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Abstract

Mobile data offloading is an emerging technology to avoid congestion in cellular networks and

improve the level of user satisfaction. In this paper, we develop a distributed market framework to price the

offloading service, and conduct a detailed analysis of the incentives for offloading service providers and

conflicts arising from the interactions of different participators. Specifically, we formulate a multi-leader

multi-follower Stackelberg game (MLMF-SG) to model the interactions between the offloading service

providers and the offloading service consumers in the considered market framework, and investigate the

cases where the offloading capacity of APs is unlimited and limited, respectively. For the case without

capacity limit, we decompose the followers’ game of the MLMF-SG (FG-MLMF-SG) into a number of

simple follower games (FGs), and prove the existence and uniqueness of the equilibrium of the FGs from

which the existence and uniqueness of the FG-MLMF-SG also follows. For the leaders’ game of the

MLMF-SG, we also prove the existence and uniqueness of the equilibrium. For the case with capacity

limit, by considering a symmetric strategy profile, we establish the existence and uniqueness of the

equilibrium of the corresponding MLMF-SG, and present a distributed algorithm that allows the leaders

to achieve the equilibrium. Finally, extensive numerical experiments demonstrate that the Stackelberg

equilibrium is very close to the corresponding social optimum for both considered cases.
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I. INTRODUCTION

A. Background

The data traffic in cellular networks has seen a tremendous growth over the past few years due to

the explosion of mobile devices, e.g. smart phones, tablets, laptops etc. The increasing data traffic in

cellular networks suggests that traffic from cellular networks should be offloaded so as to alleviate traffic

congestion and improve user satisfaction. Thus, mobile data offloading emerged as a promising approach

to utilize certain complementary transmission technologies to deliver data traffic originally transmitted

over cellular networks to the users. Recently, a large number of studies have investigated the potential

benefits of mobile data offloading and various innovative schemes have been proposed to better manage

data traffic including WiFi [1]–[5], femtocells [6]–[10], and opportunistic offloading [11], [12]. In fact,

these studies have shown that data offloading is a cost-effective and energy-prudent approach to resolve

network congestion and improve network capacity.

B. Motivation

However, the merit of mobile data offloading does not always guarantee that offloading is adopted by the

offloading service providers (OSPs) and offloading service consumers (OSCs), i.e., mobile data flows, in

practice. One of the most important reasons for not adoptingmobile data offloading is the lack of economic

incentives, i.e., OSPs may be reluctant to make their resources available for offloading data traffic without

permission or appropriate economic reimbursement since offloading data traffic will consume their limited

wireless resources and reduce broadband connection capacity. Thus, it is of significant importance to

analyze the economic implications of mobile data offloadingfrom the perspective of both OSPs and

OSCs. For ease of presentation, in this paper, we focus on WiFi offloading in which OSPs and OSCs

represent Access Points (APs) and cellular data flows, respectively.

From an economics point of view, there are many works considering the interaction between APs

and cellular data flows. For example, [13] studied delayed WiFi offloading by modeling the interactions

between APs and cellular data flows as a two-stage sequentialStackelberg game with one leader and

multiple followers. In [14], the authors investigated the economics of mobile data offloading through WiFi

or femtocells, and utilized a multi-leader multi-followerStackelberg game (MLMF-SG) to achieve the

subgame perfect equilibrium (SPE), and further compared the SPE with the corresponding outcomes in a

perfect competition market and in a monopoly market withoutprice participation, respectively. In [15], the
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authors considered the scenario where each of the mobile network operators (MNOs) can employ multiple

APs to offload its data traffic and each AP can concurrently serve traffic from different MNOs. The

proposed market scheme incurred minimum communication overhead and created non-negative revenue

for the market broker without requiring a priori information about MNOs and APs.

Motivated by [13]–[15], we consider a typical offloading scenario where a number of cellular data

flows offload their data traffic to a number of APs in their vicinity, e.g., hotspots near base stations. In

particular, we propose a pricing framework based on the concept of ‘paying for offloading’ to ensure

efficient use of the offloading APs. Under this framework eachcellular data flow corresponding to a

mobile source-destination pair offers a payment to incentivize APs to participate in offloading, and then

the payment is shared in proportion to the amount of data offloaded to each AP. Hence, the utility of an

AP is its share of received payment minus its own offloading cost. For a cellular data flow, its utility is

defined as a generic concave function of the sum of the utilities from offloading on the APs minus the

cost paid to these offloading APs. We model the interaction ofthe APs and the cellular data flows as an

MLMF-SG, where the APs are the followers who respond to the payment offered by the cellular data

flows (i.e., each AP offloads a part of the data of some flows suchthat its utility is maximized, given

the payment offered by the flows and the actions of its competing peers); and the cellular data flows are

the leaders who set the payment to maximize their own utilityin anticipation of the Nash equilibrium

(NE) response of the followers. Notwithstanding our interest in the mobile data offloading context, the

considered model is generic enough to be applied any other scenario where a set of ‘jobs’ compete for

the services of a pool of ‘workers’, such that the jobs set their payment rates, workers are free to choose

the job they will attempt, and payment from each job is eventually shared according to certain allocation

rules among all the workers that serve the job.

Unlike most pricing methods in the existing literature thatinvolve only one type of selfish players [13]

or two types of selfish players without competition between them [14], [15], our framework features

two types of players, each of which competes not only with itspeers but also with the players of the

other type. This property distinguishes our work from the scenario considered in [14], [15], where only

players of the same type can compete with each other althoughthere exist two types of selfish players.

This difference cause the utility functions of players in this paper to be completely different from those

in [14], [15] as far as concavity is concerned. Concretely, with the strategy profile in [14], [15], the

utility functions of both followers and leaders are concave, which ensures that there exists an equilibrium

in the followers’ game and the leaders’ game, respectively.However, in our case, the payment from a

flow is shared proportionally among all APs according to the amount of data offloaded to each AP. As
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a consequence, an AP’s utility depends not only on its own strategy but also on the strategies of its

peers, which leads to complex interactions among the APs. Accordingly, the sharing of payment causes

the utility functions to be non-concave, which necessitates a completely new and original study of the

game’s equilibrium.

C. Contributions

The main contributions of this paper can be summarized as follows:

• We develop a distributed market pricing framework for mobile data flows to price the offloading

service.

• We formulate a Stackelberg game to model the interactions between offloading service providers

and offloading service consumers under the market framework, and investigate the cases where the

offloading capacity of APs is limited and unlimited, respectively. For both cases, we establish the

existence and uniqueness of the equilibrium of the proposedStackelberg game, obtain the Stackelberg

equilibrium in closed form when the offloading capacity of the APs is not limited, and further

propose a distributed pricing algorithm to ensure that the game converges to an equilibrium when

the offloading capacity of the APs is limited.

• We conduct a large number of simulations to verify our theoretical analysis on the proposed Stack-

elberg game for the two considered cases. As a noteworthy property of the developed framework,

simulation results demonstrate that the Stackelberg equilibrium is very close to the social optimum.

D. Related Work

To provide better service in cellular networks, a body of literature has proposed to exploit various

kinds of technologies to offload data traffic. These works adopt three different approaches for offloading.

The first approach is opportunistic offloading which utilizes opportunistic communication to offload

cellular traffic. For example, the authors of [11] considered the heterogeneities of mobile data and mobile

users in realistic disruption tolerant networks, and established a mathematical framework to study the

problem of multiple-type mobile data offloading. In [12], opportunistic communication was exploited to

facilitate information dissemination in the emerging mobile social networks and to reduce the amount of

mobile data traffic.

The second approach is femtocell offloading which has emerged as another primary option for macro-

cellular data offloading. In [6], the potential benefits and costs of deploying femtocells were surveyed.

In [7], the authors investigated the network operator’s profit gain from offering dual services through both
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macrocells and femtocells. The authors of [8] considered the tradeoff between reducing the paging cost

in mobility management and registration signaling overhead, and proposed a delay registration algorithm

that postpones the registration and reduces signaling overhead while sustaining the traffic offloading

capability of the femtocell. In [9], optimal sleep/wake up schemes were studied for the base stations

of network-operated femtocells to offload part of its trafficto minimize the energy consumption of the

overall heterogeneous network while preserving quality ofservice (QoS). In [10], the authors studied the

economic aspects of femtocell services for the case of a monopoly market. The authors of [16] proposed

a dynamic pricing scheme based on market equilibrium and non-cooperative game such that the mobile

service providers can gain more revenue than with a fixed pricing scheme. In [17], the authors focused

on the inter-femtocell interference in three-dimension scenarios, and classified multiple femtocells into a

number of groups according to the amount of interference caused to others.

