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under Location Uncertainty
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Abstract—Spatial wireless channel prediction is important for physical environment, including the locations of transemit
future wireless networks, and in particular for proactive resource and receiver, play an important role. The received signal
allocation at different layers of the protocol stack. Varicus sources power in a wireless channel is mainly affected by three major

of uncertainty must be accounted for during modeling and to d . hich t diff t] th les: patls-|
provide robust predictions. We investigate two channel prdiction ~ 9YNamics, which occur at diiierent length scales. patss;los

frameworks, classical Gaussian processes (cGP) and uncain Shadowing, and small-scale fadingl [9]. Small-scale fading
Gaussian processes (UGP), and analyze the impact of locatio decorrelates within tens of centimeters (depending on the
uncertainty during learning/training and prediction/testing, for  carrier frequency), making it infeasible to predict based o
scenarios where measurements uncertainty are dominated by location information. On the other hand, shadowing is cor-
large-scale fading. We observe that cGP generally fails bbtin L .
terms of learning the channel parameters and in predicting he rela.ted up to tens of meters, depending on the propaga_ltlon
channel in the presence of location uncertainties. In contist, €nvironment (e.g., 50-100 m for outdoor [9] and 1-2 m for in-
uGP explicitly considers the location uncertainty. Using enulated ~ door environments$ [10]). Finally, path-loss, which captuthe
data, we show that uGP is able to learn and predict the wireles  deterministic decay of power with distance, is a deterrtimis
channel. function of the distance to the transmitter. In rich scattgr

Index Terms—Gaussian processes, uncertain inputs, location environments, the measurements average small-scalegfadin

Uncertainty, Spatial predICtablllty of wireless channels either in frequency or space provided sufficient bandwidth
or number of antenna$ [10]. Thus, provided that measure-
|. INTRODUCTION ments are dominated by large-scale fading, location-digren

OCATION-based resource allocation schemes are exodels for path-loss and shadowing can be developed based
pected to become an essential element of emergiog the physical properties of the wireless channel. With the
5G networks, as 5G devices will have the capability tbelp of spatial regression tools, these large-scale channe
accurately self-localize and predict relevant channelliyua components can be predicted at other locations and used for
metrics (CQM) [1]-[3] based on crowd-sourced databasegsource allocatiori [1]. However, since localization ibjeat
The geo-tagged CQM (including, e.g., received signal gtiitgn to various error sources (e.g., the global positioning esyst
delay spread, and interference levels) from users enahées (GPS) gives an accuracy of around 10 m][11] in outdoor
construction of a dynamic database, which in turn allows tlseenarios, while ultra-wide band (UWB) systems can give sub
prediction of CQM at arbitrary locations and future timesrC meter accuracy), there is a fundamental need to account for
rent standards are already moving in this direction thrahgh location uncertainties when developing spatial regresiols.
so-called minimization of drive test (MDT) feature in 3GPPP Spatial regression tools generally comprise a train-
Release 10[]4]. In MDT, users collect radio measuremeritg/learning phase, in which the underlying channel param-
and associated location information in order to assessanktweters are estimated based on the available training da&abas
performance. In terms of applications, prediction of sgatiand a testing/prediction phase, in which predictions ardena
wireless channels (e.g., through radio environment maps) aat test locations, given learned parameters and the tgainin
its utilization in resource allocation can reduce overlsemad database. Among such tools, Gaussian processes (GP) is a
delays due to the ability to predict channel quality beyonabwerful and commonly used regression framework, since it
traditional time scales[]2]. Exploitation of location-an@a is generally considered to be the most flexible and provides
CQM is relevant for interference management in two-tiggrediction uncertainty information [12]. Two importaniita-
cellular networks[[b], coverage hole detection and préalict tions of GP are its computational complexity [13]-[16] atsl i
[6], cooperative spectrum sensing in cognitive radios [73ensitivity to uncertain input§ [14], [17]=[21]. To allewe the
anticipatory networks for predictive resource allocat{@), computational complexity, various sparse GP techniques ha
and proactive caching[8]. been proposed i [13]=[15], while online and distributed GP
In order to predict location-dependent radio propagatiavere treated in [16][122][[23] and [24]=[26], respectivelhe
channels, we rely on mathematical models, in which thmpact of input uncertainty was studied in [17], [18], which
. _ showed that GP was adversely affected, both in training and
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on and adapt the framework from [17], [18] to CQM predictiomoise. In[19], a Delta method was used for linearizationarnd
in wireless networks. Our main contributions are as followsthe assumption of Gaussian distributed inputs and proposed

« We show that not considering location uncertainty leads corrected covariance function that accounts for the input
to poor learning of the channel parameters and poapise variance. For Gaussian distributed test inputs and/kn
prediction of CQM values at other locations, especiallfaining inputs, the exact and approximate moments of the
when location uncertainties are heterogeneous; GP posterior was examined for various forms of covariance

« We relate and unify existing GP methods that accoufitnctions [18]. Training on Gaussian distributed inputrisi
for uncertainty during both learning and prediction, by calculating the exp_ecte.d covariance matrix was stuQIed i
operating directly on an input set of distributions, rathdi7l, [18]. Two approximations were evaluated in [27], fiest
than an input set of locations; joint maximization of joint posterior on uncertain inputsda

« We describe and delimit proper choices for mean funByperparameters (leading to over-fitting), and secondgusin
tions and covariance functions in this unified framewori@ Stochastic expectation-maximization algorithm (at ahhig
S0 as to incorporate location uncertainty in both learnirfg?mputational cost).
and prediction; and We now review previous works on GP for channel pre-

« We demonstrate the use of the proposed framework fdiction, which include spatial correlation of shadowing in
simulated data and apply it to a spatial resource allocatiégllular [28] and ad-hoc network$ [29], as well as tracking
application. of transmit powers of primary users in a cognitive network

The remainder of the paper is structured as follows. Sefffibn [23]- In [28], GP was shown to model spatially correlated
presents the channel model and details the problem descfip@dowing to predict shadowing and path-loss at any arbi-
tion for location-dependent channel prediction with lomat trary location. A multi-hop network scenario was considere
uncertainty. In Sectiofi IV, we review channel learning an@dl, and shadowing was modeled using a spatial loss field,
prediction in the classical GP (cGP) setup with no locaiizat INtégrated along a line between transmitter and receiver. |
errors. SectiofL) details learning and prediction procegurl23]: @ cognitive network setting was evaluated, in which
using the proposed GP framework that accounts for unceytaiff'€ transmit powers of the primary users were tracked with
on training and test locations, termed uncertain GP (uGEpoPeration among the secondary users. For this purpose a
Finally, numerical results are given in Sectiod VI in adufiti istributed radio channel tracking framework using Kriged

to a resource allocation example, followed by our conchssioK&lman filter was developed with location information. A
in Sectior[ V1. study on the impact of underlying channel parameters on the

spatial channel prediction variance using GP was presented
in [B0]. A common assumption if_[23][ [28]=[B0] was the
presence of perfect location information. This assumpiias
partially removed in[[311], which extends [30] to include the
effect of localization errors on spatial channel predictitt

