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Abstract

This paper considers the discrete convexity of a cross-lapeoff transmission control problem
in wireless communications. In this system, a scheduleiddsonhether or not to transmit in order to
optimize the long-term quality of service (QoS) incurredthg queueing effects in the data link layer
and the transmission power consumption in the physical (Pldyer simultaneously. Using a Markov
decision process (MDP) formulation, we show that the optipwdicy can be determined by solving a
minimization problem over a set of queue thresholds if theadyic programming (DP) is submodular.
We prove that this minimization problem is discrete convexarder to search the minimizer, we consider
two discrete stochastic approximation (DSA) algorithmiscrbte simultaneous perturbation stochastic
approximation (DSPSA) and-convex stochastic approximatioficonvex SA). Through numerical
studies, we show that the two DSA algorithms converge sicanfly faster than the existing continuous

simultaneous perturbation stochastic approximation @%Ralgorithm in multi-user systems. Finally,
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we compare the convergence results and complexity of two BSé& CSPSA algorithms where we

show that DSPSA achieves the best trade-off between coihplxd accuracy in multi-user systems.
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Fig. 1. Cross-layer on-off transmission control in wirale®mmunications: A scheduler decides whether or not tsmnéna
packet in the queue according to the optimization concernsoth layers, e.g., packet delay and queue overflow in daka li

layer and transmission error and spectral efficiency in ighygPHY) layer, in the long run.

I. INTRODUCTION

Consider the communication system in Hif. 1. It is assumatl ressages encapsulated in
equal length packets from a higher layer (say, applicaagei) arrive at data link layer randomly.
The packets are temporarily stored in a first-in-first-olF(®) queue before the transmission in
the physical (PHY) layer. The departure of the queue is ofiatt by a scheduler: If the switch
is open, no packet departs from the queue; If the switch isetlpa unit packet departs from
the queue and is transmitted through the wireless chanhel.objective is to find a policy or
decision rule that optimizes packet delay and/or queueflowein the data link layer and the
transmission error rate and/or spectral efficiency in ther Réyer simultaneously and in the
long run.

The problem in Fig.11 is a cross-layer transmission contnel lsecause it not only incorporates
the idea of rate adaptation in the PHY layer [1], [2] but alakess into account the quality of
service (QoS) incurred by the queueing effects in the datalayer. Since the general cross-
layer rate adaptation problem usually allows the schedolehoose from a set of transmission
rates [3], [4], the problem in Fig.l 1 can be considered as &iapease where the scheduler
only makes binary decisions: whether or not to transmit. \Aléitcross-layer on-off transmis-
sion control. This problem has been presented in some bséteeduling problems in wireless
communications, e.g., [5], and is commonly seen in studresaiwork-coded relaying systems,
e.g., [6]-9].

By assuming an.i.d. message arrival process and a finite-state Markov chain (GS0]
modeled channel, the system in Hig. 1 is usually modeled byaekd& decision process (MDP),
and dynamic programming (DP) algorithms are used to sehecbptimal policy, e.g.[ [5]/[8]. DP

is a classic algorithm for solving MDP modeled sequentiaigsilen making problems. However,
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the crucial limitation of DP is that its computation load gysodrastically with the cardinalities
of the state sets in MDP. This problem is called these of dimensionalitfl1] and makes DP
inefficient for solving high dimensional MDP problems. Tdieee the complexity, most related
studies, e.qg./ [5]/17],[12]-[16], focus on proving the nedonicity of the optimal policy in queue
occupancy/state. It is because that in this case the oppiolial is a switching curve or plane that
is fully characterized by a set of optimal queue thresholtese optimal queue thresholds can
be searched by solving a multivariate minimization probleith much lower complexity than
DP. To approximate the optimizer of this problem, a stodhagpproximation (SA) method is
usually considered. The typical examples are the contimgouultaneous perturbation stochastic
(CSPSA) algorithms proposed in [14], [16], [17]. But, thenee two problems with these SA
algorithms. One is that the authors(in[14],[16],[17] onpply SA without showing or analyzing
the convexity of the objective function. SA is based on anattee line search method. When
it applies to a non-convex minimization problem, it may jeshverge to the local optimizer
with probability. There are some studies showing the sefficconditions for the global and/or
almost sure convergence of SA algorithms. But, as pointediro18], these conditions are
usually difficult to verify for a non-convex objective furim:mH On the other hand, if one can
prove the convexity of the objective function, these cdondi are usually straightforwardly
satisfied. In addition, there exists SA algorithms that adusively proposed for discrete convex
minimization problems in the literature for which the glblzend almost sure convergence is
guaranteed, e.g., [22]. The other problem with the SA albgors in [14], [16], [17] is that
CSPSA is originally proposed for continuous minimizatiomkdems. When it is applied to
discrete ones, one needs to solve the problem of how to dstitha value of the objective
function at real-valued points. One solution as proposefll#j, [17] is to use a projection
function to project the real-valued points to integer orBag, the projection function adds extra
complexity when implementing the CSPSA algorithms. In &ddj if the discrete convexity of
the minimization problem is proved, one does not know if th@gxtion function has an effect

on the existence of discrete convexity or the accuracy adigra estimation in SA algorithms.

1Spall showed in[[19] the sufficient conditions for SP$A|[20)cbnverge almost surely in a continuous optimization Eobl
They require the objective function to be differentiablel ahe estimation sequence generated by a gradient descémidrie
converge to the optimizer. Most of the discrete SPSA algorét are adapted frond [20], e.d.. [21]. Usually, the convecge

performance is conditioned on certain property of the sadlignt and is not easy to verify, e.g., Theorérm [17].
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The main purpose of this paper is to prove the discrete catyvek the on-off transmission
control problem in Figl 1l and show that this problem can beesbimore efficiently by discrete
stochastic approximation (DSA) algorithms than CSPSA. His paper, we first follow the
same approach as in [14], [16]: We prove that the optimalstrassion policy is monotonic
in queue states and can be expressed by a queue threshabd WedP is submodular. We
formulate the optimal transmission control problem in Elgas a multivariate minimization
problem over a set of queue thresholds. But, before progogia solutions, we observe the
shape of the objective function and prove that it is discimiavex. We then consider two
discrete stochastic approximation (DSA) algorithms faarshing the optimal policy: discrete
simultaneous perturbation stochastic approximation &9M23] and L*-convex SA [18]. We
run experiments on three systems to show the convergenferpance of two DSA algorithms.
The results are compared to a CSPSA algorithm. The maintsesuthis paper are listed as
follows:

« For the transmission control problem in FId. 1, we derive Higant condition for the
optimal policy to be nondecreasing in queue states: the sdblarity of DP function. We
show that the monotonic optimal transmission policy candteminined by a queue threshold
vector. Each dimension of this vector determines the quéate svhen the transmission
policy changes from ‘not transmit’ to ‘transmit’ when thearimel is in a certain state.