In this paper, we focus on another approach for mobile data offloading which exploits the freely

available WiFi networks, and is referred to as WiFi offloading. In [2], the authors first presented a

quantitative study for the performance of 3G mobile data offloading through WiFi networks, and then

proposed a distribution model-based simulator to investigate the average performance of offloading for a

given WiFi deployment condition. In [3], the authors studied the tradeoff between the amount of traffic

being offloaded and the user satisfaction, and provided an incentive framework based on reverse auction

to motivate users to leverage their delay tolerance for cellular traffic offloading. This performance gain

can be improved by delaying transmission [3] and predictingWiFi availability [3], [4]. A cost-effective

scheme integrating both WiFi and cellular radio access technologies was proposed to efficiently address

peak wireless data traffic and heterogeneous QoS requirements [5]. A subscribe-and-send architecture and

an opportunistic forwarding protocol were presented in [18] such that the users having subscribed contents

from the Content Service Provider (CSP) can obtain these contents from other users who can access these

contents through WiFi opportunistic peer-to-peer communications rather than directly downloading the

subscribed contents from the CSP. In [19], the authors proposed an enhanced WiFi offloading model

to bring mobile IP integration into the core network with Policy and Charging Control (PCC), and

developed a comprehensive analytical model to quantify theperformance of data offloading in terms of

the amount of 3G resources saved by offloading and the deadline assurance for measuring the quality

of user experience with PCC support. In [20], the authors focused on the effect of inter-radio access

technology (RAT) offloading on the overall system performance, and developed a general and tractable

model that consisted ofM different RATs, each deploying up toK different tiers of access points with

different parameters. In contrast to these existing works,this paper is the first to investigate the economic
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behavior of WiFi offloading for two types of selfish players, which compete not only with the players of

the same type but also with players of the other type. This sets our work apart from the existing literature

in this field.

E. Organization of Paper

The remainder of this paper is organized as follows: The considered problem is formulated in Section II.

In Section III, we analyzes the Stackelberg equilibrium without offloading capacity limit, while in

Section IV we analyze the Stackelberg equilibrium with offloading capacity limit. Simulation results

are provided in Section V. Finally, the paper is concluded inSection VI.

II. PROBLEM FORMULATION

In this section, we first provide the system model of WiFi offloading, and then introduce the pricing

market framework. Subsequently, we formulate the problem to a Stackelberg game.

A. System Model

We consider a setF of mobile data flows (or data traffics) in a cellular network where each flow

f transmits a number of data packets from the sourceSf to the destinationDf . A set R of potential

offloading APs (with|R| = R ≥ 2) in the vicinity of the flows, may help flowf to offload its data

packets to the destination via another transmission network, e.g. WiFi. In return, the APs may obtain a

certain reimbursement from flowf . The APs are assumed to be WiFis operating on different carriers, and

accordingly the APs’ signals do not mutually interfere witheach other. Assume that time is slotted, and

there is a network-wide slot synchronization. We focus on how the packets of flowf should be priced

such that the APs have an incentive to offload data packets of flow f .

B. Pricing Framework

For a selfish APi (i ∈ R), to incentivize offloading, it must receive some reimbursement that is

greater than its offloading cost. For this purpose, each flowf offers a payment ofCf to incentivize APs

to offload data traffic, whereCf is determined by the flow itself, i.e.,Cf is the strategy of flowf . We

denote byrfi the amount of data offloaded by APi for flow f . Hence, the utility of flowf ∈ F is

defined as the net payoff thatf gets per slot:

Uf , uf

(∑

i∈R

log(1 + rfi )
)
− Cf , (1)
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where thelog(1+ rfi ) term1 reflects the diminishing utility of flowf from rfi . Functionuf (·) represents

the total utility from the assistance of all APs. We assumeuf (w) is continuously differentiable, strictly

increasing, and weakly concave inw, i.e., u
′

f (w) > 0 andu
′′

f (w) ≤ 0, with uf (0) = 0.

Next, we consider the utility of the APs. For flowf (f ∈ F), the payment ofCf is shared in accordance

with the level of cooperation, i.e., the amount of data offloaded by the APs that offload packets of flowf .

The vectorri = {rfi , f ∈ F} is the strategy of APi where
∑

f∈F rfi ≤ B reflects the limited offloading

capacityB of AP i. We denote the cost (e.g. in terms of energy) for APi to offload a packet of flowf

by efi . Thus, the expected payoff per slot for APi is

Vi ,
∑

f∈F

V f
i =

∑

f∈F

[
Cf rfi∑

j∈R rfj
− efi r

f
i

]
, (2)

whereV f
i , Cf r

f
i∑

j∈R r
f
j

− efi r
f
i .

The payoff function of APi has the following property.

Lemma 1. Vi is not a concave function inrfj (j ∈ R, j 6= i).

Proof: It is easy to show∂
2Vi

∂2r
f
j

≥ 0, which means thatVi is not a concave function inrfj (j ∈ R, j 6= i).

C. Stackelberg Game

We model the offloading problem with pricing as a Stackelberggame which includes two roles

(leader and follower) and two stages. In the first stage, eachflow f (as a leader) announces its re-

imbursementCf , and the reimbursement from all flows are collected in a reimbursement vectorC =

(C1, C2, · · · , C |F|). In the second stage, each offloading APi (as a follower) inR choose its offloading

sizeri = (r1i , r
2
i , · · · , r

|F|
i ) for different flows to maximize its own utility. Hence, the flows are the leaders

and the APs are the followers in this Stackelberg game. For convenience, letr = (r1, r2, · · · , r|R|) denote

the strategy profile of all APs whereri is the strategy profile of APi. Let r−i denote the strategy profile

excludingri andrf−i be the profile excluding APi given f . Then,r = (ri, r−i) andri = (rfi , r
f
−i).

1) Followers’ Game:Given r−i, each follower (APi) chooses its strategyri to maximize its utility

in response to the leaders’ strategiesC , (Cf ,C−f ) = (C1, C2, · · · , C |F|). Thus, the objective of AP

1We adoptlog(1 + r
f
i ) only for presentation purpose. This term can be replaced by other types of utility functions as long

as they reflect the diminishing utility of flowf in terms ofrfi
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i is to solve the following optimization problem:

r̃i(C) = argmax
ri

Vi(ri, r−i,C) (3)

s.t.
∑

f∈F

rfi ≤ B, ∀i ∈ R (4)

rfi ≥ 0, ∀i ∈ R, ∀f ∈ F . (5)

Then, we havẽr(C) =
(
r̃1(C), · · · , r̃|R|(C)

)
. Note that the followers’ game itself can be considered

as a non-cooperative game [21].

2) Leaders’ game:Given C
−f , each leader (flowf ) chooses its strategyCf to maximize its utility

functionUf (·) anticipating that the followers will eventually respond with a collection of strategies that

constitute an NE according to (3). Thus, the leaders’ problem is

C̃f = argmax
Cf

Uf (C
f ,C−f , r̃(Cf ,C−f )). (6)

The solution of the Stackelberg game is characterized by a Stackelberg Nash Equilibrium (SNE), that

is a strategy profile from which no player has incentive to deviate unilaterally.

In the following sections, we will analyze the SNE for two different cases. In the first case, the capacity

of the APs is not limited, which corresponds to omitting constraint (4). In the second case, the capacity

of the APs is limited, which corresponds to keeping constraint (4).

III. STACKELBERG GAME EQUILIBRIUM ANALYSIS WITHOUT CAPACITY BOUND

In this section, we investigate the existence and uniqueness of an SNE for the considered Stackelberg

game if the capacity of the APs is not limited (correspondingto omitting the constraint (4)). Specifically,

we first show that the followers’ game of the multi-leader multi-follower Stackelberg game (FG-MLMF-

SG) can be decomposed into a series of followers’ games. Then, we show the existence and uniqueness

of an NE for the followers’ game by analyzing its best response strategy, and prove the existence of a

unique NE of the leaders’ game by utilizing the structural properties of its objective function.

A. Followers’ Game

Since the capacity of the APs is much larger than that of mobile devices, it is reasonable to assume

that there is no offloading capacity limit for the APs. Under this assumption, the following proposition

decomposes the complicated followers’ game defined in Section II into a number of simpler games.
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Preposition 1. If the capacity of the APs is not limited, FG-MLMF-SG can be decomposed into|F|

followers’ games
(
FG(1), · · · , FG(|F|)

)
.

Proof: If the capacity of the APs is not limited, according to (2) and(3), FG-MLMF-SG, denoted by

r̃i(C) = argmaxri Vi(ri, r−i,C), can be decomposed into|F| followers games
(
FG(1), · · · , FG(|F|)

)
,

whereFG(f), f ∈ F corresponds to the optimization problem̃rfi (C
f ) = argmaxrfi V

f
i (rfi , r

f
−i, C

f ).

