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Abstract

In this article, the first general constructions of fast-decodable, more specifically (conditionally)g-

group decodable, space–time block codes for the Nonorthogonal Amplify and Forward (NAF) Multiple-

Input Multiple-Output (MIMO) relay channel under the half-duplex constraint are proposed. In this

scenario, the source and the intermediate relays used for data amplification are allowed to employ

multiple antennas for data transmission and reception. Theworst-case decoding complexity of the

obtained codes is reduced by up to75%. In addition to being fast-decodable, the proposed codes achieve

full-diversity and have nonvanishing determinants, whichhas been shown to be useful for achieving the

optimal Diversity-Multiplexing Tradeoff (DMT) of the NAF channel.

Further, it is shown that the same techniques as in the cooperative scenario can be utilized to

achieve fast-decodability forK-user MIMO Multiple-Access Channel (MAC) space–time blockcodes.

The resulting codes in addition exhibit the conditional nonvanishing determinant property which, for its

part, has been shown to be useful for achieving the optimal MAC-DMT.
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I. INTRODUCTION

The amount of data stored and the data traffic worldwide has reached incredible numbers.

It was estimated that in 2011,1800 · 1018 bytes of data needed to be stored worldwide, and

astonishing5200 · 1018 bytes of information have been created between January and November

1st 2014 [3]. The availability of such an astronomical amount ofdata and rapid progress in

communications engineering and wireless communications explain the observed growth of mobile

data traffic, which increased from0.82·1018 bytes at the end of 2012 to1.5·1018 bytes at the end of

2013, whereof56% of the traffic was mobile video traffic. In addition, about 526million mobile

devices and connections were added globally in 2013, and thenumber of mobile-connected

devices will exceed the number of people on earth by the end of2014 [4].

These facts illustrate that networks will soon need to accommodate many new types of devices

and be up to the enormous load while still living up to the expectations of exigent future users,

which will be accessing any type of data from different devices at any time and from any corner

of the world, demanding high reliability, reasonable speed, low energy consumption, etc.

With this goal in mind, a tremendous effort is being made by both academic and industrial

researchers focusing on the future 5th Generation (5G) wireless systems. Although many aspects

still need to be discussed, as of today it is clear that 5G willconsist of an integration of different

techniques rather than being a single new technology, including distributed antenna systems

and massive Multiple-Input Multiple-Output (MIMO) systems [5]. Yet the various radio-access

technologies to be included in 5G are only one side of the coin, as the overall performance of

future networks will highly depend on the channel coding techniques employed.

As a second motivating aspect, the issue of reliably storingthe worldwide available data

led to considering distributed storage systems, and a plethora of research has been done in the

last few years regarding optimal storage codes, thus focusing on the network layer. However, an

important aspect that needs consideration is data repair and reconstruction over wireless channels

to provide flexibility and user mobility, even if the storagecloud itself would be wired, a feature

related to the more general concept ofwireless edge[6]–[8]. Many of the known algebraic

physical layer communications techniques are however futile in this scenario due to the high

decoding complexity they require. This calls for less complex coding techniques and transmission

protocols, for instance introducing helping relays, as proposed in [9] or subsequent work [10].
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A. Related Work and Contributions

Fast-Decodable (FD) codes are codes enjoying reduced complexity of Maximum-Likelihood

(ML) decoding due to a smart inner structure allowing for parallelization in the ML search. First

introduced in [11], FD codes have been the subject of much interest [12]–[18]. Fast-decodability

of a code is achieved precisely when a subset of the generating matrices of the code satisfies

certainmutual orthogonality conditions[18], [19], which will be made explicit later on.

Recent results [16]–[18] show that fast-decodabilty imposes constraints on the rate of the code

on one hand, and on the algebraic parameters of the code, on the other. In particular, codes arising

from division algebras (division resulting in full-diversity) can enjoy a reduction in decoding

complexity order by a factor of no more than 4,i.e., a decoding complexity reduction of 75%.

In this paper, the best possible complexity reduction by a factor of 4 is in fact achieved.

On the other hand, the increasing interest in cooperative diversity techniques motivates the

study of distributed codes. Since the introduction of the multiple-access relay channel [20],

many protocols have been considered for data exchange in this scenario, such as the amplify-

and-forward [21] or compute-and-forward [22] protocol. Several distributed codes have been

proposed [23], [24], and it was in [25] where the issue of the high decoding complexity of

distributed codes was firstly addressed. Codes with low decoding complexity have then been

constructede.g., in [26], using Clifford algebras as the underlying structure. As far as the authors’

are aware, all attempts to construct FD distributed codes, however, assume a single antenna at

the source and the relays and furthermore do not achieve the Nonvanishing Determinant (NVD)

property. A first framework for constructing NVD codes with reduced decoding complexity was

proposed in [1], and explicit examples were given in [1], [2]. In [27], the authors of the present

paper constructed the first FD distributed Space–Time (ST) codes for the MIMO channel and

provided simulation results illustrating that imposing fast-decodability does not have an adverse

effect on the performance of the codes. The constructions are however not general, but rather

very specific example codes.

The aim of this article is to provide methods to construct codes with desirable properties for

good performance and reduced decoding complexity for flexible distributed and noncooperative

multiuser physical layer MIMO communications. The main contributions of this article are:

• Theorem 1, which provides a method for constructing an infinite family of FD distributed
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ST codes having code rate 4 real symbols per channel use (rscu) and satisfying the NVD

property for any numberN of relays. The theorem assumes a single antenna at the source

and each of the relays. The resulting codes exhibit a worst-case decoding complexity|S|5N

as opposed to|S|8N of a non-FD code of the same rank, whereS ⊂ Z is the finite signaling

alphabet used. The codes achieve the optimal Diversity-Multiplexing gain Tradeoff (DMT)

for the relay channel when the destination has two antennas.

• Theorem 2, resulting in a construction of an infinite family of FD distributed ST codes

with code rate 2 rscu and the NVD property forN = p−1
2

relays,p ≥ 5 prime. We assume

that the number of antennasns at the source and the number of antennasnr at each relay

satisfyns +nr = 4, while one antenna suffices at the destination. The resulting codes have

worst-case decoding complexity|S|4N or |S|2N , respectively corresponding to a50% or

75% reduction from the complexity|S|8N of a non-FD code of the same rank. According

to a recent result [17],75% is the best possible reduction for a division algebra based code.

To the best of the authors’ knowledge, we obtain the first distributed ST codes for multiple

antennas which are FD and have the NVD property, excluding the example codes in [27].

• Multiple explicit constructions, alongside simulation results disclosing the performance of

FD distributed ST codes constructed using the methods derived in this article.

• Extension of the results on FD distributed ST codes to the noncooperative MIMO Multiple-

Access Channel (MAC) for an arbitrary numberK of users, resulting in FD codes for this

scenario which achieve the conditional NVD property.

• As a nontechnical contribution, the paper is written in a self-contained way, also providing

a concise overview of algebraic FD ST-codes.

With the exception Theorem 1, which was presented as a preliminary result in [1], this article

contains exclusively novel theoretical and numerical results.

The paper is organized as follows: We start with a recapitulation of ST codes in Section II and

how they are constructed from cyclic division algebras. We also briefly study fast-decodability

and the notions of conditionalg-group andg-group decodability. Further, we recall the iterative

ST code construction from cyclic algebras. In Section III wepropose two constructive methods

to obtain FD ST codes with the NVD property for anN-relay channel under the half-duplex

constraint, where the source and each of the relays are equipped with either one or multiple

antennas. We then show in Section IV how these constructionscan help obtain FD ST codes in
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theK-user MIMO-MAC. Section V concludes the paper.

