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Abstract—Spatial wireless channel prediction is important for
future wireless networks, and in particular for proactive r esource
allocation at different layers of the protocol stack. Various sources
of uncertainty must be accounted for during modeling and to
provide robust predictions. We investigate two channel prediction
frameworks, classical Gaussian processes (cGP) and uncertain
Gaussian processes (uGP), and analyze the impact of location
uncertainty during learning/training and prediction/tes ting, for
scenarios where measurements uncertainty are dominated by
large-scale fading. We observe that cGP generally fails both in
terms of learning the channel parameters and in predicting the
channel in the presence of location uncertainties. In contrast,
uGP explicitly considers the location uncertainty. Using simulated
data, we show that uGP is able to learn and predict the wireless
channel.

Index Terms—Gaussian processes, uncertain inputs, location
uncertainty, spatial predictability of wireless channels.

I. I NTRODUCTION

L OCATION-based resource allocation schemes are ex-
pected to become an essential element of emerging

5G networks, as 5G devices will have the capability to
accurately self-localize and predict relevant channel quality
metrics (CQM) [1]–[3] based on crowd-sourced databases.
The geo-tagged CQM (including, e.g., received signal strength,
delay spread, and interference levels) from users enables the
construction of a dynamic database, which in turn allows the
prediction of CQM at arbitrary locations and future times. Cur-
rent standards are already moving in this direction throughthe
so-called minimization of drive test (MDT) feature in 3GPPP
Release 10 [4]. In MDT, users collect radio measurements
and associated location information in order to assess network
performance. In terms of applications, prediction of spatial
wireless channels (e.g., through radio environment maps) and
its utilization in resource allocation can reduce overheads and
delays due to the ability to predict channel quality beyond
traditional time scales [2]. Exploitation of location-aware
CQM is relevant for interference management in two-tier
cellular networks [5], coverage hole detection and prediction
[6], cooperative spectrum sensing in cognitive radios [7],
anticipatory networks for predictive resource allocation[3],
and proactive caching [8].

In order to predict location-dependent radio propagation
channels, we rely on mathematical models, in which the
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physical environment, including the locations of transmitter
and receiver, play an important role. The received signal
power in a wireless channel is mainly affected by three major
dynamics, which occur at different length scales: path-loss,
shadowing, and small-scale fading [9]. Small-scale fading
decorrelates within tens of centimeters (depending on the
carrier frequency), making it infeasible to predict based on
location information. On the other hand, shadowing is cor-
related up to tens of meters, depending on the propagation
environment (e.g., 50–100 m for outdoor [9] and 1–2 m for in-
door environments [10]). Finally, path-loss, which captures the
deterministic decay of power with distance, is a deterministic
function of the distance to the transmitter. In rich scattering
environments, the measurements average small-scale fading
either in frequency or space provided sufficient bandwidth
or number of antennas [10]. Thus, provided that measure-
ments are dominated by large-scale fading, location-dependent
models for path-loss and shadowing can be developed based
on the physical properties of the wireless channel. With the
help of spatial regression tools, these large-scale channel
components can be predicted at other locations and used for
resource allocation [1]. However, since localization is subject
to various error sources (e.g., the global positioning system
(GPS) gives an accuracy of around 10 m [11] in outdoor
scenarios, while ultra-wide band (UWB) systems can give sub-
meter accuracy), there is a fundamental need to account for
location uncertainties when developing spatial regression tools.

Spatial regression tools generally comprise a train-
ing/learning phase, in which the underlying channel param-
eters are estimated based on the available training database,
and a testing/prediction phase, in which predictions are made
at test locations, given learned parameters and the training
database. Among such tools, Gaussian processes (GP) is a
powerful and commonly used regression framework, since it
is generally considered to be the most flexible and provides
prediction uncertainty information [12]. Two important limita-
tions of GP are its computational complexity [13]–[16] and its
sensitivity to uncertain inputs [14], [17]–[21]. To alleviate the
computational complexity, various sparse GP techniques have
been proposed in [13]–[15], while online and distributed GP
were treated in [16], [22], [23] and [24]–[26], respectively. The
impact of input uncertainty was studied in [17], [18], which
showed that GP was adversely affected, both in training and
testing, by input uncertainties. The input uncertainty in our
case corresponds to location uncertainty.

No framework has yet been developed to mathematically
characterize and understand the spatial predictability ofwire-
less channels with location uncertainty. In this paper, we build
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on and adapt the framework from [17], [18] to CQM prediction
in wireless networks. Our main contributions are as follows:

• We show that not considering location uncertainty leads
to poor learning of the channel parameters and poor
prediction of CQM values at other locations, especially
when location uncertainties are heterogeneous;

• We relate and unify existing GP methods that account
for uncertainty during both learning and prediction, by
operating directly on an input set of distributions, rather
than an input set of locations;

• We describe and delimit proper choices for mean func-
tions and covariance functions in this unified framework,
so as to incorporate location uncertainty in both learning
and prediction; and

• We demonstrate the use of the proposed framework for
simulated data and apply it to a spatial resource allocation
application.

The remainder of the paper is structured as follows. SectionIII
presents the channel model and details the problem descrip-
tion for location-dependent channel prediction with location
uncertainty. In Section IV, we review channel learning and
prediction in the classical GP (cGP) setup with no localization
errors. Section V details learning and prediction procedures
using the proposed GP framework that accounts for uncertainty
on training and test locations, termed uncertain GP (uGP).
Finally, numerical results are given in Section VI in addition
to a resource allocation example, followed by our conclusions
in Section VII.

Notation: Vectors and matrices are written in bold (e.g.,
a vectork and a matrixK); KT denotes transpose ofK;
|K| denotes determinant ofK; [K]ij denotes entry(i, j) of
K; I denotes identity matrix of appropriate size;1 and0 are
vectors of ones and zeros, respectively, of appropriate size;
‖.‖ denotesL2-norm unless otherwise stated;E[.] denotes the
expectation operator; Cov[.] denotes covariance operator (i.e.,
Cov[y1,y2] = E[y1y

T
2 ]−E[y1]E[y2]

T); N (x;m,Σ) denotes
a Gaussian distribution evaluated inx with mean vectorm
and covariance matrixΣ andx ∼ N (m,Σ) denotes thatx is
drawn from a Gaussian distribution with mean vectorm and
covariance matrixΣ. Important symbols used in the paper
are: xi ∈ R

2 is an exact, true location;ui ∈ R
D, D > 2

is a vector that describes (e.g., in the form of moments) the
location distributionp(xi). For example in the case of Gaus-
sian distributed localization error,p(x) = N (x; z,Σ), then a
possible choice isu = [zT, vec[Σ]]T, wherevec[Σ] stacks all
the elements ofΣ in a vector. Finally,zi = φ(ui) ∈ R

2 is
a location estimate extracted fromui through a functionφ(·)
(e.g., the mean or mode).

II. RELATED WORK

First, we give an overview of the literature on GP with un-
certain inputs. One way to deal with the input noise is through
linearizing the output around the mean of the input [19], [21].
In [21], the input noise was viewed as extra output noise by lin-
earization at each point and this is proportional to the squared
gradient of the GP posterior mean. However, the proposed
method works under the condition of constant-variance input

noise. In [19], a Delta method was used for linearization under
the assumption of Gaussian distributed inputs and proposed
a corrected covariance function that accounts for the input
noise variance. For Gaussian distributed test inputs and known
training inputs, the exact and approximate moments of the
GP posterior was examined for various forms of covariance
functions [18]. Training on Gaussian distributed input points
by calculating the expected covariance matrix was studied in
[17], [18]. Two approximations were evaluated in [27], firsta
joint maximization of joint posterior on uncertain inputs and
hyperparameters (leading to over-fitting), and second using
a stochastic expectation–maximization algorithm (at a high
computational cost).