Definition 1. GivenCf and r
f
−i, a strategy is the best response strategy of APi for FG(f), denoted by

Γf
i (r

f
−i), if it maximizesV f

i (r
f
i , r

f
−i) over rfi ≥ 0.

From ∂V
f
i

∂r
f
i

= 0, we obtainr̃fi =

√
Cf

∑
j∈R\{i} r̃

f
j

e
f
i

−
∑

j∈R\{i} r̃
f
j . Therefore, the best responseΓf

i (r
f
−i)

of follower i for flow f is

Γf
i (r

f
−i) =





√
Cf

∑
j∈R\{i} r̃

f
j

e
f
i

−
∑

j∈R\{i} r̃
f
j , if efi

∑
j∈R\{i} r̃

f
j ≤ Cf

0, otherwise.

(7)

The best responses of followeri for
(
FG(1), · · · , FG(|F|)

)
are collected in the best response vector

Γi(r−i) =
(
Γ1
i (r

1
−i), · · · ,Γ

|F|
i (r

|F|
−i )

)
.

The following theorem states that the best response strategy leads to an NE of the FG-MLMF-SG.

Theorem 1. The strategy profilẽr = (r̃1, r̃2, · · · , r̃|F|) is an NE of the FG-MLMF-SG, wherẽrf =

(r̃f1 , r̃
f
2 , · · · , r̃

f

|R|
) is an NE ofFG(f), where

1) the optimal sets of offloading APs, denoted byS = (S1,S2, · · · ,SF ), are computed by Algorithm 1;

2) r̃fi = (|Sf |−1)Cf

∑
j∈Sf

e
f

j

(
1− (|Sf |−1)efi∑

j∈Sf
e
f

j

)
if i ∈ Sf ; r̃fi = 0 otherwise.

Algorithm 1 Computation of the optimal sets of offloading APs
1: for f ∈ F do

2: Sort APs according to their offloading costs:efσ1 ≤ efσ2 ≤ · · · ≤ efσR
;

3: Sf = {σ1, σ2}, i = 3;

4: while i ≤ R andefσi
<

∑
j∈Sf

e
f
j

|Sf |−1 do

5: Sf = Sf ∪ {σi}, i = i+ 1;

6: end while

7: end for

8: return S = (S1,S2, · · · ,SF ).
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Proof: Please refer to Appendix A.

After proving the existence of an NE of the FG-MLMF-SG, we next prove the uniqueness of the NE.

Theorem 2. Given Cf , denote the strategy profile of an NE byr̂ = (r̂1, r̂2, · · · , r̂|F|), where r̂
f =

(r̂f1 , r̂
f
2 , · · · , r̂

f

|R|), and defineŜf = {i ∈ R : r̂fi > 0}. Then, we have

1) r̂fi = (|Ŝf |−1)Cf

∑
j∈Ŝf

e
f

j

(
1− (|Ŝf |−1)efi∑

j∈Ŝf
e
f

j

)
if i ∈ Ŝf ; r̂fi = 0 otherwise;

2) We sort{efj : j ∈ R} to efσ1 ≤ efσ2 ≤ · · · ≤ efσR
, then Ŝf = {σ1, · · · , σi}, whereσ1, · · · , σR is a

permutation ofR givenf , efσi+1 ≥

∑
i

j=1 e
f
σj

i−1 , and i ≥ 2.

These statements imply that the FG-MLMF-SG has a unique NE.

Proof: Please refer to Appendix B.

Theorem 1 and Theorem 2 imply that there exists a unique NE in the FG-MLMF-SG.

B. Leaders’ Game

According to the above analysis, the flows, which are the leaders in the MLMF-SG, know that there

exists a unique NE for the APs for any given pricing vectorC. Hence, each flowf can maximize its

benefit by settingCf .

Given a specific flowf , feeding back into (1), we have

Uf = uf

(∑

i∈R

log(1 + rfi )
)
− Cf = uf

( ∑

i∈Sf

log
(
1 + Cfki

))
− Cf ,

whereki =
|Sf |−1∑
j∈Sf

e
f

j

(
1− (|Sf |−1)efi∑

j∈Sf
e
f

j

)
.

Theorem 3. There exists a unique NE of the leaders’ game in the MLMF-SG.

Proof: Given a specific flowf , the second derivative ofUf with respect toCf is

∂2Uf

∂2Cf
= u′′f

(∑

i∈S

log(1 + Cfki)
)(∑

i∈S

ki
1 + Cfki

)2
− u′f

(∑

i∈S

log(1 + Cfki)
)∑

i∈S

k2i
[1 + Cfki]2

< 0.

Thus,Uf = uf

(∑
i∈R log(1 + rfi )

)
− Cf is concave inCf for Cf ∈ [0,∞). SinceUf |Cf=0 = 0

andUf |Cf=∞ = −∞, Uf has a unique maximizer, denoted bỹCf = argmaxCf Uf . The C̃f , f ∈ F ,

compose the price vector̃C which achieves the unique NE of the leaders’ game in the MLMF-SG.

Thus far, we have established the existence and uniqueness of the NE for the MLMF-SG when the

offloading capacity of the APs is not limited. However, due tohardware limitation and energy consumption

limits, in practice, constraints on the APs’ offloading capability are inevitable, which makes the interaction
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between APs and flows more complex. In the next section, we will further study the properties of the

NE of the MLMF-SG if a constraint on APs’ offloading capacity is present.

IV. STACKELBERG GAME EQUILIBRIUM ANALYSIS WITH CAPACITY BOUND

In the previous section, we have analyzed the NE of the considered MLMF-SG for the case when the

offloading capacity of the APs is not limited. Now, we consider the game if a capacity constraint on the

APs is present, and characterize the properties of the NE. First, we establish some structural properties

of some relevant quantities in the leaders’ game, and then weprove the existence and uniqueness of the

NE for the leaders’ game in the MLMF-SG. Finally, we present adistributed pricing algorithm for the

leaders’ game that converges to the unique equilibrium.

A. Followers’ Game

To make the analysis of the game tractable, we assume that theoffloading cost of a specific flow

does not depend on the APs, that is,efi = ef for any AP i ∈ R given f . Note that this assumption is

reasonable as all APs are assumed to be located in the vicinity of flow f .

We commence our discussion of the properties of the equilibrium by considering the best response of

AP i using the strategyri = (r1i , · · · , r
|F|
i ). The corresponding optimization problem from the perspective

of AP i can be stated as:

max
ri

Vi(ri, r−i) s.t.
∑

f∈F

rfi ≤ B, rfi ≥ 0, ∀f ∈ F . (8)

Thus, the corresponding Lagrangian function is given by:

L(ri, λi, ν) = Vi(ri, r−i)− λi ·
(∑

f∈F

rfi −B
)
+

∑

f∈F

νfi r
f
i . (9)

SinceVi is continuously differentiable inrfi , it follows that the Karush-Kuhn-Tucker (KKT) conditions

corresponding to problem (9) are necessary for optimality.On the other hand, we note from (2) that, for

a fixedr−i, functionVi(ri, r−i) is concave inri although it is not concave inr according to Lemma 1.

This implies that the KKT conditions are sufficient for optimality as well. Thus, we conclude that a

strategy profile is an equilibrium if and only if (i.i.f) there existλi ≥ 0 and{νfi ≥ 0, f ∈ F} such that

the following conditions are satisfied:

(A1) :
∂Vi

∂rfi
= λi − νfi , ∀f ∈ F

(A2) : λi ·
(∑

f

rfi −B
)
= 0
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(A3) : νfi r
f
i = 0, ∀f ∈ F .

For ease of further discussion, we introduce the concept of strictly interior equilibrium which is formally

defined as follows:

Definition 2. We say that an equilibrium is a strictly interior equilibrium if the offloading size of any

AP i ∈ R for any flowf ∈ F is strictly positive, i.e.,rfi > 0.

Now, we are ready to provide the following theorem, which guarantees the symmetry of a strictly

interior equilibrium.

Theorem 4. If a strictly interior equilibrium exists in the followers’game, then it is symmetrical, i.e.,

rfi = rf for any i ∈ R.

Proof: Please refer to Appendix C.

Thus, in the following, we focus on symmetric strategy profiles, that is, all nodes use a symmetric

strategy, i.e.,rfi = rf for any i ∈ R. To this end, we define the function

gf (rf ) ,
∂Vi

∂rfi

∣∣∣
r
f
j =rf , ∀j∈R

= Cf R− 1

R2rf
− ef = Cfhf (rf )− ef ,

wherehf (rf ) , R−1
R2rf

.

