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Abstract

Featured by centralized processing and cloud based infrastructure, Cloud Radio Access Network (C-RAN)

is a promising solution to achieve an unprecedented system capacity in future wireless cellular networks. The

huge capacity gain mainly comes from the centralized and coordinated signal processing at the cloud server.

However, full-scale coordination in a large-scale C-RAN requires the processing of very large channel matrices,

leading to high computational complexity and channel estimation overhead. To resolve this challenge, we exploit

the near-sparsity of large C-RAN channel matrices, and derive a unified theoretical framework for clustering and

parallel processing. Based on the framework, we propose a dynamic nested clustering (DNC) algorithm that not

only greatly improves the system scalability in terms of baseband-processing and channel-estimation complexity,

but also is amenable to various parallel processing strategies for different data center architectures. With the

proposed algorithm, we show that the computation time for the optimal linear detector is greatly reduced from

O(N3) to no higher than O(N
42
23 ), where N is the number of RRHs in C-RAN.
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I. INTRODUCTION

The explosive growth in mobile data traffic threatens to outpace the infrastructure it relies on. To

sustain the mobile data explosion with low bit-cost and high spectrum/energy efficiency, a revolutionary

wireless cellular architecture, termed Cloud Radio Access Network (C-RAN), emerges as a promising

solution [1]. In contrast to traditional base stations (BSs), the radio function units and baseband

processing units (BBUs) in C-RANs are separated, and the latter are migrated to a centralized data

center using an optical transport network with high bandwidth and low latency. This keeps the radio

function units (also referred to as remote radio heads (RRHs)) light-weight, thereby allowing them to be

deployed in a large number of small cells with low costs. Meanwhile, the centralized baseband allows

RRHs to seamlessly cooperate with each other for flexible interference management, coordinated signal

processing, etc. As such, C-RAN has been recognized as a “future proof” architecture that enables

various key technologies including fibre-connected distributed antenna systems (DASs) and multi-cell

coordination (CoMP) [2]. In this way, C-RAN holds great promise for significant system-capacity

enhancement and cost reduction.

The exciting opportunities come hand in hand with new technical challenges. Theoretically speaking,

the highest system capacity is achieved when all RRHs cooperatively form a large-scale virtual antenna

array that jointly detects the users’ signals. The full-scale coordination, however, requires the processing

of a very large channel matrix consisting of channel coefficients from all mobile users to all RRHs. For

example, the complexity of the optimal linear receiver grows cubically with the number of users/RRHs

[3]. In other words, the normalized baseband processing complexity (normalized by the number of

users/RRHs) grows quadratically as the size of the system becomes large. This fundamentally limits

the scalability of the system. In addition, the full-scale joint RRH processing requires to estimate a

large-scale channel matrix, causing significant channel estimation overhead. In [4], it is shown that the

benefit of cooperation is fundamentally limited by the overhead of pilot-assisted channel estimation.

Distributed BS/antenna coordination has been extensively studied in CoMP and DAS systems [5]–[14].

Most of the work has focused on throughput maximization [5]–[8] and inter-interference management

[9]–[14] by forming cooperative clusters among neighboring BSs/antennas. Few, if not none, of the work
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has considered the scalability of the baseband-processing and channel-estimation complexity when the

system becomes extremely large. In reality, the preliminary C-RAN technology can already support

around 10 km separation between the BBU pool and RRHs, covering 10-1000 RRH sites [1]. With

such a large scale of coordination, the current DAS and CoMP schemes will become prohibitively

expensive to implement. To solve the coordinated beamforming problem in C-RAN, a recent work by

Shi et al. [15] proposes a low-complexity optimization algorithm. Even though the simulation results

show that the proposed algorithm can significantly reduce the computation time, [15] does not discuss

how the complexity scales with the network size. Moreover, perfect knowledge of the entire channel

matrix is required for beamforming, which is impractical for large-scale C-RAN.

In this paper, we endeavour to design a C-RAN baseband processing solution that can achieve the

advantage of full-scale RRH coordination with a complexity that does not explode with the network

size. In particular, our work is divided into the following steps.

1) Through rigorous analysis, we show that without causing noticeable performance loss, the signals

can be detected by processing a sparsified channel matrix instead of the full channel matrix. In

particular, we propose a threshold-based channel matrix sparsification method, which discards

matrix entries if the corresponding link length (or large scale fading in general) is larger than

a certain threshold. A closed-form expression is derived to relate the threshold to the signal-to-

interference-and-noise ratio (SINR) loss due to matrix sparsification. The result shows that for

reasonably large networks, a vast majority of the channel coefficients can be ignored if we can

tolerate a very small percentage of SINR loss. This not only opens up the possibility of significant

complexity reduction, but also greatly reduces the channel estimation overhead. In practice, channel

estimation overhead is mainly due to the estimation of small-scale fadings, because large-scale

fadings vary at a much slower time scale. With the proposed channel matrix sparsification, we

only need to estimate small-scale fadings corresponding to a small percentage of matrix entries

that have not been discarded.

2) We show that by skillfully indexing the RRHs, the sparsified channel matrix can be turned into

a (nested) doubly bordered block diagonal (DBBD) structure, as shown in Fig. 1. Interestingly,
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Fig. 1. A matrix in a doubly bordered block diagonal form.

we find that the DBBD matrix naturally leads to a dynamic nested clustering (DNC) algorithm

that greatly improves the scalability of the system complexity. Specifically, the diagonal blocks

(see Fig. 1) can be interpreted as clusters (or sub-networks) that are processed separately in

parallel. Different clusters are coordinated by the cut-node block and border blocks that capture

the interference among clusters. As such, the baseband-processing complexity is dominated by

the size of the clusters instead of the entire C-RAN network.

3) Thanks to the centralized BBU pool of C-RAN, the DNC algorithm is amenable for parallel

processing at the C-RAN data center. We design a parallel processing strategy that allow flexible

tradeoff between the computation time, the number of parallel processors required, the allocation

of computational power among BBUs, etc. In this way, the DNC algorithm is adaptive to various

architectures of the BBU pool.