We now review previous works on GP for channel pre-
diction, which include spatial correlation of shadowing in
cellular [28] and ad-hoc networks [29], as well as tracking
of transmit powers of primary users in a cognitive network
[23]. In [28], GP was shown to model spatially correlated
shadowing to predict shadowing and path-loss at any arbi-
trary location. A multi-hop network scenario was considered
[29], and shadowing was modeled using a spatial loss field,
integrated along a line between transmitter and receiver. In
[23], a cognitive network setting was evaluated, in which
the transmit powers of the primary users were tracked with
cooperation among the secondary users. For this purpose a
distributed radio channel tracking framework using Kriged
Kalman filter was developed with location information. A
study on the impact of underlying channel parameters on the
spatial channel prediction variance using GP was presented
in [30]. A common assumption in [23], [28]–[30] was the
presence of perfect location information. This assumptionwas
partially removed in [31], which extends [30] to include the
effect of localization errors on spatial channel prediction. It
was found that channel prediction performance was degraded
when location errors were present, in particular when either
the shadowing standard deviation or the shadowing correlation
were large. However, [31] did not tackle combined learning
and prediction under location uncertainty. The only work that
explicitly accounts for location uncertainty was [20], in which
the Laplace approximation was used to obtain a closed-form
analytical solution for the posterior predictive distribution.
However, [20] did not consider learning of parameters in
presence of location uncertainty.

III. SYSTEM MODEL

A. Channel Model

Consider a geographical regionA ⊆ R
2, where a source

node is located at the origin and transmits a signal with power
PTX to a receiver located atxi ∈ A through a wireless
propagation channel. The received radio signal is affected
mainly by distance-dependent path-loss, shadowing due to
obstacles in the propagation medium, and small-scale fading
due to multipath effects. The received powerPRX(xi) can be
expressed as [32, Chap. 2]

PRX(xi) = PTX g0 ‖xi‖
−η ψ(xi) |h(xi)|

2, (1)
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whereg0 is a constant that captures antenna and other propa-
gation gains,η is the path-loss exponent,ψ(xi) is the location-
dependent shadowing andh(xi) is the small-scale fading. We
assume measurements average1 small-scale fading, either in
time (measurements taken over a time window), frequency
(measurements represent average power over a large frequency
band), or space (measurements taken over multiple antennas)
[10], [33]. Therefore, the resulting received signal powerfrom
the source node to a receiver nodei can be expressed in dB
scale as

PRX(xi)[dBm] = L0 − 10 η log10(‖xi‖) + Ψ(xi), (2)

whereL0 = PTX[dBm] + G0 with G0 = 10 log10(g0) and
Ψ(xi) = 10 log10(ψ(xi)). A common choice for modeling
shadowing in wireless systems is through a log-normal distri-
bution, i.e.,Ψ(xi) ∼ N (0, σ2

Ψ), whereσ2
Ψ is the shadowing

variance. ShadowingΨ(xi) is spatially correlated, with well-
established correlation models [34], among which the Gud-
mundson model is widely used [35]. Letyi be the scalar2

observation of the received power at nodei, which is written
asyi = PRX(xi)+ni, whereni is a zero mean additive white
Gaussian noise with varianceσ2

n. For the sake of notational
simplicity, we do not consider a three-dimensional layout,
the impact of non-uniform antenna gain patterns, or distance-
dependent path-loss exponents.

B. Location Error Model

In practice, nodes may not have access to their true location
xi, but only to a distributionp(xi)

3. The distributionp(xi) is
obtained from the positioning algorithm in the devices, and
depends on the specific positioning technology (e.g., for GPS
the distributionp(xi) can be modeled as a Gaussian). We will
assume that all distributionsp(xi) come from a given family of
distributions (e.g., all bivariate Gaussian distributions). These
distributions can be described by a finite set of parameters,
ui ∈ R

D, D > 2, e.g., a mean and a covariance matrix
for Gaussian distributions. The set of descriptions of all
distributions from the given family is denoted byU ⊂ R

D.
Within this set, the set of all delta Dirac distributions over
locations is denoted byX ⊂ U . Note thatX is equivalent
to the setA of possible locations. Finally, we introduce a
function φ : U → A that extracts a position estimate from
the distribution (in our case chosen as the mean), and denote
zi = φ(ui) ∈ A. We will generally make no distinction
between a distributionp(xi) and its representationui.

C. Problem Statement

We assume a central coordinator, which collects a set
of received power measurementsy = [y1, . . . , yN ]T with
respect to a common source fromN nodes, along with their
corresponding location distributionsU = [uT

1 ,u
T
2 , . . . ,u

T
N ]T.

Our goals are to perform

1If measurements cannot average over small-scale fading, the proposed
framework from this paper cannot be applied.

2Vector measurements are also possible (e.g., from multiplebase stations),
but not considered here for the sake of clarity.

3p(xi) is used forp(x = xi) for notational simplicity.

PSfrag replacements

classical GP uncertain GP

{Z,y}, z∗ {U,y},u∗

Figure 1. High-level comparison between cGP and uGP. The inputs to cGP
during learning are observationsY and estimatesZ of the (unobserved) actual
locationsX where those observations have been taken.Z is obtained through
a positioning system. The true locationsX are marked with a triangle and are
generally different from the estimated locationsZ, marked with a blue and
red dot. During prediction, cGP predicts received power at an estimated test
location, z∗. In contrast, uGP considers the distribution of the locations X,
described byU (and depicted by the red and blue circle), during learning.
During prediction, uGP utilizes the distributionu∗ of the test location. Note
that the amount of uncertainty (radius of the circle) can change.

1) Learning: construct a spatial model (through estimating
model parametersθ, to be defined later) of the received
power based on the measurements;

2) Prediction: determine the predictive distribution
p(PRX(x∗)|y,U, θ̂,x∗) of the power in test locations
x∗ and the distribution of the expected4 received power,
p(PRX(u∗)|y,U, θ̂,u∗), for test location distributions
u∗.

We will consider two methods for learning and prediction:
classical GP (Section IV), which ignores location uncertainty
and only considerszi = φ(ui), and uncertain GP (Section
V), which is a method that explicitly accounts for loca-
tion uncertainty. We introduceX = [xT

1 ,x
T
2 , . . . ,x

T
N ]T and

Z = [zT1 , z
T
2 , . . . , z

T
N ]T as the collection of true and estimated

locations respectively. A high level comparison of cGP and
uGP is shown in Fig. 1, where cGP operates onZ and Y,
while uGP operates onU andY.

IV. CHANNEL PREDICTION WITH CLASSICAL GP

We first present cGP under the assumption that all locations
during learning and prediction are known exactly, based on
[12], [36]. Later in this section, we will discuss the impact
of location uncertainties on cGP in learning/training and
prediction/testing.