Given a symmetric strategy profile, by Theorem 4, the KKT conditions for (9) can be refined to the

existence ofλi ≥ 0 and{νfi = 0, f ∈ F} such that (A1)-(A3) are satisfied.

Now, we are ready to state the main result of this subsection.

Theorem 5. For any vector of flow priceC, there exists a unique set of{ρf , f ∈ F} such that the

symmetric strategy profile{rfj = ρf , j ∈ R} is a Nash equilibrium. Furthermore, there existλ ≥ 0 and

{νf = 0, f ∈ F}, such that

(B1) : gf (ρf ) = λ− νf , ∀f ∈ F

(B2) : λ
(∑

f∈F

ρf −B
)
= 0

(B3) : νfρf = 0, ∀f ∈ F .

Proof: Please refer to Appendix D.

Based on Theorem 5, we obtain that the solution of the following convex optimization problem is the
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NE of the followers’ game in the MLMF-SG.

max
ρ1···ρ|F|

∑

f∈F

(
Cf R− 1

R2
log(ρf )− efρf

)
s.t.

∑

f∈F

ρf ≤ B, ρf > 0 ∀f ∈ F , (10)

which can be easily solved by software packages, such as Matlab.

B. Leaders’ Game

In this subsection, we study the effect of the payment rateCf of a specific flowf ∈ F on the followers’

symmetric equilibrium when all other ratesC−f remain fixed. To streamline the discussion, we express

the value ofρf of the equilibrium corresponding to a givenCf as a functionρf = Ψ(Cf ) (since we

focus only onρf and are not interested in the strategy values for other flows). Also, we define the value

of λ that satisfies condition (B1)-(B3) in the equilibrium as a function λ = Λ(Cf ).

We begin by exploring these functions for extreme values ofCf . Clearly, forCf = 0, the utility of

any AP cooperating with flowf is non-positive, implyingρf = Ψ(Cf = 0) = 0. However, from the

KKT conditions (B1)-(B3), we knowρf > 0, which impliesCf > 0. Thus, we assume thatρf must

be larger than a infinitesimal positive value, i.e.,ρf = 0+. DefineCf = Ψ−1(ρf = 0+) , Cf and

λ = Λ(Cf = Cf ). Λ(Cf ) andΨ(Cf ) have the following properties.

Lemma 2. Λ(Cf ) andΨ(Cf ) have the following properties:

1) λ = Λ(Cf ) is continuous and non-decreasing inCf ;

2) ρf = Ψ(Cf ) is continuous, and strictly increasing inCf ∈ (0,∞);

3) ρf = Ψ(Cf ) is concave inCf ∈ (0,∞);

Proof: Please refer to Appendix E.

Lemma 3. For a fixedC−f , the functionUf (C
f ,C−f ) is concave inCf .

Proof: Assuming the followers respond with a symmetric equilibrium, the first order derivative of

utility function Uf with respect toCf is given by

∂Uf

∂Cf
= u′f

(
R log(1 + ρf )

) R

1 + ρf
∂ρf
∂Cf

− 1, (11)

whereρf = Ψ(Cf ). Sinceuf (·) is concave by assumption,R log(1 + ρf ) is increasing and concave in

ρf , andρf is concave inCf by Lemma 2, it follows that∂Uf

∂Cf is non-decreasing inCf , i.e.,Uf is indeed

concave inCf .
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Lemma 4. The best-response functionΥf (C−f ) of flowf is bounded by0 ≤ Υf (C−f ) ≤ uf

(
R log(1+

B)
)

.

Proof: Notice thatUf = uf

(
R log(1 + ρf )

)
− Cf . Obviously, for the best response, the utility is

nonnegative (utility 0 can always be obtained byCf = 0). Hence,0 ≤ Υf (C−f ) ≤ maxρf uf

(
R log(1+

ρf )
)
= uf

(
R log(1 +B)

)
.

Due to the concavity ofUf in Cf (Lemma 3), a unique solution is guaranteed; furthermore, weobserve

that if uf is continuously differentiable, the best response function is continuous as well.

Theorem 6. If the followers always respond with their symmetrical NE, then an equilibrium of the

leaders’ game, i.e., an SNE of the overall system, exists andis unique.

Proof: Please refer to Appendix F.

Thus far, we have obtained the static characteristics of theleaders’ game, i.e., the existence and

uniqueness of the equilibrium. Next, we analyze the dynamicbehavior of the leaders’ game, i.e., how

the game converges to the equilibrium from any initial strategy profile by best-response strategy updates.

Before delving into the convergence analysis, we discuss the monotonicity of the best response function

Υ(C−f ) of flow f .

Lemma 5. The best responseΥ(C−f ) of flow f is monotonic and non-decreasing inCf ′

for any

f ′ ∈ F \ {f}.

Proof: Please refer to Appendix G.

Now, we are ready to state the following theorem which characterizes the dynamic behavior of the

leaders’ game.

Theorem 7. Given some initial price vectorC(0), if each flowf responds according to Algorithm 2,

where
(
ρ1(n), · · · , ρ|F|(n)

)
can be obtained by solving(10), that is, flowf ∈ F updates its strategy as

Cf (n+ 1) = Υ(C−f(n)), thenlimn→∞C(n) = C
∗, whereC∗ is the equilibrium of the leaders’ game.

Proof: Please refer to Appendix H.

Distributed Algorithm 2 computes the priceCf(n + 1) of flow f (f ∈ F) at n + 1, where the price

Cf (n+ 1) of flow f depends on
(
ρ1(n), · · · , ρ|F|(n)

)
rather than the price of other flows, i.e.,Cf ′

(n)

(f ′ 6= f ).

In this section, when the capacity of APs is limited, by considering a symmetric strategy profile, we
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Algorithm 2 Computing price for flowf

1: input: ρ1(n), · · · , ρ|F|(n);

2: if flow f ∈ F updates its strategythen

3: if ρf (n) +
∑

f ′ 6=f ρ
f ′

(n) < B then

4: Cf (n+ 1) = u′f (R log(1 + ρf (n))) Rρf (n)
1+ρf (n) ;

5: else

6: λ =
[
u′
f (R log(1+ρf (n)))

ρf (n)(1+ρf (n))
R−1
R

−
∑

f ′∈F
ef

′

ρf′ (n)

]
1∑

f′∈F
1

ρf
′
(n)

;

7: Cf (n+ 1) = ρf (n)(λ+ ef ) R2

R−1 for flow f ;

8: end if

9: end if

10: ouput: Cf (n+ 1).

have established the existence and uniqueness of the equilibrium of the corresponding MLMF-SG, and

further, based on the best response strategy, presented a distributed price algorithm that allows the flows

to computer their price independently.

V. NUMERICAL SIMULATION

In this section, we demonstrate some of the theoretical results derived in this paper, and gain further

insight into the behavior of the game for different scenarios via a numerical study. Our goal is to present

several scenarios indicative of the typical interactions among the players in the game. First, we consider

the case when the offloading capacity of the APs is not limited. Specifically, we evaluate the effect of the

offloading cost, heterogeneity of traffics, the number of APsetc, on the performance of the equilibrium.

In the second part of this section, we evaluate the performance of the game when the offloading capacity

of APs is limited.

A. Multiple Cellular Flows and Multiple APs with Offloading Capacity Limit

First, we introduce the price of anarchy (PoA). Denote the unique equilibrium of the proposed MLMF-

SG as (r∗ne,C
∗
ne), we know that(r∗ne,C

∗
ne) can be obtained by solving problem (10) and running

Algorithm 2, and the optimum system utilityUNE at equilibrium is a function of(r∗ne,C
∗
ne), i.e.,

UNE =
[∑

f∈F Uf +
∑

i∈R Vi

]
(r,C)=(r∗ne,C

∗
ne)

. On the other hand, the social utilityUOpt can be obtained
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by solving the following optimization problem,

max
ρ1···ρ|F|

{
Us ,

∑

f∈F

uf

(
R log(1 + ρf )

)
−

∑

f∈F

Refρf
}

s.t.
∑

f∈F

ρf ≤ B, ρf > 0, f ∈ F .

Denoteρ∗ = argmaxρ1···ρ|F|{Us}, and then,UOpt = Us

∣∣
ρ∗ . Therefore, PoA= UOpt

UNE
.