The rest of this paper is organized as follows. In Section II, we describe the system model and

outline the steps of the DNC algorithm. The first step in the DNC algorithm, threshold-based channel

sparsification, is proposed and analysed in Section III. In Section IV, a single-layer DNC algorithm is

proposed, and the detailed parallel implementation of this algorithm is discussed. The multi-layer DNC

algorithm is introduced in Section V. Conclusions and discussions are given in Section VI.
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II. SYSTEM MODEL

A. System Setup

We consider the uplink transmission of a C-RAN with N single-antenna RRHs and K single-antenna

mobile users randomly located over the entire coverage area. The received signal vector y ∈ CN×1 at

the RRHs is

y = HP
1
2 x + n, (1)

where H ∈ CN×K denotes the channel matrix, with the (n, k)th entry Hn,k being the channel coefficient

between the kth user and the nth RRH; P ∈ RK×K is a diagonal matrix with the kth diagonal entry

Pk being the transmitting power allocated to user k; x ∈ CK×1 is a vector of the transmitted signal

from the K users and n ∼ CN (0, N0I) is a vector of noise received by RRHs. The transmit signals are

assumed to follow an independent complex Gaussian distribution with unit variance, i.e. E[xxH ] = I.

Further, the (n, k)th entry of H is given by Hn,k = γn,kd
−α

2
n,k , where γn,k is the i.i.d Rayleigh fading

coefficient with zero mean and variance 1, dn,k is the distance between the nth RRH and the kth user,

and α is the path loss exponent. Then, d−αn,k is the path loss from the kth user to the nth RRH.

B. MMSE Detection for C-RAN

With centralized baseband processing, a C-RAN system can jointly detect all users’ signals through

a full-scale RRH cooperation. Suppose that the optimal linear detection, i.e., MMSE detection, is

employed. The receive beamforming matrix is

V = A−1HP
1
2 , (2)

where A = HPHH +N0I.

The decision statistics of the transmitted signal vector x is a linear function of the received signal

vector y, i.e.

x̂ = VHy = VHHP
1
2 x + VHn. (3)

Then, the decision statistics of xk for user k is

x̂k = vHk hkP
1
2

k xk + vHk
∑
j 6=k

hjP
1
2
j xj + vHk n, (4)
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where vk ∈ CN×1 is the kth column of the detection matrix V and hk ∈ CN×1 is the kth column of

the channel matrix H. The SINR of user k is

SINRk =
Pk|vHk hk|2∑

j 6=k Pj |vHk hj |2 +N0vHk vk
. (5)

Notice that to calculate the detection matrix V, the full channel matrix H needs to be acquired and

processed. That is, full channel state information (CSI) needs to be estimated at the RRHs’ side. In

addition, it takes as much as O(N3) operations to calculate V, because the calculation involves the

inverse of an N ×N matrix A. As mentioned in Section I, a C-RAN generally covers a large area with

a huge number of RRHs. As a result, the dimension of the channel matrix H is extremely large, and

the cost of acquiring and processing H becomes prohibitively high. The key question is then how to

obtain the best system performance by enabling a full-scale RRH cooperation without incurring high

channel estimation overhead and computational complexity.

C. Sketch of the Proposed Approach

As described in the Introduction section, the work in this paper consists of the following steps:

1) Channel sparsification based on a link-distance threshold.

2) Transforming the MMSE detection into a system of linear equations defined by a (nested) DBBD

matrix.

3) A parallel detection algorithm based on dynamic nested clustering.

We first introduce the channel-matrix sparsification approach in Section III. The transformation of

the MMSE detection and parallel detection algorithms are discussed in both Section IV and V.

III. THRESHOLD-BASED CHANNEL SPARSIFICATION

In this section, we discuss the first step in the DNC algorithm, i.e., threshold-based channel spar-

sification. We first present the detailed sparsification approach in Subsection A. Then, a closed-form

expression of the matrix sparsity as a function of the tolerable SINR loss is derived in Subsection B.

Finally, verifications and discussions are given in Subsection C.
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A. Sparsification Approach

Since the RRHs and users are distributed over a large area, an RRH can only receive reasonably

strong signals from a small number of nearby users, and vice versa. Thus, ignoring the small entries in

H would significantly sparsify the matrix, hopefully with a negligible loss in system performance. In

this paper, we propose to ignore the entries of H based on the distance between RRHs and users. In

other words, the entry Hn,k is set to 0 when the link distance dn,k is larger than a threshold d0
1. The

resulting sparsified channel matrix, denoted by Ĥ, is given by

Ĥn,k =


Hn,k, dn,k < d0

0, otherwise.

(6)

Note that we propose to sparsify the channel matrix based on the link distance instead of the actual

channel coefficients that are affected by both the link distances and fast channel fadings. In practice,

link distances vary much more slowly than fast channel fading. As such, the amount of overhead to

estimate the link distances is negligible compared with the overhead to estimate the fast channel fadings.

With the distance-based channel sparsification, instantaneous channel estimation (i.e., estimation of the

fast channel fading coefficients) is needed only on short links. Otherwise, if we sparsify H based on

the absolute values of the entries, then channel fading needs to be estimated on every link.

The received signal y can now be represented as

y = ĤP
1
2 x + H̃P

1
2 x + n, (7)

where H̃ = H− Ĥ consists of the entries that have been ignored. Treating the first term in the RHS

of (7) as signal, and the remaining two terms as interference plus noise, the detection matrix becomes

V̂ = Â−1ĤP
1
2 , (8)

where Â = ĤPĤH + Γ +N0I, and

Γ = E

 K∑
j=1

Pj

(
h̃jĥ

H
j + ĥjh̃

H
j + h̃jh̃

H
j

) , (9)

with ĥk and h̃k being the kth column of Ĥ and H̃ respectively.

1In this paper, for simplicity of analysis, we only consider path loss and Rayleigh fading but ignore shadowing. By changing the
threshold from distance to the large scale fading coefficient, we can easily extend this approach to the case with shadowing.
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With this, the SINR becomes

ŜINRk(d0) =
Pk|v̂Hk hk|2∑

j 6=k Pj |v̂Hk hj |2 +N0v̂Hk v̂k
, (10)

where v̂k is the kth column of V̂.

Notice that when the distance threshold d0 is small, the matrix Ĥ can be very sparse, leading to a

significant reduction in channel estimation overhead and processing complexity. The key question is:

how small d0 can be or how sparse the channel matrix can be without significantly affecting the system

performance. In other words, how should we set d0 so that ŜINRk is not much lower than SINRk in

(5). This question will be answered in the next subsection.

B. Distance Threshold Analysis

In this subsection, we show how to set the distance threshold d0 if a high percentage of full SINR is

to be achieved. Specifically, we wish to set d0, such that the SINR ratio, defined as

ρ(d0) =
E[ŜINRk(d0)]
E[SINRk]

(11)

is larger than a prescribed level ρ∗, where the expectation E(·) is taken over H, with randomness

including both path loss and Rayleigh fading.

In the following, we endeavour to derive a closed-form expression of d0 as a function of the target

SINR ratio ρ∗. Let us first introduce two approximations that make our analysis tractable.