A. cGP without Location Uncertainty

We designatexi ∈ A as theinput variable, andPRX(xi)
as the output variable. We modelPRX(xi) as a GP with
mean functionµ(xi) : A → R and a positive semidefinite
covariance functionC(xi,xj) : A×A → R

+, and we write

PRX(xi) ∼ GP(µ(xi), C(xi,xj)), (3)

4Here, PRX(u∗) should be interpreted as the expected received power,
p(PRX(u∗)|y,U, θ̂,u∗) =

∫
p(PRX(x∗)|y,U, θ̂,x∗)p(x∗)dx∗, where

p(x∗) is described byu∗
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where GP stands for a Gaussian process. The mean func-
tion5 is defined asµ(xi) = EΨ(xi)[PRX(xi)] = L0 −
10 η log10(‖xi‖), due to (2). The covariance function is
defined asC(xi,xj) = Cov[PRX(xi), PRX(xj)]. We will
consider a class of covariance functions of the form:

C(xi,xj) = σ2
Ψ exp

(

−
‖xi − xj‖p

d p
c

)

+ δij σ
2
proc, (4)

where δij = 1 for i = j and zero otherwise,p ≥ 1, dc is
the correlation distance of the shadowing, andσproc captures
any noise variance term that is not due to measurement noise
(more on this later). Settingp = 1 in (4), gives the exponential
covariance function that is commonly used to describe the
covariance properties of shadowing [35], andp = 2, gives the
squared exponential covariance function that will turn outto
be useful in Section V.C. Note that the mean and covariance
depend on

θ = [σn, σproc, dc, L0, η, σΨ], (5)

which may not be known a priori.
1) Learning: The objective during learning is to infer the

model parametersθ from observationsy of the received power
at N known locationsX. The resulting training database is
thus {X,y}. Due to the GP model, the joint distribution of
theN training observations exhibits a Gaussian distribution

p(y|X, θ)=N (y;µ(X),K), (6)

where µ(X) = [µ(x1), µ(x2), . . . , µ(xN )]T is the mean
vector andK is the covariance matrix of the measured
received powers, with entries[K]ij = C(xi,xj)+σ

2
n δij . The

model parameters can be learned through maximum likelihood
estimation, given the training database{X,y}, by minimizing
the negative log-likelihood function with respect toθ:

θ̂ = argmin
θ

{− log(p(y|X, θ))}. (7)

The negative log-likelihood function is usually not convexand
may contain multiple local optima. Additional details on the
learning process are provided later. Onceθ̂ is determined from
{X,y}, the training process is complete.

2) Prediction: After learning, we can determine the pre-
dictive distribution ofPRX(x∗) at a new and arbitrary test
location x∗, given the training database{X,y} and θ̂. We
first form the joint distribution

[

y

PRX(x∗)

]

∼ N

([

µ(X)
µ(x∗)

]

,

[

K k∗

kT
∗ k∗∗

])

, (8)

wherek∗ is theN × 1 vector of cross-covariancesC(x∗,xi)
between the received power atx∗ and at the training locations
xi, and k∗∗ = C(x∗,x∗) is the prior variance (i.e., the
variance in the absence of measurements), given byC(x∗,x∗).
Conditioning on the observationsy, we obtain the Gaussian
posterior distributionp(PRX(x∗)|X,y, θ̂,x∗) for the test lo-
cation x∗. The mean (̄PRX(x∗)) and variance (VRX(x∗)) of

5Other ways of including the mean function in the model are possible, such
as to include it in the covariance structure, and transform the prior model to
a zero-mean GP prior [12].
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Figure 2. Impact of location uncertainty for a one-dimensional example:
the red curve depicts the received signal powerPRX(x) as a function ofx
(or equivalently, the distance to the base station), while the markers show
PRX(xi) as a function ofzi = φ(ui). Training measurements are grouped
into three regions: (+) corresponds to high uncertainty, (·) corresponds to
low uncertainty, and (*) corresponds to medium uncertainty, respectively. The
location uncertainty results in output noise.

this distribution turn out to be [12]

P̄RX(x∗) =µ(x∗) + kT
∗ K−1 (y − µ(X)) (9)

=µ(x∗) +

N
∑

i,j=1

[K−1]ij (yj − µ(xj))C(x∗,xi)

=µ(x∗) +

N
∑

i=1

βiC(x∗,xi).

VRX(x∗) =k∗∗ − kT
∗ K−1 k∗ (10)

=k∗∗ −
N
∑

i,j=1

[K−1]ij C(x∗,xi)C(x∗,xj),

whereβi =
∑N

j=1[K
−1]ij(yj − µ(xj)). In (9), µ(x∗) cor-

responds to the deterministic path-loss component atx∗,
which is corrected by a term involving the database and the
correlation between the measurements at the training locations
and the test location. In (10), we see that the prior variance
k∗∗ is reduced by a term that accounts for the correlation of
nearby measurements.

B. cGP with Location Uncertainty

Now let us consider the case when the nodes do not have
access to their true locationxi, but only to a distributionp(xi),
which is described byui ∈ U . Fig. 2 illustrates the impact of
location uncertainties assuming Gaussian location errorsfor
a one-dimensional example. The figure shows (in red) the
true received powerPRX(x) as a function ofx as well as
the measured powerPRX(xi) as a function ofzi = φ(ui)
for a discrete number of values ofu, shown as markers. To
clearly illustrate the impact of different amounts on uncertainty
on the position, we have artificially created three regions:
high location uncertainty close to the transmitter, medium
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location uncertainty far away, and low location uncertainty for
intermediate distances. When there is no location uncertainty
(70 m until 140 m from the transmitter),zi ≈ xi, so
PRX(zi) ≈ PRX(xi), and hence the black dots coincide
with the red curve. For medium and high uncertainty,zi can
differ significantly fromxi, so the data point with coordinates
[zi, PRX(xi)] can lie far away from the red curve, especially
for high location uncertainty (distances below 70 m). From
Fig. 2 it is clear that the input uncertainty manifests itself
as output noise, with a variance that grows with increasing
location uncertainty6. This output noise must be accounted
for in the model during learning and prediction. When these
uncertainties are ignored, both learning and prediction will be
of poor quality, as described below.

1) Learning from uncertain training locations:In this case,
the training database{Z,y} comprises locationszi = φ(ui)
and power measurementsyi = PRX(xi) + ni at the true (but
unknown) locationsxi. The measurements will be of the form
shown in Fig. 2. The estimated model parametersθ̂ can take
two forms: (i) assign very short correlation distancesd̂c, large
σ̂Ψ, and smallσ̂proc, as some seemingly nearby events will
appear uncorrelated: or (ii) assign larger correlation distances
d̂c, smaller σ̂Ψ, and explain the measurements by assigning
a higher value toσ̂proc [21]. In the first case, correlations
between measurement cannot be exploited, so that during
prediction, the posterior mean will be close to the prior mean
and the posterior variance will be close to the prior variance.
In the second case, predictions will be better, as correlations
can be exploited to reduce the posterior variance. However,the
model must explain different levels of input uncertainty with
a single covariance function, which can make no distinctions
between locations with low, medium, or high uncertainty. This
will lead to poor performance when location error statistics
differ from node to node.

2) Prediction at an uncertain test location:In the case
where training locations are exactly known (i.e.,zi = xi, ∀i),
we may want to predict the power at an uncertain test location
u∗, made available to cGP in the formz∗ = φ(u∗), while the
true test locationx∗ is not known. This scenario can occur
when a mobile user relies on a low-quality localization system
and reports an erroneous location estimate to the base station.
The wrong location has impact on the predicted posterior
distribution since the predicted meanµ(z∗) will differ from
the correct meanµ(x∗). In addition,k∗ will contain erroneous
entries: thej-th entry will be too small when‖z∗ − xj‖ >
‖x∗ − xj‖ and too large when‖z∗ − xj‖ < ‖x∗ − xj‖. This
will affect both the posterior mean (9) and variance (10). Inthe
case were training locations are also unknown, i.e.,Z 6= X,
and z∗ 6= x∗, these effects are further exacerbated by the
improper learning ofθ.