Notation: Vectors and matrices are written in bold (e.g
a vectork and a matrixK); KT denotes transpose &;
|K| denotes determinant d&K; [K],; denotes entry(i, j) of
K; I denotes identity matrix of appropriate siZeand0 are
vectors of ones and zeros, respectively, of appropriate si o
||| denotesL,-norm unless otherwise statei.] denotes the was found that channel prediction performance was degraded

expectation operator; Chy denotes covariance operator (i_e'\’/vhen location errors were present, in particular when eithe
Covly1,y2] = Ely1yT] —E[y1] E[y2]T); V'(x; m, X) denotes the shadowing standard deviation or the shadowing coiwelat

were large. However[ [31] did not tackle combined learning
and prediction under location uncertainty. The only wor&tth

drawn from a Gaussian distribution with mean veaterand XPlicitly accounts for location uncertainty was [20], ifiah
covariance matrixS. Important symbols used in the papefN€ Laplace approximation was used to obtain a closed-form
are:x; € R2 is an exact, true locationy; € R?, D > 2 analytical solutlo_n for the ppstenor predlctlve distriiqun. _
is a vector that describes (e.g., in the form of moments) thtPwever, [20] did not consider learning of parameters in
location distributionp(x;). For example in the case of GausPresence of location uncertainty.

sian distributed localization errop(x) = N (x;z, X), then a
possible choice im = [z7,vedX]]T, wherevec[X] stacks all
the elements of in a vector. Finally,z; = ¢(u;) € R? is
a location estimate extracted from through a functionp(-) A. Channel Model
(e.g., the mean or mode).

a Gaussian distribution evaluated snwith mean vectorm
and covariance matrif andx ~ N (m, X) denotes thak is

IIl. SYSTEM MODEL

Consider a geographical regiod C R?, where a source
node is located at the origin and transmits a signal with powe
Prx to a receiver located ak; € A through a wireless

First, we give an overview of the literature on GP with unpropagation channel. The received radio signal is affected
certain inputs. One way to deal with the input noise is thfougnainly by distance-dependent path-loss, shadowing due to
linearizing the output around the mean of the input [19]]{21obstacles in the propagation medium, and small-scale dadin
In [21], the input noise was viewed as extra output noisety lidue to multipath effects. The received powgyx (x;) can be
earization at each point and this is proportional to the sgflia expressed a$ [32, Chap. 2]
gradient of the GP posterior mean. However, the proposed
method works under the condition of constant-variancetinpu Prx(x;) = Prx go ||%:| " ¥ (x:) [h(x;)[%, (1)

II. RELATED WORK



wheregg is a constant that captures antenna and other proj
gation gainsy is the path-loss exponent(x;) is the location-
dependent shadowing arhca):ﬁais the small-scale fading. We /
assume measurements avetagmall-scale fading, either in

time (measurements taken over a time window), frequen
(measurements represent average power over a large figqug @_ I
band), or space (measurements taken over multiple anfen

[10], [33]. Therefore, the resulting received signal podvem

the source node to a receiver nodean be expressed in dB A" """""""""""""" '
scale as * ﬁ
Prx (x;)[dBm] = Lo — 107 logo([|xifl) + ¥(xi),  (2)
where Ly = Prx[dBm] + G, with Gy = 10 log,,(g0) and
U(x;) = 10 logo(¢(x;)). A common choice for modeling Figure 1. High-level comparison between cGP and uGP. Thatsnip cGP

shadowing in wireless systems is thl’OUgh a Iog-normalidistF‘Ufing learning are observations and estimate& of the (unobserved) actual

. . . 2 9 . locationsX where those observations have been talfeis obtained through
bution, '-e-’qj(XZ) ~ N(O, 0\1,), where oy 1S the shadowing a positioning system. The true locatioXsare marked with a triangle and are

variance. Shadowin@ (x;) is spatially correlated, with well- generally different from the estimated locatiofis marked with a blue and
established correlation mode34] among which the Guggd dot. During prediction, cGP predicts received powerraestimated test
d del i idel 35’) Let be th Ia location, z*. In contrast, uGP considers the distribution of the loceti,

mun Sor? model I1s wi _ey use[ﬂ ] _@t e _e Sc_a I'  described byU (and depicted by the red and blue circle), during learning.
observation of the received power at nagevhich is written During prediction, uGP utilizes the distribution* of the test location. Note
asy; = Prx (Xz) +n;, wheren; is a zero mean additive white that the amount of uncertainty (radius of the circle) canndea

Gaussian noise with varianeg’. For the sake of notational
simplicity, we do not consider a three-dimensional layout
the impact of non-uniform antenna gain patterns, or diganc

dependent path-loss exponents.

classical GP uncertain GP

N
{Z,y},z* {U,y},u*

" 1) Learning construct a spatial model (through estimating
model parameter8, to be defined later) of the received
power based on the measurements;

2) Prediction determine the predictive distribution

B. Location Error Model p(Prx(x.)y, U,0,x,) of the power in test locations
In practice, nodes may not have access to their true location  x. and the distribution of the expecﬁedsceived power,
x;, but only to a distributiorp(xi)ﬁ. The distributionp(x;) is p(Prx(us)|y, U, 0,u,), for test location distributions

obtained from the positioning algorithm in the devices, and  u..

depends on the specific positioning technology (e.g., foB GRVe will consider two methods for learning and prediction:
the distributionp(x;) can be modeled as a Gaussian). We wiltlassical GP (Sectidn_1V), which ignores location uncetai
assume that all distributiongx;) come from a given family of and only considers; = ¢(u;), and uncertain GP (Section
distributions (e.g., all bivariate Gaussian distribuspriThese [V), which is a method that explicitly accounts for loca-

distributions can be described by a finite set of parametetign uncertainty. We introducX = [x1,x1,...,xx]T and
u; € R”, D > 2, e.g,, a mean and a covariance matrig = [z}, z],...,zL]" as the collection of true and estimated

for Gaussian distributions. The set of descriptions of adbcations respectively. A high level comparison of cGP and
distributions from the given family is denoted By ¢ R”. uGP is shown in Figl1, where cGP operates@mand Y,
Within this set, the set of all delta Dirac distributions ovewhile uGP operates oty andY.

locations is denoted byr C . Note thatX is equivalent

to the setA of possible locations. Finally, we introduce a IV. CHANNEL PREDICTION WITH CLASSICAL GP

function ¢ : U — A that extracts a position estimate from \we first present cGP under the assumption that all locations

the distribution (in our case chosen as the mean), and dengiging learning and prediction are known exactly, based on

z; = ¢(u;) € A We will generally make no distinction [12] [36]. Later in this section, we will discuss the impact

between a distributiop(x;) and its representation;. of location uncertainties on c¢GP in learning/training and
prediction/testing.