1) Convergence:We first consider the simplest scenario with two cellular traffic flows |F| = 2 and

two APs |R| = 2, which allows us to illustrate the interactions between flows and APs. Specifically, for

the cellular traffic flowf ∈ F , we adopt a linear utility functionUf = ωf

∑
i∈R log(1 + rfi )−Cf . The

parameters are set as follows: offloading costse1 = 0.1 and e2 = 0.3, weight coefficientsw1 = 1 and

w2 = 2, and capacity limitB = 7 in Fig. 1(a) andB = 1 in Figs. 1(b)–(d), respectively. By solving

problem (10), we obtainρ1 = 4 andρ2 = 2.33, and further,C1 = 1.6 andC2 = 2.8 from Cf = efρf R2

R−1

according to Algorithm 2. Note thatρ1 + ρ2 = 6.33 < 7 implying that the conditionρ1 + ρ2 < B holds,

which is shown in Fig. 1(a). On the other hand, forB = 1, ρ1 + ρ2 = 1 must be satisfied at the NE,

which is illustrated in Figs. 1(b)–(d). Moreover, we observe from Figs. 1(b)–(d) that the price vector and

the strategy profile converge from different initial price vectorsC(0) = (0.01, 0.01), C(0) = (5, 0.01),

andC(0) = (10, 10), respectively, which validates the proposed Algorithm 2.

2) Offloading Cost:Considering two cellular traffics|F| = 2, two APs|R| = 2 and two linear utility

functions withw1 = 2 and w2 = 1, respectively, we fix the offloading capacity toB = 2 and the

offloading cost of AP 1 toe1 = 0.5, and then show how the price vector and strategy profile change as

function of the offloading coste2 of AP 2. From Fig. 2, we make the following observations.

(a) e2 ∈ (0.1, 0.25]. Assumeρ1 + ρ2 < B, then according to (23), we haveρf = wf

ef
R−1
R

− 1

(which is decreasing inef ), and furthermore,ρ1|e1=0.5 = 1 and ρ2|e2=0.1 = 4, which implies that

ρ1|e1=0.5 + ρ2|e2=0.1 = 5 > B = 2 contradicts the assumptionρ1 + ρ2 < B. Thus,ρ1 + ρ2 = B = 2

must be satisfied fore2 ∈ (0.1, 0.25], which is shown in Fig. 2;

(b) e2 ∈ (0.25, 0.5]. The conditionρ1 + ρ2 ≤ B = 2 is met with equality untile2 = 0.25. That is,

when e2 = 0.25, ρ2|e2=0.25 = 1 and ρ1|e1=0.5 + ρ2|e2=0.25 = 2 = B. Hence, if e2 > 0.25, then the

conditionρ1 + ρ2 ≤ B = 2 is no longer met with equality andρ1 + ρ2 < B, which leads toρ1 = 1 and

C1 = w1R
ρ1

1+ρ1 = 2 from Algorithm 2. Also, ase2 increases,ρ2 = w2

e2
R−1
R

− 1 decreases, which can be

observed in Fig. 2;

(c) e2 ∈ (0.5, 1]. Whene2 ≥ 0.5, ρ2 = w2

e2
R−1
R

− 1 = 1
2e2 − 1 ≤ 0, which implies that AP 2 does not

offload any data and accordingly,ρ2 = 0 andC2 = 0.

3) Heterogeneity of Data Traffic Flows:For |F| = 2, |R| = 2, w1 = 1, e1 = 0.1, e2 = 0.3, and

B = 1, Fig. 3 illustrates the relation betweenw2 and the price of anarchy (PoA), defined as the ratio
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used, respectively.
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Fig. 2. The impact of offloading cost on the price vector and strategy profile.w1 = 2, w2 = 1, B = 2, ande1 = 0.5.

between the optimal social utilityUOpt and the system utilityUNE achieved at NE. In particular, the

peak atw2 = 1 can be explained as follows. Whenw1 = w2, the two traffic flows are homogeneous.

In this case, the APs prefer to offload the traffic flowf = 1 because of its lower offloading cost (i.e.,

e1 = 0.1 < 0.3 = e2), and flow f = 2 cannot be treated equally, which leads to the peak of PoA at

w1 = w2. On the other hand, as the difference betweenw1 andw2 increases, corresponding to a larger
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Fig. 4. The impact of the number of APs on PoA.w1 = 2, w2 = 3, e1i = 0.1. ande2i = 0.2 for any i ∈ R.

heterogeneity of traffic flows, the NE strategy requires thatthe APs participate in pricing fully and offload

each traffic flow as much as possible, and thus, PoA→ 1.

4) Number of APs:We consider two data traffic flows and multiple APs with a linear utility function

for each traffic flow, i.e.,uf (
∑

i∈R log(1 + rfi )) = wf

∑
i∈R log(1 + rfi ) wherew1 = 2 andw2 = 3.

Fig. 4 reveals that the PoA decreases with the number of APs. Since the APs have the same offloading

cost for each traffic flow, they equally and fully participatein the pricing process of each traffic flow,

and thus the equilibrium utilityUNE becomes much closer to the social utilityUOpt as the increasing

number of APs.

5) Large System:To demonstrate the asymptotic properties of the game in a large-scale symmetric

scenario, we consider 10 APs and 3 cellular traffic flows withe1 = 0.1, e2 = 0.3, e3 = 0.2, andwf = 1,

f ∈ F , for more complex utility functions, namely, power-law functionsuf (x) = wfx
b, 0 < b < 1, and

the logarithmic functionuf (x) = wf log(1+x). Fig. 5 shows the PoA for the considered utility functions

when the number of APs increases from2 to 10. Specifically, for the logarithmic utility function as well

as the linear function, the PoA decreases with increasing number of APs, while the PoA increases for the
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power-law utility functions. Moreover, the PoA increases as the value ofb decreases (actually the linear

function can be seen as a power-law function withb = 1). Fig. 5 suggests that the proposed framework

can achieve an efficient equilibrium with at most15% loss of system utility compared to the optimum

system utility when3 ≤ R ≤ 10.

B. Multiple Cellular Flows and Multiple APs without Offloading Capacity Limit

In this subsection, for the case where the offloading capacity of the APs is not limited, we analyze

how the PoA is affected by different parameters, i.e., the offloading cost, heterogeneity of traffic, the

number of APs, and the number of traffic flows. First, we note that the optimum system utility,UNE ,

at equilibrium is a function ofC∗ which is determined by the leaders’ utility functions. Specifically,

from ∂Uf

∂Cf = u′f

(∑
i∈R log(1 + kfi C

f )
)∑

i∈R
k
f
i

1+k
f
i C

f
− 1 = 0, f ∈ F , we can obtainC∗, and further,

UNE =
[∑

f∈F uf

(∑
i∈R log(1 + kfi C

f )
)
−

∑
f∈F

∑
i∈R efi k

f
i C

f
]

C=C∗
which shows thatUNE is

determined by the leaders’ price vector. On the other hand, the social utility UOpt is the maximum

of Us =
∑

f∈F uf

(∑
i∈R log(1 + rfi )

)
−

∑
f∈F

∑
i∈R efi r

f
i . Hence, from∂Us

∂r
f
i

= u′f

(∑
i∈R log(1 +

rfi )
)∑

i∈R
1

1+r
f
i

− efi = 0, i ∈ R, f ∈ F , we have the optimumr∗ and furtherUOpt = Us

∣∣
r∗

which

shows thatUOpt is determined by the offloading size of the followers.

1) Offloading Cost and Heterogeneity of Data Traffic Flows:In this scenario, we consider two sym-

metric APs and two traffic flows. In particular, the offloadingcost of the APs for flowf is homogeneous,

i.e., e11 = e12 = 0.2 and e21 = e22 = e2. Meanwhile, the utility function of each flow is assumed to bea

linear function, i.e,uf (
∑

i∈R log(1 + rfi )) = wf

∑
i∈R log(1 + rfi ) wherew1 = 1. Fig. 6 show how the

PoA is affected by the offloading cost and the heterogeneity of flows. We observe that asw2 increases,

corresponding to an increasing heterogeneity of flows, the PoA tends to decrease and approaches 1; on
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Fig. 6. The impact of the offloading cost and heterogeneity oftraffic flows on PoA.w1 = 1, e11 = e12 = 0.2, ande21 = e22 = e2.

the other hand, ase2 increases from0.2 to 0.8, PoA tends to increase. For example, whenw2 = 2, the

APs are more reluctant to offload flowf = 2 for its larger offloading cost, and accordingly, the two

traffic flows are not treated equally. In this case, flowf = 2 cannot participate in the market pricing to

the same extent as its counterpartf = 1, which leads to an increase of the PoA.

2) Number of APs:We consider two data traffic flows and multiple APs with a linear utility function

for each traffic flow, i.e.,uf (
∑

i∈R log(1+ rfi )) = wf

∑
i∈R log(1+ rfi ) wherew1 = 2 andw2 = 3. We

consider two kinds of APs: homogeneous APs (with the same offloading cost for each traffic flow) and

heterogeneous APs (with different offloading costs for different traffic flows).