II. SPACE–TIME CODES

The increasing demand for user mobility observed during thepast decades has motivated a

plethora of research in the area of wireless communications. The change from the well-studied

case of wired communications to data transmission over wireless networks called for novel coding

techniques that were able to deal with the fading effects of wireless channels. From the start,

algebraic and number theoretical tools have been proven useful for constructing well-performing

codes, at first considering only devices at both ends of the channel equipped with a single

antenna each. The rapid progress in communications engineering quickly led to considering

multiple antennas at both ends of the channel for data rate increase. Considering this type of

channels, known asmultiple-input multiple-outputchannels,space–time codingwas introduced as

a promising technique for error prevention when transmitting information in the MIMO scenario,

a process which can be modeled as

Ynd×T = Hnd×ns
Xns×T +Nnd×T , (1)

where the subscriptsns, nd andT denote the number of antennas at the source, at the destination,

and the number of channel uses, respectively. In the above equation,Y andX are the received

and transmitted codewords,H is the random complexchannel matrixmodeling fading, typically

assumed to be Rayleigh distributed, andN is a noise matrix whose entries are complex white

Gaussian with zero mean and varianceσ2. We assume that the channel is quasi-static, that is,H

stays fixed during the transmission of the whole ST block, andthen changes independently of

its previous state. The destination is assumed to have perfect channel state information (CSI-D).

In order to avoid accumulation of the received signals, forcing a discrete (e.g., a lattice)

structure on the code is helpful. In this article we will onlyconsider linear ST block codes.

Definition 1. Let {Bi}ki=1 be an independent set of fixedns × T complex matrices. Alinear

space–time block codeof rank k is a set of the formX =

{

k
∑

i=1

siBi

∣

∣

∣

∣

∣

si ∈ S

}

, whereS ⊂ Z

is the finitesignaling alphabetused.

Definition 2. The code rateof X is defined asR = k/T real symbol per channel use (rscu),

and the code is said to befull-rate (for nd destination antennas) ifk = 2ndT , that is,R = 2nd.
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Remark 1. In literature, the code rate is commonly defined in complex symbols. However,

since we connect the rate to the lattice dimension, it is moreconvenient to define it over the

real alphabet, for not every lattice has aZ[i]-basis. We also want to point out that, here, the

channel may be asymmetric(ns 6= nd), and hencefull rate is more meaningfully defined as the

maximum rate that still maintains the discrete structure atthe receiver and allows for linear

detection methods such as sphere-decoding. If the code matrix carries more than2ndT symbols,

the received signals will accumulate, and it is thus not desirable to exceed the rate2nd.

Henceforth, we will refer to a linear ST block code simply as aST code, and to its defining

matricesBi as weight matrices. Throughout the paper,S ⊂ Z will denote the finite signaling

alphabet accompanying the considered ST codeX , and the superscripts† and T the Hermitian

conjugate and transpose of a matrix, respectively.

Definition 3. A ST codeX as above whose weight matrices{Bi}ki=1 form a basis of alattice

Λ ⊂ Mat(ns × T,C), that is a discrete Abelian subgroup ofMat(ns × T,C), is called aST

lattice codeof rank k = rank(Λ), k ≤ 2nsT . In case of equality,Λ is called a full-rank lattice.

Consider a ST codeX and letX 6= X ′ denote code matrices ranging overX . We briefly

recall the most important design criteria for ensuring a reliable performance:

• Diversity gain:minX 6=X′ rank(X −X ′) = min{ns, T}. A ST code satisfying this criterion

is called afull-diversity code.

• Coding gain:∆min := minX 6=X′ det[(X −X ′)(X −X ′)†] should be (after normalization to

unit volume, see [28]) as big as possible. Ifinf ∆min > 0 for the infinite code

X∞ =

{

k
∑

i=1

siBi

∣

∣

∣

∣

∣

si ∈ Z

}

,

i.e., the determinants do not vanish when the code size increases, the ST code is said to

have theNonvanishing Determinant(NVD) property.

These criteria can be ensured by choosing the algebraic structure underlying the codes in a

smart way. Indeed, Algebraic Number Theory and the theory ofcentral simple algebras and their

orders have been proven useful for constructing good ST codes (see [29]–[32] among others).
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A. Space–Time Codes from Division Algebras

For the rest of this paper, we assume that that the numberns of transmit antennas and the

number of channel usesT coincide, unless stated otherwise. Due to this assumption,the delay

T grows with the total number of transmit antennas (in the virtual channel, see Section III-A).

Division algebras were first considered in [33] as a tool for ST coding, leading to fully-diverse

codes. The NVD property was first achieved in [34] for theGolden code, and the results were

generalized to otherPerfect codesin [32], where the lattices used for code construction were

additionally forced to be orthogonal. The orthogonality requirement was later sacrificed in [29]–

[31] for improved performance, and the use of maximal orderswas proposed to get denser lattices

and higher coding gains. Finally, it was noted in [28], [31] that the comparison of different ST

codes requires meaningful normalization. We will now revise some of these notions.

Proposition 1. [33, Prop. 1] Let F be a field andD a division F-algebra. Letφ : D 7→
Mat(n,F) be a ring homomorphism andX ⊂ φ(D) a finite subset. Then,rank(X − X ′) = n

for any distinctX,X ′ ∈ X .

Full-diversity can thus be guaranteed by choosing the underlying algebraic structure to be a

division algebra, while imposing a further algebraic restriction will also ensure the NVD property.

Among different types of division algebras,Cyclic Division Algebras(CDAs) from number field

extensions have been proposed in [33] and heavily used for STcoding ever since.

Definition 4. Let K/F be a cyclic Galois extension of degreen of number fields, and fix a

generatorσ of its cyclic Galois groupΓ(K/F). A cyclic algebraof degreen is a triple

C = (K/F, σ, γ) :=

n−1
⊕

i=0

uiK,

whereun = γ ∈ K× andκu = uσ(κ) for all κ ∈ K. The algebraC is division, if every nonzero

element ofC is invertible.

Remark 2. If n = 2, thenK = F(
√
a) for some square-freea ∈ Z. The algebraC = (K/F, σ, γ)

is known as aquaternion algebra, and can equivalently be denoted asC = (a, γ)F ∼= K⊕ jK ∼=
F ⊕ iF ⊕ jF ⊕ kF, where the basis elements satisfyi2 = a, j2 = γ, ij = −ji = k. The case

a = γ = −1 gives rise to the famousHamiltonian quaternionsand well-knownAlamouti code.



8

The following lemmas, the first being a straightforward generalization of an original result

due to A. Albert, give us simple ways to determining whether acyclic algebraC is division.

Denote byNmK/F(·) the field norm ofK overF.

Lemma 1. [35, Prop. 2.4.5] LetC = (K/F, σ, γ) be a cyclic algebra of degreen. If γ is chosen

such thatγn/p /∈ NmK/F(K
×) for all primesp | n, thenC is a division algebra.

Lemma 2. [39, Thm. 7.1] LetF be a number field with ring of integersOF, andp a prime ideal

of OF, with correspondingp-adic valuationνp(·). Let a ∈ F be such thatνp(a) = 1. Then, for

any elementγ ∈ OF which is not a squaremod p, the quaternion algebra(a, γ)F is division.

A further advantage of using CDAs for ST coding is that a lattice structure is easily ensured

by restricting the choice of elements to a ring within the CDAknown as anorder.

Definition 5. Let K/F be an extension of number fields,OF the ring of integers ofF, andC a

K-central algebra. AnOF-orderO in C is a subring ofC that shares the same identity element

as C and so thatO · F = C. Further, maximality is defined with respect to inclusion.

We can easily construct a ST code (cf. Def. 1) by using the left-regular representation of

the CDA. To that end, letO be an order within the CDAC = (K/F, σ, γ) of degreen and

α =
∑n−1

i=0 αiu
i ∈ O. The representation ofα over the maximal subfieldK is given by

λ : α 7→
[

α0 γσ(αn−1) ··· γσn−1(α1)

...
...

...
αn−1 σ(αn−2) ··· σn−1(α0)

]

. (2)

The mapλ is an isomorphism, allowing us to identify an elementα with its matrix representation.