C. Problem Statement

We assume a central coordinator, which collects a g&t CGP without Location Uncertainty
of received power measuremengs = [y,...,yn]|" with We designatex; € A as theinput variable, andPrx (x;)
respect to a common source fraW nodes, along with their as the output variable. We modelPrx(x;) as a GP with
corresponding location distributiods = [uf, uj,...,uxy]". mean functionu(x;) : A — R and a positive semidefinite
Our goals are to perform covariance functiorC'(x;,x;) : A x A — RT, and we write

1If measurements cannot average over small-scale fadirgptbposed PRx(Xi) ~ gP(u(xi), O(Xi,xj)), (3)
framework from this paper cannot be applied.

2Vector measurements are also possible (e.g., from multiaée stations),  “Here, Prx (u.) should be interpreted as the expected received power,
but not considered here for the sake of clarity. p(Prx(ud)|y,U,0,u.) = [p(Prx(x«)|y, U, 8, x.)p(xs)dx., where

3p(x;) is used forp(x = x;) for notational simplicity. p(x4) is described byu.



where GP stands for a Gaussian process. The mean fur —10f
tiorl] is defined aspu(x;) = Egu,)[Prx(x:)] = Lo —
10m logyo(|lx:]|), due to [(2). The covariance function is
defined asC(xi,xj) = COV[PR)((XZ'),PR)((XJ‘)]. We will
consider a class of covariance functions of the form:
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whered;; = 1 for i = j and zero otherwisey > 1, d. is

the correlation distance of the shadowing, ang,. captures
any noise variance term that is not due to measurement ncs
(more on this later). Setting = 1 in (@), gives the exponential =707
covariance function that is commonly used to describe ti

ceived power in dBm
|
D
o

covariance properties of shadowing|[35], ane- 2, gives the —80 B ‘ ‘ ‘ ‘
squared exponential covariance function that will turn tut 0 50 100 150 200
be useful in Sectioh VIC. Note that the mean and covarian Distance from BS in m

depend on

Figure 2. Impact of location uncertainty for a one-dimenaloexample:
the red curve depicts the received signal pogrx (x) as a function ofx

. .. (or equivalently, the distance to the base station), whike markers show
which may not be known a priori. Prx(x;) as a function ofz; = ¢(u;). Training measurements are grouped

1) Learning: The objective during learning is to infer the:nto three r_egionSZd((Jr; CorreSpongS to high uncertaint)lycorrespolnds hto
H H ow uncertainty, and (*) corresponds to medium uncertairggpectively. The

model parameter@from observat|0n§r of thg r_ecelved POWET | ation uncertainty results in output noise.
at N knownlocationsX. The resulting training database is
thus {X,y}. Due to the GP model, the joint distribution of

the IV training observations exhibits a Gaussian distributionthjs distribution turn out to b& [12]

0= [O'nao'prOCadcaLOanaU‘I’]a (5)

p(yIX, 0)=N(y; n(X),K), (6)  Prx(x.) =p(x.) + ki K (y — p(X)) )
where pu(X) = [u(x1), p(x2), ... u(xn)]" is the mean =p(x,) + XN:[K%]U (yj — n(x;)) C(xs, %;)

vector andK is the covariance matrix of the measured

i,j=1
received powers, with entriéK];; = C(x;,x;) + o2 §;;. The ]Jv
model parameters can be learned through maximum likelihood =p(x.) + Z B; C(x4,%:).
estimation, given the training databas¥, y }, by minimizing P
the negative log-likelihood function with respect o Vi (%) =ks — KTK 1K, (10)
6 = in{—1 X, 0))}. 7 N
argmgm{ Og(p(Y| ’ ))} ( ) —ky, — Z [Kﬁl]ij C(X*,Xi) C(X*,Xj),
The negative log-likelihood function is usually not comand b=l

may contain multiple local optima. Additional details oreth\yhere 3, = SN Ky — p(x;)). In @), p(x.) cor-

. . A, . i=1
learning process are provided later. Ocis determined from responds to the deterministic path-loss component at

{X,y}, the training process is complete. . which is corrected by a term involving the database and the
'2) Prediction: After learning, we can determine the preégorrelation between the measurements at the trainingitosat
dictive distribution of Prx(x.) at a new and arbitrary testang the test location. I {1L0), we see that the prior variance

location x,, given the training databasgX,y} and 6. We ., is reduced by a term that accounts for the correlation of
first form the joint distribution nearby measurements.

y ~ N p(X) K k. (8) . . .

Prx (%) w(x) || KT ke ) B. cGP with Location Uncertainty

Now let us consider the case when the nodes do not have
access to their true locatioq), but only to a distributiom(x; ),
which is described by, € U. Fig.[2 illustrates the impact of
location uncertainties assuming Gaussian location effiars
a one-dimensional example. The figure shows (in red) the
true received powelPrx(x) as a function ofx as well as
the measured powePrx(x;) as a function ofz; = ¢(u;)
for a discrete number of values of shown as markers. To
5 , _ o _ clearly illustrate the impact of different amounts on unaieity
Other ways of including the mean function in the model aresjtods, such

as to include it in the covariance structure, and transfdrengrior model to O_n the po_smon, we have art|f|C|aIIy created three reg'an:
a zero-mean GP priof [12]. high location uncertainty close to the transmitter, medium

wherek, is the N x 1 vector of cross-covariances(x,,x;)
between the received powersat and at the training locations
x;, and k.. = C(x.,x,) is the prior variance (i.e., the
variance in the absence of measurements), givefi(sy., x..).
Conditioning on the observations, we obtain the Gaussian
posterior distributiorp(Prx (x.)|X,y,8,x.) for the test lo-
cation x.. The mean Prx(x.)) and variance W(zx (x.)) of