« We convert DP to a stochastic minimization problem over gubveshold vectors and prove
that the objective function is both discrete separable eorand L-convex.

« We present a DSPSA algorithm and dA-convex SA algorithm. Due to the discrete
convexity of the minimization problem under consideratitioth of them are able to
converge almost surely to the optimal queue threshold vedte run the two algorithms in
single-user and two multi-user on-off transmission cdrdystems. The results are compared
to a CSPSA algorithm that uses the projection function psedan [17].

« We also analyze the accuracy and complexity of two DSA algors and the CSPSA
algorithm based on numerical experiment results. Theretiadeoff between accuracy and
complexity: DSPSA and CSPSA requires less measurementseoblijective function in
each iteration but converges slower thigfaconvex SA;Lf-convex SA generates more accu-

rate estimation sequence of the optimizer but requires mmasurements of the objective
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function than DSPSA and CSPSA. Also, DSPSA converges fasaerCSPSA in multi-user
systems. These results can be used to guide the implenoent#tiSA algorithms in real
applications: If one can prove the discrete convexity of aroff cross-layer transmission
control problem, DSPSA and’-convex SA are more efficient than CSPSA,; If the system

is a multi-user one, DSPSA achieves the best trade-off mtveemplexity and accuracy.

A. Organization

The rest of the paper is organized as follows. In Sedtion & describe the MDP formulation,
state the objective and present the DP algorithm for theeryshodel in Fig[Il. In Section]ll,
we prove the monotonicity of the optimal transmission pobnd formulate a discrete convex
optimization problem based on the submodularity of DP. lcti®a [[V, we present DSPSA
and Li-convex SA algorithms and describe their implementatiotaitle In Section[V, we
apply DSPSA,Lf-convex SA and CSPSA algorithms to single-user and muti-isystems.
The accuracy and complexity of these three algorithms aatyaed.

B. Notation

In this paper, we us®, andZ to denote nonnegative real number set and integer number
set, respectively. In TABLEI I, we list the descriptions ofndyolic notations that are used in
Sections II[ 1] and.1V. In the MDP formulation in Sectién We use superscrigt) to denote the
variable at decision epodhe.g.,y) denotes the instantaneous SNR valug &t the multi-user
systems in SectionlV, we use the subscfipd denote the variable of use’:re.g.,%.(t) denotes

the instantaneous SNR value of the channel of usart.

[I. MDP FORMULATION AND DYNAMIC PROGRAMMING

Consider the transmission control system with wirelesstigath fading channel in Fid.] 1.
Let time be divided into small intervals, callelcision epochand denoted by. The decision
making process is infinitely long, i.et, € {0,1,...,00}. We assume the followings in this
system.

Assumption 2.11et {f®} be ani.i.d. random message arrival process, whéteé denotes

the number of packets that arrive at the FIFO queue @he scheduler knows the statistics of

{ro}.
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TABLE |
NOTATIONS
symbol description
t decision epoch
f the number of inflow packets
L queue length (in packets)
~ signal-to-noise ratio (SNR)
I the kth SNR boundary in FSMC
K the number of channel states in FSMC
h,H channel state, channel state set
b, B gueue state/occupancy, queue state set
x, X system state, system state set
a, A action, action set
Py channel state transition probability fromto »’
Pg, gueue state transition probability frobnto ¥’ under actiomn
P, system state transition probability fromto x’ under actiom
cq(b,a) immediate cost in the data link layer
cir(h,a) immediate cost in the PHY layer
c(x,a) immediate cost in the entire system
0(x) stationary and deterministic policy
Vo(x) expected long-term cost under poliéy
8 discount factor
10} queue threshold vector
on the hth tuple in¢
é(n) the nth estimation of the minimizer
g(&)(n)) descent direction ai(n)
A, B, C, a, v step size parameters
J(p) objective function atp
March 3, 2022 J(¢) noisy measurement of

piecewise linear interpolation (PLI) of
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Assumption 2.2:Denotey®) the instantaneous signal-to-noise ratio (SNR) of the fadiman-
nel. Let {v} be a random process that is independen{ Bf'}. The full variation range of
~® is partitioned into/X' non-overlapping regiong[I';, '), [I'2,T's), ..., [['x,Tx41)}, where
I'x,1 = oo. Region[['y, I'x.,) is called channel state Denoteh® as the channel state variable
at decision epoch. We say thath¥ = & if v € [['y,'x;1). Let the channel be modeled by
an FSMC [10], whereP, ;1 = Pr(ht+D|a®), the channel state transition probability, is
determined by channel parameters and statistics and isrsteg (time invariant). The scheduler
knows the statistics of h¥} and has the real-time information on channel state, theevafu
r®, to support the decisions.

Assumption 2.3Let a® € A = {0,1} be the action taken by the schedulertawhere 0
denotes ‘not transmit’ and denotes ‘transmit’. Whenever? = 1, one packet is sent.

A. MDP Modeling

Let the system in Fid.]1 be modeled by a discounted infinitézba MDP. The system state at
tisx® = (b®, ) € X = B x H, wherex denotes the Cartesian product. Liebe the queue
length, the maximum number of packets that can be storeceigqueueb® < B = {0,1,...,L}
is called the queue occupancy/state that denotes the nuwmhlperckets stored in the queue at
t. \® ¢ H = {1,2,...,K} is the channel state as described in Assumpifioh 2.2. The stat

transition probabilityP%;) .., = Pr(x‘*)|x® a®) is given by

(t) (t)
Pa(t)x(t+1) == Pél(t)b(tJrl)Ph(t)h(tJrl)- (1)

X

P& .o is the queue state transition probability that is derivedodisws.