V. CHANNEL PREDICTION WITH UNCERTAIN GP

In the previous section, we have argued that cGP is unable
to learn and predict properly when training or test locations are

6In fact, the output noise induced by location uncertainty will also depend
on the slope ofPRX(xi) aroundxi, since a locally flat function will lead to
less output noise than a steep function, under the same location uncertainty.

not known exactly, especially when location error statistics are
heterogeneous. In this section, we explore several possibilities
to explicitly incorporate location uncertainty. We recallthat
U denotes the set of all distributions over the locations in
the environmentA, while X ⊂ U represents the delta Dirac
distributions over the positions and has a one-to-one mapping
to A.

We will describe three approaches. First, a Bayesian ap-
proach where the uncertain input (i.e., the uncertain location)
is marginalized, leading to a non-Gaussian output (i.e., the
received power) distribution. Second, we derive a Gaussian
approximation of the output distribution through moment
matching and detail the corresponding learning and prediction
expressions. From these expressions, the concepts of expected
mean function and expected covariance function naturally
appear. Finally, we discuss uncertain GP, which is a Gaussian
process with inputu from input setU and outputy. We
will relate these three approaches in a unified view. For
each approach, we detail the quality of the solution and
the computational complexity. We note that other approaches
exist, e.g., through linearizing the output around the meanof
the input [19], [21], but they are limited to mildly non-linear
scenarios.

A. Bayesian Approach

In a Bayesian context, we learn and predict by integrating
the respective distributions over the uncertainty of the training
and test locations. As this method will involve Monte Carlo
integration, we will refer to it as Monte Carlo GP (MCGP).

1) Learning: Given the training database{U,y}, the like-
lihood function with uncertain training locationsp(y|U, θ) is
obtained by integrating7 p(y|X, θ) over the random training
locations:

p(y|U, θ) =

∫

p(y|X, θ) p(X) dX, (11)

wherep(X) =
∏N

i=1 p(xi). As there is generally no closed-
form expression for the integral (11), we resort to a Monte
Carlo approach by drawingM i.i.d. samplesX(m) ∼ p(X),
1 ≤ m ≤M so that

p(y|U, θ) ≈
1

M

M
∑

m=1

p(y|X(m), θ)

=
1

M

M
∑

m=1

N (y;µ(X(m)),K(m)), (12)

where [K(m)]ij = C(x
(m)
i ,x

(m)
j ) + σ2

n δij and µ(X(m)) =

[µ(x
(m)
1 ), µ(x

(m)
2 ), . . . , µ(x

(m)
N )]T. Finally, an estimate ofθ

can be found by minimizing the negative log-likelihood func-
tion

θ̂ = argmin
θ

{− log(p(y|U, θ))}, (13)

which has to be solved numerically.

7For the sake of notation, all integrals in this section are written as
indefinite integrals, however they should be understood as definite integrals
over appropriate sets.



6

Remark 1. This optimization involves high computational
complexity and possibly numerical instability (due to the sum
of exponentials). More importantly, a good estimate ofθ can
only be found if a sampleX(m) is generated that is close
to the true locationsX. Due to the high dimensionality [37,
Section 29.2], this is unlikely, even for largeM . Hence, (13)
will lead to poor estimates of̂θ.

2) Prediction: Given the training database{U,y} and
θ̂, we wish to determinep(PRX(u∗)|U,y, θ̂,u∗) for
an uncertain test location with associated distribution
p(x∗), described byu∗. The posterior predictive distri-
bution p(PRX(u∗)|U,y, θ̂,u∗) is obtained by integrating
p(PRX(x∗)|X,y, θ̂,x∗) with respect toX andx∗:

p(PRX(u∗)|U,y, θ̂,u∗)

=

∫

p(PRX(x∗)|X,y, θ̂,x∗) p(X) p(x∗) dX dx∗. (14)

This integral is again analytically intractable. The Laplace
approximation was utilized in [20] to solve (14), while here
we again resort to a Monte Carlo method by drawingM
i.i.d. samplesX(m) ∼ p(X) andx(m)

∗ ∼ p(x∗), so that

p(PRX(u∗)|U,y, θ̂,u∗)

≈
1

M

M
∑

m=1

p(PRX(x
(m)
∗ )|X(m),y, θ̂,x

(m)
∗ )

=
1

M

M
∑

m=1

N (PRX(x
(m)
∗ ); P̄RX(x

(m)
∗ ), VRX(x

(m)
∗ )). (15)

As M increases, the approximate distribution will tend to the
true distribution. We refer to (13) and (15) as Monte Carlo GP
(MCGP). From (15), we can compute the mean (P̄MC

RX (u∗))
and the variance (VMC

RX (u∗)) [38, Eq. (14.10) and Eq. (14.11)]
as

P̄MC
RX (u∗) =

1

M

M
∑

m=1

P̄RX(x
(m)
∗ ) (16)

V MC
RX (u∗) =

1

M

M
∑

m=1

(

P̄RX(x
(m)
∗ )− P̄MC

RX (u∗)
)2

+
1

M

M
∑

m=1

VRX(x
(m)
∗ ). (17)

Remark2. Prediction is numerically straightforward, though
it involves the inversion of anN × N matrix K for each
of the M samplesX(m). In the case training locations are
known, we can utilize cGP to obtain a good estimate ofθ and
efficiently and accurately computēPMC

RX (u∗) andV MC
RX (u∗).

When both training and test locations are known, the above
procedure reverts to cGP.

B. Gaussian Approximation

We have seen that while MCGP can account for location
uncertainty during prediction, it will fail to deliver adequate
estimates ofθ during learning (see Remark 1). To address this,
we can modifyp(y|U, θ) from (11) using a Gaussian approx-
imation through moment matching. In addition, we can also

form a Gaussian approximation ofp(PRX(u∗)|U,y, θ̂,u∗)
for prediction. We will term this approach Gaussian ap-
proximation GP (GAGP). The expressions that are obtained
in the learning of GAGP, namely the expectation of mean
and covariance functions will be used later in the design of
uncertain GP (described in Section V.C).

1) Learning: Given the training database{U,y}, the mean
of p(y|U, θ) is given by

E[y|U, θ] =

∫∫

y p(y|X, θ) p(X) dX dy

=

∫∫

(y p(y|X, θ) dy) p(X) dX

=

∫

µ(X) p(X) dX

= µ(U), (18)

where µ(U) = [µ(u1), µ(u2), . . . , µ(uN )]T and µ(ui) =
∫

µ(xi) p(xi) dxi. The covariance matrix ofp(y|U, θ) can
be expressed as

Cov[y,y|U, θ]

=

∫

yyT p(y|X, θ) p(X) dX dy − µ(U)µ(U)T

=

∫

(

K+ µ(X)µ(X)T
)

p(X) dX − µ(U)µ(U)T

= Ku +∆, (19)

where[Ku]ij = Cu(ui,uj) + σ2
n δij in which

Cu(ui,uj) =

∫

C(xi,xj) p(xi) p(xj) dxi dxj (20)

and∆ is a diagonal matrix with entries

[∆]ii =

∫

µ2(xi)p(xi) dxi − µ2(ui). (21)

We will refer to µ(ui) andCu(ui,uj) as theexpected mean
and expected covariancefunction. We can now express the
likelihood function asp(y|U, θ)≈N (y;µ(U),Ku + ∆), so
that θ can be estimated by minimizing the negative log-
likelihood function

θ̂ = argmin
θ

{

− log(N (y;µ(U),Ku +∆))
}

. (22)

Remark3. Learning in GAGP involves computation of the
expected mean in (18) and (21), as well as the expected
covariance function in (20). These integrals are generallyagain
intractable, but there are cases where closed-form expression
exist [17], [18]. These will be discussed in detail in Section
V.C. GAGP avoids the numerical problems present in MCGP
and will hence generally be able to provide a good estimate
of θ.