(a) Homogenous APs: Assumee1i = 0.1 ande2i = 0.2 for any i ∈ R. From Fig. 7, we observe that the

PoA decreases as the number of the APs increases, and approaches 1 forR ≥ 5. This can be explained

as follows. As each traffic flow has the same offloading cost, the APs equally and fully participate in the

pricing process, and as a consequence, the equilibrium utility UNE approaches the social utilityUOpt as

the number of APs increases.

(b) Heterogenous APs: In this case, we assumee11 = 0.1, e21 = 0.2, andefj+1 = efj + 0.1 to generate

the offloading cost for each APj ∈ R, which reflects the different QoS requirements of the APs. From

Fig. 7, we observe that PoA tends to increase as the number of APs increases, and ultimately converges

to a stable value. Because of the adopted generating rule foroffloading cost, the offloading cost increases

as the number of the APs. Hence, when the number of APs exceedsa certain threshold, the APs with

larger offloading cost cannot obtain positive utility by offloading data traffic flow, and thus, do not offload

data because of their selfishness. This is the reason for the stability of the PoA when the number of APs

exceeds a certain threshold.

3) Number of Data Traffic Flows:We consider two APs and multiple data traffic flows with a linear

utility function for each traffic flow, i.e.,uf (
∑

i∈R log(1+ rfi )) = wf

∑
i∈R log(1+ rfi ). Specifically, we
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Fig. 7. The impact of the number of APs on PoA. (Homogeneous)w1 = 2, w2 = 3, e1i = 0.1 ande2i = 0.2 for any i ∈ R.

(Heterogeneous)w1 = 2, w2 = 3, e11 = 0.1, e21 = 0.2, andefj+1 = e
f
j + 0.1 j ∈ R.

consider homogeneous and heterogeneous data traffic flows, respectively.

(a) Homogeneous Data Traffic Flows: We use the rule,w1 = 2, w2 = 3, andwf+1 = wf , 2 ≤ f ≤ F ,

to generate a linear utility for each flow, and set the offloading cost toe11 = 0.1, e12 = 0.2 and ef1 =

0.3, ef2 = 0.4 for 2 ≤ f ≤ F . From Fig. 8, we observe that the PoA decreases with the number of

flows. This can be explained as follows. As the number of homogenous flows increases, a larger number

of flows compete in the market, which makes theUNE more efficient and close to the optimum social

utility.

(b) Heterogeneous Data Traffic Flows: We use the rule,w1 = 2, e11 = 0.1, ande12 = 0.2, wf+1 = wf+1,

and ef+1
j = efj + 0.1 to generate a linear utility for each flow and a offloading costfor each AP,

respectively. Fig. 8 shows that the PoA first decreases steeply and then increases slowly as the number of

flows increases. In the steep region (F ≤ 5), the effect of the heterogeneous utility functions dominates

the effect of the heterogenous offloading costs, which incentivizes the APs to offload data traffic flows,

and as a consequence,UNE comes closer toUOpt. In the flat region (F > 5), as the number of flows

increases, the advantage of the heterogeneous utility functions decreases while the negative effect of the

offloading cost becomes much stronger, i.e., the APs have less incentive to offload data traffic flows, and

consequently, the PoA begins to increase slowly.

VI. CONCLUSIONS

In this paper, we have proposed a pricing framework for cellular networks to offload mobile data

traffic with the assistance of WiFi network. Specifically, the proposed framework can be utilized to

motivate offloading service providers to participate in mobile data offloading, which is a new paradigm

to alleviate cellular network congestion and to improve thelevel of user satisfaction as well. We have

modeled the pricing mechanism as a multi-leader multi-follower Stackelberg game in which the offloading
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service providers are the followers and the offloading service consumers are the leaders. Technically

speaking, we have analyzed the proposed Stackelberg game bydistinguishing two different cases based

on the offloading capacity of the APs. For the case where the APs do not have an offloading capacity

limit, we have decomposed the followers’ game of the multi-leader multi-follower Stackelberg game

into a fixed number of followers’ games, and proved the existence and uniqueness of the equilibrium,

and obtained an efficient algorithm to compute the equilibrium. For the case with offloading capacity

limit, by considering the symmetric strategy profile, we have established some structural results for the

equilibrium, and further proved the existence and uniqueness of the equilibrium of the Stackelberg game.

Consequently, we presented a distributed algorithm to compute the offloading price for each flow, and

proved its convergence to the unique equilibrium. Finally,extensive numerical experiments were provided

to demonstrate that the Stackelberg equilibrium is very close to the corresponding social optimum for

both considered cases.

There are some future research directions. One direction isthe investigation of the case of asymmetric

strategy profiles, where each AP may have different offloading cost and offloading capacity. One of the

possible approaches is to analyze the followers’ game as a non-cooperative game [21], and we expect

that a unique equilibrium exists. Another promising direction for research is the investigation of other

allocation rules for reimbursement (rather than the proportional allocation rule considered in this paper)

such that the offloading service providers can be motivated to participate in mobile data offloading more

actively.
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APPENDIX A

PROOF OFTHEOREM 1

Based on Proposition 1, to provẽr = (r̃1, r̃2, · · · , r̃|F|) is an NE of the FG-MLMF-SG, we only need

to show that for a given flowf the strategy profilẽrf is an NE of theFG(f).

First, we prove that forFG(f) and anyi /∈ Sf , r̃fi = 0 is the best response strategy givenr̃f−i.

From Algorithm 1, we haveefi ≥

∑
j∈Sf

e
f
j

|Sf |−1 for any i /∈ Sf at the NE point. Sincei /∈ Sf , we have

efi
∑

j∈Sf\{i}
r̃fj = efi

∑
j∈Sf

r̃fj = e
f
i (|Sf |−1)∑

j∈Sf
e
f
j

Cf ≥ Cf , which implies thatΓf
i (r

f
−i) = 0 according to (7).

Next, we prove that forFG(f) and anyσi ∈ Sf , r̃fσi
is the best response strategy givenr̃f−σi

. Since

efσi
<

∑
i

j=1 e
f
σj

i−1 (line 4 of Algorithm 1), we have

(|Sf | − 1)efσi
= (i− 1)efσi

+ (|Sf | − i)efσi
<

i∑

j=1

efσj
+

|Sf |∑

j=i+1

efσj
=

∑

j∈Sf

efj ,

whereefσi
≤ efσj

for i+ 1 ≤ j ≤ |Sf |.

Furthermore,

efσi

∑

j∈R\{σi}

r̃fj = efσi

∑

j∈Sf\{σi}

r̃fj =
(|Sf | − 1)2(efσi

)2

[
∑

j∈Sf
efj ]

2
Cf < Cf .

According to (7), we have

Γf
i (r

f
−σi

) =

√√√√Cf
∑

j∈R\{σi}
r̃fj

efσi

−
∑

j∈R\{σi}

r̃fj =
(|Sf | − 1)Cf

∑
j∈Sf

efj
−

(|Sf | − 1)2Cfefσi

[
∑

j∈Sf
efj ]

2
= r̃fσi

.

Therefore, givenf , r̃
f is an NE ofFG(f), and consequently,̃r is an NE of the FG-MLMF-SG

according to Proposition 1.

APPENDIX B

PROOF OFTHEOREM 2

Based on Proposition 1, to prove the uniqueness of the NE of FG-MLMF-SG, it is sufficient to show

the uniqueness of the NE ofFG(f) for any f ∈ F . Let Ŝf = {i ∈ R : r̂fi > 0}.

1) r̂fi = (|Ŝf |−1)Cf

∑
j∈Ŝf

e
f
j

(
1− (|Ŝf |−1)efi∑

j∈Ŝf
e
f
j

)
if i ∈ Ŝf ; otherwisêrfi = 0. Considering that

∑
j∈R r̂fj =

∑
j∈Ŝf

r̂fj ,

we obtain from∂V
f

i

∂rfi
= 0,

−Cf r̂fi

[
∑

j∈Ŝf
r̂fj ]

2
+

Cf

∑
j∈Ŝf

r̂fj
− efi = 0, i ∈ Ŝf . (12)
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Furthermore, we have|Ŝf |C
f−Cf =

(∑
j∈Ŝf

r̂fj

)(∑
j∈Ŝf

efj

)
by summing up the left hand side (LHS)

of (12) over all nodes in̂Sf . Therefore, we have

∑

j∈Ŝf

r̂fj =
(|Ŝf | − 1)Cf

∑
j∈Ŝf

efj
. (13)

Feeding (13) back into (12) and lettinĝrfj = 0 for any j ∈ R \ Ŝ, we obtain

r̂fi =
(|Ŝf | − 1)Cf

∑
j∈Ŝf

efj

(
1−

(|Ŝf | − 1)efi∑
j∈Ŝf

efj

)
(14)

for every i ∈ Ŝ. This proves 1).