location uncertainty far away, and low location uncertafior  not known exactly, especially when location error statsstre
intermediate distances. When there is no location unceytai heterogeneous. In this section, we explore several ptiistbi
(70 m until 140 m from the transmitterlz; ~ x;, so to explicitly incorporate location uncertainty. We rectilat
Prx(zi) ~ Prx(x;), and hence the black dots coincidé/ denotes the set of all distributions over the locations in
with the red curve. For medium and high uncertaintycan the environmentd, while X C U represents the delta Dirac
differ significantly fromx;, so the data point with coordinatesdistributions over the positions and has a one-to-one mappi
[z;, Prx(x;)] can lie far away from the red curve, especiallyo A.
for high location uncertainty (distances below 70 m). From We will describe three approaches. First, a Bayesian ap-
Fig. @ it is clear that the input uncertainty manifests ftseproach where the uncertain input (i.e., the uncertain lonat
as output noise, with a variance that grows with increasing marginalized, leading to a non-Gaussian output (i.ee, th
location uncertainﬁz This output noise must be accountedeceived power) distribution. Second, we derive a Gaussian
for in the model during learning and prediction. When thesspproximation of the output distribution through moment
uncertainties are ignored, both learning and predictidhbvei matching and detail the corresponding learning and priedict
of poor quality, as described below. expressions. From these expressions, the concepts ofterpec
1) Learning from uncertain training locationdn this case, mean function and expected covariance function naturally
the training databaséZ,y} comprises locationg; = ¢(u;) appear. Finally, we discuss uncertain GP, which is a Gaussia
and power measuremenjs= Prx(x;) + n; at the true (but process with inputu from input setl/ and outputy. We
unknown) locations;. The measurements will be of the formwill relate these three approaches in a unified view. For
shown in Fig[2. The estimated model parametersan take each approach, we detail the quality of the solution and
two forms: (i) assign very short correlation distandeslarge the computational complexity. We note that other approsche
ow, and smallop..., as some seemingly nearby events wikxist, e.g., through linearizing the output around the mefan
appear uncorrelated: or (ii) assign larger correlatiosadises the input [19], [21], but they are limited to mildly non-liae
d., smalleréy, and explain the measurements by assignirsgenarios.
a higher value tog,... [21]. In the first case, correlations
between measurement cannot be exploited, so that durK‘.gBayesian Approach

prediction, the posterior mean will be close to the prior mea | B . text | q dict by int i
and the posterior variance will be close to the prior varg&anc N a bayesian context, we earn and predict by integrating

In the second case, predictions will be better, as corcelati the respective distributions over the uncertainty of tlaéning
can be exploited to r,educe the posteriorvarian;:e Howtver and test locations. As this method will involve Monte Carlo
model must explain different levels of input uncertaintythwi mtigrftlon,_we. év.'” ref(;r to 't. as MdontebCzi‘rIJo GP E}Mcl%kGP)'
a single covariance function, which can make no distinstion ) Learning: Given the training databas@J, y}, the like-

between locations with low, medium, or high uncertaintyi.sTh“hoo_d functiqn with gncertain training locationgy|U, 0). i_s
will lead to poor performance when location error statissticObta'_ned by |ntegrat|r|1;p(y|X,0) over the random training
differ from node to node. locations:

2) Prediction at an uncertain test locationin the case p(y|U,0) = /p(y|X,0)p(X) dx, (11)
where training locations are exactly known (i.&.,= x;, Vi),

we may want to predict the power at an uncertain test Iocati%erep(x) _ HN p(x:). As there is generally no closed-
— Lli=1 i)

u,, made available to cGP in the form = ¢(u.), while the form expression for the integrd[{{L1), we resort to a Monte

true test Ioc_atlonx* is _not known. Th|s_scenar!0 can 0CCUlg1o approach by drawing/ i.i.d. samplesX (™) ~ p(X),
when a mobile user relies on a low-quality localization eyst 1 <m < M so that

and reports an erroneous location estimate to the baserstati —

=

1

The wrong location has impact on the predicted posterior 0) ~ 1 (m) g
distribution since the predicted meariz,) will differ from py[U.0) = -7 ) p(yIX™, 6)
the correct meap(x.). In addition k.. will contain erroneous m];l
entries: thej-th entry will be too small wher|z, — x;| > 1 (m)y 1 (m)
: =— (X K 12
||x. — x;|| and too large wheffjz, — x;|| < ||x. — x;|. This M m:1/\/(y,u( ) ) 12)

will affect both the posterior meahl(9) and variaricd (10}him

case were training locations are also unknown, Ze# X, where [K(™)];; = O(x§’”),x§-m’) + 02 6; and p(X™) =

andz. # x,, these effects are further exacerbated by tqg(xgm))’ﬂ(x§m>)7“_7M(x§\7[”>)]T_ Finally, an estimate o
improper learning of. can be found by minimizing the negative log-likelihood fenc
tion
V. CHANNEL PREDICTION WITH UNCERTAIN GP H oy
6 = argmin{—log(p(y[U., 0))}, (13)

In the previous section, we have argued that cGP is unable _
to learn and predict properly when training or test locatiare Which has to be solved numerically.

8In fact, the output noise induced by location uncertaint}f also depend “For the sake of notation, all integrals in this section aréttenw as
on the slope ofPrx (x;) aroundx;, since a locally flat function will lead to indefinite integrals, however they should be understoodedisite integrals
less output noise than a steep function, under the samedoaatcertainty.  over appropriate sets.



Remark 1. This optimization involves high computationalform a Gaussian approximation @fl Prx(u.)|U,y, 8, u,)
complexity and possibly numerical instability (due to thems for prediction. We will term this approach Gaussian ap-
of exponentials). More importantly, a good estimatefofan proximation GP (GAGP). The expressions that are obtained
only be found if a samplé&X(™ is generated that is closein the learning of GAGP, namely the expectation of mean
to the true locationsX. Due to the high dimensionality [37, and covariance functions will be used later in the design of
Section 29.2], this is unlikely, even for large’. Hence, [(IB) uncertain GP (described in Section V.C).
will lead to poor estimates a. 1) Learning: Given the training databaddJ, y}, the mean

2) Prediction: Given the training databas¢U,y} and of p(y|U,#) is given by
6, we wish to determinep(Prx(u.)[U,y,8,u,) for

an uncertain test location with associated distribution ]E[Y|U70]Z//yp(yIX,O)p(X)dXdy
p(x.), described byu.. The posterior predictive distri-
bution p(Prx(u.)/U,y,0,u,) is obtained by integrating ://(yp(y|X 0)dy) p(X) dX
p(Prx (x:)|X,y,0,x.) with respect toX andx.: )
p(Prx(u.)|U,y,0,u.) =/u(X)p(X)dX
= / p(Prx (%)X, y,0,x.) p(X) p(x.) dX dx.. (14) = p(U), (18)

This integral is again analytically intractable. The Lagla Where p(U) = [N(ul)aﬂ(u2?a---7ﬂ(uN)]T and p(u;) =
approximation was utilized i [20] to solvE{14), while herd #(x;) p(x;) dx;. The covariance matrix op(y|U, ) can
we again resort to a Monte Carlo method by drawihg D€ expressed as

ii.d. samplesX(™ ~ p(X) andx\"™ ~ p(x.), so that

Covly,y|U, 6
p(Prs(w)[U. .0, u.) o y1e.0
Y o N — [ 75" y1X.6)p(X) dX dy — u(U)u(V)"
N p(P (X*m )|X(m)5yaévx*m )
7 2 — [ (K4 1EORX)T) P(X) 4X -~ (U)(0)"
M
= > N (B ) Prx (7). Vix (<)), (1) =Kt 4, (19)
m=1