Approximation 1: The distances dn,k, for all n, k are mutually independent.

As shown in Fig. 2, we plot the SINR ratio for systems with and without Approximation 1. The

system area is assumed to be a circle with radius 2.5 km. The figure shows that the gap between the

SINR ratio is very small, which validates the independence approximation.

Approximation 2: Conditioning on the distance threshold d0, the matrices Ĥ and H̃ are mutually

independent.

Note that E[ĤH̃H ] = E[H̃ĤH ] = 0, which means that Ĥ and H̃ are uncorrelated. With the

independence approximation, the equality

EH[ŜINRk(d0)] = EĤ

[
EH̃[ŜINRk(d0)]

]
(12)

holds. This approximation will be verified in our numerical results in Fig. 3, which shows that the gap
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between the simulated SINR ratio and the lower bound of ρ(d0) derived based on this approximation

is small.
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Fig. 2. Average SINR ratio vs distance threshold when N = 1000,K = 600.

Based on these two aproximations, we see that Γ = N1I, where N1 = E[
∑K

j=1 Pj|h̃n,j|2] for arbitrary

RRH n. We can now derive a lower bound of ρ(d0) as shown in the following Theorem 1.

Theorem 1. Given a distance threshold d0, a lower bound of SINR ratio ρ(d0) is given by

ρ(d0) ≥ ρ(d0) ,
µ̂N0

µ
(
(µ− µ̂)

∑
j 6=k Pk +N0

) , (13)

where µ̂ =
∫ d0
x=0

x−αf(x)dx and µ =
∫∞
x=0

x−αf(x)dx respectively, and f(x) is the probability density

function of the distance between RRHs and users.

When each user transmits at the same amount of power P , the lower bound is simplified as

ρ(d0) =
µ̂N0

µ (P (µ− µ̂) (K − 1) +N0)
. (14)

Proof: See Appendix.

We notice that ρ(d0) depends on the probability distribution of the distances between mobile users

and RRHs. In [17], distance distributions are derived for different network area shapes, such as circle,

square and rectangle. Take, for example, a circular network area with radius r. In this case, the distance

distribution between two random points is [17]

f(x, r) =


∫ r0
0

2x
r2

(
2
π arccos

(
y
2r

)
− y

πr

√
1− y2

4r2

)
dy, x = r0,

2x
r2

(
2
π arccos

(
x
2r

)
− x

πr

√
1− x2

4r2

)
, r0 < x < 2r,

(15)



10

where r0 is the minimum distance between RRHs and users.

When the network radius r becomes very large, (15) can be approximated as

f̂(x, r) =


r20
r2 , x = r0,

2
r2x, r0 < x < r.

(16)

Substituting (15) or (16) into (14), we obtain the relation between d0 and the SINR requirement ρ∗:

Theorem 2. When d0 is the solution of

N0

∫ d0

x=0

x−αf(x, r)dx =ρ∗
(
P (K − 1)

∫ ∞
x=d0

x−αf(x, r)dx
)∫ ∞

x=0

x−αf(x, r)dx, (17)

where f(x, r) is given in (15), an SINR ratio no smaller than ρ∗ can be achieved.

When the network size is very large (i.e., r � r0), the solution to (17) can be approximated as

d0 =

r2−α +
(αr2−α0 − 2r2−α)(1− ρ∗)N0

2N0 +
2ρ∗(αr2−α0 −2r2−α)(K−1)P

(α−2)r2

− 1
α−2

. (18)

Particularly, when the network size goes to infinity (i.e., r →∞), d0 can be further simplified as

d0 =

(
2N0(α− 2) + 2αrα−20 ρ∗πβKP

αr2−α0 N0(1− ρ∗)(α− 2)

) 1
α−2

. (19)

C. Verifications and Discussions

In this subsection, we first verify our analysis through numerical simulations. We then illustrate the

effect of SINR ratio requirement on the choice of the distance threshold. Finally, we illustrate the

sparsity of the channel matrix and discuss the possibility of reducing estimation overhead based on the

sparsified matrix. Unless stated otherwise, we assume that the minimum distance between RRHs and

users is 1 meter, the path loss exponent is 3.7, and the average transmit SNR at the user side equals to

80dB. That is P
N0

= 80dB.

1) Verification of Theorem 1 and 2: Fig. 3 plots the SINR ratio against the distance threshold, when

K = 1000 and r = 5 km. The simulated SINR ratio with different numbers of RRHs, N , are plotted as

the blue curves and ρ(d0) derived based on the distributions in (15) and (16) are plotted as the red and

black curves, respectively. We can see that the gap between the lower bound based on (15) and that

based on (16) is negligible, which means that the approximation of distance distribution is reasonable.

Moreover, we notice that even though the simulated ratios vary with N , the lower bounds derived based
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Fig. 3. Average SINR ratio vs distance threshold when K = 1000, r = 5km.

0 5 10 15 20
350

400

450

500

550

600

650

Network radius (km) r

D
is

ta
nc

e 
th

re
sh

ol
d 

(m
et

er
) 

d 0

 

 

ρ∗ = 0.95

ρ∗ = 0.9

Fig. 4. Distance threshold d0 vs area radius r when the user density βK = 8/km2.

on Theorem 1 and (15), (16) remain unchanged for different N .

In Fig. 4, we show that the distance threshold converges to a constant when the network radius

r becomes large, as predicted in (19). Here, the user density is βK = 8/km2, and the SINR ratio

requirement is set to ρ∗ = 0.95 and ρ∗ = 0.9, respectively. As expected, the distance threshold converges

quickly to a constant when the network radius increases. Indeed, the convergence is observed even when

the network radius is as small as 5 km for both ρ∗ = 0.9 and ρ∗ = 0.95.

2) SINR Loss versus Distance Threshold: We then discuss the effect of the SINR requirement ρ∗ on

the distance threshold. In Fig. 5, we plot the distance thresholds against ρ∗, when user density βK = 5,

10, and 15/km2, respectively. The network radius is assumed to be very large. We can see that the

distance threshold remains very small for a wide range of ρ∗, i.e., when ρ∗ is smaller than 0.95. There

is a sharp increase in d0 when ρ∗ approaches 1. This implies an interesting tradeoff: if full SINR is to
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be achieved, we do need to process the full channel matrix H at the cost of high complexity when the

network size is large. On the other hand, if a small percentage of SINR degradation can be tolerated,

the channel matrix can be significantly sparsified, leading to low-complexity detection algorithms. We

emphasize that the SINR degradation may not imply a loss in the system capacity. This is because the

overhead of estimating the full channel matrix can easily outweigh the SINR gain. A little compromise

in SINR (say, reducing from 100% to 95%) may yield a higher system capacity eventually.