At each decision epoch the scheduler makes a decisioft, and thenf) packets flow into
the queue. If the queue is full, the overflow packets will bepgred. Letlz]™ = max{x,0}. The
variation of queue state can be described by the Lindleytemqu{24]

b:=min{[b—a]" + f, L}. 2

The queue state transition probabiliff,,, .., = Pr(b¢*+)[b®,a®) can be determined by the

statistics of{ f*} as
Pr ( FO = p+D _[p0) — a<t>]+> p+D) < T,

Zl:L—[b(t)—a(f)H Pr(f® =) pl+l) — [,

3)

a®) .
Pb<t)b<t+1) -
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The immediate cost : X x A — R is the cost incurred immediately after the actigh and
is defined as
c(x®, a") = ¢, (09, a") + ¢, (Y, a!V). 4)

c(x,a) contains two partse, quantifies the loss in the data link layef, quantifies the loss in

the PHY layer. We define, as
¢, (09, V) = wE; [[[b(t) — a4 fO _ ] 1 , (5)

wherew > 0 is a weight factoH ¢, Is proportional to the expected number of lost packets due
to the queue overflow. We defing. as

a®(erfc 1 (2P,))?
Fpo '

¢ 1S @n estimation of the minimum power required to transmitieket with binary phase-shift

Ctr<h(t)7 CL(t)) — (6)

keying (BPSK) modulation in channel staiethat will result in an average bit-error-rate (BER)

no greater tharP,

B. Long-term Objective and Dynamic Programming

Letd: X — A be a stationary deterministic policy. Denote the expeabéal tiscounted cost

under policyf as

Vp(x) = E [ i Ble(x®, 6(x®)) ’x@ - x} . (7)

Here,5 € [0, 1) is the discount factor that ensures the convergence of fireténseries. It also
describes how farsighted a decision-maker is sifitassigns exponentially decaying weights
to the costs in the futuré [11]. The objective of the transiis control problem in Fid.l1 is to

minimize the long-term losses incurred in data-link and Pleyers, which can be described as
mein Vo(x), VxeX. (8)

2\Weight factorw can be considered as the priority of minimizing the loss firemli in the data-link layer as opposed to the

loss incurred in the PHY layer.

3¢t is derived based o, = %erfc(\/Ptry), which determines the average BER when transmitting BPStkeia with
power Py, through a channel whose SNRAs
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It is shown in [25] that[(B) can be solved by DP [11]
V(x) = min{ X, a +5ZP“ Vix } 9)

Let n denote the iteration index. The sequerfd¢€™ (x)} generated by {9) converges for all
[26]. Usually, a small threshold > 0 is applied so that iteratio](9) terminates ¥V =1 (x) —
VIV (x)| < e for all x with N < oo. In this paper, we use = 10~. The optimal policyd* is
determined by

0*(x) = aragerﬂin{ X, a) + BZ pe v } VX, (10)

To assist the analysis in Sectibnl lll, we define an auxilianyction Q) as the minimand in_{9),
ie.,

Q(x,a) = c(x,a) +EZP“,V (11)

Since the MDP under consideration is stationary, we dropntitationt in (9) to (11) and use
x and x’ to denote variables at the current and next decision epoebpectively. We will do
so in the rest of the paper.

Consider the DP algorithm described [n (9). In each itemtto do the minimization in[(9),
every combination of the state variables must be considereidh give rise to two problems. One
is the curse of dimensionality [11]: The time complexity wsodrastically with the cardinality or
the dimension of the state space in MDP. The other is thatulth&rfowledge (including the state
space and the state transition probabilities) of MDP shbeldnown before running DP, which
makes DP unsuitable for online applications. In the nextise@and Sectiof [V, we show that
problem [8) can be solved by DSA algorithms. The DSA alganghnvolve lower complexity
than DP and are suitable for online applications since tmeysanulation-based algorithms. We

will discuss the advantages of DSA algorithms over DP initetaSection[V-C.

[1l. DISCRETE CONVEX OPTIMIZATION

In this section, we show that problem (8) can be converteddserete convex optimization

problem due to the submodularity of DP.
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A. Preliminaries

We first introduce some concepts concerning the definitiodisfrete convexity. For a mul-
tivariate discrete function, there are different ways téirdethe convexity. We consider two of
them: discrete separable convexity abfdconvexity.

Definition 3.1 (discrete separable convexity [27])et f(x) = 25:1 fa(xq), wheref: ZP
Ry, fa: Z — R, for all d andx = (z1,...,xp). f(x) is discrete separable convex function if
fais conveQ for all d.

Definition 3.2 (submodularity [28],/129]):Let e; € Z” be a D-tuple with all zero entries
except theith entry being onef: Z” — R, is submodular iff(x + e;) + f(x + e;) >
f(x)+ f(x+e +e;) forallx e ZP° and1 <i,j < D,

Definition 3.3 (*-convexiy [28]): f : ZP ~ R, is Li-convex if ¢;(x,¢) = f(x — (1) is
submodular in(x, ¢), wherel = (1,1,...,1) € ZP and( € Z.

Separable convexity is the simplest case in multivariaserdie convexity, the minimization
of which is easy to solve: the minimizer can be searched idirections one-by-one [27]L5-

convexity is defined based on the mid-point discrete comydg®8]: An Li-convex functionf

o0+ 1) 2 (Y ]) + £ (PE2) @)

for all x,y € ZP, where Lxﬁ and [x]| are the largest integer less tharand the smallest integer

satisfies

greater tharx, respectivelfi Every discrete separable function is alsbconvex [27].

B. Monotonic Optimal Policy

In this section, we show the monotonicity of optimal transsion policyd* in the queue state

Proposition 3.4:Q(x, a) is submodular in(b, a) for all h.

Proof: FunctionQ(x, a) in (11) can be rewritten as
Q(x,a) = Q(b, h,a)

— ci(hoa) + 3 Py [w b —a*+f - 1] "4 BV (min{b — o + £, L}, )|

“A univariate discrete functiorf : Z — Ry is convex if f(z + 1) + f(z — 1) > 2f(x) for all z € Z.