2) Prediction: Given the training database{U,y}
and θ̂, we approximate the predictive distribution
p(PRX(u∗)|U,y, θ̂,u∗) by a Gaussian with mean̄PGA

RX (u∗)
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and varianceV GA
RX (u∗). These are given by

P̄GA
RX (u∗)

= E[PRX(u∗)|U,y, θ̂,u∗]

=

∫

P̄RX(x∗) p(X) p(x∗) dX dx∗

= µ(u∗) +

N
∑

i=1

∫

βiC(x∗,xi) p(X) p(x∗) dX dx∗. (23)

Note thatβi is itself a function of allX’s andx∗. Similarly
V GA
RX (u∗) is calculated as

V GA
RX (u∗)

= E[P 2
RX(u∗)|U,y, θ̂,u∗]− P̄GA

RX (u∗)
2 (24)

=

∫

(

VRX(x∗) + P̄RX(x∗)
2
)

p(X) p(x∗) dX dx∗

− P̄GA
RX (u∗)

2. (25)

Note that bothP̄RX(x∗) andVRX(x∗) are functions ofX (see
(9)–(10)).

Remark4. Prediction in GAGP requires complex integrals
to be solved in (23)–(25) for which no general closed-form
expressions are known. Hence, a reasonable approach is to
use GAGP to learn̂θ and MCGP for prediction.

Remark5. In case training locations are known, i.e.,U ∈ X ,
(23) reverts to

P̄GA
RX (u∗) = µ(u∗) +

N
∑

i=1

βi

∫

C(x∗,xi) p(x∗) dx∗ (26)

and (25) becomes

V GA
RX (u∗)

= k∗∗ −
N
∑

i,j=1

[K−1]ij

∫

C(x∗,xi)C(x∗,xj) p(x∗) dx∗

+

∫

µ(x∗)
2 p(x∗) dx∗ + 2

N
∑

i=1

βi

(

∫

µ(x∗)C(x∗,xi)

× p(x∗) dx∗

)

+

N
∑

i,j=1

βiβj

∫

C(x∗,xi)C(x∗,xj) p(x∗) dx∗

− P̄GA
RX (u∗)

2, (27)

both of which can be computed in closed form, under some
conditions, whenµ(x) is constant inx [18, Section 3.4]. When
bothU ∈ X andu∗ ∈ X , GAGP reverts to cGP.

C. Uncertain GP

While GAGP avoids the learning problems inherent to
MCGP, prediction is generally intractable. Hence, GAGP is
not a fully coherent approach to deal with location uncertainty.
To address this, we consider a new type of GP (uGP), which
operates directly on the location distributions, rather than
on the locations. uGP involves a mean functionµuGP(ui) :
U → R and a positive semidefinite covariance function

CuGP(ui,uj) : U × U → R
+, which considers as inputs

u ∈ U and as outputsy ∈ R. In other words,

PRX(ui) ∼ GP(µuGP(ui), CuGP(ui,uj)). (28)

The mean function is given by µuGP(ui) =
Exi

[EΨ(xi)[PRX(xi)]], already introduced as the expected
mean function in (18). However, for the mean function to
be useful in a GP context, it should be available in closed
form. As in cGP, we have significant freedom in our choice
of covariance function. Apart from all technical conditions
on the covariance function as described in [12], it is desirable
to have a covariance function that (i) is available in closed
form; (ii) leads to decreasing correlation with increasinginput
uncertainty (even when both inputs have same mean); (iii)
can account for varying amounts of input uncertainty; (iv)
reverts to a covariance function of the form (4) whenu ∈ X ,
(v) does not depend on the mean functionµ(x). We will
now describe the mean functionµuGP(ui) and covariance
functionCuGP(ui,uj) in detail.

The mean function:According to law of iterated expecta-
tions, the mean functionµ(ui) is expressed as

µ(ui) = L0 − 10 ηExi
[log10(‖xi‖)]. (29)

While there is no closed-form expression available for (29),
we can form a polynomial approximation

∑J
j=0 aj‖xi‖j ≈

log10(‖xi‖), where the coefficientsaj are found by least
squares minimization. For a given range of‖xi‖, this approxi-
mation can be made arbitrarily close by increasing the orderJ .
Whenp(‖xi‖) is approximately Gaussian (which may be the
case for‖xi‖ ≫ 0), µ(ui) ≈ L0 − 10 η

∑J
j=0 aj Exi

[‖xi‖j ]
can be evaluated in closed form, since all Gaussian moments
are known. See Appendix A for details on the approximation.

The covariance function:While any covariance function
meeting the criteria (i)–(v) listed above can be chosen, a
natural choice is (see Section IV.A)

CuGP(ui,uj) = Cov[PRX(xi), PRX(xj)|ui,uj ]

= Cov[yi, yj |U, θ]− δijσ
2
n. (30)

Unfortunately, as we can see from (19), this choice does not
satisfy criterion (v). An alternative choice is the expected
covariance functionCu(ui,uj) from (20). This choice clearly
satisfies criteria (ii), (iii), (iv), and (v). To satisfy (i), we
can select appropriate covariance functions, tailored to the
distributionsp(xi), or appropriate distributionsp(xi) for a
given covariance function. Examples include:

• Polynomial covariance functions for Gaussianp(xi) [17],
[18].

• Covariance functions of the form (4) withp = 1, xi ∈ R,
for Laplacianp(xi).

• Covariance functions of the form (4) withp = 2, xi ∈ R
2,

for Gaussianp(xi) (i.e., p(xi) = N (xi; zi,Σi)). The
expected covariance function is then given by [17], [18]

CuGP(ui,uj) = Cu(ui,uj) = δij σ
2
proc (31)

+ σ2
Ψ

∣

∣

∣
I+ d−2

c (Σi +Σj)(1− δij)
∣

∣

∣

−1/2

× exp

(

−
1

d2c
(zi − zj)

T(I+ d−2
c (Σi +Σj))

−1(zi − zj)

)

.
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Note that the factor|I + d−2
c (Σi + Σj)(1 − δij)|−1/2

ensures that inputsi 6= j with the same mean (i.e.,
zi = zj) exhibit lower correlation with increasing un-
certainty. The factor(I+ d−2

c (Σi +Σj))
−1 ensures that

the measurements taken at locations with low uncertainty
(smaller thandc) can be explained by a large value of
dc, while for measurements taken at locations with high
uncertainty,Cu(ui,uj) will be small and decreasing with
increasing uncertainty.

1) Learning: Given the training database{U,y} and
choosingµuGP(ui) = µ(ui) andCuGP(ui,uj) = Cu(ui,uj),
the model parameters are found by minimizing the log-
likelihood function

θ̂ = argmin
θ

{− log(p(y|U, θ)}

= argmin
θ

{− log(N (y;µ(U),Ku)}. (32)

Note that in contrast to GAGP, we have constructed uGP
so thatµ(U) andKu are available in closed form, making
numerical minimization tractable.

Remark6. Learning of uGP (32) corresponds to the case of
learning (22) in GAGP for∆ = 0 (e.g., for constant mean
processes).