2) i ≥ 2. Assumei = 0, then any AP, e.g., APj, can increase its utility from 0 toC
f

2 by unilaterally

changing its offloading data size from 0 toC
f

2efj
, contradicting the NE assumption and demonstratingi ≥ 1.

Now, assume thati = 1. This meanŝrfσ1 > 0 and r̂fσk = 0 for all k ∈ R \ {1}. According to (2), the

current utility of APσ1 for flow f is Cf − r̂fσ1e
f
σ1 . Hence, APσ1 can increase its utility by unilaterally

changing the amount of data it offloads, contradicting the NEassumption. Thereforei ≥ 2.

On the other hand, considering the definition ofŜf , we know that̂rfi > 0 for everyi ∈ Ŝf . From (14),

r̂fi > 0 implies that(|Ŝf |−1)efi∑
j∈Ŝf

e
f
j

< 1. Therefore, we haveefi <

∑
j∈Ŝf

e
f
j

|Ŝf |−1
for any i ∈ Ŝf , which implies that

max
i∈Ŝf

{efi } <

∑
j∈Ŝf

e
f
j

|Ŝf |−1
for anyi ∈ Ŝf . That is, when APs are ordered such thatefσ1 ≤ efσ2 ≤ · · · ≤ efσR

,

Ŝf is always composed of the APs with the least offloading cost. AssumeŜf = {σ1, · · · , σk} where

efσk+1 <

∑
k
j=1 e

f
σj

k−1 , we haveσk+1 /∈ Ŝf , and furtherr̂fσk+1 = 0. Thus,

V f
σk+1

∂rfσk+1

∣∣∣
r
f
σk+1

=r̂
f
σk+1

=
Cf

∑
j∈Ŝf

r̂fj
− efσk+1

=

∑
j∈Ŝf

efj

k − 1
− efσk+1

> 0,

which implies that APσk+1 can increase its utility by unilaterally increasing its offloading data size,

contradicting the NE assumption. Hence,Ŝf = {σ1, · · · , σi} andefσi+1 ≥

∑
i
j=1 e

f
σj

i−1 .

Statement 1), which gives the optimal amount of offloaded data, and Statement 2), which implies that

Ŝf has a threshold structure concerning the offloading cost, show the uniqueness of the NE ofFG(f),

and furthermore, the uniqueness of the NE of FG-MLMF-SG is obtained based on Proposition 1.

APPENDIX C

PROOF OFTHEOREM 4

We prove this theorem by contradiction. Suppose that in a strictly interior equilibriumr, there exists

a flow f0 and APsi, j such thatrf0i < rf0j . Consider the first order derivative

∂Vi

∂rfi
=

∑
k∈R rfk − rfi

[
∑

k∈R rfk ]
2

Cf − ef . (15)
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It follows that, for flowf0, we have

rf0i < rf0j =⇒

∑
k∈R rf0k − rf0i

[
∑

k∈R rf0k ]2
Cf0 − ef0 =

∂Vi

∂rf0i
>

∂Vj

∂rf0j
=

∑
k∈R rf0k − rf0j

[
∑

k∈R rf0k ]2
Cf0 − ef0 . (16)

On the other hand, sincer is strictly interior, it follows from KKT condition (A3) that νfi = 0,∀i ∈

R, f ∈ F . Thus, combing (A1) and (16), we have

λi =
∂Vi

∂rf0i
>

∂Vj

∂rf0j
= λj ,

which therefore leads torfi < rfj for any f ∈ F (not just f0), and, therefore,
∑

f r
f
i <

∑
f r

f
j ≤ B

which impliesλi = 0 according to (A2). Obviously, this contradictsλi > λj ≥ 0. This completes the

proof of the theorem.

APPENDIX D

PROOF OFTHEOREM 5

Note that gf (ρf ) = ∂Vi

∂rfi

∣∣∣
r
f
j =ρf

for the symmetric strategy profile{ρf , f ∈ F}. Thus, conditions

(B1)-(B3) coincide with the KKT conditions (A1)-(A3) in this case. Accordingly, the set{ρf , f ∈ F}

corresponds to a symmetrical NE i.i.f it satisfies conditions (B1)-(B3).

It remains to be shown that there exists a unique combinationof {ρf}, λ, and{νf} satisfying conditions

(B1)-(B3). To that end, we define the functionW (x), wherex =
(
x1, x2, · · · , x|F|

)
, as: W (x) ,

∑
f∈F

∫ xf

0 gf (ξ)dξ. Consider the following optimization problem:

max
x

W (x) s.t.
∑

f∈F

xf ≤ B andxf ≥ 0, ∀f ∈ F .

SinceW (x) is a sum of integrals of decreasing functions, it is continuously differential and concave,

and therefore, the above constrained optimization problemover a compact region must have a unique

solution, which is denoted by{ρf , f ∈ F}. This solution must satisfy the KKT conditions for problem (8),

which are precisely the conditions listed in (B1)-(B3).

APPENDIX E

PROOF OFLEMMA 2

(1) The continuity ofλ with respect toCf is immediate from conditions (B1)-(B3) and the continuity

of gf . To establish the monotonicity, suppose to the contrary that λa = Λ(Cf0
a ) > Λ(Cf0

b ) = λb for

someCf0
a < Cf0

b . Suppose that{ρfa , f ∈ F} and {ρfb , f ∈ F} correspond to the equilibria atCf
a and

Cf
b , respectively. Then,λa > λb ≥ 0 implies thatλa = Cfhf (ρfa) − ef > Cfhf (ρfb ) − ef = λb for all
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f ∈ F \ {f0}. Sincehf (ρ) is monotonically decreasing inρ, we haveρfa < ρfb for all f ∈ F \ {f0}.

Thus,ρf0a = B −
∑

f∈F\{f0}
ρfa > B −

∑
f∈F\{f0}

ρfb ≥ ρf0b , which implies, according to the decreasing

monotonicity ofhf (ρ) andCf0
a < Cf0

b , thatCf0
a hf0(ρf0a ) − ef0 = λa < λb = Cf0

b hf0(ρf0b ) − ef0 , which

obviously contradictsλa > λb. Thus, we conclude thatλ = Λ(Cf ) is continuous and non-decreasing in

Cf .

(2) The continuity ofΨ(Cf ) can be proved in a similar manner as that ofλ = Λ(Cf ). We now prove

the monotonicity ofΨ(Cf ). Assume0 < Cf0
a < Cf0

b , we consider the following two cases.

Case I.Λ(Cf0
b ) = 0. Because of the monotonicity ofΛ(Cf ), we haveΛ(Cf

a ) = 0 as well. In the

equilibria corresponding toCf
a andCf

b , respectively, we haveCf
ahf (Ψ(Cf

a ))−ef = Cf
b h

f (Ψ(Cf
b ))−ef =

0, which impliesΨ(Cf
a ) < Ψ(Cf

b ) because of the monotonicity ofhf (·).

Case II.Λ(Cf0
b ) > 0. We prove the property by contradiction. Suppose to the contrary thatρf0a =

Ψ(Cf0
a ) < Ψ(Cf0

b ) = f f0
b for someCf0

a > Cf0
b . Suppose that{ρfa , f ∈ F} and{ρfb , f ∈ F} correspond

to the equilibriums atCf
a andCf

b , respectively. According to the monotonicity ofλ = Λ(Cf ), we have

λa > λb ≥ 0, which implies thatλa = Cfhf (ρfa) − ef > Cfhf (ρfb ) − ef = λb for all f ∈ F \ {f0}.

Sincehf (ρ) is monotonically decreasing inρ, we haveρfa < ρfb for all f ∈ F \ {f0}. Thus,ρf0a =

B −
∑

f∈F\{f0}
ρfa > B −

∑
f∈F\{f0}

ρfb ≥ ρf0b , which contradictsρf0a < ρf0b . Thus, we conclude that

ρf = Ψ(Cf) is continuous, and strictly increasing inCf ∈ (0,∞).

(3) From the continuity ofΨ(Cf ), it follows that, for any0 < ρf < B, there exist uniqueCf =

Ψ−1(ρf ), λ, and{ρf
′

, f ′ 6= f} that construct a symmetric equilibrium together withρf . Therefore, these

quantities can be regarded as functions ofρf , and we consider their derivatives with respect toρf .