Letx,y € RP wherex = (x1,...,zp) andy = (y1,...,yp). We say thatx > y if 24 > yq forall d € {1,...,D}.
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10 9 8 7 6 TS 1
b

2
h

(a) the optimal policyd* as a function of queue state (b) the optimal queue thresholds, = min{b: 8" (b, h) =

and channel statk 1}

Fig. 2. The optimal policy and queue threshold vector in aylsiuser system (Fidl 1), whete = 4, f) ~ Bernoulli(0.5)
for all ¢, P, = 0.01 and L = 10. The channel is modeled by2state FSMC.

Here, () is nondecreasing ih and submodular irfb, a) for all V' (¥, 1) that is nondecreasing
and convex in’ (see proof in AppendiX A)V (b, h) = min, Q(b, h,a) is nondecreasing and
convex inb for all Q(b, h,a) that is nondecreasing ihhand submodular irb, a) (see proof in
AppendixXB). Assume that DP starts witH® (x) = 0 for all x. Then, by induction, Theorem 3.6
holds. The optimal policy* is nondecreasing ih for all A. [ ]
Remark 3.5:Submodularity is a commonly seen property of queue depadomtrolled prob-
lems. One can refer to[[5], [13]=[15] for the proofs of submladity of Q)(x,a) when different

definitions ofc, and ¢, are used, e.gg, = as in [13].

[f]
Based on Propositidn 3.4, we can prove the monotonicity efojtimal policy in queue state
as follows.
Theorem 3.6:The optimal policyd*, the solution of[(B), is nondecreasingrfor all &, i.e

0* is in the form of
OO =Ty =4 (13)
0 b< oy
where ¢; is the optimal queue threshold associated with channed atat
Proof: We use the following property of submodular functiohs! [38]:Q is submodular
n (b,a) for all h, the minimizera*(x) = argmin, Q(x,a) is nondecreasing i for all h.
According to Proposition 314Q(x, a) = c(x,a) + 85, P, V™M (x') is submodular in(b, a)

for all h. Therefore,f* is nondecreasing ih. Theorem holds. [ |
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C. Discrete Convex Minimization Problem

Let ¢; = min{b: 0*(x) = 1}. It follows that the optimal monotonic poliog* is fully charac-
terized by the optimal queue thresholgisfor all % if Theorem[3.6 holds. There is an example
of optimal queue threshold; in Fig.[2. Letd ba a deterministic policy that is nondecreasing in
b. Define a threshold vectap = (¢1, ¢o, . . ., Pz), Whereg, = min{b: 6(b,h) = 1} € B. We
show in the following theorem thdtl(8) can be converted toeuguthreshold vector optimization
problem with a discrete convex objective function.

Theorem 3.7:Let ® = B, If Theorem 3.6 holds, then](8) is equivalent to

min J(¢), (14)

pcd
where the objective function

J(¢) = Z E { Z 5t0(x(t)> H{b(t)quh(t)}) }X(O) = X} (15)
X t=0
is both discrete separable convex affdconvex in¢.
Proof: Let 6 be the policy determined by through8(b, ) = I>4,3. According to [(7),

we haveJ(¢) = > Vy(x). Therefore, [(B) is equivalent taming, J(¢). Define V,(h, ¢5) =
> 5 @b, h,I>4,1). Due to the submodularity af in (b,a), we have

Vo(h, on + 1) + Vi (h, ¢ — 1) = 2Vi(h, ¢4)

= Q(¢h7 hv O) - Q(¢h - 17 hv O) + Q(¢h - 17 h7 1) - Q(¢h7 hv 1) > 0. (16)

So,V, is convex ing,, for all h. SinceJ can be expressed in the form of

J() =Y Qb hIpzg,y)
h b

= Vi(h, én). (17)
h

By Definition[3.1, J is discrete separable convex ¢ Since every discrete separable convex
function is Li-convex, J is also Lf-convex in¢. |
Problem [(14) is different from the conventional convex oytiation problems. Firstly[(14)
is an integer programming, or discrete optimization, peablwhere most of the techniques
designed for continuous optimization may not be directlplaable. Secondly, the objective
function J in (I4) is an expectation, i.e[, ([14) is a stochastic optatian problem rather than a
deterministic one. Therefore, we consider DSA algorithting,SA algorithms that is exclusively

proposed for discrete stochastic minimization probleros sblving [14) in the next section.
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Algorithm 1: DSA [18], [23]

input : initial guessé)(o) (a D-tuple), total number of iterationd/, step size parameters, B and«
output: [gE(N

)], the closest integer point t&)(N) by Euclidean distance.

begin
for n=1to N do

n) __ A .
o) = iy 1
obtaing at 6"~ " by using.;

< () _ = (n=1) S (n-1)

® ¢ —ag(e

endfor

);

end

V. DISCRETE STOCHASTIC APPROXIMATION

This section focuses on two DSA algorithms, DSPSA [23] ardonvex SA[18], for solving
problem [(14). They are specifically designed for discretever minimization problems where
almost sure convergence performance is achievable. Bltoiild be pointed out that the solution
to problem [(14) is not restricted to DSA methods. With theegatiye function being discrete
convex, there may exist many methods that converge withgtibty 1 [31], e.g., random search
[32], simulated annealing [33]. This paper considers twchsmethods where the conditions for
almost sure convergence for probleml|(14) are straightfatyaatisfied.

Both DSPSA and.-convex SA are based on a line search method. They assume oy
measurement of,

J(@) = J(®) + 2, (18)

is obtainable. Here; is the random measurement noise. They follow the procedii2S&
algorithm as shown in Algorithm 1. Each of them generatescuesece of estimation§h™ }
by a line search iteration

¢ = ¢ —ag(e). (19)

For problem [T4),D is the dimension 0", and " € & = [0, L]”. The two algorithms
differ in how they obtain the gradierg({b(")).
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T
P2 o e P

2

(a) anLf-convex functionf: {0,...,3}? — Ry

o o

P2 &b 1

b) the PLI functionf: [0, 3]? — Ry
(

Fig. 3. An example of PLI function. Lep = (¢1, ¢2) € {0,...,3}> and = (¢1,$2) € [0,3]?. According to [18], [28],
ming f(¢) = ming f(¢) andarg ming f(¢p) = arg ming f().