2) Prediction: Let P̄RX(u∗) be the mean andVRX(u∗)
be the variance of the posterior predictive distribution
p(PRX(u∗)|U,y, θ̂,u∗) of uGP with uncertain training
and test locations, thenp(PRX(u∗)|U,y, θ̂,u∗) =
N (PRX(u∗); P̄RX(u∗), VRX(u∗)). The expressions for
P̄RX(u∗) andVRX(u∗) are now in standard GP form:

P̄RX(u∗) = µ(u∗) + kT
u∗ K

−1
u (y − µ(U)) (33)

VRX(u∗) = ku∗∗ − kT
u∗ K

−1
u ku∗, (34)

whereku∗ is theN×1 vector of cross-covariancesCu(u∗,ui)
between the received power at the test distributionu∗ and at
the training distributionui, andku∗∗ is the a priori variance
Cu(u∗,u∗).

Remark 7. In case the training locations are known, i.e.,
U ∈ X , the meanP̄RX(u∗) and the varianceVRX(u∗) can be
obtained from the expressions (33) and (34), respectively,by
settingΣi = 0, ∀ i ∈ {1, 2, . . . , N}. Furthermore, the resulting
meanP̄RX(u∗) is exactly the same as (26), obtained in GAGP.
However, due to a different choice of covariance function, the
predicted varianceVRX(u∗) is different from (27).

Remark8. When the test location is known, i.e.,u∗ ∈ X , the
meanP̄RX(x∗) and the varianceVRX(x∗) are obtained from
(33) and (34) by settingΣ∗ = 0.

D. Unified View

We are now ready to recap the main differences between
cGP and uGP, and to provide a unified view of the four
methods (cGP, MCGP, GAGP, and uGP). Fig. 3 describes the
main processes in uGP and cGP, along with the inputs and
outputs during the learning and prediction processes. The four
methods are depicted in Fig. 4: all four methods revert to cGP
when training and predictions occur inX , i.e., when there is
no uncertainty about the locations. MCGP is able to consider

PSfrag replacements

{zi =φ(ui), yi}
N
i=1

θ̂

{zi =φ(ui), yi}
N
i=1 z∗ =φ(u∗)

(P̄RX(z∗), VRX(z∗))

(P̄RX(u∗), VRX(u∗))

u∗{ui, yi}
N
i=1{ui, yi}

N
i=1

θ̂

Learn

Learn

Predict

Predict

cGP

uGP

Database
{ui, yi}

N
i=1

Figure 3. Learning and prediction phases of cGP and uGP. The difference in
learning in uGP compared to cGP is that it considers locationuncertainty
of the nodes. The estimated model parametersθ̂ are derived during the
learning phase and are generally different in cGP compared to uGP. The
meanP̄RX(z∗) and varianceVRX(z∗) of the posterior predictive distribution
in cGP corresponds to a locationz∗ extracted fromu∗, which in turn
representsp(x∗). In contrast, the mean̄PRX(u∗) and varianceVRX(u∗)
of the posterior predictive distribution in uGP pertains tothe entire location
distribution represented byu∗.

PSfrag replacements
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Figure 4. Relation between cGP, MCGP, GAGP, and uGP. All methods are
equivalent when the input is limited toX (grey shaded area).

general input distributions inU , but leads to non-Gaussian
output distributions. Through a Gaussian approximation of
these output distributions, GAGP can consider general inputs
and directly determine a Gaussian output distribution. Both
of these approaches (MCGP and GAGP) have in common
that they treat the process with inputx ∈ A as a GP. In
contrast, uGP treats the process with inputu ∈ U as a GP.
This allows for a direct mapping from inputs inU to Gaussian
output distributions. In terms of tractability for learning and
prediction, the four methods are compared in Table I. We see
that among all four methods, uGP combines tractability with
good performance.

VI. N UMERICAL RESULTS AND DISCUSSION

In this section, we show learning and prediction results
of cGP, uGP, and MCGP with uncertainty in training or test
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Table I
COMPARISON OF TRACTABILITY FOR CGP, MCGP, GAGP,AND UGP IN

LEARNING AND PREDICTION.

Method Learning Prediction
cGP tractable, poor quality closed-form, poor quality

MCGP complex, poor quality tractable
GAGP tractable in some cases intractable
uGP tractable by design closed-form

locations. In Section VI.D, we describe a resource allocation
problem, where communication rates are predicted at future
locations using cGP and uGP, in the presence of location
uncertainty during training. The numerical analysis carried
in this section is based on simulated channel measurements
according to the model outlined in Section III.

Table II
SIMULATION PARAMETERS

Parameter Value
η 2.5
σn 0.01
dc 15 m

Parameter Value
M 300
L0 -10 dBm
σΨ 10 dB

A. Simulation Setup

A geographical regionA is considered and a base station
is placed at the origin. A one dimensional radio propaga-
tion field is generated with sampling locations at a reso-
lution of 0.25 m using an exponential covariance function
Cref(xi,xj) = σ2

Ψ exp
(

−‖xi − xj‖/dc
)

, corresponding to
the Gudmundson model. Small-scale fading is assumed to
have been averaged out8. The simulation parameters used to
obtain the numerical results are given in Table II. We assume
isotropic localization errors, so thatΣi = σ2

i I. To capture the
effect of heterogeneous location errors, we draw the location
error standard deviations from an exponential distribution,
i.e., σi

i.i.d.
∼ Exp(λ), whereλ is the average location error

standard deviation. For cGP and MCGP, in order to not provide
any unfair advantage to uGP, we use a covariance function
of the form (4) with p = 1, in order to match the true
covariance functionCref(xi,xj). For uGP, we use (31). Since
uGP exhibits a mismatch in the covariance function, we absorb
this mismatch inσproc, which is learned offline (more on this
in Appendix B). We assume nodes knowσn andL0, which
be inferred using standard methods [36], [39], [40], so they
are not included in the learning process.

B. Learning Under Location Uncertainty

Fig. 5 depicts the impact of location uncertainty on the
learning of hyperparameters[dc, σΨ, σproc, η] for cGP, uGP,
and MCGP. The learning of the hyperparameters is detailed in
Appendix B.

8In the case small-scale fading is not averaged out, the proposed framework
cannot be applied.

1) cGP: We first consider a variant of cGP, denoted as
cGP-no-proc, in whichσproc is fixed to zero. In cGP-no-proc,
whenλ = 0, the estimatêdc is non-zero. However, it can be
observed in Fig. 5 (a), that with increase inλ, d̂c decreases
quickly to zero. Hence, cGP-no-proc will model the GP as a
white process with high variancêσ2

Ψ and thus cannot handle
the location uncertainty. On the other hand, in cGP where we
estimateσproc, σ̂proc absorbs part of location uncertainty (see
Fig. 5 (c)). Consequently, the part of the observations thatmust
be explained throughσΨ is reduced, leading to a reduction
of σ̂Ψ with λ. Due to this, cGP considers the measurements
constitute a slowly varying process, therefored̂c increases with
λ. An interesting observation is that the error bars ford̂c also
increase withλ. Hence, among cGP-no-proc and cGP, only
cGP can reasonably deal with location uncertainty.

2) MCGP: The behavior is similar to that of cGP, i.e.,
an increase in̂dc, and a decrease in̂σΨ, when increasingλ.
However,σ̂Ψ decreases more quickly withλ when compared
to cGP. These effects can be attributed to two causes: first
of all, the inherent problem of drawing a finite number of
samples as detailed at the end of Section V.A1; secondly,
the fluctuations in the estimated path loss exponentη̂ with
increasingλ (see Fig. 5 (d)). The error bars of the estimates
in this case are even higher than in cGP. As expected, MCGP
is not suitable for learning.