- . 285 i -
As M increases, the approximate distribution will tend to th\(’evhere [Kulij = Culws, ) + 03, 035 in which

true distribution. We refer td_(13) and {(15) as Monte Carlo GP

(MCGP). From [[Ib), we can compute the med}€ (u..)) Cu(u;,u;) = /C(xi,xj)p(xi)p(xj)dxi dx; (20)
and the variancel{}i (u..)) [38, Eq. (14.10) and Eq. (14.11)]
as and A is a diagonal matrix with entries
_ 1 X
MC m
Prx(u) = 47 ; rx () (16) [Alii = /MQ(Xi)P(Xz‘)dXi — 1 (). (21)
1 & _ 2 .
Ve (u,) = i > (PRX (x{™) - Pﬁﬁxc(u*)) We will refer to u(u;) and C,(u;, u;) as theexpected mean
m=1 and expected covarianc&nction. We can now express the
1 M ) likelihood function asp(y|U, 8)~N (y; u(U), K, + A), so
i Z Vex (x5 7). (17) that @ can be estimated by minimizing the negative log-
m=1 likelihood function
Remark?2. Prediction is numerically straightforward, though .
it involves the inversion of anV x N matrix K for each 6= argmgn{—log(N(y;u(U),Ku + A))}. (22)

of the M samplesX (™). In the case training locations are
known, we can utilize cGP to obtain a good estimat® @ihd Remark3. Learning in GAGP involves computation of the

efficiently and accurately compuBi¢’(u.) and Vii (u.).  expected mean in{18) an@{21), as well as the expected
When both training and test locations are known, the abo¥gyariance function i{20). These integrals are geneegjBin

procedure reverts to cGP. intractable, but there are cases where closed-form express
exist [17], [18]. These will be discussed in detail in Sectio
B. Gaussian Approximation V.C. GAGP avoids the numerical problems present in MCGP

We have seen that while MCGP can account for locatid{'d Will hence generally be able to provide a good estimate

uncertainty during prediction, it will fail to deliver adegte

estimates ob during learning (see Remdk 1). To address this, 2) Prediction: Given the training database{U,y}
we can modifyp(y|U, @) from (I1) using a Gaussian approx-and 0, we approximate the predictive distribution
imation through moment matching. In addition, we can alge( Prx(u.)|U,y, 8, u,) by a Gaussian with meaR${ (u.)



and variancé/;3 (u.). These are given by Cucp(u;,u;) : U x U — RT, which considers as inputs
Au) u € U and as outputy € R. In other words,
u,

PR (
— E[Pax(w)[U.y. 0, ] Prx(u;) ~ GP(pucp(u;), Cugp (ug, uy)). (28)

B The mean function is given by puuap(u;) =
Prx (%) p(X) p(x,) dX dx. Ex, [Eg(x)[Prx(x;)]], already introduced as the expected
N mean function in [(1I8). However, for the mean function to
= p(u,) +Z/ﬂi0 x,,%;) p(X) p(x.) dX dx,. (23) be useful_ in a GP context, it §hou|d be ava|Ia}bIe in cloged
form. As in cGP, we have significant freedom in our choice
o . ’ o of covariance function. Apart from all technical conditoon
Note that@i is itself a function of allX's andx.. Similarly o, the covariance function as describedin [12], it is débira
Vi () is calculated as to have a covariance function that (i) is available in closed
form; (ii) leads to decreasing correlation with increasimgut
R B uncertainty (even when both inputs have same mean); (iii)
= E[Pix(u.)|U,y, 0, u.] — P (u.)? (24) can account for varying amounts of input uncertainty; (iv)
= 9 reverts to a covariance function of the fori (4) where X,
- /(VRX(X*) + Prx () )p(X)p(x*)dde* (v) does not depend on the mean functipfix). We will
— P§{(u,)2. (25) now .describe the mean fuqctiomugp(ui) and covariance
- function Cygp (u;, u;) in detail.
Note that bothPrx (x.) andVrx (x.) are functions oiX (see The mean functionAccording to law of iterated expecta-
©-([10)). tions, the mean functiop(u;) is expressed as

Remark4. Prediction in GAGP requires complex integrals p(u) = Lo — 10 Ey, [logo(||%:])]- (29)
to be solved in[(23)E(25) for which no general closed-form
expressions are known. Hence, a reasonable approach i¥Wjle there is no closed-form expression available for (29)

use GAGP to lear® and MCGP for prediction. we can form a polynomial approximatioy;_, a; x|’ ~
log;o(||x:]]), where the coefficients; are found by least

sqguares minimization. For a given range||af; ||, this approxi-
mation can be made arbitrarily close by increasing the arfder
Whenp(||x;||) is approximately Gaussian (which may be the

N
PR () = p(uy) + Zﬂi/C(x*7xi)p(x*)dx* (26) case for||x;|| > 0), p(uw;) = Lo — 107 Z‘;‘]:O a; Ex, |

VK (u)

Remark5. In case training locations are known, i.&l,€ X,
(23) reverts to

xi ']
can be evaluated in closed form, since all Gaussian moments
and [25) becomes are known. See AppendixlA for details on the approximation.
The covariance functionWhile any covariance function
Vi () meeting the criteria (i)—(v) listed above can be chosen, a
N natural choice is (see Sectibn 1V.A)
- Z [K_l]ij / C(x*7 xi) C(X*’ Xj)p(x*) dx, Cuap (U.i, U.j) = COV[PR)((Xi), PR)((Xj)|ui7 I,Ij]
i,j=1
! v = CoVly;, y;|U, 8] — §;;02. (30)
+ /u(x*)2 p(x,) dx, + 2261- (/ w(x) C(Xu, X5) Unfortunately, as we can see from119), this choice does not

satisfy criterion (v). An alternative choice is the expekte
covariance functiorCy (u;, u;) from (20). This choice clearly
X (. dx*) Z Bib; / (x4, %) C(x4,%;) p(x:) dx.  satisfies criteria (i), (iii), (iv), and (v). To satisfy (i)we
1,5=1 can select appropriate covariance functions, tailoredht t
PO (u,)?, (27) distributionsp(x;), or appropriate distributiong(x;) for a
given covariance function. Examples include:

both of which can be computed in closed form, under some Polynomial covariance functions for Gaussz(; ) [L7]
conditions, when(x) is constant inx [18, Section 3.4]. When [8]. ! '

bothU € X andu, € X', GAGP reverts to cGP. « Covariance functions of the forfl(4) with= 1, x; € R,

for Laplacianp(x; ).
C. Uncertain GP . Covarianc_e function§ of the forml(4) with= 2, x; € R?,
for Gaussianp(x;) (i.e., p(x;) = N(xi;2i, X;)). The

While GAGP avoids the learning problems inherent 10 eypected covariance function is then given byl [17]] [18]
MCGP, prediction is generally intractable. Hence, GAGP is

not a fully coherent approach to deal with location uncetsai Cucp (i, 1) = Cu(wy, 15) = 655 050 (31)
To address this, we consider a new type of GP (UGP), which 5 Sy } N

operates directly on the location distributions, ratherath +U\I"I+dc (3i +35)(1 = d45)

on the locationsuGP involves a mean function,cp(u;) : I T o N1/ _

U — R and a positive semidefinite covariance function oxp | ——5 (2 —2;)" (L+d. " (8 + %)) (2 — 25) | -

