ with probability

φ̃−⌊φ̃⌋

⌈φ̃⌉−⌊φ̃⌋
. The step size parameters for CSPSA areA, B, α, C and ρ. They are also chosen by

following the suggestion in [36]. We setB = 0.095N , α = 0.602, C = 1 andρ = 0.101. A is

chosen so thatA/(B + 1)α‖g(φ̃
(0)
)‖ = 0.1. The value ofA is given in each experiment.

We also run DP to obtain the optimal policyθ∗. φ∗, the optimal threshold vector, andJ(φ∗), the

minimum of (14), are calculated by using (13) and (15), respectively. We show the convergence

performance in terms of the following two metrics:

• J([φ̃
(n)

]): the value of the objective function at[φ̃
(n)

], the closest integer point tõφ
(n)

;

•
‖φ̃

(n)
−φ∗‖

‖φ̃
(0)

−φ∗‖
: the normalized error of the estimatioñφ

(n)
.

A. Single-user System

Consider the on-off transmission control system in Fig. 1. We setw = 4, L = 10, pf = 0.5

and P̄b = 0.01. Let the channel experience slow and flat Rayleigh fading with average SNR

being0dB and maximum doppler shift being10Hz. We adopt an8-state FSMC model. In this

experiment, the step size parameterA is 0.75 for DSPSA,0.9 for L♮-convex SA and0.7 for

CSPSA. The results are shown in Fig. 4. It can be seen that the convergence performance of

DSPSA is comparable to that of CSPSA.L♮-convex SA has{J([φ̃
(n)

])} converges faster than

DSPSA and CSPSA.
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Fig. 4. Convergence performances of DSPSA,L♮-convex SA and CSPSA in a single-user system, where channel is modeled

by a 8-state FSMC.w = 4, f (t) ∼ Bernoulli(0.5) for all t, P̄b = 0.01 andL = 10. The dimension ofφ is 8.

B. Multi-user Systems

In a multi-user system, we denotei the user index. The packets sent from useri is buffered

by a queue (We call it queuei), and the departure packets of queuei are transmitted through

channeli. We use subscripti to denote the variable associated to useri. Let Li be the length of

queuei. We assume all queues has the same length, i.e.,Li = L for all i. The actionai ∈ {0, 1}

determines the number of packets departs from queuei. We assume that the Assumptions 2.1 to

2.3 hold for each user. In this section, we run experiments ina five-user orthogonal frequency-

division multiple-access (OFDMA) system and a four-user network-coded two-way relay channel

(NC-TWRC) system. In both systems, we setL = 5, w = 4 and P̄b = 0.01.
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Fig. 5. There are five users in the OFDMA system. Each user is assigned a queue and a subcarrier. The packets sent from

useri is buffered by the queue. The departing packets from all queues are modulated by BPSK symbols and transmitted by the

orthogonal frequency-division multiplexing (OFDM) transmitter

1) Five-user OFDM System:Consider the OFDMA system as shown in Fig. 5.9 There are five

users in this system. The scheduler assigns each user a subcarrier. The departing packets from

queues are modulated by BPSK symbols and transmitted by the orthogonal frequency-division

multiplexing (OFDM) transmitter. The departures of all queues are controlled by one scheduler.

We assumepf1 = 0.2, pf2 = 0.4 and pfi = 0.5 for all i ∈ {3, 4, 5}. In this system, channeli

denotes the subcarrieri, i.e.,γ(t)i denotes the instantaneous SNR of subcarrieri. We assume that

each channel has the average SNR0dB and is modeled by a 4-state FSMC.

In this system, we can formulate an MDP model as in Section II for each user. For example,

the MDP model for useri has the statex = (bi, hi), actiona = ai ∈ {0, 1} and the state transition

probability and the immediate cost are the same as describedin Section II. There is an optimal

policy θ∗i to each MDP model.θ∗i (bi, hi) determines an optimal action to queuei for state(bi, hi).

It can be seen that Theorem 3.6 holds for all MDPs. Therefore,θ∗i (bi, hi) is nondecreasing in

bi for all i. Let the optimal policy in the entire system beθ∗ = (θ∗1, . . . , θ
∗
5). We construct the

threshold vector as follows. Letφ = (φ1, . . . ,φ5) whereφi is the queue threshold vector of user

i and is constructed by stackingφhi
= min{bi : θi(bi, hi) = 1} for all hi. Ĵ(φ) is the simulation

value of the objective that is summed over all users.10 In this system, sinceφi is a 8-tuple for

all i ∈ {1, . . . , 5}, the dimension ofφ is 40. We show the convergence performance of DSPSA,

9This system is a special case of the OFDMA system proposed [37]. The difference is that the problem in [37] is a variable

rate adaptation one, while, in this paper, the scheduler is restricted to choose only transmit or not.