3) uGP: As mentioned before, in uGPσproc is determined
offline. The uGP model has the capability to absorb the
location uncertainty into the covariance function. Due to this
flexibility, it can handle higher values ofλ and still maintain
an almost constant̂dc and σ̂Ψ with increase inλ. For fair
comparison with cGP, we also consider the case whereσproc
is estimated as part of the learning, referred to as uGP-proc.
It can be observed in Fig. 5 (c) that̂σproc increases with
increase inλ. When comparing uGP-proc to uGP, we observe
a lower value ofσ̂Ψ and higher values of̂dc and σ̂proc for a
particular value ofλ. From this, we conclude that uGP should
be preferred over uGP-proc, as it can explain the observations
with smallerσ̂proc and leads to simpler optimization. Finally,
note that the error bars of the uGP estimates are relatively
small when compared to cGP.

C. Prediction Under Location Uncertainty

Four cases can be considered, depending on whether train-
ing or testing inputs are inX or U . We will focus on the case
whereeither training or test locations are uncertain, but not
both. From these, the behavior when both training and testing
inputs are inU can be easily understood: only uGP can give
reasonable performance among cGP, MCGP, and uGP, as the
estimates ofθ in cGP and MCGP are of poor quality.

1) Uncertain training locations and certain testing loca-
tions: In this caseui ∈ U and u∗ ∈ X . Fig. 6 (a) depicts
the prediction results in terms of the predictive mean and
predictive standard deviation (shown as shaded areas) for a
particular realization of the channel field. It can be observed
that uGP is able to predict the received power comparatively
better than cGP and MCGP. uGP is able to estimate the under-
lying channel parameters better with the expected covariance
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Figure 5. Impact of location uncertainty on learning the hyperparameters using cGP, uGP, and MCGP. The hyperparametersare estimated for each value of
the mean location error standard deviation and for 40 realizations of the channel field. Results shown are the mean estimate of the hyperparameters and error
bars with one standard deviation. Impact of location uncertainty in shown when estimating: (a)dc, (b) σΨ, (c) σproc, (d) η.

function, which takes in to account the location uncertainty of
the nodes. In turn, this means that uGP can track the faster
variations in the channel. cGP tries to model the true function
with a slow varying process due to very higĥdc. Furthermore,
cGP has higher uncertainty in predictions due to highσ̂proc
(see Fig. 5 (c)). On the other hand, MCGP has slightly better
prediction performance (the standard deviation is not shown,
but is slightly smaller than for cGP) compared to cGP due
to the averaging by drawing samples from the distribution of
the uncertain training locations. Averaging the prediction error
over multiple channel realizations, Fig. 6 (b) shows the mean
squared error (MSE) of the received power prediction of cGP
and uGP with respect toλ (MCGP is not shown due to its
similar performance to cGP). uGP clearly outperforms cGP
(except foλ = 0) due to its better tracking of the true channel
(see Fig. 6 (a)) despite uncertainty on the training locations.
The reason for higher MSE in the case ofλ = 0 for uGP is
due to its kernel mismatch.

2) Certain training locations and uncertain testing loca-
tions: In this caseui ∈ X and u∗ ∈ U (with a constant
location error standard deviationσ m). Now the perfor-
mance must be assessed with respect to the expected received
powerPRX,avg(u∗) =

∫

PRX(x∗) p(x∗) dx∗, wherep(x∗) =
N (z∗, σ

2 I), in whichz∗ is the mean of distribution described
byu∗. An example is shown in Fig. 7 (a), depictingPRX,avg as
a function ofz∗, as well as the predictions from cGP, MCGP,
and uGP. It can be observed that uGP and MCGP follow well
PRX,avg. Specifically, MCGP tracksPRX,avg quite closely as
it is near-optimal in this case. In contrast, cGP follows the
actual received power atz∗, rather than the averaged power.
This leads to fast variations in cGP, which are not present in
uGP and MCGP. Fig. 7 (b) shows the MSE of the received
power prediction of cGP, MCGP, and uGP with respect to
σ when averaging the prediction error over multiple channel
realizations. As expected, MCGP has the lower MSE than
uGP and cGP. However, uGP performs better than cGP for
all consideredσ, exceptσ = 0 (due to kernel mismatch).
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Figure 6. Performance comparison of cGP, MCGP, and uGP underuncertain training and certain testing locations. Inset (a) received power prediction using
uncertain training locations with average location error of λ = 8 m and certain test locations for single realization of a channel field. The shaded area (grey
for cGP and blue for uGP) depicts point wise predictive mean plus and minus the predictive standard deviation, and (b) MSEperformance of cGP and uGP
as a function of average location error standard deviationλ. The MSE is averaged for each value ofλ and for 50 realizations of the channel field is shown
are the mean of the MSE and error bars with one standard deviation. The MSE is calculated as1

|T |

∑
x∗∈T (PRX(x∗)− P̄RX(x∗))2 , whereT is the set

of test locations and|T | denotes its cardinality.
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Figure 7. Performance comparison of cGP, MCGP, and uGP undercertain training and uncertain testing locations. Inset (a) received power prediction using
certain training and uncertain test locations with a constant location error standard deviationσ = 5 m for single realization of channel field, and (b) MSE
performance of cGP, MCGP and uGP as a function of constant location error standard deviationσ on test locations. The MSE is averaged for each value
of σ and for 50 realizations of the channel field is shown are the mean of the MSE and error bars with one standard deviation. The MSE is calculated as

1
|T u|

∑
u∗∈T u (PRX,avg(u∗) − P̄RX(u∗))2 , whereT u is the set of test location distributions and|T u| denotes its cardinality.

Furthermore, the performance of uGP is very close to that of
MCGP.

D. Resource Allocation Example

1) Scenario:In this section, we compare cGP and uGP for
a simple proactive resource allocation scenario. We consider a
user moving through a regionA and predict the CQM at each
location. The supported rate, expressed in bits per channeluse
(bpu), for a user at locationx∗ is defined as

r(x∗) = log2
(

1 + SNR(x∗)
)

, (35)

whereSNR(x∗) = P lin
RX(x∗)/W

lin, is the signal-to-noise ratio
at locationx∗,W lin is the receiver thermal noise andP lin

RX(x∗)

is the received power, both measured in linear scale. The
average rate in the regionA, denoted as̄rref

A
, is defined as

r̄refA =
1

|A|

∫

A

r(x∗)dx∗, (36)

where|A| denotes area of the regionA. The predicted rate for
a user at a future locationx∗, based on the predicted CQM
values(P̄RX(x∗), VRX(x∗)), is defined as

r(x∗, α) = log2
(

1 + SNR(x∗, α)
)

, (37)

where α ≥ 0 is a confidence parameter,
SNR(x∗, α) = P lin

RX(x∗, α)/W
lin and PRX(x∗, α) =

10 log10
(

P lin
RX(x∗, α)

)

= P̄RX(x∗)− α
(

VRX(x∗)
)

1
2 .
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Figure 8. Resource allocation example for cGP, and uGP with two different values of localization error standard deviations (λ ∈ {0, 10} m) and for different
values of the confidence parameterα. The results are averaged for each value ofλ with 50 channel realizations. Inset (a) the effective rater̄effA (α), and (b)
the fraction of undelivered bitsU(α).