C



Note that the factofl + d_2(2; + X;)(1 — &;;)|~ /2
ensures that_ir_wputsi #* ] With_the same mean (i.e., ap | Leamn 6 o Predict <f>nx<z*>,v_,3’x<z*>>
z; = z;) exhibit lower correlation with increasing un-

certainty. The factofI + d_2(%; + X)) ! ensures that

{z; =é(uy), yi}i\le

the measurements taken at locations with low uncertainty
(smaller thand.) can be explained by a large value of Database

d., while for measurements taken at locations with high f fug, vt 1

{zi:d)(ui)ayi},ﬁvzl Tz*:(b(u*)

uncertaintyC', (u;, u;) will be small and decreasing with

. . . u,y; 1Y
increasing uncertainty. (e ity iwidiz
1) Learning: Given the training databas¢U,y} and
hoosi _ dc —C uGp Learn —»|  Predict >
c OOSIng’LuGP (uZ) - lu’(ul) an uGP (ui7 u]) - u(uia u])! ) (PRX(“*)' Vrx (ux))

the model parameters are found by minimizing the log-
likelihood function

6 = argmin{—log(p(y|U, 0)} Figure 3. Learning and prediction phases of cGP and uGP. iffleeetice in
0 learning in UGP compared to cGP is that it considers locatinoertainty

= arg min{— log(N (y; n(U),K,)}. (32) of the nodes. The estimated model paramerare derived during the
6 learning phase and are generally different in cGP compawedGP. The

Note that in contrast to GAGP. we have constructed ugvanPRX(z*)and variancé/rx (z«) of the posterior predictive distribution
' iIn cGP corresponds to a location. extracted fromu., which in turn

so thatu(U) and K, are available in closed form, makingrepresentsy(x.). In contrast, the meamrx (u.) and varianceVix ()

numerical minimization tractable. of the posterior predictive distribution in uGP pertainstiie entire location

. distributi ted by..
Remark6. Learning of uGP[(32) corresponds to the case of oo fepresente ¥

learning [22) in GAGP forA = 0 (e.g., for constant mean all output dist.
processes).

2) Prediction: Let Prx(u.) be the mean andix(u.)
be the variance of the posterior predictive distribution
p(Prx(u,)|U,y,0,u.) of uGP with uncertain training
and test locations, thenp(Prx(u.)/U,y,0,u,) =
N (Prx(uy); Prx(uy), Vex (uy)).  The expressions for

Prx(u.) and Vgx(u,) are now in standard GP form:

Prx(u.) = p(u) + ki, K (y — p(U)) (33)
Vax (W) = kuse — K5, K ks, (34)

wherek,,. is the N x 1 vector of cross-covariancés, (u., u;)

between the received power at the test distributignand at
the training distributionu;, and k... is the a priori variance
Cu(u, uy). input set output set

Remark7. In case the training Ioca_tlons are known, I'e'rfigure 4. Relation between cGP, MCGP, GAGP, and uGP. All oustare

U € &, the meanPrx (u.) and the varianc&rx (u.) can be equivalent when the input is limited & (grey shaded area).

obtained from the expressioris 133) ahd] (34), respectibsly,

settingX; = 0,Vi € {1,2,..., N}. Furthermore, the resulting

meanPrx (u.) is exactly the same as{26), obtained in GAGRjeneral input distributions i@/, but leads to non-Gaussian
However, due to a different choice of covariance functitwe, t output distributions. Through a Gaussian approximation of
predicted varianc&zx (u,) is different from [27). these output distributions, GAGP can consider generaltinpu

Remark8. When the test location is known, i.e1, € X, the and directly determine a Gaussian output distribution.nBot
mean Prx (x,) and the variancdzx (x,) are obtained from of these approaches (MCGP and GAGP) have in common
(33) and [34) by settin@, = 0. that they treat the process with inpst € A as a GP. In
contrast, uGP treats the process with input U/ as a GP.
D. Unified View This alloyvs _for a direct mapping from mpL_JtsM]to Gau_ssmn
o output distributions. In terms of tractability for leargirand
We are now ready to recap the main differences betwegpgiction, the four methods are compared in Table I. We see

cGP and uGP, and to provide a unified view of the foyhat among all four methods, uGP combines tractability with
methods (cGP, MCGP, GAGP, and uGP). [fig. 3 describes %‘Sod performance.

main processes in UGP and cGP, along with the inputs and
outputs during the learning and prediction processes. dte f

methods are depicted in Fig. 4: all four methods revert to cGP
when training and predictions occur i, i.e., when there is  In this section, we show learning and prediction results
no uncertainty about the locations. MCGP is able to considefr cGP, uGP, and MCGP with uncertainty in training or test

VI. NUMERICAL RESULTS ANDDISCUSSION



Table | . . .
COMPARISON OF TRACTABILITY FOR (GP, MCGP, GAGPAND UGPIN 1) cGP: We first consider a variant of cGP, denoted as

LEARNING AND PREDICTION. cGP-no-proc, in whiclw,,.. is fixed to zero. In cGP-no-proc,
when \ = 0, the estimatel. is non-zero. However, it can be

Method Learnin Prediction . . L Lo
| | J . | . | observed in Fig[l5 (a), that with increase Jn d. decreases
cGP tractable, poor quality | closed-form, poor quality| . .
MCGP | complex, poor quality tractable qw_ckly to zero. Hence, cGF_’—no—proc will model the GP as a
GAGP | tractable in some cases intractable white process with high variancg?, and thus cannot handle
uGP tractable by design closed-form the location uncertainty. On the other hand, in cGP where we

estimateo;,oc, Oproc absorbs part of location uncertainty (see
Fig.[H (c)). Consequently, the part of the observationsrhast
locations. In Sectiof VL.D, we describe a resource allocati be explained througlrg is reduced, leading to a reduction
problem, where communication rates are predicted at futwe sy with \. Due to this, cGP considers the measurements
locations using cGP and uGP, in the presence of locatioonstitute a slowly varying process, therefdrencreases with
uncertainty during training. The numerical analysis @atri \. An interesting observation is that the error barsdpmlso
in this section is based on simulated channel measurementsease with\. Hence, among cGP-no-proc and cGP, only

according to the model outlined in Section 1. cGP can reasonably deal with location uncertainty.
2) MCGP: The behavior is similar to that of cGP, i.e.,
Table Il an increase inl., and a decrease ifiy, when increasing.
SIMULATION PARAMETERS “ . .
However,¢ decreases more quickly with when compared
[ Parameter | Value | Parameter | Value | to cGP. These effects can be attributed to two causes: first
7 25 M 300 of all, the inherent problem of drawing a finite number of
Tn 0.01 Lo -10 dBm samples as detailed at the end of Secfion V.Al; secondly,
d. 15 m o 10 dB

the fluctuations in the estimated path loss expongntith
increasing)\ (see Fig[h (d)). The error bars of the estimates
in this case are even higher than in cGP. As expected, MCGP
_ ) is not suitable for learning.