Let k be the absolute degree ofC over Q and {Bi}ki=1 a matrix basis ofO over Q. A ST

code constructed from the orderO for a fixed signaling alphabetS ⊂ Z is of the form

X =

{

k
∑

i=1

siBi

∣

∣

∣

∣

∣

si ∈ S

}

.

By choosingC to be division, and sinceλ : O → Mat(n,K) is a ring homomorphism, the

codeX ⊂ λ(O) is a finite subset of a lattice, and by Prop. 1 is fully diverse.Moreover, the

restriction of the elements to anOF-orderO ensures that for any matrixλ(a), det(λ(a)) ∈ OF,

thus guaranteeing the NVD property forF = Q or F imaginary quadratic (cf. [31]).
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B. Fast-Decodable Space–Time Codes

The use of multiple antennas for data exchange has many advantages, but also increases the

complexity of the coding schemes; especially when decodingthe received signal. The considered

ST codes as in Def. 1 allow for a decoding technique known asMaximum-Likelihood(ML)

decoding, which, given a ST codeX and the transmission model (1), and recalling that the

noise involved has zero mean, amounts to finding the codewordX ∈ X that minimizes

δ(X) := ||Y −HX||2F , (3)

where|| · ||F denotes the Frobenius norm.

Definition 6. The ML decoding complexityof a rank-k ST codeX is defined as the minimum

number of values that have to be computed for finding the solution to (3). It is upper bounded

by the worst-case (ML) complexity|S|k corresponding to an exhaustive search.

A ST codeX is said to beFast-Decodable(FD) if its worst-case ML decoding complexity is

of the form1 |S|k′ for k′ < k − 2.

Remark 3. In the rest of this article, when we say that a code has complexity |S|k′, we mean the

aforementioned worst-case complexity. By using, e.g., sphere-decoding the complexity can be of

course reduced, both for FD and non-FD codes, but the search dimension will be determined by

|S|k′ as we need to jointly decodek′ symbols. Hence|S|k′ gives us a way to compare complexities

independently of the decoding method we would finally chooseto use.

Although algebraic ST codes can provide big diversity gainsand offer high multiplexing gains,

and therefore achieve the DMT of specific channels – not only in theory (DMT is an asymptotic

measure) but also in practice – the major bottle-neck in effective implementation of algebraic

ST-codes has traditionally been their (ML) decoding complexity. The aforementioned gains have

thus been threatened to remain mainly theoretical, and the concept of fast-decodability was

introduced in [12] in order to address the possibility for reducing the dimension of the (ML)

decoding problem without having to resort to suboptimal decoding methods.

Let H be the channel matrix andvec(·) : Mat(m × n,C) → R2mn the map which stacks

1It is not sufficient to demandk′
< k, as the ML decoding complexity ofany code can be reduced to|S|k−2 due to

Gram-Schmidt orthogonalization.
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the columns of a matrix followed by separating the real and imaginary parts of the obtained

vector components. For a set of weight matrices{Bi}ki=1, defineB := [ vec(HB1) ... vec(HBk) ] ∈
Mat(2Tnd×k,R), so that every received codewordHX can be represented asBs for a coefficient

vectors = (s1, . . . , sk)
T ∈ Sk. The problem of decoding now reads

argmin
X∈X

{||Y −HX||2F} argmin
s∈Sk

{|| vec(Y )− Bs||2E},

where|| · ||E denotes the Euclidean norm, and a real sphere-decoder can beemployed to perform

the latter search [11]. ApplyingQR-decomposition onB, whereQ ∈ Mat(2nsnd × k,R) is

an orthonormal matrix, andR ∈ Mat(k,R) is upper triangular, simplifies the above expression

further to findings ∈ Sk that minimizes|| vec(Y )−QRs||2E = ||Q† vec(Y )− Rs||2E.
Introducing theR-matrix in the decoding process permits to directly read outthe decoding

complexity of a given code. To that end, we will use a specific quadratic form which has been

introduced in [13] as a tool for studying fast-decodabilityindependently of the channel matrix.

Definition 7. TheHurwitz-Radon Quadratic Form(HRQF) is the map

Q : X → R; X 7→
∑

1≤i≤j≤k

sisjmij ,

wheremij := ||BiB
†
j + BjB

†
i ||2F and si ∈ S. Associating the matrixM = (mij)i,j with Q, the

HRQF can be written asQ(X) = sMsT , wheres = [ s1 ... sk ].

Remark 4. Note thatmij = ||BiB
†
j + BjB

†
i ||2F = 0 if and only if BiB

†
j + BjB

†
i = 0, that is,

if Bi andBj are mutually orthogonal. Moreover, premultiplication of the weight matrices byH

does not affect the zero structure ofM , whereas it does affect that ofR. Yet, the zero structure

of theR andM matrices are conveniently related to each other (see Prop. 2, Cor. 1 or [13]).

We further specify two important families of FD codes, together with an explicit decoding

complexity expression.

1. Conditionalg-group decodability:

Definition 8. A ST codeX is conditionally g-Group Decodable(g-GD) if there exists a

partition of {1, . . . , k} into g + 1 nonempty subsetsΓ1, . . . ,Γg,Γ
X , g ≥ 2, such thatBiB

†
j +

BjB
†
i = 0 for i ∈ Γu, j ∈ Γv and 1 ≤ u < v ≤ g.
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Proposition 2. [17, Thm. 2] There exists an ordering of the weight matrices2 such that the

R-matrix obtained for conditionallyg-GD ST codes has the particular form

R = [D N ′

N ] =





D1 N1

...
...

Dg Ng

N



 ,

whereD is a (k − |ΓX |) × (k − |ΓX |) block-diagonal matrix whose blocksDi are of size

|Γi|×|Γi|, N is a square upper-triangular|ΓX |×|ΓX | matrix, andN ′ is a rectangular matrix.

Remark 5. We intentionally refer to [17] for this result although the authors do not use

the termconditional g-group decodable. However, Def. 8 above coincides with the codes

considered in the referred source. A similar observation was also already made in [14].

2. g-group decodability:

Definition 9. X is g-group decodableif there exists a partition of{1, . . . , k} into g nonempty

subsetsΓ1, . . . ,Γg such thatBiB
†
j +BjB

†
i = 0 for i ∈ Γu, j ∈ Γv, andu 6= v.

Remark 6. A codeX is g-GD if it is conditionallyg-GD and its associated setΓX is empty.

From this remark and Prop. 2 we immediately get the followingcorollary.

Corollary 1. There exists an ordering of the weight matrices such that theR-matrix obtained

for g-GD ST codes is of the form

R =

[

D1

...
Dg

]

,

whereDi is a |Γi| × |Γi| upper-triangular matrix.

By Def. 6, both conditionallyg-GD andg-GD ST codes are FD. The latter definitions, however,

allow to deduce the exact decoding complexity reduction with the help of the HRQF. For this

purpose, note that having a (conditionally)g-GD ST code, decoding the last|ΓX | ≥ 0 variables

gives a complexity of|S||ΓX |. The remaining variables can be decoded ing parallel steps, where

stepi involves |Γi| variables. This observation leads to the following result.

Proposition 3. Given a (conditionally)g-GD ST codeX with possibly empty subsetΓX , the

decoding complexity ofX is

|S|
|ΓX |+ max

1≤i≤g
|Γi|

.

2An algorithm for finding the optimal ordering is given in [13].
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C. Iterative Construction from Cyclic Algebras

Crucial for ST codes to exhibit desirable properties is the underlying algebraic framework.

Constructing codes for larger number of antennas means dealing with higher degree field exten-

sions and algebras, which are harder to handle. We briefly recall an iterative ST code construction,

recently proposed in [15], which, starting with ann× n ST code, results in a new2n× 2n ST

code with the same rate and double rank. The advantage of thisconstruction is that when applied

carefully, the resulting codes inherit good properties from the original ST codes.