TABLE I
PERCENTAGE OF NON-ZERO ENTRIES IN THE CHANNEL MATRIX WITH βK = 10/KM2, P

N0
= 80dB AND ρ∗ = 0.95

r (km) 5 10 15 20

d0 (meter) 694 705 707 708

Percentage of non-zero entries (%) 1.93 0.50 0.20 0.13

TABLE II
PERCENTAGE OF NON-ZERO ENTRIES IN THE CHANNEL MATRIX WITH βK = 10/KM2, P

N0
= 80dB AND r = 10KM

ρ∗ 0.90 0.93 0.96 0.99

d0 (meter) 456 572 807 1812

Percentage of non-zero entries (%) 0.21 0.33 0.65 3.28

3) Sparsity of Ĥ: As seen from (18) and (19), for a given ρ∗, the distance threshold d0 converges to

a constant when the network radius r goes to infinity. Since the average number of non-zero channel

coefficients each RRH is approximately πd20βK , the convergence of d0 implies that the number of non-

zero entries per row or per column in Ĥ does not scale with the network radius r in a large C-RAN.
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Moreover, the percentage of non-zero entries in Ĥ is approximately d20
r2

, which can be very small when

r is large. In Table I, we list both d0 and the corresponding percentage of non-zero entries in matrix

Ĥ for various network sizes, with βK = 10/km2 and ρ∗ = 0.95. It can be seen that, when r is large,

d0 does not change much with the network radius r. Moreover, only a small percentage of entries (say

2% ∼ 0.13%) in Ĥ are non-zero for all values of r considered in Table I. In other words, each RRH

only needs to estimate the CSI of a small number of users closest to this RRH. The channel estimation

overhead can be significantly reduced. If a larger SINR loss can be tolerated, the amount of CSI needed

can be further reduced as shown in Table II, which lists the percentages of non-zero entries in Ĥ for

different ρ∗, with βK = 10/km2 and r = 10km. We see that the percentage of non-zero entries can be

reduced from 3.28% to 0.21% by allowing a drop of the the SINR performance from 99% to 90%.

Remark 1. As we can see from the figures, close-to-100% SINR is achievable when the channel matrix

is reasonably sparsified. Notice that sparsifying the channel matrix leads to a significant reduction in

channel estimation overhead. This is because we only need to estimate the small scale fadings of the

matrix entries that have not been discarded. Therefore, matrix sparsification may effectively lead to a

higher system capacity due to the reduction of channel estimation overhead, despite a small decrease

in SINR.

IV. SINGLE-LAYER DYNAMIC NESTED CLUSTERING

With the sparsified channel matrix, we now proceed to present the single-layer DNC algorithm in

this section. As shown in (8), to estimation x is to calculate P
1
2 ĤHÂ−1y. Note that the computational

complexity is O(N3) which is dominated by calculating Â−1. This is because the sparse matrix Ĥ only

contains a constant number of non-zeros per column, and so does P
1
2 ĤH , when the network area goes

to infinity. Suppose the average number of non-zero entries in each column of Ĥ is c. The computational

complexity of multiplying P
1
2 ĤH and Â−1y ∈ CN×1 is only O(cN) and is much smaller than O(N3),

i.e., the computational complexity of inverting Â. Therefore, we focus on reducing the computational

complexity of calculating Â−1y, which is equivalent to solving for ω in the equation:

Âω = y. (20)
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It is obvious that the matrix Â is a sparse matrix. The sparse linear equations, i.e., (20), have been

well studied in multiple areas, such as the numerical linear algebra, graph theory, etc. However, most of

the existing works proposed iterative algorithms, whose accuracy and convergence cannot be guaranteed

[18]. Here, we propose a direct algorithm to obtain an accurate solution of (20). Before go into the

details of the algorithm, we first explain the physical meanings of the entries in Â as follows. According

to the threshold-based channel matrix sparsification approach, the (n, k)th entry of channel matrix Ĥ

is non-zero only when the kth user is in the service area of RRH n, i.e., a circular area with radius

d0 centered around RRH n. Consequently, from the definition of Â in (8), the (n1, n2)th entry in Â is

non-zero only when the service areas of RRH n1 and n2 overlap, and there is at least one user in the

overlapping area.

Consider an ideal case where the whole set of RRHs can be divided into disjoint clusters. While the

RRHs within one cluster have overlapping service areas, those from different clusters do not serve the

same user(s). In this case, the matrix Â becomes block diagonal with each block corresponding to one

cluster. Then, the complexity of calculating Â−1 reduces from O(N3) to O(n3
i ), where ni is the number

of RRHs in a cluster. Note that ni is typically much smaller than N , i.e., the total number of RRHs in

a C-RAN.

In reality, however, adjacent clusters interact and interfere with each other. Particularly, the service

areas of the RRHs in adjacent clusters are likely to overlap. Traditional clustering algorithms [14], [16]

usually ignore such overlapping, resulting in a noticeable performance degradation. In what follows, we

show that by properly labeling the RRHs, matrix Â can be transformed to a DBBD matrix, where the

borders capture the overlaps between clusters. Then, later in Subsection IV-B, the DNC algorithm that

enables parallel computation is presented.

A. RRH Labelling Algorithm

To start with, we give the definition of a Hermitian DBBD matrix as follows:
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Definition 1. A matrix A is said to be a Hermitian DBBD matrix if it is in the following form

A =



A1,1 AH
c1

A2,2 AH
c2

· · ·
...

Am,m AH
cm

Ac1 Ac2 · · · Acm Ac


, (21)

where the diagonal blocks Aii are ni × ni Hermitian matrices, the border blocks Aci are nc × ni

matrices, and the cut-node block Ac is an nc × nc Hermitian matrix.

2d0

r1

r

RRH

Service region of 

RRH

Sub-area center

Width-d0 boundary

Service 

region

RRH

Fig. 6. Geographical RRH grouping in C-RAN.

We divide the entire C-RAN area into disjoint sub-areas as illustrated in Fig. 6. We then separate

each sub-area into a width-d0 boundary and a sub-area center which are colored by light-green and

dark-green respectively. Here, d0 is the distance threshold used in the channel sparification. We see

that RRHs in a sub-area center do not have overlapping service region with RRHs in other sub-areas.