A. Simulation Setup 3) uGP: As mentioned before, in UGE,,,. is determined

A geographical regiond is considered and a base statioRffline. The uGP model has the capability to absorb the
is p|aced at the Origin_ A one dimensional radio propagglcatlon uncertainty into the covariance function. DueHhis t
tion field is generated with sampling locations at a resdexibility, it can handle higher values of and still maintain
lution of 0.25 m usin§ an exponential covariance functiodn almost constand. and 6 with increase in\. For fair

Cret(x1,%;) = Uz\p exp(—|xi — x;]/d.), corresponding to comparison with cGP, we also consider the case whgyg

the Gudmundson model. Small-scale fading is assumed i%estimated as part (.)f th_e learning, referrgd to as uGI?.—proc
have been averaged Bufrhe simulation parameters used tdt can bgrlgb\j\(;r:ved n F'd-':'l S (c(:;)Pth@I'me mggases Vt\)”th

obtain the numerical results are given in Tdble II. We assurjré‘é(l:(r;vﬁevghje Offan ;ﬁ?ﬂ?r?g li/alu-epsrc())% Oaﬁd . Wefgr zerve
isotropic localization errors, so that; = o2 I. To capture the ov g ¢ Tproc

effect of heterogeneous location errors, we draw the lonatiE:rtl(r::::rrr\elzll;\e/eorﬂﬁ (I;raomr;?sé;vi? gg:z;dlziﬁ]?;g(jgsz:;ﬂ:g
error standard deviations from an exponential distribytio P proc, P

. ii . . with smalleré and leads to simpler optimization. Finally,
ie., o; "K' Exp()\), where ) is the average location error Tproc Rerop Y

e . _note that the error bars of the uGP estimates are relativel
standard deviation. For cGP and MCGP, in order to not prowgﬁqa” when compared to cGP y

any unfair advantage to uGP, we use a covariance function
of the form [4) withp = 1, in order to match the true
covariance functiol,c¢(x;, x;). For uGP, we usd(31). SinceC. Prediction Under Location Uncertainty

UGP exhibits a mismatch in the covariance function, we &bsor gqo\r cases can be considered, depending on whether train-

this mismatch inoy,.oc, which is learned offline (more on thising or testing inputs are i’ or 24. We will focus on the case
in Appendix[B). We assume nodes knaew and Lo, which \yhereeither training or test locations are uncertain, but not
be inferred using standard methods![36].1[39].1[40], so they,th From these, the behavior when both training and @stin
are not included in the learning process. inputs are i/ can be easily understood: only uGP can give
reasonable performance among cGP, MCGP, and uGP, as the
estimates of in cGP and MCGP are of poor quality.

1) Uncertain training locations and certain testing loca-

Fig. [3 depicts the impact of location uncertainty on théons: In this caseu; € U/ andu. € X. Fig.[§ (a) depicts
learning of hyperparametefd., ow, oproc, 7] for cGP, UGP, the prediction results in terms of the predictive mean and

and MCGP. The learning of the hyperparameters is detailedAfedictive standard deviation (shown as shaded areas) for a
Appendix(B. particular realization of the channel field. It can be obedrv

that uGP is able to predict the received power comparatively
8In the case small-scale fading is not averaged out, the paaptramework b?tter than cGP and MCGP. uGP '§ able to estimate the u.nder'
cannot be applied. lying channel parameters better with the expected covegian

B. Learning Under Location Uncertainty
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Figure 5. Impact of location uncertainty on learning the diparameters using cGP, uGP, and MCGP. The hyperparanaeéeestimated for each value of
the mean location error standard deviation and for 40 m@izs of the channel field. Results shown are the mean dstiofidhe hyperparameters and error
bars with one standard deviation. Impact of location uadety in shown when estimating: (@), (b) ow, (C) oproc, (d) 1.

function, which takes in to account the location uncertaoft 2) Certain training locations and uncertain testing loca-
the nodes. In turn, this means that uGP can track the fadiens: In this caseu; € X andu, € U (with a constant
variations in the channel. cGP tries to model the true famncti location error standard deviatiom m). Now the perfor-
with a slow varying process due to very high Furthermore, mance must be assessed with respect to the expected received
cGP has higher uncertainty in predictions due to high,. power Prx avg(u.) = [ Prx (%) p(x.) dx., wherep(x,) =
(see Fig[b (c)). On the other hand, MCGP has slightly bett&f(z., o> I), in which z,. is the mean of distribution described
prediction performance (the standard deviation is not showby u.. An example is shown in Fi@] 7 (a), depictifiyx v as
but is slightly smaller than for cGP) compared to cGP duefunction ofz.., as well as the predictions from cGP, MCGP,
to the averaging by drawing samples from the distribution @ind uGP. It can be observed that uGP and MCGP follow well
the uncertain training locations. Averaging the predic&oror Prx ave. Specifically, MCGP track$’rx .ve quite closely as
over multiple channel realizations, F[d. 6 (b) shows the meé# is near-optimal in this case. In contrast, cGP follows the
squared error (MSE) of the received power prediction of cG&ttual received power &, rather than the averaged power.
and uGP with respect ta (MCGP is not shown due to its This leads to fast variations in cGP, which are not present in
similar performance to cGP). uGP clearly outperforms cGFGP and MCGP. Fid.]7 (b) shows the MSE of the received
(except fod = 0) due to its better tracking of the true channgbower prediction of cGP, MCGP, and uGP with respect to
(see Fig[b (a)) despite uncertainty on the training locstio « when averaging the prediction error over multiple channel
The reason for higher MSE in the case of= 0 for uGP is realizations. As expected, MCGP has the lower MSE than
due to its kernel mismatch. uGP and cGP. However, uGP performs better than cGP for
all considereds, exceptc = 0 (due to kernel mismatch).
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Furthermore, the performance of uGP is very close to thatisf the received power, both measured in linear scale. The

MCGP. average rate in the regiod, denoted as’s!, is defined as
~Te 1
D. Resource Allocation Example PRl = Al /AT(X*)dX*, (36)

1) Scenario:In this section, we compare cGP and uGP for
a simple proactive resource allocation scenario. We censid
user moving through a regiad and predict the CQM at each
location. The supported rate, expressed in bits per charseel

where|.A| denotes area of the regioh The predicted rate for
a user at a future locatior., based on the predicted CQM
values(Prx (%), Vrx(x«)), is defined as

(bpu), for a user at locatior, is defined as (X, q) = 10g2(1 + SNR(x., a))’ (37)
r(x.) =logy (1 + SNR(x.)), (3% where « > 0 is a confidence parameter,
whereSNR(x,) = Plit (x,)/W'", is the signal-to-noise ratio SNR(x.,a) = Pk (x.,a)/W"" and Prx(Xe,0) =

at locationx,,, W is the receiver thermal noise af§ (x.) 10 log;o (Pi% (%, @) = Prx(x:) — a (Vex(x4)) 2
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Figure 8. Resource allocation example for cGP, and uGP withdifferent values of localization error standard dewiasi @ € {0, 10} m) and for different
values of the confidence parameter The results are averaged for each value\afith 50 channel realizations. Inset (a) the effective n@%(a), and (b)
the fraction of undelivered bit&/ (o).