Definition 10. LetF be a finite Galois extension ofQ andC = (K/F, σ, γ) be a CDA of degree

n. Fix θ ∈ C and τ ∈ AutQ(K), i.e., a Q-automorphism ofK.

(a) Define the function

ατ,θ : Mat(n,K)×Mat(n,K) → Mat(2n,K)

(X, Y ) 7→
[

X θτ(Y )
Y τ(X)

]

.

(b) If θ = ζθ′ is totally real or totally imaginary, define the alike function

α̃τ,θ : Mat(n,K)×Mat(n,K) → Mat(2n,K)

(X, Y ) 7→
[

X ζ
√
θ′τ(Y )√

θ′Y τ(X)

]

.

Suppose thatC gives rise to a ST codeX of rank k defined via matrices{Bi}ki=1. Then, the

matrices{ατ,θ(Bi, 0), ατ,θ(0, Bi)}ki=1 (or applyingα̃τ,θ(·, ·), respectively) define a rank-2k code

Xit =

{

k
∑

i=1

[siατ,θ(Bi, 0) + sk+iατ,θ(0, Bi)]

∣

∣

∣

∣

∣

si ∈ S

}

.

Proposition 4. [15, Thm. 1, Thm. 2] LetC = (K/F, σ, γ) be a CDA giving rise to a ST code

X defined by the matrices{Bi}ki=1. Assume thatτ ∈ AutQ(K) commutes withσ and complex

conjugation, and furtherτ(γ) = γ, τ 2 = id. Fix θ ∈ F〈τ〉, whereF〈τ〉 is the subfield ofF fixed

by τ . Identifying an element ofC with its matrix representation (cf.(2)), we have:

(i) The imageI = ατ,θ(C, C) is an algebra and is division if and only ifθ 6= zτ(z) for all

z ∈ C. Moreover, for anyατ,θ(x, y) ∈ I, we havedet(ατ,θ(x, y)) ∈ F〈τ〉.

(ii) If in addition θ = ζθ′ is totally real or totally imaginary, the imagẽI = α̃θ(C, C) retains
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both the full-diversity and NVD property. If for somei, j, BiB
†
j +BjB

†
i = 0, we have

α̃τ,θ(Bi, 0)α̃τ,θ(Bj, 0)
† + α̃τ,θ(Bj , 0)α̃τ,θ(Bi, 0)

† = 0 ,

α̃τ,θ(0, Bi)α̃τ,θ(0, Bj)
† + α̃τ,θ(0, Bj)α̃τ,θ(0, Bi)

† = 0.

III. FAST-DECODABLE SPACE–TIME CODES FORDISTRIBUTED COMMUNICATIONS

We consider the communication ofN + 1 users with a single destination, where every user

as well as the destination can be equipped with multiple antennas. In this scenario, enabling

cooperation permits that the active transmitter be assisted by the otherN users in the transmission

of its data. We start by introducing the assumed channel model in detail.

A. MIMO Relay Channel

In the following, we considerN+1 users communicating to a single destination over a wireless

network. Each user is allocated a time slot for the transmission of its data, that is the channel

is shared in a time-division multiple-access manner. Within a fixed time slot, the remainingN

users act as intermediate relays, helping the active transmitter in the communication process

by amplifying and forwarding the received signal. Considering a single time slot, the channel

resembles a single user channel withN relays and a single destination, as illustrated in Figure 1.

The matricesF , Hi andGi, 1 ≤ i ≤ N denote the Rayleigh distributed channels from the source

Relay 1

...

Relay N

Dest.

G1

GN

Source
F

H1

HN

Fig. 1: System model for theN -relay channel
with a single destination.

Source

R1

R2

...

RN

Dest.

X1,1 X1,2 X2,1 X2,2 · · · XN,1 XN,2

X1,1 X1,1

X2,1 X2,1

. . .

XN,1 XN,1

Y1,1

0

Y1,2

T
2

Y2,1

T

Y2,2

3T
2

2T

· · ·
YN,1 YN,2

NT

Fig. 2: Superframe structure for theN -relay NAF channel. Transmitted and
received signals are represented by solid and dashed boxes,respectively.

to the destination, relays, and from the relays to the destination, respectively.

Henceforth, we will assume the Nonorthogonal Amplify-and-Forward (NAF) scheme intro-

duced in [36] and generalized in [37] to the MIMO case, where,in contrast to the orthogonal
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schemes, the active transmitter and helping relay can transmit at the same time. In addition,

we assume thehalf-duplexconstraint,i.e., the relays can only receive or transmit a signal at a

given time instance. For a fixed time slot, let us define a superframe consisting ofN consecutive

cooperation frames, during which the relays take turns to cooperate with the active transmitter

in their respective cooperation frame. Each frame of lengthT is composed of two partitions of

T/2 symbols, and all channels are assumed to be static during thetransmission of the entire

superframe. This frame model is depicted in Figure 2. Denoteby ns, nd and nr the number

of antennas at the source, destination, and each of theN relays, respectively. In the following,

we assumenr ≤ ns. In the casenr > ns, the relays can do better than simply forwarding

the received signal, and we refer to [37] for a brief discussion of the possible strategies. As

illustrated in Figure 1 and 2, the transmission process can be modeled as

Yi,1 =
√

π1 SNRFXi,1 + Vi,1 , i = 1, . . . , N

Yi,2 =
√

π2 SNRFXi,2 + Vi,2 +
√

π3 SNRGiBi(
√

π1ρ SNRHiXi,1 +Wi) , i = 1, . . . , N

where Yi,j, Xi,j are the received and transmitted matrices,Vi,j, Wi represent additive white

Gaussian noise, the matricesBi are used for normalization andπi are channel-independent,

chosen so thatSNR denotes the received Signal-to-Noise Ratio per antenna at the destination.

The ratio between the path loss of the source-relay and source-destination links is denoted byρ.

From the destination’s point of view, the above transmission model can equivalently be

presented as a virtual single-user MIMO channel modeled as

Ynd×n = Hnd×nXn×n + Vnd×n,

wheren = N(ns + nr), X and Y are the (overall) transmitted and received signals, and the

structure of the channel matrixH is determined by the different relay paths. Thus this virtual

antenna array created by allowing cooperation can be used toexploit spatial diversity even when

a local antenna array may not be available. We have also made the assumption thatT = n.

It was shown in [37] that given a rate-4ns (cf. Def. 2) block-diagonal ST codeX , that is

where eachX ∈ X takes the form

X = diag{Ξi}Ni=1 =

[ Ξ1

...
ΞN

]
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with Ξi ∈ Mat(2ns,C) and such thatX is NVD, the equivalent code

C = [ C1 ··· CN−1 ] , whereCi = [ Ξi[1:ns,1:2ns] Ξi[ns+1:2ns,1:2ns] ]

achieves the optimal DMT for the channel3, transmittingCi in the ith cooperation frame.

It would thus be desirable to have ST codes of this block-diagonal form which achieve:

1) Full rate 2nd, that is, the number of independent real symbols (e.g., Pulse Amplitude

Modulation (PAM)) per codeword equals2ndN(ns + nr).

2) Full rankN(ns + nr).

3) NVD.

In addition, the aim of this article is to show how such ST codes can be constructed which

moreover are FD, thus exhibit a reduced complexity in decoding without sacrificing performance.

B. Fast-Decodable Distributed Space–Time Codes

In the following, we present the main results of this article, that is we introduce flexible

methods for constructing FD ST codes for the Single-Input Multiple-Output (SIMO) and MIMO-

NAF channel forN ≥ 1 relays. The following function is crucial for the proposed constructions.

Definition 11. Consider anN-relay NAF channel. Given a ST codeX ⊂ Mat(ns + nr,C) and

a suitable functionη of orderN (i.e., ηN(X) = X), define the function

Ψη,N : X → Mat(nN,C); X 7→ diag{ηi(X)}N−1
i=0 =

[

X
...

ηN−1(X)

]

.