2) Performance measure:The user moves through the
environment according to a known trajectory. The base station
allocates bits to each future location, proportional tor(x∗, α).
When the user is at locationx∗, only a fraction of the
bits, proportional tomin(r(x∗, α), r(x∗)) would be delivered.
Therefore, the effective ratereff(x∗, α) for the user at location
x∗ is

reff(x∗, α) = min(r(x∗, α), r(x∗)). (38)

The average effective ratēreff
A
(α) for a given confidence level

α is then computed by spatial average ofreff(x∗, α) over
regionA as

r̄effA (α) =
1

|A|

∫

A

reff(x∗, α) dx∗ ∈ [0, r̄refA ]. (39)

When r(x∗, α) > r(x∗), a part of the allocated bits cannot
be delivered. The total fraction of undelivered bits over the
environment is given by

U(α) =

∫

A
(r(x∗, α)− reff(x∗, α)) dx∗

∫

A
r(x∗, α) dx∗

∈ [0, 1). (40)

Hence, r̄effA (α) describes the rate that the user will receive
(penalizing under-estimation of the rate), whileU(α) describes
the loss due to lost bits (penalizing over-estimating of therate).

3) Predicted communication rates with uncertain training
locations: We predict the CQM at known test locationsx∗ ∈
X , based on training with uncertain locations (considering
λ ∈ {0, 10} m), all within a one-dimensional regionA. The
average effective ratēreff

A
(α) and the fraction of undelivered

bits U(α), as a function ofα, are shown in Fig 8 (a)–
(b), respectively. As expected, increasingα leads to a more
conservative allocation, thus reducing bothr̄eff

A
(α) andU(α).

For a specific value ofα, increase inλ decreases̄reff
A
(α). This

is due to the fact that with increase inλ, the meanP̄RX(x∗)
is of poor quality and the varianceVRX(x∗) is high for CQM
predictions.

It is evident that whenλ = 0, uGP and cGP attain similar
performance, both in terms of̄reff

A
(α) andU(α). Whenλ is

increased to 10 m, cGP suffers from a significant reduction in
effective rater̄eff

A
(α), while at the same time dropping up to

4.5 % of the bits. This is due to cGP’s poor predictions, which
are either too low (leading to a reduction in̄reff

A
(α)) or too

high (leading to an increase inU(α)). In contrast, uGP, which
is able to track the channel well despite uncertain training,
achieves a higher effective rate, especially for high confidence
values (e.g., around 2 times higher rate forα = 3, for U(α)
less than 0.1%).

VII. C ONCLUSION

Channel quality metrics can be predicted using spatial
regression tools such as Gaussian processes (GP). We have
studied the impact of location uncertainties on GP and have
demonstrated that, when heterogeneous location uncertainties
are present, the classical GP framework is unable to (i)
learn the underlying channel parameters properly; (ii) predict
the expected channel quality metric. By introducing a GP
that operates directly on the location distribution, we find
uncertain GP (uGP), which is able to both learn and predict
in the presence of location uncertainties. This translatesin
better performance when using uGP for predictive resource
allocation.

Possible avenues of future research include validation using
real measurements, modeling correlation of shadowing in
the temporal dimension, study of better approximations for
learning with uncertain locations, and the extension to ad-hoc
networks.

APPENDIX A
APPROXIMATION OFEXPECTEDMEAN FUNCTION

Let di = ‖xi‖ and recall from random variable transforma-
tion theory that

∫

log10(‖xi‖) p(xi) dxi =

∫

log10(di) p(di) ddi. (41)
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We assumep(xi) = N (zi, σ
2
i I), so p(di) follows a Rician

distribution

p(di) =
di
σ2
i

exp
(

−
‖zi‖2 + d2i

2 σ2
i

)

I0

(‖zi‖ di
σ2
i

)

di > 0, (42)

where I0(.) is a modified Bessel function of zero-th order.
For ‖zi‖/σi ≥ 3, p(di) can be approximated as a Gaussian
distribution

pGauss(di) =
1

√

2 πσ2
i

exp
(

−
(‖zi‖ − di)

2

2 σ2
i

)

. (43)

The integral (41) still does not have a closed form expression
with pGauss(di). Now approximating thelog10(.) function with
a polynomial function of the formw(di) =

∑J
j=0 aj d

j
i then

(41) can be written as
∫

log10(‖xi‖) p(xi) dxi ≈

∫ +∞

−∞

w(di) pGauss(di) ddi,

(44)
which can be computed exactly.

APPENDIX B
LEARNING PROCEDURE

In this appendix, we detail the learning ofθ =
[σn, σproc, dc, L0, η, σΨ] for cGP, uGP, and MCGP. We con-
sider nodes knowσn andL0, therefore they are not estimated
as part of the learning process. Let the remaining set of
hyperparameters beθ = [σproc, dc, σΨ] andη .

cGP

Based on Section III, we can write the received measure-
ments y with their corresponding training locationsX in
matrix form as

y = 1TL0 + hc η +Ψ+ n, (45)

whereΨ = [Ψ(x1), . . .Ψ(xN )]T, n = [n1, . . . , nN ]T, and
hc = −10 [ log10(‖x1‖), . . . , log10(‖xN‖)]T. Assuming the
measurements are uncorrelated, then the least squares estimate
of the path-loss exponent can be computed as

η̂ =
(

hT
c hc

)−1
hT
c

(

y − 1TL0

)

. (46)

Once the path-loss exponent is estimated, the mean com-
ponent of the received measurements can be subtracted as,
Υc = y − 1TL0 − hc η̂. Then,Υc becomes a zero-mean
Gaussian process. Now the likelihood function (6) becomes
l(θ) = p(Υc|X, θ) = N (Υc;0,K). The hyperparametersθ
are estimated by minimizing negative logarithm ofl(θ)

θ̂ = argmin
θ

{− log(p(Υc|X, θ)}

= argmin
θ

{

log |K|+ΥT
c K−1Υc

}

. (47)

We calculate the variance of the processΥc as σ2
Tot =

1/N
∑N

i=1[Υc]
2
i . The variance of the process should be cap-

tured by the hyperparametersσproc, σn, andσΨ. We define
σ2
proc = σ2

Tot − σ2
n − σ2

Ψ, as a resultl(θ) becomes a function
of only dc andσΨ. We solve (47) and find̂dc and σ̂Ψ by an
exhaustive grid search. Oncêdc andσ̂Ψ are found, then̂σproc
can be calculated aŝσ2

proc = σ̂2
Tot − σ2

n − σ̂2
Ψ.

uGP

In this case, the path-loss exponent is estimated as

η̂ =
(

hT
u hu

)−1
hT
u

(

y − 1TL0

)

, (48)

wherehu = −10 [Ex1[log10(‖x1‖), . . . ,ExN
[log10(‖xN‖)]T.

Once again removing the mean from the measurements, we
obtainΥu = y − 1TL0 − hu η̂. The hyperparametersθ are
estimated by minimizing the modified negative log-likelihood
function

θ̂ = argmin
θ

{− log(p(Υu|U, θ)}

= argmin
θ

{

log |Ku|+ΥT
u Ku

−1 Υu

}

. (49)

Again,σ2
Tot = 1/N

∑N
i=1[Υu]

2
i , is the variance of the process.

As a result,σ̂Ψ becomeŝσ2
Ψ = σ2

Tot − σ2
n − σ̂2

proc and due to
this l(θ) is now only a function ofdc. We solve (49) and find
d̂c by an exhaustive grid search.

The learning process can be simplified for uGP: sinceσproc
only captures kernel mismatch irrespective of the locationun-
certainty and path loss, the value ofσ̂proc can be obtained off-
line with noise-free training locations by performing learning
as in the case of cGP, but with a covariance function of the
form (4) for p = 2. This approach gives an advantage to cGP
and thus makes the comparison between uGP and cGP more
fair for all values ofλ ≥ 0.

MCGP

It is no longer feasible to estimateη first and subtract
to make the process zero mean, because of summation in
the Monte Carlo integration (12). Therefore, we optimize
(13) with respect to the hyperparametersη and θ using
fminsearch function of Matlab.
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