10The idea is to simulatêJi(φi) for all users.Ĵi(φi) is obtained aŝJi(φi) =
1

Nr

∑Nr

i=1

∑
x
(0)∈X

∑T
t=0 β

tc(x(t), I
{b

(t)
i

≥φhi
}
)

for useri. We takeĴ(φ) =
∑

i Ĵi(φi).
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Fig. 6. Convergence performances of DSPSA,L♮-convex SA and CSPSA in a five-user OFDMA system (in Fig. 5). Each

channel/subcarrier is modeled by a4-state FSMC. In this system,Li = 5 for all i ∈ {1, . . . , 5}, pf1 = 0.2, pf2 = 0.4 and

pf3 = pf4 = pf5 = 0.5. The dimension of the threshold vectorφ is 40.

L♮-convex SA and CSPSA in Fig. 6. The step size parameterA is 0.63 for DSPSA,0.68 for

L♮-convex SA and0.6 for CSPSA. It can be seen thatL♮-convex SA still has the best converge

performance. But, unlike in the single-user system, DSPSA converges faster than CSPSA.

2) Four-user Two Way Relay Channel:Fig. 7 shows a transmission control problem in a four-

user NC-TWRC system. There are two pairs of users communicating with each other via the

relay: User 1 exchanges packets with user 2; User 3 exchangespackets with user 4. A scheduler

at the relay controls the downlink packet flows for four users. Network coding (XORing) is

allowed in this system. If the scheduler decides to transmitone packet from each user in any

pair, the two packets will be XORed and broadcast. Otherwise, the departing packets are simply

forwarded to the destination. Take users 1 and 2 for example.If a1 = a2 = 1, the departing
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Fig. 7. Four-user on-off transmission control problem in NC-TWRC [8]. User 1 communicates with user 2, and user 3

communicates with user 4. A scheduler controls the outflows of all queues.

packets from users1 and 2 are XORed and broadcast in order to save transmission power;If

a1 = 1, a2 = 0 or a1 = 0, a2 = 1, the relay simply forwards the packet to the destination. The

same applies to users3 and 4. We assume that the downlink channels are orthogonal so that

the relay can simultaneously exchange packets for both pairs of users. We setpfi = 0.5 for all

i ∈ {1, . . . , 4}.

In this system, the transmission control problem of each pair of users can be modeled by

an MDP. We show the MDP model for users1 and 2 as follows. The MDP for users3 and

4 can be derived in the same way. The MDP model for users1 and 2 has the system state

x = (b1, h1, b2, h2) and actiona = (a1, a2) ∈ {0, 1}2. The state transition probability isP a

xx′ =

Π2
i=1P

ai
bib

′
i
Phih

′
i
. The immediate costs is defined as

c(x, a) =
2

∑

i=1

(

cq(bi, ai) + ctr(hi, ai)
)

+ I{a1=1 or a2=1}.

Here, c(x, a) contains two parts: the sum ofcq and ctr incurred at both user1 and user2 and

I{a1=1 or a2=1} which is the cost that is proportional to the power consumption at the relay [8]. In

this MDP, the optimal policy contains two parts:θ∗1 andθ∗2. θ∗1(x) andθ∗2(x) determine the optimal

action to queue1 and queue2, respectively, for a certain statex. By following the same approach

as the proof in Proposition 3.4, one can show that functionQ(x, a) is submodular in(bi, ai)

for all i ∈ {1, 2}. The optimal policiesθ∗1 and θ∗2 are nondecreasing inb1 and b2, respectively.

Likewise, for the MDP model for users3 and4, the optimal policyθ∗3 andθ∗4 is nondecreasing

in b3 and b4, respectively. The optimal policy in the entire system isθ∗ = (θ∗1, . . . , θ
∗
4).