For the remaining of this section, we use techniques from Algebraic Number Theory to prove

certain properties about the structures used for code construction. An interested reader is referred

to [38] as a good source to review these techniques. We denoteby ı :=
√
−1 the complex unit.

1) SIMO: Assume a cooperative communications scenario as illustrated in Figure 1, where

ns = nr = 1, nd ≥ 2. Consider the tower of extensions depicted in Figure 3, where ξ is taken

to be totally real,m ∈ Z≥1 and a ∈ Z\ {0} are square-free. Assume thatC is division (cf.

Lemma 1). Letσ be the generator ofΓ(L/K), and fix a generatorη of Γ(K/F).

3DMT is an asymptotic performance measure, indicating a tradeoff between the transmission rate and decoding error probability
as a function of SNR. Here, our primary goal is fast-decodability with NVD, so instead of giving a detailed definition of the
DMT, we refer the reader to [42], [37].
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C = (a, γ)K ∼= (L/K, σ :
√
a 7→ −√

a, γ)

L = K(
√
a)

2

K = F(ξ)

2

F = Q(
√
−m)

N

Q

2

Q(
√
a)

2N

2

Fig. 3: Tower of extensions for the SISO code construction.

To have balanced energy and good decodability, it is necessary to slightly modify the matrix

representation of the elements inC, thus forc, d ∈ OL, O ⊂ C an order, instead of representing

x = c +
√
γd ∈ O by its left-regular representationλ(x), we define the following similar and

commonly used function that maintains the original determinant,

λ̃ : x 7→
[

c −√−γσ(d)√−γd σ(c)

]

. (4)

Theorem 1. Arising from the algebraic setup in Figure 3 witha < 0, γ < 0, define the set

X = {Ψη,N (X)}X∈λ̃(O) =
{

diag{ηi(X)}N−1
i=0

∣

∣

∣
X ∈ λ̃(O)

}

.

The codeX is of rank8N , rateR = 4 rscu and has the NVD property. It is full-rate ifnd = 2.

Moreover,X is conditionally4-GD, and its decoding complexity can be reduced from|S|8N to

|S|5N , whereS is the real constellation used, resulting in a complexity reduction of37.5%.

Proof. Let {β1 = 1, . . . , βN} be anF-basis ofK and consider the followingK-basis ofC:

{

Γ1,1 = [ 1 0
0 1 ] ,Γ2,1 =

[√
a 0

0 −√
a

]

,Γ3,1 =
[

0
√−γ

√
a√−γ

√
a 0

]

,Γ4,1 =
[

0 −√−γ√−γ 0

]}

.

We first extend this basis to anF-basis ofC as{Γi,j = Γi,1βj} 1≤i≤4
1≤j≤N

, and further to aQ-basis

of C by complementing withΓi,j =
{√

−mΓi−4,j

}

5≤i≤8
1≤j≤N

. We get aZ-basis for the codeX as

B = {Ψη,N (Γi,j)} 1≤i≤8
1≤j≤N

,

which is of length8N = rank(X ). Thus by Def. 2, the code has rateR = 4.
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Let nowΨη,N(X) ∈ X be a codeword, whereη denotes a generator ofΓ(K/F). As assumed,

the coefficients ofX are taken from the ring of integersOL of L, thusdet(X) ∈ OK and hence

det(Ψη,N(X)) =

N−1
∏

i=0

det(ηi(X)) =

N−1
∏

i=0

ηi(det(X)) = NmK/F(det(X)) ∈ OF.

SinceF is imaginary quadratic, it follows thatdet(Ψη,N(X)) ≥ 1, giving the NVD property.

For deriving the decoding complexity, a direct computationshows thatΓi,jΓ
†
u,v +Γu,vΓ

†
i,j = 0

for 1 ≤ i, u ≤ 4, i 6= u and1 ≤ j, v ≤ N , henceΨη,N(Γi,j)Ψη,N (Γu,v)
†+Ψη,N(Γu,v)Ψη,N(Γi,j)

† =

0. Consequently, the matrixM = (mij) associated with the HRQF is of the form

M =







∗ 0 0 0 ∗ ∗ ∗ ∗
0 ∗ 0 0 ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







where each of the entries is anN×N matrix and is the zero matrix, if the corresponding entry is

0. By Def. 8,X is conditionally4-GD and exhibits decoding complexity|S|4N+N = |S|5N .

Remark 7. ST codes constructed using the method from Theorem 1 will achieve the optimal

DMT of the channel, according to [37, Thm. 4].

C = (−3,− 2
√

5
)K ∼= (L/K, σ :

√
−3 7→ −

√
−3,− 2

√

5
)

L = K(
√
−3)

2

K = Q(ı, ξ)

2

F = Q(ı)

2

Q

2

Q(
√
−3)

4

2

Fig. 4: Tower of extensions for a 2-relay SISO example code.

C = (−11,−1)K ∼= (L/K, σ :
√
−11 7→ −

√
−11,−1)

L = Q(
√
−11, ζ7)

2

K = Q(ζ7)

2

F = Q(
√
−7)

3

Q

2

Q(
√
−11)

6

2

Fig. 5: Tower of extensions for a 3-relay SISO example code.

Example 1. For N = 2 relays andξ =
√
5, consider the tower of extensions in Figure 4. The

algebra C is division. To see this, note thatq = 3OK be an ideal which splits as a product

q = p1p2 of prime idealsp1, p2 of OK, with residue class degreefpi = 2. Let p be any of these

prime ideals and consider its correspondingp-adic valuationνp(·). We haveνp(−3) = 1, and
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further,OK/p ∼= F32 . Since5 ≡ 2 mod 3, clearly
√
5 /∈ F3. Also, we have−

√
5
2

= −2
√
5 =

√
5

in characteristic3. It follows F32 = F3(
√
5), and clearly 4

√
5 /∈ F32 . Hence,−

√
5
2

and thus− 2√
5

is not a squaremod p. By Lemma 2,C is division.

Let x = c +
√−γd with c, d ∈ OL and for σ as above,X = λ̃(x) =

[

c −√−γσ(d)√−γd σ(c)

]

. For

〈η〉 = Γ(K/F), define the2-relay code

X = {Ψη,2(X)}X∈λ̃(OL)
=

{

diag{ηi(X)}1i=0 =
[

X
η(X)

]
∣

∣X ∈ λ̃(OL)
}

.

The resulting code is a fully diverse NVD code of rank 16, which is conditionally4-GD having

decoding complexity|S|10 in contrast to|S|16.

Example 2. Let N = 3 be the number of relays andζ7 the 7th root of unity, and consider the

tower of extensions in Figure 5. Note thatK = F(ξ), whereξ = ζ7 + ζ−1
7 is totally real.

The algebraC is division. To see this, note that the idealq = (−11)OK splits asq = p1p2

for distinct prime idealspi of OK with residue class degreefpi. Let p be either of these prime

ideals, with correspondingp-adic valuationνp(·). We have thatOK/p ∼= F113 . Next we establish

that −1 is not a square inF113 , which follows from the fact thatord(−1) = 2 and 4 ∤ |F×
113|.

Hence,−1 is not a squaremod p. By Lemma 2,C is division.

Note thatC ∼= (−1,−11)K and letx = c +
√
−11d with c, d ∈ Z[ı, ζ7], σ : ı 7→ −ı, so that

X = λ̃(x) =
[

c −
√
11σ(d)√

11d σ(c)

]

. For 〈η : ζ7 7→ ζ27〉 = Γ(K/F), define the 3-relay code

X = {Ψη,3(X)}X∈λ̃(OL)
=

{

diag{ηi(X)}2i=0 =

[

X
η(X)

η2(X)

]

∣

∣

∣

∣

∣

X ∈ λ̃(OL)

}

.

The constructed full-diversity codeX is of rank 24, satisfies the NVD property and has

decoding complexity|S|15 in contrast to|S|24.