A. Discrete Simultaneous Perturbation Stochastic Appnation [23

Let A = (A4,...,Ap) with each tupleA; € {—1,1} being independent Bernoulli random
variables with probability).5. The dth entry ofg(&b(")) is obtained by
1+ A

(@) = (16714 152) — (18”14 152 [ 20)

As explained in[[28]g is obtained as the gradient based on the discrete mid-pomvesity. For
separable discrete convex minimization problem, the srmméz}(n)} converges almost surely

if the standard conditioHsare satisfied [23].

B. Lf-convex Stochastic Approximatian [18]

Lf-convex SA is in fact applied to the piecewise linear intémion (PLI) of the discrete

objective function. The PLI of ar?-convex function is defined as follows.

®The standard conditions a€™ > 0,lim,—ea™ = 0,3 a™ = 00,3 (a!™)? < 0o and z has zero mean and

uniformly bounded variance.
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Let ¢ € & . Denotep = |¢], q = ¢ — p and
0, d=0
[o(1),....o(d)}, d#0

where o is the permutation of1,..., D) such thato(d) is the index of thedth largest of

Ug = (21)

¢, ---,qp, the components im. Let x,, € {0,1}” be a characteristic vector whoséh entry
is 1 whend belongs tolU; and (0 otherwise. If.J is a discrete function i, its PLI function.J

is defined by

J(@) =(1 = ¢o)) J(P) + (¢o1) = Go@) T (P + Xp,) - - -
+ 4o(n)J (P + Xu1,)- (22)

If .J is anL¥-convex function inp, J is a continuous convex function &, and the minimizers and
minima of J agree with those of [27] (See Fig[B for an example). Therefore, the minimizers

of J can be approximated by a line search algorithm applied.tm L*-convex SA,g@(n)

) is
obtained as a subgradigut J. This subgradient is calculated by using the noisy measemésn
J as follows.

DefineY (d) such that

Y(0) = J(p'™),

Y(d) = J (0" + xy,), (23)
wherep™ = | "] andy,, is obtained by using™ = #" —p™ . Thedth entry of subgradient
gatd is

9(@") = Y (o(d) = Y (o(d) - 1) (24)

Unlike DSPSA, Lf-convex SA does not using random perturbations to estigatestead, it
usesD + 1 measurements of to get more accurate estimate of the descent direction.elf th
standard conditions are satisfied, the seque[niz@} converges almost surely fatf-convex
minimization problems[[18]. It is also shown in [35] th&fb(n)} converges with a rate aof/n

on average.

"p(x) is called the subgradient gf atx if f(y)— f(x) > p(x)(y — x) [34]. For a nonsmooth function, there may be more

than one subgradient at The work in [18] shows how to calculate one such subgradient
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C. Implementation of DSA Algorithms

We list below the implement details when we apply two DSA mdto produce the results
in Section[V.

1) Step Size:The step size parameterd, B and «, in Algorithm 1 are crucial for the
convergence performance of DSA algorithms. As aforemartipthey must be chosen to satisfy
the standard conditions. We adopt the method of chooding and o« suggested in_[36] for
practical problems where the computation budgetthe total number of iterations, is fixed:
B = 0.095N, a = 0.602 and A is chosen so thatl/(B + 1)a||g(c}b(0))|| achieves the desired
change ofc}b(l). In all the experiments in Sectidn] V, we assid:ﬁlo) = 0 and N = 500.
Therefore, B is fixed to 47.5. We assume the desired value 4f (B + 1)“Hg(g?>(0))|| is 0.1.
Before each time we implement DSPSA bi-convex SA, we runl00 repetitions to obtain a
reliable estimation oﬂ|g(<}>(0))|| (the value averaged over repetitions) and then sefesuch
that A/(B + 1)?|lg(¢")|| = 0.1. Since||g(¢")| varies with each system and DSA method,
we show the value ofi for each experiment in Sectidon V.

2) Obtaining.J: The method of obtaining/ at ¢ is to simulate the state sequenge®}.
Here, x") varies according to the Markov chain that is governed by thasition probability
Pr(xt)|x®) = PP*")  \whered(x) = T>4,)- We obtainJ as

x(t)x(t+1)1
1 N, T
(@) = N, D 2D B Tpwzg,y), (25)
T x©ex i=1 t=0
i.e., J is the value averaged ové, simulationg We fix N, to 100. The simulation lengtiy’
depends orp, i.e., the simulation stops until the increments over savsuccessive decision

epochs is blow a small thresholdO(*). In this paper;s is fixed t00.95.

V. NUMERICAL RESULTS

In this section, we run experiments in three cross-layeofbiransmission control systems,
one single-user and two multi-user systems. In each sysismimplement two DSA algo-
rithms, DSPSA and.?-convex SA. Their convergence performances are comparaddSPSA

algorithm.

8Most SPSA algorithms just require a single simulation toabbtf(cz)). We use repetition because the average value of

multiple simulations was suggested in[18],[19] to imprdkie convergence performance.
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The CSPSA algorithm is an SA algorithm that is originally posed for continuous stochastic
minimization problems. It follows the same procedure as igofAithm 1. It uses the same
perturbation vectorA as in DSPSA to obtain the gradiegt But, the dth entry ofg(qB(n)) is

given by
) _ Jr@™ + Ay) = J (™ = Ay)
2C(n)Ad ’

wherec™ = £ andT is the projection function proposed in [17] and is given by

y [¢]—¢
F(&)) — [#] w/ prob. W’?—LEJ ) (26)

g ¢—|9]
(@] wi prob. 2=

The method to implemenit() is: The scheduler adoptgh| sometimes andlg| the other times

so that in the long run it chooses polid;fbj with probability [gz]’:% and [¢] with probability
[21_}%' The step size parameters for CSPSA 4drteB, «, C' and p. They are also chosen by
following the suggestion in [36]. We sé® = 0.095N, o = 0.602, C =1 andp = 0.101. A is

chosen so thatl/(B + 1)a||g(<}b(0))|| = 0.1. The value ofA is given in each experiment.
We also run DP to obtain the optimal poliéy. ¢*, the optimal threshold vector, and¢*), the
minimum of (14), are calculated by usirg {13) ahd] (15), respely. We show the convergence

performance in terms of the following two metrics:
. J([¢"™)): the value of the objective function &', the closest integer point 16"";
~(n) * ~(n
. 127-9ll: the normalized error of the estimatigh" .
o™ o~