Let φi be the queue threshold vector to queuei. φ1 is constructed by stackingφh1b2h2 =
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Fig. 8. Convergence performances of DSPSA,L♮-convex SA and CSPSA in a four-user NC-TWRC system in Fig. 7. The

channels are modeled by4-state FSMC. In this system,pfi = 0.5 andLi = 5 for all i ∈ {1, . . . , 4}. The dimension of the

threshold vectorφ is 320.

min{b1 : θ1(x) = 1} for all values of(h1, b2, h2), andφ2 is constructed by stackingφb1h1h2 =

min{b2 : θ2(x) = 1} for all (b1, h1, h2). φ3 and φ4 are constructed in the same way. In this

system,φi is an 80-tuple variable for alli ∈ {1, . . . , 4}. The queue threshold vector in the

entire system isφ = (φ1, . . . ,φ4), the dimension of which is320. We show the convergence

performance of DSPSA,L♮-convex SA and CSPSA in Fig. 8. The step size parameterA is 0.43

for DSPSA,0.6 for L♮-convex SA and0.4 for CSPSA. The results are similar as in Fig. 6:

L♮-convex SA converges faster than DSPSA, and DSPSA convergesfaster than CSPSA.

C. Accuracy and Complexity

We compare the DP and three SA algorithms, DSPSA,L♮-convex SA and CSPSA as follows.
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1) SA vs. DP:Based on (9), the complexity in each iteration of DP isO(|X |2 · |A|).11 Let

α be the complexity of obtaining the simulated value of
∑Nr

i=1

∑T
t=0 β

tc(x(t), I{b(t)≥φh}
) in (25)

andD be the dimension of the threshold vectorφ. In each iteration, the complexity of both

DSPSA and CSPSA isO(|X | ·α), and the complexity ofL♮-convex SA isO(D · |X | ·α). Here,

the complexityα is incurred by simulation instead of calculation. Also,D is smaller than|X |.

For example, in the single-user system in Section V-A, the number of states is|X | = 88 and the

dimension ofφ is D = 8. Therefore, the complexity of SA algorithms is lower than that of DP.

Moreover, the three SA algorithms are simulation-based algorithms, the runs of which do not

require the full knowledge of the MDP model. Based on (25), toobtainĴ , one only requires the

knowledge of the state space and a simulation model that can generate a state sequence based on

a given threshold policy and the statistics of packet arrival and channel variation processes. By

SA algorithms, it is possible for the scheduler to learn the optimal policy online. For example,

assume that we apply DSPSA to the single-user system in Section V-A. At the beginning,̃φ
(0)

is

any arbitrary threshold policy. The scheduler adopts policies⌊φ̃
(0)
⌋+ 1+∆

2
and⌊φ̃

(0)
⌋+ 1−∆

2
for

a while and obtains corresponding values ofĴ based on the actual immediate costs incurred. It

then obtainsg as in (20) and adapts to the new threshold policyφ(1). By repeating this process,

the scheduler can slowly update the policy towards the optimal one.

2) DSPSA and CSPSA vs.L♮-convex SA:From Figs. 4, 6 and 8, it can be seen thatL♮-convex

SA always converges faster than DSPSA and CSPSA. However, the complexity ofL♮-convex

SA depends onD, the dimension ofφ, and can be much higher than DSPSA and CSPSA in

multi-user systems. In each iteration,L♮-convex SA requiresD + 1 measurements of̂J . For

example, letm be the total number of users in the system, and let|B| and|H| be the cardinality

of the queue and channel states, respectively, that is associated with one user. For the single-

user system in SectionV-A,L♮-convex SA requires|H| + 1 values ofĴ in each iteration. But,

L♮-convex SA requiresm · |H|+1 andm
2
· |B|· |H|2+1 values ofĴ in each iteration for the multi-

user systems in Sections V-B1 and V-B2, respectively. If anm-user system is modeled by one

MDP, e.g., the MDP model in [14], the dimension ofφ is m|B|m−1|H|m, i.e., the complexity of

L♮-convex SA may grow exponentially with the number of users. On the contrary, both DSPSA

11There are|X | minimization operations, each of which requires|A| calculations ofQ, and eachQ value requires|X |
multiplications over statex′.
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and CSPSA are perturbation-based algorithms which always require only2 measurements of̂J

in each iteration for all systems no matter how large the state space of the MDP is. Therefore,

the complexity of DSPSA and CSPSA is much lower thanL♮-convex SA in multi-user systems.