2) MIMO: In the following, the single source is now equipped withns ≥ 1 antennas, and for

p ≥ 5 prime, letN = (p−1)/2 be the number of relays, each equipped withnr ≥ 1 antennas and

such that4 nr + ns = 4. Assume further a single destination withnd ≥ 1 antennas, and consider

the tower of extensions in Figure 6, whereK = Q(ξ) = Q+(ζp) ⊂ Q(ζp) is the maximal real

4This assumption allows to construct codes from quaternion algebras, whereas the casens + nr > 4 requires working with
larger cyclic division algebras. While it is straightforward to achieve full-diversity and NVD, general statements about the exact
decoding complexity reduction become harder.
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C = (a, γ)K ∼= (L/K, σ :
√
a 7→ −√

a, γ)

L = K(
√
a)

2

K = Q(ξ)

2

Q

NF = Q(
√
a)

N

2

Fig. 6: Tower of extensions for the MIMO code construction.

subfield of thepth cyclotomic field, that is,ξ = ζp + ζ−1
p , anda ∈ Z\ {0} is square-free. Let

〈σ〉 = Γ(L/K) and 〈η〉 = Γ(L/F).

Theorem 2. In the setup as in Figure 6, choosea ∈ Z<0 such thatp = aOK is a prime ideal.

Fix further γ < 0 and θ ∈ OK ∩ R× = Z[ξ] ∩ R× such that

• γ and θ are both nonsquaremod p,

• the quadratic form〈γ,−θ〉L is anisotropic, that is evaluates to zero if and only ifγ = θ = 0,

and further letτ = σ. Then, ifO ⊂ C is an order, the distributed ST code

X =
{

Ψη,N(α̃τ,θ(X, Y )) = diag
{

ηi(α̃τ,θ(X, Y ))
}N−1

i=0

∣

∣

∣
X, Y ∈ λ̃(O)

}

is a full-diversity ST code of rank8N , rate R = 2 rscu, exhibits the NVD property and is FD.

Its decoding complexity is|S|k′, wherek′ = 4N if a ≡ 1 mod 4, andk′ = 2N if a 6≡ 1 mod 4,

resulting in a reduction in complexity of50% and 75%, respectively.

Proof. We first show thatX is fully diverse, wherefore it is enough to show thatC is division.

By Lemma 1, it suffices to show thatγ /∈ NmL/K(L
×). Let α = α0 +

√
aα1 ∈ L×. Then

NmL/K(α) = ασ(α) = α2
0 − aα2

1. Thusγ = NmL/K(L
×) ⇔ α2

0 − aα2
1 − γ = 0 has nontrivial

solutions inK. But a < 0, γ < 0 andK is totally real, thus there can’t be any solutions.

Let now {bi}Ni=1 =
{

1, ξ, . . . , ξN−1
}

be a power basis ofOK and consider

X = λ̃(x) =
[

x1+x2ω −√−γ(x3+x4σ(ω))√−γ(x3+x4ω) x1+x2σ(ω)

]

,
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whereω =
√
a if a 6≡ 1 mod 4 andω = 1+

√
a

2
otherwise, so thatOF = Z[ω]. Let

X0 =

{

k
∑

i=1

siB
0
i

∣

∣

∣

∣

∣

si ∈ S

}

⊂ λ̃(O),

for a set of matricesB0 = {B0
i }

k
i=1 = {X(bi, 0, 0, 0), . . . , X(0, 0, 0, bi)}Ni=1, thus k = 4N .

Originating from this code, we construct a set of weight matrices defining the iterated codeX it
0 =

{ α̃τ,θ(X, Y )|X, Y ∈ X0} asBit
0 =

{

B it
i

}8N

i=1
= {α̃τ,θ(B

0
i , 0), α̃τ,θ(0, B

0
i )}

4N

i=1, and get fromX it
0 a

defining set of weight matrices for the distributed codeX asB = {Bi}8Ni=1 =
{

Ψη,N (B
it
i )
}8N

i=1
.

The codeX is thus of length8N and by Def. 2 has rateR = 8N/4N = 2 rscu.

To see thatX is NVD, note that by the restrictions imposed on the entries of elements inX0,

we havedet(α̃τ,θ(X, Y )) ∈ OL. Hence

det[Ψη,N (α̃τ,θ(X, Y ))] =
N−1
∏

i=0

det[ηi(α̃τ,θ(X, Y ))] =
N−1
∏

i=0

ηi[det(α̃τ,θ(X, Y ))]

= NmL/F [det(α̃τ,θ(X, Y ))] ∈ OF.

As F is imaginary quadratic,det[Ψη,N (α̃τ,θ(X, Y ))] ≥ 1.

It remains to show thatX is FD. To that end, group the matrices{B0
i }

N
i=1 as follows:

G1 = {X(bi, 0, 0, 0)}Ni=1 ; G2 = {X(0, bi, 0, 0)}Ni=1 ;

G3 = {X(0, 0, bi, 0)}Ni=1 ; G4 = {X(0, 0, 0, bi)}Ni=1 .

Let Xi ∈ Gi. We have fori = 1, 2 and j = 3, 4 thatXiX
†
j +XjX

†
i = 0, and moreover,

X1X
†
2 +X2X

†
1











= 0 if a 6≡ 1 mod 4,

6= 0 if a ≡ 1 mod 4,

and the same holds forX3, X4. We thus conclude thatX is 2-GD if a ≡ 1 mod 4, exhibiting

a decoding complexity of|S|2N and is4-GD otherwise, in which case its decoding complexity

is |S|N . By Prop. 4 (ii) and sinceθ, τ are chosen to satisfy the requirements of the iterative

construction ( [15, Cor. 8]), the iterated codeX it
0 and consequently the distributed ST codeX

exhibit a decoding complexity of|S|4N in the former, and|S|2N in the latter case.

Remark 8. We remark that by the results obtained in [17], the decoding complexity of codes
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arising from division algebras can only be reduced by a factor of 4. The constructive method

proposed in Theorem 2 results in codes whose decoding complexity is reduced by either 50% or

75% compared to non-FD codes of the same rank. Thus, in the latter case, our codes indeed

achieve the maximal complexity reduction by a factor of 4.

Example 3. We construct two codes forN = 3 relays, arising from the towers of extensions

depicted in Figure 7, whereξ = ζ7 + ζ−1
7 , γ1 = −1, γ2 = − 2

1+ξ
.

C1 = (L1/K, σ1 :
√
−3 7→ −

√
−3,−1)

L1 = Q(
√
−3, ξ)

2

K = Q(ξ)

2

Q

3F1 = Q(
√
−3)

3

2

C2 = (L2/K, σ2 :
√
−5 7→ −

√
−5,− 2

1+ξ
)

L2 = Q(
√
−5, ξ)

2

K = Q(ξ)

2

Q

3F2 = Q(
√
−5)

3

2

Fig. 7: Towers of extensions for two 3-relay MIMO example codes.

In the following, for i = 1, 2, let τi = σi, 〈ηi : ξ 7→ ξ2 − 2〉 = Γ (Li/Fi). Note thatη1 6= η2,

since they have distinct fixed fields. Choose furtherθ1 = 1− ξ = ζθ′1, θ2 = 3(1− ξ) = ζθ′2, with

ζ = −1, θ′1, θ
′
2 ∈ R>0, and letpmin(x, ξ) be the minimal polynomial ofξ.

Sincep1 = (−3)OK andp2 = (−5)OK are prime, their residue class degree isfpi = 3, thus

OK/p1 ∼= F33
∼= F3[x]/pmin(x, ξ); OK/p2 ∼= F53

∼= F5[x]/pmin(x, ξ).