Only RRHs in the width-d0 boundary may have overlapping service region with the RRHs in adjacent

sub-areas. This implies that matrix Â can be transformed to a DBBD matrix with each diagonal block

corresponding to RRHs in a sub-area center and the cut-node block corresponding to RRHs in the

width-d0 boundaries. The border blocks of Â capture the interaction between different clusters due to

interference.
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Algorithm 1 RRH Labelling Algorithm
Input: ax, ay, d0, r1, ln, ∀n
Output: b(n), ∀n

1: Set mx = dax
r1
e, my = day

r1
e and Ci = Φ,∀i ∈ {1, 2, · · · ,mxmy + 1}

2: for n = 1 to N do
3: Setting i = d lxn

r1
e

j = d lyn
r1
e

4: if (i− 1)r1 + d0 ≤ lxn ≤ ir1 − d0 AND (j − 1)r1 + d0 ≤ lyn ≤ jr1 − d0 then
5: C(i−1)mx+j ← {C(i−1)mx+j, n}
6: else
7: Cmxmy+1 ← {Cmxmy+1, n}
8: end if
9: end for

10: Set j = 1
11: for i = 1 to mxmy + 1 do
12: for n = 1 to N do
13: if n ∈ Ci then
14: Label RRH n by j: b(n)← j
15: j ← j + 1
16: end if
17: end for
18: end for

Denote the coordinates of an arbitrary RRH n as follows:

ln = (lxn, lyn), (22)

where lxn ∈ [0, ax], lyn ∈ [0, ay], ax and ay are the side lengths of the whole network. The RRH

labelling algorithm is given in Algorithm 1, where b(n) is the label of RRH n. We first divide the

overall network into disjoint squares with side length r1, and group the RRHs into center clusters or the

boundary cluster according to their locations in steps 2 to 9. Then, the RRHs are numbered based on

the cluster they belong to, as shown in steps 10 to 18. After numbering all the RRHs, we organize the

matrix Â and the signal vector y in the ascending order of the RRHs’ numbers. For example, the first

row of Â corresponds to the RRH with label b(n) = 1. That is, the first row captures the interaction

between that RRH with label b(n) = 1 and all RRHs in the network. The matrix Â now becomes a

DBBD matrix.

Remark 2. In this paper, we assume that the computational complexity of MMSE detection grows

cubically with the number of RRHs. As such, RRH labelling in Algorithm 1 is only based on the locations
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Fig. 7. Architecture of parallel computing of the single-layer DNC alogrithm.

of RRHs, but not on those of the users. However, notice that the actual computational complexity of

MMSE detection is O(M3) instead of O(N3), where M = min(N,K). This is because if K < N , the

estimation of x can be obtained by calculating
(
P

1
2 ĤHĤP

1
2

)−1
P

1
2 ĤHy. Now the complexity of the

matrix inversion becomes O(K3). In our paper, we just take the case that N ≤ K as an example. The

algorithm can be adapted to the case N > K by applying the labelling algorithm to users instead of

RRHs.

B. Single-Layer DNC with Parallel Computing

With Â converted into a DBBD matrix, we are now ready to present the DNC algorithm. In particular,

the diagonal blocks of Â can be processed in parallel, leading to a significant reduction in computation

time.

Suppose that the N × N DBBD matrix Â has m1 diagonal blocks. Then, the linear equation (20)

becomes 

Â1,1 ÂH
c1

Â2,2 ÂH
c2

· · ·
...

Âm1,m1
ÂH
cm1

Âc1 Âc2 · · · Âcm1
Âc





ω1

ω2

...

ωm1

ωc


=



y1

y2

...

ym1

yc


, (23)

where the ni × 1 vectors ωi and yi are sub-vectors of ω and y, respectively. Likewise, ωc and yc are

nc × 1 sub-vectors.
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TABLE III
COMPUTATION TIME OF EACH STEP IN EQUATION (24) AND (25)

step operation complexity/operation total number of operations

1 Â−1i,i O(N3
d,1) m1

2
ÂciÂ

−1
i,i ÂH

ci O( L1

m1
Nb,1Nd,1) m1

ÂciÂ
−1
i,i yi

3
Âc −

∑i=m1

i=1 ÂciÂ
−1
i,i ÂH

ci O(m1N
2
b,1) 1

yc −
∑i=m1

i=1 ÂciÂ
−1
i,i yi

4
(
Âc −

∑i=m1

i=1 ÂciÂ
−1
i,i ÂH

ci

)−1 (
yc −

∑i=m1

i=1 ÂciÂ
−1
i,i yi

)
O(N3

b,1) 1

5 yi − ÂH
ciωc O( L1

m1
Nb,1) m1

6 Â−1i,i

(
yi − ÂH

ciωc

)
O(N2

d,1) m1

The solution to the above equation is given by

ωc =

(
Âc −

i=m1∑
i=1

ÂciÂ
−1
i,i ÂH

ci

)−1(
yc −

i=m1∑
i=1

ÂciÂ
−1
i,i yi

)
, (24)

and

ωi = Â−1i,i

(
yi − ÂH

ciωc

)
, (25)

for all i ∈ {1, 2, · · · ,m1}. From equations (24) and (25), we draw the following conclusions. First,

ωc, the sub-vector corresponding to the cut-node block, can be calculated independently of the other

sub-vector ωi. Second, with ωc obtained from (24), we can calculate each ωi using (25) independently.

The calculation of ωi only involves the ith diagonal block of Â and the corresponding ith border block

Âci. In other words, if we treat each diagonal block as a cluster, then the signals received by each

cluster can be processed in parallel of each other, while the interactions between different clusters are

captured by ωc and the border blocks. Based on the above discussions, Fig. 7 shows the architecture of

the C-RAN BBU pool, where parallel signal processing is carried out. The arrows in Fig. 7 indicate the

data flows between the processing units. As the figure shows, to expedite the calculation of ωc, matrices

ÂciÂ
−1
i,i ÂH

ci and vectors ÂciÂ
−1
i,i yi are calculated at the same time by a number of parallel processing

units and then fed into the central processing units. Then, ωc is calculated in a central processing unit.

The result is fed back into the parallel processing units. Each parallel processing unit is responsible for

processing one cluster and calculating ωi. Specifically, we divide all the operations of signal processing

in the proposed clustering algorithm into six steps as listed in Table III. Steps 1 and 2 are first carried
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out in the parallel processing units. After receiving the results of steps 1 and 2, the central processing

unit performs steps 3 and 4. At last, steps 5 and 6 are carried out in the parallel processing units.

C. Optimizing the Computation Time

Table III2 also lists the detailed computational complexity of each step in the single-layer DNC algo-

rithm, where Nd,1 and Nb,1 are the average size of the diagonal blocks and cut-node block respectively.

m1 is the average number of diagonal blocks. L1 � N is the average number of non-zero entries

per row in Â, which is an increasing function of the distance threshold d0. In practical, L1 does not

increase with N , and is much smaller than N . Then, the total computational complexity in the parallel

processing units is O(N3
d,1). The complexity in the central one is O(N3

b,1).