A. Single-user System

Consider the on-off transmission control system in Eig. B $&tw = 4, L = 10, p; = 0.5
and P, = 0.01. Let the channel experience slow and flat Rayleigh fadindy witerage SNR
being 0dB and maximum doppler shift beingHz. We adopt arg8-state FSMC model. In this
experiment, the step size parametkiis 0.75 for DSPSA, 0.9 for L:-convex SA and).7 for
CSPSA. The results are shown in Hig. 4. It can be seen thatdiwemence performance of
DSPSA is comparable to that of CSPSE¢-convex SA has{.J ([g?)(")])} converges faster than
DSPSA and CSPSA.
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(b) the normalized erro“‘g(o) Z* ““ vs. iteration

Fig. 4. Convergence performances of DSP$A;convex SA and CSPSA in a single-user system, where chasmebdeled
by a8-state FSMCuw = 4, f ~ Bernoulli(0.5) for all ¢, P, = 0.01 and L = 10. The dimension ofp is 8.

B. Multi-user Systems

In a multi-user system, we denoighe user index. The packets sent from uses buffered
by a queue (We call it queud, and the departure packets of queuare transmitted through
channeli. We use subscriptto denote the variable associated to usdret L; be the length of
queuei. We assume all queues has the same length [i;e=, L for all i. The actiona; € {0,1}
determines the number of packets departs from queWwe assume that the Assumptidns| 2.1 to
2.3 hold for each user. In this section, we run experiments five-user orthogonal frequency-
division multiple-access (OFDMA) system and a four-uséwoek-coded two-way relay channel
(NC-TWRC) system. In both systems, we det= 5, w = 4 and B, = 0.01.
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E(t) [0
userl l
i(t) o
—— 1 OFDM wireless

user2 transmitter— channel

users

Fig. 5. There are five users in the OFDMA system. Each usersigraed a queue and a subcarrier. The packets sent from
useri is buffered by the queue. The departing packets from all gsieue modulated by BPSK symbols and transmitted by the

orthogonal frequency-division multiplexing (OFDM) tranister

1) Five-user OFDM Systentonsider the OFDMA system as shown in E@ Bhere are five
users in this system. The scheduler assigns each user arsetbdehe departing packets from
gueues are modulated by BPSK symbols and transmitted byrthegmnal frequency-division
multiplexing (OFDM) transmitter. The departures of all gae are controlled by one scheduler.
We assumey;, = 0.2, py, = 0.4 andpy, = 0.5 for all ¢ € {3,4,5}. In this system, channel
denotes the subcarriéri.e., vf) denotes the instantaneous SNR of subcairigve assume that
each channel has the average SO and is modeled by a 4-state FSMC.

In this system, we can formulate an MDP model as in Sed¢tioorlleich user. For example,
the MDP model for user has the state = (b;, h;), actiona = a; € {0, 1} and the state transition
probability and the immediate cost are the same as desdrb8dctionll. There is an optimal
policy 6; to each MDP modek; (b;, h;) determines an optimal action to queur state(b;, h;).

It can be seen that Theorem 3.6 holds for all MDPs. Theref¢gjié;, ;) is nondecreasing in
b; for all 7. Let the optimal policy in the entire system bBe= (6;,...,6:). We construct the
threshold vector as follows. Let = (¢, ..., ¢5) whereg, is the queue threshold vector of user
i and is constructed by stacking, = min{b;: 6;(b;, h;) = 1} for all h;. J(¢) is the simulation
value of the objective that is summed over all u@rlsn this system, since, is a 8-tuple for

alli € {1,...,5}, the dimension ot is 40. We show the convergence performance of DSPSA,

®This system is a special case of the OFDMA system propdseld T8 difference is that the problem in [37] is a variable
rate adaptation one, while, in this paper, the schedulegsgicted to choose only transmit or not.

¥The idea is to siAmuIatefZ-(gbi)Afor all users.j;(¢,) is obtained asli (¢,) = 3= 20y Sy ex o Ble(x?, ]I{bng%i})
for useri. We takeJ (o) = >_, Ji(o,).
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Fig. 6. Convergence performances of DSPSA;convex SA and CSPSA in a five-user OFDMA system (in Eig. 5xtEa
channel/subcarrier is modeled by4estate FSMC. In this systend,; = 5 for all i € {1,...,5}, ps, = 0.2, py, = 0.4 and
Dts = Ps, = Pfs = 0.5. The dimension of the threshold vectgris 40.

LA-convex SA and CSPSA in Fifll 6. The step size paramétés 0.63 for DSPSA, 0.68 for
Lf-convex SA and).6 for CSPSA. It can be seen that-convex SA still has the best converge
performance. But, unlike in the single-user system, DSP8&Averges faster than CSPSA.

2) Four-user Two Way Relay Channdtig.[1 shows a transmission control problem in a four-
user NC-TWRC system. There are two pairs of users commumicatith each other via the
relay: User 1 exchanges packets with user 2; User 3 exchaaggsts with user 4. A scheduler
at the relay controls the downlink packet flows for four usédstwork coding (XORing) is
allowed in this system. If the scheduler decides to trangmé packet from each user in any
pair, the two packets will be XORed and broadcast. Othernviisedeparting packets are simply

forwarded to the destination. Take users 1 and 2 for exaniple, = a; = 1, the departing
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scheduler
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fading fading
channell o channel2

— ———— £(t)
2

ét) —_— N

fading fading
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— | ——— £(t)
fa

Fig. 7. Four-user on-off transmission control problem in-N@&RC [8]. User 1 communicates with user 2, and user 3

communicates with user 4. A scheduler controls the outflofvallaqueues.

packets from user$ and 2 are XORed and broadcast in order to save transmission pdiver;
a; = 1,a, = 0 or a; = 0,a, = 1, the relay simply forwards the packet to the destinatiore Th
same applies to usesand 4. We assume that the downlink channels are orthogonal so that
the relay can simultaneously exchange packets for botls phiusers. We set;, = 0.5 for all
ie{l,...,4}.