We haveord(γ1) = 2 in OK/p1, andord(γ2) = 124 in OK/p2. Since4 ∤ |F×
33 |, we establish that

γi is nonsquaremod pi. Further,ord(θ1) = 26 in OK/p1, andord(θ2) = 124 in OK/p2. Hence,

θi is not a squaremod pi. Moreover, the quadratic forms〈γi,−θi〉Li
are anisotropic, as

−v21 − v22θ1 = 0 for v1, v2 ∈ L1 ⇔ ξ − 1 = v2 for v ∈ L1

− 2

1 + ξ
w2

1 − v22θ2 = 0 for w1, w2 ∈ L2 ⇔
3

2
(ξ2 − 1) = w2 for w ∈ L2,

Sinceξ−1, 3
2
(ξ2−1) are nonsquare in neither field, the conditions from Theorem 2are satisfied.

Let xi ∈ Oi ⊂ Ci, and setω1 = 1+
√
−3

2
, ω2 =

√
−5. We define ST codesX0,i consisting of
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codewords of the formXi = λ̃(xi) =
[

x1,i+x2,iωi −√−γi(x3,i+x4,iσi(ωi))√−γi(x3,i+x4,iωi) x1,i+x2,iσi(ωi)

]

, wherexj,i ∈ OK,

1 ≤ j ≤ 4. Next, we iterateX0,i to obtain the sets

X it
0,i =

{

α̃τi,θi(X, Y ) =

[

X ζ
√

θ′iτi(Y )√
θ′iY τi(X)

]
∣

∣

∣

∣

X, Y ∈ λ̃(Oi)

}

,

and finally adapt the two iterated codes to the 3-relay channel by applying the mapsηi, resulting

in distributed ST codes

Xi =
{

Ψηi,3(α̃τi,θi(X, Y )) = diag
{

ηji (α̃τi,θi(X, Y ))
}

0≤j≤2

∣

∣

∣
X, Y ∈ λ̃(Oi)

}

,

Both resulting relay codes are fully diverse, exhibit the NVD property and are FD. WhileX1 is

2-GD with decoding complexity|S|12 as opposed to|S|24, X2 is 4-GD with decoding complexity

|S|6 in contrast to|S|24, resulting in a complexity reduction of50% and75%, respectively.

C = (−3,−1)K ∼= (L/K, σ :
√
−3 7→ −

√
−3,−1)

L = Q(
√
−3, ξ)

2

K = Q(ξ)

2

Q

5F = Q(
√
−3)

5

2

Fig. 8: Tower of extensions for a 5-relay MIMO code.

C = (−3, 1− ζ5)K ∼= (L/K, σ :
√
−3 7→ −

√
−3, 1− ζ5)

L = Q(ζ5,
√
−3)

2

K = Q(ζ5)

2

Q

4F = Q(
√
−3)

4

2

Fig. 9: Tower of extensions for a 4-relay MIMO code.

Example 4. We construct a FD distributed ST code forN = 5 relays, arising from the tower

of extensions in Figure 8, whereξ = ζ11 + ζ−1
11 . Let τ = σ and 〈η : ξ 7→ ξ2 − 2〉 = Γ(L/F).

Chooseθ = 1 − ξ = ζθ′ with ζ = −1 and θ′ ∈ R>0. Note thatp = (−3)OK is a prime ideal,

and furtherord(γ) = 2, ord(θ) = 242 in OK/p. Since there is no element of order4 in OK/p,

both elements are nonsquaremod p. Moreover, the quadratic form〈γ,−θ〉L is anisotropic, as

−v21 − v22θ = 0 for v1, v2 ∈ L ⇔ −θ = v2

for somev ∈ L. But−θ is not a square inL, thus the conditions from Theorem 2 are satisfied.

Let x ∈ O ⊂ C, ω = 1+
√
−3

2
, and forx1, . . . , x4 ∈ OK, we construct a ST codeX0 consisting

of codewords of the formX = λ̃(x) =
[

x1+x2ω −(x3+x4σ(ω))
x3+x4ω x1+x2σ(ω)

]

.
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To adapt this code to the proposed scenario, we first iterateX0 to obtain the set

X it
0 =

{

α̃τ,θ(X, Y ) =
[

X ζ
√
θ′τ(Y )√

θ′Y τ(X)

]
∣

∣

∣
X, Y ∈ λ̃(O)

}

,

and finally make use of the mapη to construct the distributed ST code

X =
{

Ψη,5(α̃τ,θ(X, Y )) = diag
{

ηi(α̃τ,θ(X, Y ))
}

0≤i≤4

∣

∣

∣
X, Y ∈ λ̃(O)

}

.

The resulting relay code is fully diverse and moreover NVD. It is FD and more specifically

2-GD with decoding complexity|S|20 as opposed to|S|40, thus resulting in a reduction of 50%.

Example 5. We conclude this section with an example forN = 4 relays that demonstrates the

importance of the conditions in Theorem 2. Consider the algebraic setup in Figure 9, whereζ5

is the5th root of unity andξ = ζ5+ζ−1
5 . Let τ = σ and 〈η〉 = Γ(L/F). Choose furtherθ = ζ5+1

ζ5−1
.

The quaternion algebraC is division, and the choice ofτ and θ satisfy the criteria required in

Theorem 2. To see this, note thatp = (−3)OK is a prime ideal with residue fieldOK/p ∼= F34 .

The order ofγ and θ within the multiplicative groupF×
34 are ord(γ) = 80, ord(θ) = 16. Since

there is no element of order32 in F×
34 , they are both nonsquaremod p.

Further, the quadratic form〈γ,−θ〉L is anisotropic. This is as forv1, v2 ∈ L,

v21γ − v22θ = 0 ⇔ v2 =
1 + ζ5

(1− ζ5)(ζ5 − 1)
= −1

5
α

with α = 3ζ35 + 4ζ25 +3ζ5 and v ∈ L. It thus suffices to show thatα is not a square inL. But it

is α = p1p
2
2, for p1, p2 prime.

Let x = c +
√
γd, c, d ∈ OL and forX = λ(x) =

[

c γσ(d)
d σ(c)

]

, define the distributed ST code

X =
{

Ψη,4(ατ,θ(X, Y )) = diag
{

ηi(ατ,θ(X, Y ))
}3

i=0

∣

∣

∣
X, Y ∈ λ(O)

}

.

The choices ofγ andK do not agree with Theorem 2, and the constructed ST code is in fact

not FD. The resulting code exhibits a decoding complexity of|S|30 as opposed to|S|32, where

the reduction is merely due to the Gram-Schmidt orthogonalization.

C. Simulation Results

The construction methods proposed in the previous section facilitate the design of ST codes

for the N-relay SIMO and MIMO channel which, in addition to being fully diverse and having
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the NVD property, are FD. The goal of this section is to disclose the actual performance of

explicit codes constructed with the proposed methods.

We start by comparing the performance of the FD code constructed in Example 1 with the

optimal ST code proposed in [37, Section VI-B], a lifted version of the Golden code, for two

relays with a single antenna. We fix the number of antennas at the destination to bend = 4. In

addition, we also illustrate the performance of an unscaledversion of the lifted Golden code,

whose entries, as opposed to the scaled version, are only restricted to lie inOL = Z
[

ζ8,
1+

√
5

2

]

.
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Fig. 10: Comparison of an optimal, non-FD code and an exampleFD code with a complexity reduction of37.5% for 2 relays,
with 4-QAM (left) and 64-QAM (right) signaling, withns = nr = 1, nd = 4.

From Figure 10, we see that the proposed FD code and both versions of the lifted Golden

code perform comparably for both depicted signaling sets,4-QAM and 64-QAM. The proposed

code, however, exhibits a decoding complexity of|S|10, while the decoding complexity of the

lifted Golden code is|S|16, whereS is the underlying real signaling alphabet. In exchange for

the significantly lower decoding complexity, the FD code shows a loss of merely 1dB, while

achieving a similar diversity. We point to Remark 10 for a short note on possible improvements.