Before optimizing the computation time, we make some assumptions on the C-RAN BBU pool. We

notice that the size of diagonal block should be determined by the processing power of the corresponding

parallel processing unit. This implies that the sub-areas should have different side lengths, say different

r1. To simplify later discussions, we assume that all the parallel processing units in the BBU pool have

equal processing power. We also notice that the central processing unit should be more powerful than

the parallel ones. Otherwise, the central processing unit is unnecessary. For example, the corresponding

operations, i.e., steps 3 and 4, can be carried out at one of the parallel processing units instead of the

central one, and the total computational complexity can be reduced. Then, we define an unbalanced

processing power ratio % to represent the processing power of the central processing unit and parallel

ones. That is, to perform a same operation, the computation time of the central processing unit is %

times shorter than that of the parallel ones. Denote a log-N ratio as s = logN % for notational brevity.

Without loss of generality, the processing power of a parallel processing unit is normalized to be 1.

Then, the processing power of the central one is N s. As the operations in steps 1, 2, 5 and 6 can be

performed in parallel, the total computation time is O(N3
d,1 +N3

b,1N
−s).

The computation time is an increasing function of the block sizes, Nd,1 and Nb,1. To achieve a short

computation time, Nd,1 and Nb,1 should be as small as possible. However, the block sizes cannot be

adjusted arbitrarily. In fact, for a given r1, there is a fixed ratio between Nd,1 and Nb,1. We denote

2There are several matrix multiplication/inversion algorithms, which lead to various computational complexity. In this paper, we only
take the complexity of some common algorithms as an example.
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this ratio as N z1 =
Nd,1
Nb,1

. Specifically, since Nd,1 and Nb,1 equal to the average number of RRHs in the

sub-area center and the boundaries respectively, the relationship between r1 and the ratio N z1 is

(r1 − 2d0)
2 = 4(r1 − d0)d0

r2

r21
Nz1 , (26)

where βN is the RRH density. By adjusting r1 from 2d0 to r, z1 goes from −1 to 1. Based on (26), we

obtain the following approximations of Nd,1, Nb,1 and m1:

Lemma 1. In large C-RANs, given the block size ratio N z1 , the approximations of Nd,1, Nb,1 and m1

are

Nd,1 ≈
(
4d0β

1
2

NN
1+z1

) 2
3

(27)

Nb,1 ≈
(
4d0β

1
2

NN
1− z12

) 2
3

(28)

m1 ≈ (4d0)
− 2

3 β
− 1

3

N N
1
3−

2
3 z1 (29)

Proof: r1 is the solution of (26), and we have

(4d0r
2Nz)

1
3 ≤ r1 ≤ (4d0r

2Nz)
1
3 + 2d0, (30)

Then, when d0 is much smaller than r1,

Nd,1 = βN (r1 − 2d0)
2 ≈

(
4d0β

1
2

NN
1+z1

) 2
3

, (31)

Nb,1 = Nd,1N
−z1 ≈

(
4d0β

1
2

NN
1− z12

) 2
3

, (32)

m1 =
r2

r21
≈ (4d0)

− 2
3 β
− 1

3

N N
1
3−

2
3 z1 . (33)

After ignoring d0, βN and L1, we obtain the optimal computation time with parallel computing below.

Lemma 2. When the log-N ratio s ≤ 3, the minimum computation time with parallel computing is

O(N2− 2
3
s), with the optimal z1 = − s

3
. When s > 3, the minimum computation time is O(N3−s), with

the optimal z1 = −1.

Remark 3. we notice that when the central processing unit is much more powerful than other units in

the data center, performing all the operations in the central processor can achieve a shorter computation

time than parallel computing. Based on Table III and Lemma 1, the computation time of serial computing

at the central processing unit is O(N
15
7
−s) with z1 = −1

7
.
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Then, based on Lemma 2 and Remark 3, we show the minimum computation time in Proposition 1.

Proposition 1. In C-RAN with parallel processing units and a central processing unit, when the log-N

ratio s ≤ 3
7
, the optimal computation time, O(N2− 2

3
s), is achieved by parallel computing. When s > 3

7
,

the optimal computation time, O(N
15
7
−s), is achieved by performing all the operations at the central

processing unit in serial.
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Fig. 8. Order of computation time vs log-N ratio s.

We also show the effect of s on the total computation time in Fig. 8, where the order of computation

time is the maximum exponent of the computation time function. For example, the order of O(N2− 2
3
s)

is 2 − 2
3
s. We see that the order of the computation time is reduced with the increase of s. However,

obviously, the price of the central processing unit is increased with the increase of s. Then, Fig. 8

illustrates a trade-off between the computation time and the economic cost. This trade-off can serve

as a guideline during the deployment of BBU pool. For example, when the economic cost is a major

concern in the C-RAN system or a long computation time can be tolerated, processing units with low

processing power, which leads to a low price, should be deployed. When the computation time is more

important than cost, more powerful processing units should be selected.

Remark 4. So far, we have assumed that there are always enough parallel processing units, regardless

of r1 or z1. In this case, we only need to optimize the sizes of diagonal blocks and the cut-node block

and ignore the number of blocks. Instead, when the number of parallel processing units is limited, the

number of blocks, m1, also has an effect on the total computation time. Based on Lemma 1, m1 can

also be adjusted by r1 or z1. In this way, we can balance the computation time with limited availability
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of processing units. More detailed analysis, however, is out of the scope of this paper.

In this section, we have shown that the simple RRH labelling algorithm allows us to easily optimize

the size of diagonal blocks , which can be directly interpreted as the size of clusters in large C-RANs.

The result further provides an important guideline as to the architecture design of the C-RAN BBU

pool, including the number of processing units, the choice between parallel and serial processing, the

allocation of processing power among BBUs, etc.

V. MULTI-LAYER DNC ALGORITHM

In the preceding section, we propose a single-layer DNC algorithm, which reduces the total compu-

tation time from O(N3) to O(N2). In this section, we propose a multi-layer DNC algorithm to further

reduce the computation time.

0 1000 2000 3000 4000 5000 6000 7000 8000

0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. 9. Â in a two-layer nested DBBD form after the second time RRH labelling, with r1 = 15km, r2 = 8km, where N = 8100, r =
30km, d0 = 500meter.