In this system, the transmission control problem of each phiusers can be modeled by
an MDP. We show the MDP model for usetsand 2 as follows. The MDP for user8 and
4 can be derived in the same way. The MDP model for useesd 2 has the system state
x = (by, hy, by, he) and actiona = (ay,as) € {0,1}% The state transition probability B2,

e,

o Pnins- The immediate costs is defined as

2
c(x,a) = Z <Cq(bi7 a;) + cy(hy, ai)) + Ifa1=1 or ap=1}-

=1
Here, ¢(x,a) contains two parts: the sum of andc;, incurred at both uset and user2 and
Ifa,=1 or as=13 Which is the cost that is proportional to the power consuampéit the relay![8]. In
this MDP, the optimal policy contains two partg:andé;. 65 (x) andd;(x) determine the optimal
action to queué and queue, respectively, for a certain stake By following the same approach
as the proof in Proposition_3.4, one can show that functigs, a) is submodular in(b;, a;)
for all i € {1,2}. The optimal policied); and ¢} are nondecreasing iy and b,, respectively.
Likewise, for the MDP model for users and4, the optimal policyd; and 8} is nondecreasing
in b andb,, respectively. The optimal policy in the entire systen®#is= (0;,...,0;).

Let ¢, be the queue threshold vector to queuep, is constructed by stacking;,i,n, =
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Fig. 8. Convergence performances of DSP3A;convex SA and CSPSA in a four-user NC-TWRC system in Fig. e T
channels are modeled bystate FSMC. In this systempy, = 0.5 and L; = 5 for all ¢ € {1,...,4}. The dimension of the
threshold vectowp is 320.

min{b;: 6;(x) = 1} for all values of(hq, by, hy), and ¢, is constructed by stackingy,,,n, =
min{by: O5(x) = 1} for all (b, k1, he). ¢5 and ¢, are constructed in the same way. In this
system, ¢, is an 80-tuple variable for alli € {1,...,4}. The queue threshold vector in the
entire system isp = (¢4, ..., ¢,), the dimension of which i820. We show the convergence
performance of DSPSAL‘-convex SA and CSPSA in Fifll 8. The step size paramétisr0.43

for DSPSA, 0.6 for L°-convex SA and0.4 for CSPSA. The results are similar as in Fig. 6:
LA-convex SA converges faster than DSPSA, and DSPSA convéages than CSPSA.

C. Accuracy and Complexity

We compare the DP and three SA algorithms, DSPSAgonvex SA and CSPSA as follows.

March 3, 2022 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 23

1) SA vs. DP:Based on[{9), the complexity in each iteration of DROEX|? - |A|) Let
« be the complexity of obtaining the simulated valueEtf\;r1 EtT:o ﬁtc(x(t),ﬂ{bwzm}) in (25)
and D be the dimension of the threshold vecwr In each iteration, the complexity of both
DSPSA and CSPSA i©(|X| - «), and the complexity of.?-convex SA isO(D - |X|- «). Here,
the complexityx is incurred by simulation instead of calculation. Ald0,is smaller than X|.
For example, in the single-user system in Sedtionl V-A, thealmer of states igt'| = 88 and the
dimension of¢ is D = 8. Therefore, the complexity of SA algorithms is lower thaattbf DP.

Moreover, the three SA algorithms are simulation-basedrdtgns, the runs of which do not
require the full knowledge of the MDP model. Based lonl (25pktain.J, one only requires the
knowledge of the state space and a simulation model that&aergte a state sequence based on
a given threshold policy and the statistics of packet arawel channel variation processes. By
SA algorithms, it is possible for the scheduler to learn th&noal policy online. For example,
assume that we apply DSPSA to the single-user system in0B8&Al At the beginninggB(O) is
any arbitrary threshold policy. The scheduler adopts imii{z])(o)J + 124 and Lé(o)j + 152 for
a while and obtains corresponding valuesjobased on the actual immediate costs incurred. It
then obtaing as in [20) and adapts to the new threshold poli¢y). By repeating this process,
the scheduler can slowly update the policy towards the @itone.

2) DSPSA and CSPSA \&-convex SAFrom Figs[4[ b andl8, it can be seen thatconvex
SA always converges faster than DSPSA and CSPSA. Howewegdmplexity of Li-convex
SA depends oD, the dimension ofp, and can be much higher than DSPSA and CSPSA in
multi-user systems. In each iteratiohi-convex SA requiresD + 1 measurements of . For
example, letn be the total number of users in the system, and¢tand|?| be the cardinality
of the queue and channel states, respectively, that is iagsdavith one user. For the single-
user system in SectibnVAA,!-convex SA require$| + 1 values of.J in each iteration. But,
L*-convex SA requiresn-|H|+1 andZ - |B|-|H|?+1 values ofJ in each iteration for the multi-
user systems in Sectiohs VIB1 and VB2, respectively. Ifranser system is modeled by one
MDP, e.g., the MDP model in[14], the dimensionfis m|B|™ | H|™, i.e., the complexity of
Lf-convex SA may grow exponentially with the number of usens.tle contrary, both DSPSA

HThere are|X| minimization operations, each of which requirg4| calculations of@, and eachQ value requires|X|

multiplications over state’.
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and CSPSA are perturbation-based algorithms which alweysire only2 measurements of
in each iteration for all systems no matter how large theestptace of the MDP is. Therefore,
the complexity of DSPSA and CSPSA is much lower tldrconvex SA in multi-user systems.

3) DSPSA vs. CSPSASPSA is the algorithm that is directly proposed for diserebnvex
minimization problems. The gradiemtin DSPSA is obtained based on the definition of mid-
point convexity [23]. CSPSA is a discrete version of an SAodathm that is originally proposed
for continuous minimization problems. Based on Eig. 4, D&R8nverges at the same speed as
CSPSA in the single-user system. But, based on Eigs. & larite &anvergence performance of
DSPSA is better than that of CSPSA in multi-user systems. é¥ew even if the performance
of DSPSA is comparable to CSPSA in the single-user systeshatld be noted that DSPSA
is simpler to implement than CSPSA. In CSPSA, a projectiarcfionI" in (26) is used. The
idea of I'(¢) is to treat the real-valueg as a threshold policy that is a randomized mixture of
two deterministic ones,$| and [¢]. On the contrary, in DSPSA, the scheduler only needs to
follow one deterministic policy to for each value df Therefore, although both DSPSA and
CSPSA require measurements of in each iteration, the complexity of DSPSA is lower than
that of CSPSA since DSPSA does not need to implement thegpiajefunction.