For the simulations in the MIMO scenario, we remark that no codes can be found in the

literature forN ≥ 3 relays. Thus, we compare the two codes constructed in Example 3 using

the method from Theorem 2. For the simulations, we fixnd = 6. The constructed codes, as can

be seen from the figure, perform comparably, exhibiting a similar diversity, and their decoding

complexity is |S|12 and |S|6, respectively, in contrast to|S|24 of a non-FD code of the same

rank, whereS is the effective real signaling alphabet. The loss in performance of approximately

1 dB is thus traded off against a considerably lower decodingcomplexity.
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Fig. 11: Comparison of two example FD codes with a complexityreduction of50% (FD 50) and75% (FD 75), respectively,
for 3 relays, with 4-QAM (left) and 64-QAM (right) signaling, with ns + nr = 4, nd = 6.

Remark 9. As remarked above, a higher number of receive antennas than needed for the codes

to be full-rank was used in order to facilitate the simulations for the larger signaling sets. The

relative difference in performance is the same for the minimal required number of antennas,

although the relevantSNR, as one would expect, would be shifted to the right.

Remark 10. We want to remark that the codes constructed using the methods in Theorem 1 and

2 could be improved by reshaping the underlying lattices, for instance by restricting the elements

of the codewords to some suitable ideal, and further by conveniently scaling the codewords. This

optimization is however not treated in this article.

IV. FAST-DECODABLE NONCOOPERATIVESPACE–TIME CODES

In this section we consider the transmissions byN users to a joint destination,e.g., an uplink

transmission to a base station. Both the users and the destination can be equipped with multiple

antennas. In contrast to the previous section, no cooperation is allowed between the users.

A. Multiple-Access Channel

Assuming a noncooperative multi-user communications scenario, the channel is known as

either a symmetric or asymmetricmultiple-access channel(MAC), depending on whether all

users are equipped with the same or a different number of transmit antennas. The transmission

of userKi, i = 1, . . . , N , is a point-to-point communication problem over a wirelessMIMO

channel modeled by a matrixHi of corresponding size. The ST code matrices of every user are



26

User 1

User 2

...

User N

Dest.

H1

H2

HN

Fig. 12: System model for the K-user multiple access channel.

generated independently of those of the remaining users. For the sake of exposure, we assume

that every userKi is equipped withns antennas, while the destination is assumed to havend

antennas. The disadvantage of having independent code matrices is that the overall ST code does

not exhibit a lattice structure, but can still be represented via a set of linear dispersion matrices

acting as weight matrices. An important consequence is the following result.

Proposition 5. [40, Thm. 3] For anyN > 1 andns ≥ 1, there do not exist any linear MIMO-

MAC codes satisfying the NVD criterion.

Remark 11. The above proposition motivated the definition of theConditional Nonvanishing

Determinant(CNVD) property introduced in [41]. A ST code has the CNVD property if its

minimum determinant is either zero or bounded from below. This property, accompanied with a

suitable code rate, was shown to be sufficient for achieving the optimal MAC-DMT [40].

B. Fast-Decodable MAC Space–Time Codes

Let K ≥ 2 be the number of transmitters communicating with a single destination. While

each of the users might use a different underlying algebraicstructure for code construction, the

symmetric scenario ensures that the codewords from every user will be of the same dimensions.

For k ∈ {1, . . . , K} consider userKk employing a ST codeXk carved from a CDACk =

(Lk/Kk, σk, γk) of degreen. A codewordXk ∈ Xk is of the form

Xk = λ(xk) =
n2
∑

i=1

sk,iBk,i

for somexk ∈ Ok ⊂ Ck, whereλ is as in (2) or (4),sk,i ∈ Sk are the signaling coefficients and

{Bk,i}1≤i≤n2 is the set of weight matrices. LetFk ⊂ Kk be an intermediate field so thatKk/Fk
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is cyclic Galois of degreem with 〈τk〉 = Γ(Kk/Fk). Then, the overall codeword of userk is of

the formUk = [Xk τk(Xk) ··· τm−1
k

(Xk) ], and the overall transmitted codeword by all users is

X =

[

X1 τ1(X1) ··· τm−1
1 (X1)

...
...

...
XK τK(XK) ··· τm−1

K
(XK )

]

.

A set of linear dispersion matrices can be given for the overall code by complementing the

corresponding lattice basis of each individual user with zero-matrices of suitable size, namely

B =

{[

0(k−1)n

Bk,i

0(K−k)n

]

Kn

}

1≤i≤n2

1≤k≤K

=: {Bi}1≤i≤Kn2 .

The resulting code is not NVD due to Prop. 5, but is FD and exhibits the CNVD property if

the algebraic structures are chosen properly, as a straightforward adaptation of the results about

distributed ST codes of the previous section to this noncooperative scenario.

Example 6. ConsiderK = 2 transmitters equipped withns = 2 antennas each, and a single

destination withnd = 4. Both transmitters carve their ST codes from the quaternionalgebra

C from Figure 3, witha = −3, ξ = ı, and m = 2. The algebraC is division for γ = − 2√
5
.

Let 〈τ : ı 7→ −ı〉 = Γ(K/F). Then, fork = 1, 2, codewords are of the formUk = [Xk τ(Xk) ] ,

where forxk ∈ O ⊂ C, Xk = λ̃(xk) =
[

xk,1+xk,2θ −√−γ(xk,3+xk,4σ(θ))√−γ(xk,3+xk,4θ) xk,1+xk,2σ(θ)

]

, with θ = 1+
√
−3

2
.

The overall transmitted codewords are of the form

X =
[

X1 τ(X1)
X2 τ(X2)

]

.

For a basis{bi}1≤i≤4 =
{

1, ı,
√
−2, ı

√
−2

}

of OK, a set of weight matrices for this code is

{Bi}1≤i≤32 :=
{[

X1(bi,0,0,0) τ(X1(bi,0,0,0))
X2(0,0,0,0) τ(X2(0,0,0,0))

]

, . . . ,
[

X1(0,0,0,0) τ(X1(0,0,0,0))
X2(0,0,0,bi) τ(X2(0,0,0,bi))

]}

1≤i≤4
.

We briefly disclose the performance of the constructed FD MACcode by comparing to two

strongly performing codes, which we denote byNFD1 [43, Section IV-D], andNFD2 [43,

Section III-E]. For fair comparison, since the latter was originally constructed fornd = 2

receive antennas and differs in terms of code rate from the other two codes, we use 16-QAM

signaling for NFD2 instead of 4-QAM in order to match the datarate, and allow fornd = 4

antennas at the destination for improved diversity. From Figure 13, we see that the proposed FD

MAC code performs comparably to NFD1, achieving a similar diversity and showing a mere
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Fig. 13: Comparison of two non-FD MAC codes and an example FD MAC code for two transmitters,ns = 2, nd = 4.

loss of 1-1.5dB, while outperforming NFD2. The proposed code, however, is2-GD, exhibiting

a decoding complexity of|S|16 as opposed to|S|32, resulting in a significant reduction of50%

in decoding complexity. Note further that the depicted performance is before any attempts of

optimization, and it can be expected that the gap could be narrowed down further without

compromising fast-decodability.

V. CONCLUSIONS

In this work, we presented two methods for constructing distributed space–time block codes in

the setting of amplify-and-forward relaying. We have separately considered a single or multiple

antennas at the source and each of the relays, resulting in flexible constructive methods to obtain

fast-decodable, more specifically2-group and (conditionally)4-group decodable, full-diversity

space–time codes which have nonvanishing determinants forboth cases. The obtained codes can

be decoded with a low number of antennas – in the MIMO case evena single antenna suffices

– and their worst-case decoding complexity is reduced by up to 75%, which is known to be the

best possible reduction for division algebra based codes. These are highly desirable properties for

many applications related to the future 5G networks, such asdevice-to-device communications

and proximity-based services on the wireless edge.

We have further shown how to use these methods to obtain fast-decodable space–time codes

for theK-user MIMO-MAC scenario. Although codes for this channel cannot exhibit the non-

vanishing determinant property due to the nature of the communications setting, the constructed

codes using the methods introduced in this work exhibit the conditional nonvanishing determinant

property, which is known to be useful for achieving the optimal MAC-DMT.
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