We notice that the computation time of the parallel processing units in the single-layer DNC algorithm

is dominated by calculating Â−1i,i . Interestingly, a close study indicates that the diagonal blocks Âi,i are

themselves sparse matrices. This is because the RRHs in the same cluster only have interactions with

their neighboring RRHs instead of the whole cluster. This implies that Âi,i can be further permuted

to a DBBD form, and the computation time of calculating Â−1i,i can be reduced. As such, matrix Â

becomes a two-layer nested DBBD matrix. An example of such a matrix is shown in Fig. 9.

Fig. 10 illustrates the RRH labelling strategy that turns Âi,i into a DBBD form. In particular, the

RRHs in a cluster is grouped into sub-clusters. For example, for the top-left square, the RRHs at the
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Fig. 10. Geographical RRH grouping in C-RAN.

dark green boundary area are clustered to the sub-border, and the RRHs at the center area (the white

area) are clustered to diagonal blocks. Intuitively, one can minimize the computation time by balancing

the sizes of different blocks. This is the focus of our study in the remainder of this section.

Note that by repeating the process, Â can be further permuted into a multi-layer nested DBBD matrix.

For simplicity, we focus on the two-layer DNC algorithm in this section. The results, however, can be

easily extended to the multi-layer case, as briefly discussed at the end of the section.

A. Multi-Layer DNC Algorithm with Parallel Computing

As discussed in the previous section, each parallel processor in Fig. 7 needs to calculate Â−1i,i . In the

following, we show how Â−1i,i can be computed in parallel, if Â is already a two-layer nested DBBD

matrix with diagonal blocks Âi,i being DBBD as well. For notational brevity, we denote the diagonal

block Âi,i ∈ CL×L by B. Then, inverting B is equivalent to solving the following system:

B1,1 BH
c1

B2,2 BH
c2

· · ·
...

Bm,m BH
cm

Bc1 Bc2 · · · Bcm Bc





X1

X2

...

Xm

Xc


=



I1

I2

...

Im

Ic


, (34)
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Fig. 11. Nested architecture of parallel computing of the two-layer DNC algorithm.

where X =
[
XT

1 ,X
T
2 , · · · ,XT

m,X
T
c

]T and I =
[
IT1 , I

T
2 , · · · , ITm, ITc

]T , with Xi, Ii ∈ Cni×L, and Xc,

Ic ∈ Cnc×L.

The columns in matrix X is given below:

Xc =

(
Bc −

i=m∑
i=1

BciB
−1
i,i BH

ci

)−1 [
Bc1B

−1
1,1, · · · ,Bc1B

−1
m,m, I

]
, (35)

Xi = B−1i,i
(
Ii −BH

ciXc

)
. (36)

Similar to equations (24) and (25), parallel computing can be adopted in calculating (35) and (36).

Combining the parallel computing of calculating Â−1i,i in the second layer and that of solving ω in the

first layer, a nested parallel computing architecture is illustrated in Fig. 11. We first need to calculate

Â−1i,i , i.e. B−1. Since the diagonal blocks in Â are in DBBD forms, the calculation of B−1, can be split

and allocated to a number of parallel processing units. As listed in Table IV, the calculation of B−1

(i.e. step 1 in Table III) is divided into six steps. Steps 1.1 and 1.2 are first carried out in the level-3

processing units. The results are fed back into the level-2 processing units, which are responsible for

performing steps 1.3 and 1.4. Then, steps 1.5 and 1.6 are carried out in the level-3 parallel processing

units. Then, similar to the single-layer DNC algorithm, the level-2 processing units calculate matrices

ÂciÂ
−1
i,i ÂH

ci and vectors ÂciÂ
−1
i,i yi, and the results are fed into the level-1 processing unit. Then, ωc is
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TABLE IV
COMPUTATION TIME OF EACH STEP IN EQUATION (35) AND (36)

step operation complexity/operation total number of operations

1.1 B−1i,i O(N3
d,2) m2

1.2
BciB

−1
i,i BH

ci O( L2

m2
Nb,2Nd,2) m2

BciB
−1
i,i Ii

1.3
Bc −

∑i=m2

i=1 BciB
−1
i,i BH

ci O(m2N
2
b,2) 1

Ic −
∑i=m2

i=1 BciB
−1
i,i Ii

1.4
(
Bc −

∑i=m2

i=1 BciB
−1
i,i BH

ci

)−1 (
Ic −

∑i=m2

i=1 BciB
−1
i,i Ii

)
O(N2

b,2Nd,1) 1

1.5 Ii −BH
ciXc O( L2

m2
Nb,2Nd,1) m2

1.6 B−1i,i
(
Ii −BH

ciXc

)
O(N2

d,2Nd,1) m2

calculated by the level-1 processing unit, and ωi is calculated by the level-2 processing unit.

B. Optimizing the Computation Time

The computation time of each step in calculating B−1 is listed in Table IV, where Nd,t and Nb,t

are the average diagonal block size and the cut-node block size in the tth layer, respectively, m2 is the

average number of diagonal blocks in B, and L2 � Nd,1 is the average number of non-zero entries per

row in B. Similarly to the single-layer DNC algorithm, we assume there exist enough processing units

in each level, and the processing units in the same level have the same processing power. Moreover,

the processing units in each level should be more powerful than those in higher levels. For example,

processing units in Level 1 and 2 are more powerful than those in Level 3. Otherwise, we can remove

Level 1 and 2 by shifting all the corresponding operations to Level 3. The reason is that the total number

of processing units in Level 3 is always greater than that in Level 1 and 2. Then, we define an unbalanced

processing power ratio %t to represent the processing power ratio of processing units in the tth level

and that in Level 3, where t = 1 or 2. Denote the corresponding log-N ratio as st = logN %t. Following

the single-layer DNC algorithm, we can adjust the side length rt in the RRH labelling algorithm for

different types of data centers as in the single-layer DNC algorithm. We first define the block-size ratio

of a diagonal block and the cut-node block in the tthlayer as N zt , i.e., N zt =
Nd,t
Nb,t

. By adjusting rt, N zt

goes from N−1d,t−1 to Nd,t−1. Then, the upper bounds of the diagonal block size and the cut-node block

size in each layer is given below.
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Lemma 3. In large C-RANs, given the block size ratio N zt in the tth layer, the side length rt is the

solution of equation (rt − 2d0)
2 = 4(rt − d0)d0 r

2

r2t
N zt
d,t−1. The approximations of Nd,t, Nb,t and mt are

Nd,t ≈
(
4d0β

1
2

NNd,t−1N
zt
) 2

3

, (37)

Nb,t ≈
(
4d0β

1
2

NNd,t−1N
− zt2

) 2
3

, (38)

mt ≈
(
(4d0)

−2β−1N Nd,t−1N
−2zt

)− 1
3 . (39)

Similar to the single-layer DNC algorithm, we find that when the processing units in Level 1 and

Level 2 are much more powerful than those in Level 3, parallel computing is not the most efficient

way. Here, we list three computing modes.