The results above can be used to guide the implementatidmed®A algorithms in practical
systems. For example, if one finds that the discrete corwexists in some cross-layer on-off
transmission control system, an SA algorithm with lower ptarity than DP may be run to
approximate the optimal policy. Also, it is better to chod38A algorithms that is directly
proposed for the discrete convexity, e.g., DSPSA ahdonvex SA, rather than CSPSA. In a
multi-user system, since the complexityGtconvex SA is high, one can just implement DSPSA
which achieves best trade-off between accuracy and coityléxshould also be pointed out
that the main contribution of this paper is the formulatiord goroof of discrete convexity of
the minimization problem[(14). The solution of this problésnnot restricted to the DSPSA,
LA-convex SA or CSPSA presented in this paper. One may find nmficient algorithms in
discrete stochastic minimization literature, and the ltesierived in this paper can be used to
show the global and almost sure convergence. For examge, algorithm has higher accuracy
than DSPSA and lower complexity thaif-convex SA but only converges to local optimizer,

then one directly know it converges globally when it appliegproblem [(14).
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VI. CONCLUSION

In this paper, we formulated a multivariate minimizatiomlplem for searching the optimal
gueue threshold policy in a cross-layer on-off transmisgiontrol system. We proved that the
objective function of minimization problem was both didereeparable convex ardd-convex if
the DP was submodular. We proposed to use two DSA algoritEr8®SA andL’-convex SA,
to approximate the optimal policy. We applied the two DSAocaithms and a CSPSA algorithm
in single-user and multi-user systems. The results shohatdA*-convex SA always converged
faster than DSPSA and CSPSA; DSPSA converged faster thaSA8Pmulti-user systems.
We also analyzed the complexity of the two DSA and CSPSA dlgos to show that: the
complexity of Li-convex SA grew much higher than DSPSA and CSPSA in multi-sgstems;
The complexity of DSPSA was lower than CSPSA.

Finally, we point out two possible extensions of the work lmstpaper. One may design
more efficient SA or stochastic optimization algorithmsdzhen the discrete convexity of the
on-off transmission control problem, e.g., an SA algorittitat is more accurate than DSPSA
and involves less complexity thaif-convex SA; It would be of interest if the convexity of the
optimization problem can be found in a variable rate craged adaptive modulation system,

e.g., cross-layem-QAM modulation system.

APPENDIX A
Assume that/ (¥, ') is nondecreasing and convex i Define
oy, .0y = wlly]* + £~ L]+ BV (min{[y]* + £, L}, 1),
Then,Q(b, h,a) = ci(h,a) + >, PuvErlp(b—a, f,')]. Consider the convexity op in y. We

have

ey+ L fR)+o(ly—1,f0) =20y, f. 1)

p

0 y=—1
B+ f,0)=V(f,K)) =0 y=0

= w+ B(V(L—1,1) — V(LI y+f=1L
0 y+f=L+1
ﬁ(V(y +1+ )+ V(y—1+fK0)=V(y+ f, h’)) >( otherwise
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Let a*(b, h) = argmin, Q(b, h,a). Then,V (b, h) = Q(b, h,a*(b, h)). Since
w+ B(V(L—1,1)—V(L,h))
=w+ B(Q(L—1,1,a"(L—1,1)) —Q(L,I,a*(L,h)))
>w+ B(Q(L—1,0,a*(L—1,1)) — Q(L,I,a*(L —1,h")))
> w(l—p) =0, (27)
¢ is convex iny. Consider the submodularity @} in (b,a). Since

QM+ 1,h,0) +Q(b,h, 1) = Q(b, h,0) — Q(b, h, 1)
= thh’Ef |:S0(b + ]-7 fa h,) + QD(b, f7 h/) - QSO(b - ]-7 fa h,) > 0, (28)
h/
based on Definition 312 is submodular inb, ) for all h. Consider the monotonicity af in

y. It is straightforward to see that botfy|* + f — L] andmin{[y|* + f, L} are nondecreasing

in y for all (f,R'). SinceV is nondecreasing iff, ¢ is nondecreasing ig. We have
Q(b+1,h,a) — Q(b, h,a)

:ZPhh/Ef[cp(b—a+1,f,h')—go(b—a,f,h')] > 0.
Iy

Therefore,( is nondecreasing ih for all (h,a). [ |

APPENDIX B

Assume that) is submodular inb, ) and nondecreasing i Due to the submodularity of

Q in (b,a),
a*(b+1,h) > a*(b,h) > a*(b—1,h).

It is easy to see that, defined in[(6) is convex im for all 4. Recall that the submodularity of

@ in (b,a) is equivalent to the convexity af in y. We have
V(b+1,h)+V(b—1,h) —2V(b,h)
=Qb+1,h,a"(b+1,h)+Q(b—1,h,a"(b—1,h)) —2Q(b, h,a™(b, h))
>Q(b+1,h,a*(b+1,h)+Q(b—1,h,a*(b—1,h))

—Q(b,h,a*(b+1,h)) — Q(b,h,a”(b—1,h)). (29)
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Fora*(b+1,h) = a*(b—1,h) + 1, (29) equals), and fora*(b + 1,h) = a*(b — 1,h), (29) is

greater or equal t®. Therefore,V” is convex inb. Recall that the monotonicity of) in b is

given by the monotonicity o in y. We have

V(b4 1,h) =V (b,h)
=Q(b+1,h,a*(b+1,h)) — Q(b, h,a* (b, h))
>QMb+1,h,a"(b+1,h)) —Q(b,h,a*(b+1,h))

:ZPhh/Ef[ap(b+1—a*(b+1,h),f,h’)—go(b—a*(b+1,h),f,h’) >0,  (30)
-

Therefore,V is nondecreasing ih for all A. [ |
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