3) DSPSA vs. CSPSA:DSPSA is the algorithm that is directly proposed for discrete convex

minimization problems. The gradientg in DSPSA is obtained based on the definition of mid-

point convexity [23]. CSPSA is a discrete version of an SA algorithm that is originally proposed

for continuous minimization problems. Based on Fig. 4, DSPSA converges at the same speed as

CSPSA in the single-user system. But, based on Figs. 6 and 8, the convergence performance of

DSPSA is better than that of CSPSA in multi-user systems. However, even if the performance

of DSPSA is comparable to CSPSA in the single-user system, itshould be noted that DSPSA

is simpler to implement than CSPSA. In CSPSA, a projection function Γ in (26) is used. The

idea ofΓ(φ̃) is to treat the real-valued̃φ as a threshold policy that is a randomized mixture of

two deterministic ones,⌊φ̃⌋ and ⌈φ̃⌉. On the contrary, in DSPSA, the scheduler only needs to

follow one deterministic policy to for each value of̂J . Therefore, although both DSPSA and

CSPSA require2 measurements of̂J in each iteration, the complexity of DSPSA is lower than

that of CSPSA since DSPSA does not need to implement the projection function.

The results above can be used to guide the implementation of the SA algorithms in practical

systems. For example, if one finds that the discrete convexity exists in some cross-layer on-off

transmission control system, an SA algorithm with lower complexity than DP may be run to

approximate the optimal policy. Also, it is better to chooseDSA algorithms that is directly

proposed for the discrete convexity, e.g., DSPSA andL♮-convex SA, rather than CSPSA. In a

multi-user system, since the complexity ofL♮-convex SA is high, one can just implement DSPSA

which achieves best trade-off between accuracy and complexity. It should also be pointed out

that the main contribution of this paper is the formulation and proof of discrete convexity of

the minimization problem (14). The solution of this problemis not restricted to the DSPSA,

L♮-convex SA or CSPSA presented in this paper. One may find more efficient algorithms in

discrete stochastic minimization literature, and the results derived in this paper can be used to

show the global and almost sure convergence. For example, ifan algorithm has higher accuracy

than DSPSA and lower complexity thanL♮-convex SA but only converges to local optimizer,

then one directly know it converges globally when it appliesto problem (14).
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VI. CONCLUSION

In this paper, we formulated a multivariate minimization problem for searching the optimal

queue threshold policy in a cross-layer on-off transmission control system. We proved that the

objective function of minimization problem was both discrete separable convex andL♮-convex if

the DP was submodular. We proposed to use two DSA algorithms,DSPSA andL♮-convex SA,

to approximate the optimal policy. We applied the two DSA algorithms and a CSPSA algorithm

in single-user and multi-user systems. The results showed that:L♮-convex SA always converged

faster than DSPSA and CSPSA; DSPSA converged faster than CSPSA in multi-user systems.

We also analyzed the complexity of the two DSA and CSPSA algorithms to show that: the

complexity ofL♮-convex SA grew much higher than DSPSA and CSPSA in multi-user systems;

The complexity of DSPSA was lower than CSPSA.

Finally, we point out two possible extensions of the work in this paper: One may design

more efficient SA or stochastic optimization algorithms based on the discrete convexity of the

on-off transmission control problem, e.g., an SA algorithmthat is more accurate than DSPSA

and involves less complexity thanL♮-convex SA; It would be of interest if the convexity of the

optimization problem can be found in a variable rate cross-layer adaptive modulation system,

e.g., cross-layerm-QAM modulation system.

APPENDIX A

Assume thatV (b′, h′) is nondecreasing and convex inb′. Define

ϕ(y, f, h′) = w
[

[y]+ + f − L
]+

+ βV (min{[y]+ + f, L}, h′).

Then,Q(b, h, a) = ctr(h, a) +
∑

h′ Phh′Ef [ϕ(b− a, f, h′)]. Consider the convexity ofϕ in y. We

have

ϕ(y + 1, f, h′) + ϕ(y − 1, f, h′)− 2ϕ(y, f, h′)

=



















































0 y = −1

β(V (1 + f, h′)− V (f, h′)) ≥ 0 y = 0

w + β(V (L− 1, h′)− V (L, h′) y + f = L

0 y + f = L+ 1

β
(

V (y + 1 + f, h′) + V (y − 1 + f, h′)− V (y + f, h′)
)

≥ 0 otherwise

.