2) Performance measureThe user moves through the It is evident that whem = 0, uGP and cGP attain similar
environment according to a known trajectory. The basecstatiperformance, both in terms offf(«) andU(«). When X is
allocates bits to each future location, proportionat(®.,«). increased to 10 m, cGP suffers from a significant reduction in
When the user is at locatiow., only a fraction of the effective raterff (), while at the same time dropping up to
bits, proportional tanin(r(x., «), r(x.)) would be delivered. 4.5 % of the bits. This is due to cGP’s poor predictions, which
Therefore, the effective rate (x,, ) for the user at location are either too low (leading to a reduction i (a:)) or too
X4 IS high (leading to an increase i(«)). In contrast, uGP, which

off ) is able to track the channel well despite uncertain training
% (%, o) = min(r(x., @), r(x)). (38) achieves a higher effective rate, especially for high camfiz
values (e.g., around 2 times higher rate for= 3, for U(«a)

: - : '
The average effective rat€;’ (o) for a given confidence level less than 0.1%).

« is then computed by spatial average f (x.,a) over

region. A as VIl. CONCLUSION

N | off ref Channel quality metrics can be predicted using spatial
i) = A /A s a) dx € [0,74](39) regression tools such as Gaussian processes (GP). We have
. studied the impact of location uncertainties on GP and have
When T(x*’o‘) > 7(x.), a pa}rt of the aIIc_>cated b_|ts cannotye monstrated that, when heterogeneous location undigtain
be Qellvered._ Th_e total fraction of undelivered bits ovee th, present, the classical GP framework is unable to (i)
environment is given by learn the underlying channel parameters properly; (iidjote
S (e, @) = % (x,,, @) dx. the expected channel quality metri.c. By iqtroQucing a Gp
€1[0,1).  (40) that operates directly on the location distribution, we find
uncertain GP (UGP), which is able to both learn and predict
Hence, 7' («) describes the rate that the user will receivih the presence of location uncertainties. This translates
(penalizing under-estimation of the rate), wHiléx) describes better performance when using uGP for predictive resource
the loss due to lost bits (penalizing over-estimating ofréite). ~ allocation.

3) Predicted communication rates with uncertain training Possible avenues of future research include validatiamgusi
locations: We predict the CQM at known test locatiors € real measurements, modeling correlation of shadowing in
X, based on training with uncertain locations (considerif§e temporal dimension, study of better approximations for
A € {0,10} m), all within a one-dimensional regiod. The learning with uncertain locations, and the extension tdad-
average effective rate?ff () and the fraction of undelivered NEtworks.
bits U(a), as a function ofa, are shown in Fig18 (a)-

(b), respectively. As expected, increasingeads to a more APPENDIXA

conservative allocation, thus reducing betf (o) andU (). APPROXIMATION OF EXPECTEDMEAN FUNCTION

For a specific value of;, increase in\ decreases®’ («). This Let d; = [|x;|| and recall from random variable transforma-
is due to the fact that with increase ) the meanPgx (x,) tion theory that

is of poor quality and the variandé:x (x..) is high for CQM
predictions. /10g10(||xi||)p(xi) dx; = /loglo(di)p(di) dd;.  (41)

U(a) = J4 r(xe, 0) dx,



We assumep(x;) = N(zi,0?1), sop(d;) follows a Rician uGP

distribution In this case, the path-loss exponent is estimated as
_di [|z]|* + d? llz:| di .
pd) = 25 (= ) 1o(F57 ) di> 0, (42) 7= (hThy) BT (y — 17Lo), (48)

where I,(.) is a modified Bessel function of zero-th ordewhereh, = —10 [Ey, [log,([x1]), .- -, Exy [log;o([[xn )]
For ||z;||/o; > 3, p(d;) can be approximated as a Gaussia@nce again removing the mean from the measurements, we
distribution obtainY, =y — 17Ly — h, 7. The hyperparamete® are

1 (llzs]| — di)? estimated by minimizing the modified negative log-likeliltb

PGauss(di) = —F—= eXp(—72)- (43) function
2mo; 20; A

The integral[(411) still does not have a closed form expressio 0= argmgin{_ log(p(Yu|U, 6)}
With pGauss(d; ). Now approximating théog,(.) function with

J = argmein{log Ko+ Y K, ™! Tu}. (49)

a polynomial function of the formuw(d;) = 3°5_; a; @ then

can be written as . : .
@D Again,o?,, = 1/N .~ [Y,)2, is the variance of the process.

I As aresultgy becomesi = 0%, — o2 — 62, and due to
/Ing(”XZ”)p(XZ) dx; ~ /,Oo w(di) PGauss(di) ddl, this /() is now only a function T)élc. We solve CIE'B) and find
_ (44) 4. by an exhaustive grid search.
which can be computed exactly. The learning process can be simplified for uGP: singe.
only captures kernel mismatch irrespective of the location
APPENDIXB certainty and path loss, the valuedy.. can be obtained off-
LEARNING PROCEDURE line with noise-free training locations by performing leag
In this appendix, we detail the learning o# = as in the case of cGP, but with a covariance function of the

[0, Oproc, des Lo, n, ow] for cGP, uGP, and MCGP. We con-form (@) for p = 2. This approach gives an advantage to cGP
sider nodes knows,, and L, therefore they are not estimatedand thus makes the comparison between uGP and cGP more
as part of the learning process. Let the remaining set fafir for all values of\ > 0.

hyperparameters b = [opr0c, dc, 00| andn .

MCGP

cGP . . . .
) ) ) It is no longer feasible to estimate first and subtract
Based on Sectiop]ll, we can write the received measutg: make the process zero mean, because of summation in

ments y with their corresponding training locationX in  he Monte Carlo integration {12). Therefore, we optimize
matrix form as (I3) with respect to the hyperparametefsand 6 using

y=1TLo+h.n+ ¥ +n, (45) fminsearch function of Matlab.
where & = [\I/(Xl), Ce \IJ(XN)]T, n = [nl, e ,TLN]T, and
he = —10[logyo(||x1]),. .-, log;,(|lxx)]T. Assuming the ACKNOWLEDGMENT
measurements are uncorrelated, then the least squaresatesti The authors would like to thank Ido Nevat, Lennart Svens-
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n= (hC hc) h, (y -1 LO). (46)
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