We rewrite condition (B1) for flowf as:

Cfhf (ρf )− ef = λ (17)

and, for any flowf ′ ∈ F \ {f},

Cf ′

hf
′

(ρf
′

)− ef
′

= λ. (18)

Taking the derivative of both sides in (17) and (18) with respect toρf , respectively, we obtain

dCf

dρf
hf (ρf )− Cf R− 1

R2

1

(ρf )2
=

dλ

dρf
(19)

− Cf ′ R− 1

R2

1

(ρf ′)2
dρf

′

dρf
=

dλ

dρf
(20)

Now, we distinguish two subregions ofλ. If ρf +
∑

f ′ 6=f ρ
f ′

< B, according to (B2),λ = 0 in the

vicinity of ρf . Thus, dλ
dρf = 0 andgf (ρf ) = Cfhf (ρf )− ef = 0. Substituting these results into (19), we

February 27, 2018 DRAFT



29

thus obtain

dCf

dρf
=

Cf

ρf
=

efR2

R− 1
, (21)

which is non-decreasing inρf with ef ≥ 0.

Otherwise, forρf +
∑

f ′ 6=f ρ
f ′

= B, taking the derivative of both sides with respect toρf , then
∑

f ′
dρf′

dρf = −1 in the vicinity of ρf , combined with (20), which implies

dλ

dρf
=

∑

f ′ 6=f

Cf ′ R− 1

R2

1

(ρf ′)2
,

which can be fed back into (19) to yield

dCf

dρf
=Cf R− 1

hf (ρf )R2

1

(ρf )2
+

1

hf (ρf )

∑

f ′ 6=f

Cf ′ R− 1

R2

1

(ρf ′)2

=
(λ+ ef )

[hf (ρf )]2
R− 1

R2

1

(ρf )2
+

1

hf (ρf )

∑

f ′ 6=f

Cf ′ R− 1

R2

1

(ρf ′)2

=(λ+ ef )
R2

R − 1
+ ρf

∑

f ′ 6=f

Cf ′

(ρf ′)2
, (22)

which is increasing inρf , since is increasing inρf (Lemma 2) andρf
′

is decreasing inρf .

Combing our findings that both (21) and (22) are non-decreasing in ρf , and noticing that the jump in

dCf

dρf at the boundary between the two subregions (namely, the difference between (22) atλ = 0 and (21))

is positive, we conclude thatCf = Ψ−1(ρf ) is convex, and, therefore,Ψ(Cf ) is concave in the entire

rangeCf > 0.

APPENDIX F

PROOF OFTHEOREM 6

Existence: Define the mappingΦ(C) = {Υf (C−f ), f ∈ F} as the collection of best-response functions

to the respective strategy vectors of other flows. Since eachcomponent ofΦ(C) is continuous and bounded

(Lemma 4), the entire mapping is continuous and bounded. Therefore, it has a fixed point, which is an

equilibrium of the leaders’ game. This establishes the existence of the SNE.

Uniqueness: The uniqueness of the fixed point requires that, in an equilibrium, ∂Uf

∂Cf = 0 must be

satisfied for anyf ∈ F . We distinguish two cases in the following.

If ρf +
∑

f ′ 6=f ρ
f ′

< B, we havedCf

dρf = Cf

ρf = efR2

R−1 . Thus,

∂Uf

∂Cf
=u′f

(
R log(1 + ρf )

) R

1 + ρf
∂ρf
∂Cf

− 1

February 27, 2018 DRAFT



30

=u′f

(
R log(1 + ρf )

)R− 1

R

1

ef (1 + ρf )
− 1 = 0,

that is to say,

ef (1 + ρf ) = u′f

(
R log(1 + ρf )

)R− 1

R
. (23)

Since the LHS of (23) is increasing inρf while the RHS of (23) is decreasing inρf , we can conclude

that (23) has one solution at most.

On the other hand, ifρf +
∑

f ′ 6=f ρ
f ′

= B, we havedCf

dρf = (λ+ ef ) R2

R−1 + ρf
∑

f ′ 6=f
Cf′

(ρf′ )2
. Thus,

∂Uf

∂Cf
=u′f

(
R log(1 + ρf )

) R

1 + ρf
∂ρf
∂Cf

− 1 = 0,

that is to say,

(λ+ ef )
R2

R− 1
+ ρf

∑

f ′ 6=f

Cf ′

(ρf
′
)2

= u′f

(
R log(1 + ρf )

) R

1 + ρf
. (24)

Similarly, it is easily to see that the LHS of (24) is increasing in ρf while the RHS of (24) is decreasing

in ρf . Thus, we can conclude that (24) has one solution at most.

APPENDIX G

PROOF OFLEMMA 5

Given flow f , we consider two price vectors(Cf
a ,C

−f
a ) and(Cf

b ,C
−f
b ) such thatCf

a = Υ(C−f
a ) and

Cf
b = Υ(C−f

b ), and the only difference betweenC−f
a andC

−f
b is that one componentCf ′

, f ′ 6= f , is

changed betweenCf ′

a andCf ′

b , whereCf ′

a < Cf ′

b . The lemma then states thatCf
a ≤ Cf

b .

We prove the lemma by contradiction. Suppose thatCf
a > Cf

b whenCf ′

a < Cf ′

b . If Cf
b = uf

(
R log(1+

B)
)

, then the lemma holds trivially sinceCf
b is already an upper bound for possible values ofCf .

Therefore, we assumeCf
b < uf

(
R log(1 + B)

)
, i.e., Cf

b is the solution of the equation∂Uf

∂Cf = 0

at (Cf
b ,C

−f
b ), and further defineλb and ρfb as the respective values of the corresponding followers’

equilibrium. Similarly, we assume thatCf
a is the solution of∂Uf

∂Cf = 0 at (Cf
a ,C

−f
a ), and defineλa and

ρfa as the respective values of the corresponding followers’ equilibrium.

Next, consider the followers’ equilibrium for the price vector (Cf
b ,C

−f
a ), and denote the respective

values byλba andρfba. For flow f ′, because of the increasing monotonicity ofΛ(Cf ′

) from Lemma 2,

we concludeλba < λb sinceCf ′

a < Cf ′

b . Consequently, for flowf , according to condition (B1), we have

Cf
b h

f (ρfba) − ef = λba < λb = Cf
b h

f (ρfb ) − ef , which impliesρfba > ρfb as hf (ρ) is monotonically

decreasing.
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Considering the two equilibria for the price vectors(Cf
a ,C

−f
a ) and (Cf

b ,C
−f
a ), respectively, we have

ρfa > ρfba sinceCf
a > Cf

b because of the monotonicity ofΨ(Cf ).

Since each of the terms on the RHS of (11) is decreasing inρf andUf is concave inCf , ∂Uf

∂Cf is

decreasing inρf andCf , respectively. Then, forρfb < ρfba < ρfa andCf
b < Cf

a , we have

0 =
∂Uf

∂Cf

∣∣∣
ρ
f

b ,C
f

b

>
∂Uf

∂Cf

∣∣∣
ρ
f

ab,C
f

b

>
∂Uf

∂Cf

∣∣∣
ρ
f
a,C

f

b ,
>

∂Uf

∂Cf

∣∣∣
ρ
f
a,C

f
a

= 0,

which implies a contradiction. This completes the proof of the lemma.

APPENDIX H

PROOF OFTHEOREM 7

First, consider an arbitrary sequence of update steps commencing from an initial vectorC(0) =

(δ, δ, · · · , δ) where δ → 0+, and denote byC(n) the resulting sequence of flow price vector aftern

updates. Obviously, for any flowf , the first time the flow updates its strategy will be a non-decreasing

update. In light of Lemma 5, it follows by induction that all updates must be non-decreasing, i.e.,C(n)

is a non-decreasing sequence. SinceC(n) is bounded as well (Lemma 4), it follows that it must converge

to a limit. Due to the continuity of the best response function Φ(Cf), this limit must be its (unique)

fixed pointC∗.

In a similar manner, consider a sequence of best-response updatesC(n) from an initial vectorC(0) =

{η1, · · · , ηF } where ηf = uf

(
R log(1 + B)

)
(i.e., the upper bounds of the respective flows’ best

responses). By the same token, Lemma 5 implies that all the updates in the sequence must be non-

increasing, and the sequence must therefore converge toC
∗.

Finally, consider an arbitrary initial vector of flow pricescommencing from an arbitrary initial vector

of flow pricesC(0). Without loss of generality, assume that all the prices are within the bounds set by

Lemma 4 (otherwise, consider instead the sequence only after every flow has had at least one opportunity

to update its strategy). Then, it follows thatC(n) ≤ C(n) ≤ C(n) provided that for everyn the update

step is performed by the same flow in all three sequences. Since, as established above,C(n) andC(n)

converge toC∗, it follows that the same is true forC(n) as well.
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