March 3, 2022 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 26

Let a∗(b, h) = argminaQ(b, h, a). Then,V (b, h) = Q(b, h, a∗(b, h)). Since

w + β(V (L− 1, h′)− V (L, h′))

= w + β(Q(L− 1, h′, a∗(L− 1, h′))−Q(L, h′, a∗(L, h′)))

≥ w + β(Q(L− 1, h′, a∗(L− 1, h′))−Q(L, h′, a∗(L− 1, h′)))

≥ w(1− β) ≥ 0, (27)

ϕ is convex iny. Consider the submodularity ofQ in (b, a). Since

Q(b+ 1, h, 0) +Q(b, h, 1)−Q(b, h, 0)−Q(b, h, 1)

=
∑

h′

Phh′Ef

[

ϕ(b+ 1, f, h′) + ϕ(b, f, h′)− 2ϕ(b− 1, f, h′)
]

≥ 0, (28)

based on Definition 3.2,Q is submodular in(b, a) for all h. Consider the monotonicity ofϕ in

y. It is straightforward to see that both[[y]+ + f − L] andmin{[y]+ + f, L} are nondecreasing

in y for all (f, h′). SinceV is nondecreasing inb′, ϕ is nondecreasing iny. We have

Q(b+ 1, h, a)−Q(b, h, a)

=
∑

h′

Phh′Ef

[

ϕ(b− a+ 1, f, h′)− ϕ(b− a, f, h′)
]

≥ 0.

Therefore,Q is nondecreasing inb for all (h, a).

APPENDIX B

Assume thatQ is submodular in(b, a) and nondecreasing inb. Due to the submodularity of

Q in (b, a),

a∗(b+ 1, h) ≥ a∗(b, h) ≥ a∗(b− 1, h).

It is easy to see thatctr defined in (6) is convex ina for all h. Recall that the submodularity of

Q in (b, a) is equivalent to the convexity ofϕ in y. We have

V (b+ 1, h) + V (b− 1, h)− 2V (b, h)

= Q(b+ 1, h, a∗(b+ 1, h)) +Q(b− 1, h, a∗(b− 1, h))− 2Q(b, h, a∗(b, h))

≥ Q(b+ 1, h, a∗(b+ 1, h)) +Q(b− 1, h, a∗(b− 1, h))

−Q(b, h, a∗(b+ 1, h))−Q(b, h, a∗(b− 1, h)). (29)
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For a∗(b + 1, h) = a∗(b − 1, h) + 1, (29) equals0, and fora∗(b + 1, h) = a∗(b − 1, h), (29) is

greater or equal to0. Therefore,V is convex inb. Recall that the monotonicity ofQ in b is

given by the monotonicity ofϕ in y. We have

V (b+ 1, h)− V (b, h)

= Q(b+ 1, h, a∗(b+ 1, h))−Q(b, h, a∗(b, h))

≥ Q(b+ 1, h, a∗(b+ 1, h))−Q(b, h, a∗(b+ 1, h))

=
∑

h′

Phh′Ef

[

ϕ(b+ 1− a∗(b+ 1, h), f, h′)− ϕ(b− a∗(b+ 1, h), f, h′)
]

≥ 0. (30)

Therefore,V is nondecreasing inb for all h.
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[22] S. D. Hill, L. Gerencsér, and Z. Vágó, “Stochastic approximation on discrete sets using simultaneous difference

approximations,” inProc. American Control Conf., Boston, MA, 2004, pp. 2795–2798.

[23] Q. Wang and J. C. Spall, “Discrete simultaneous perturbation stochastic approximation on loss function with noisy

measurements,” inProc. American Control Conf., San Francisco, CA, 2011, pp. 4520–4525.

[24] S. Asmussen, “Applied probability and queues,” New York: Springer, 2003.

[25] S. Dreyfus, “Richard Bellman on the birth of dynamic programming,”Oper. Res., vol. 50, no. 1, pp. 48–51, Jan./Feb. 2002.

[26] M. L. Puterman, “Markov Decision Processes: Discrete Stochastic Dynamic Programming,” 1st ed. New York: John Wiley

& Sons, Inc., 1994.

[27] K. Murota, “Note on multimodularity and L-convexity,”Math. Oper. Res., vol. 30, no. 3, pp. 658–661, Aug. 2005.

[28] ——, “Discrete convex analysis,” Philadelphia: SIAM, 2003.

[29] B. Hajek, “Extremal splittings of point processes,”Math. Oper. Res., vol. 10, no. 4, pp. 543–556, Nov. 1985.

[30] D. M. Topkis, “Minimizing a submodular function on a lattice,” Oper. Res., vol. 26, no. 2, pp. 305–321, Mar./Apr. 1978.
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