• Mode 1: Steps 1.1, 1.2, 1.5, and 1.6 are executed at the level-3 processing units, steps 1.3, 1.4, 2,

5 and 6 are executed at the level-2 processing units, and steps 3 and 4 are carried out at the level-1

processing unit.

• Mode 2: Steps 1, 2, 5 and 6 are executed at the level-2 processing units, and steps 3 and 4 are

executed at the level-1 processing unit.

• Mode 3: All the steps are executed at the level-1 processing unit in serial.

Then, we conclude the computing strategy of the two-layer DNC algorithm for different s1 and s2

in Proposition 2.

Proposition 2. For a three-level BBU pool with log-N ratio s1 and s2,

• when s1 + 7s2 < 3 and 3s1 − 2s2 <
4
3
, choose mode 1, and the minimum computation time is

O(N
42
23
− 14

23
s1− 6

23
s2) by setting z1 = 4

23
− 9

23
s1 + 6

23
s2 and z2 = −1

2
s2;

• when s1 + 7s2 ≥ 3 and s1 − s2 < 1
3
, choose mode 2, and the minimum computation time is

O(N
15
8
− 5

8
s1− 3

8
s2) with z1 = 1

8
− 3

8
s1 + 3

8
s2 and z2 = − 3

16
+ 1

16
s1 − 1

16
s2;

• when 3s1 − 2s2 ≥ 4
3

and s1 − s2 ≥ 1
3
, choose mode 3, and the minimum computation time is

O(N2−s1) with z1 = 0 and z2 = −1
6
.

Repeating the parallel computing for the diagonal blocks, we can extend the DNC algorithm to multi-

layer ones. We notice that the multi-layer DNC algorithm is more flexible for different data centers than

the single-layer DNC algorithm. Multiple central processing units are allowed in the multi-layer DNC

algorithm. Moreover, the total computation time is reduced in the multi-layer algorithm. Fig. 12 shows
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Fig. 12. Order of computation time vs log-N ratio s1 and s2.

the order of the computation time versus s1 and s2 for two-layer DNC algorithm. When s1 = s2 = 0,

the total computation time of the single-layer DNC algorithm is O(N2) while the computation time of

the two-layer one is only O(N
42
23 ). It is not difficult to see that the computation time can be further

reduced when more layers are introduced.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed the DNC algorithm, based on which, both the channel estimation overhead

and the computational complexity of the uplink signal processing can be significantly reduced. Moreover,

our algorithm serves as a unified theoretical framework for dynamic clustering of C-RAN. By introducing

a distance threshold, RRHs are grouped into disjoint center clusters or a boundary cluster based on their

locations. The boundary cluster captures the interaction between different center clusters, which avoids

the performance loss caused by conventional clustering. In addition, the operations in center clusters

can be performed in parallel. We show that both the size and the number of the center clusters as well

as the size of the boundary cluster can be easily adjusted. This further allows to flexibly balance the

computation time, the number of parallel BBUs required, the allocation of computational power among

BBUs, etc. Therefore, the DNC algorithm is adaptive to various architectures of the BBU pool.

It is obvious that the proposed DNC algorithm leads to a significant reduction in channel estimation

overhead. That is because only the small scale fadings of the matrix entries that have not been discarded

need to be estimated. However, in the proposed algorithm, we have not explicitly considered detailed
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channel estimation steps. In the future work, we will derive an effective algorithm to estimate the

sparsified channel matrix with minimum channel estimation overhead and high estimation accuracy.

In addition, we notice that, even though there is a small decrease in SINR caused by channel matrix

sparsification, the effective system capacity may increase due to the reduction of channel estimation

overhead. Based on this, we will design optimization algorithms to find the optimal distance threshold

that maximizes the effective system capacity.

APPENDIX: PROOF OF THEOREM 1

E
[
ŜINRk (d0)

]
(40a)

=E

Pk
(
|v̂Hk ĥk|2 + v̂Hk

(
ĥkh̃

H
k + h̃kĥ

H
k + h̃kh̃

H
k

)
v̂k

)
v̂Hk

(∑
j 6=k Pjhjh

H
j +N0I

)
v̂k

 (40b)

≥EĤEh̃j ,∀j 6=k

 Pk|v̂Hk ĥk|2

v̂Hk

(∑
j 6=k Pjhjh

H
j +N0I

)
v̂k

 (40c)

≥EĤ

 Pk|v̂Hk ĥk|2

v̂Hk

(∑
j 6=k Pjĥjĥ

H
j +N1I +N0I

)
v̂k

 (40d)

=EH

[
1

1− v̂Hk ĥk
− 1

]
(40e)

=EĤ

Pktr

ĥkĥ
H
k

∑
j 6=k

Pjĥjĥ
H
j +N1I +N0I

−1

 (40f)

=Eĥj ,∀j 6=k

Pktr

µ̂I

∑
j 6=k

Pjĥjĥ
H
j +N1I +N0I

−1

 (40g)

=Pkµ̂E

tr

∑
j 6=k

Pjĥjĥ
H
j +N1I +N0I

−1
 , (40h)

where (40d) holds due to the Jensen’s inequality.

Likewise, we obtain

E [SINRk] = PkµE

tr

∑
j 6=k

Pjhjh
H
j +N0I

−1
 . (41)
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Then, the SINR ratio becomes

ρ(d0) (42a)

≥
Pkµ̂Eĥj ,∀j 6=k

[
tr
(∑

j 6=k Pjĥjĥ
H
j +N1I +N0I

)−1]
PkµEhj ,∀j 6=k

[
tr
(∑

j 6=k Pjhjh
H
j +N0I

)−1] (42b)

≥
Pkµ̂Ehj ,∀j 6=k

[
tr(
∑
j 6=k Pjhjh

H
j +N1I +N0I)

−1
]

PkµEhj ,∀j 6=k

[
tr
(∑

j 6=k Pjhjh
H
j +N0I

)−1] (42c)

=
µ̂

µ
E

[∑N
i=1

1
λi+N1+N0∑N

i=1
1

λi+N0

]
(42d)

≥ µ̂N0

µ(N1 +N0)
, (42e)

where λ1, λ2, · · · , λN are the eigenvalues of the positive semidefinite matrix
∑

j 6=k Pjhjh
H
j . (42e) holds

since N1 ≥ 0, N0 ≥ 0 and λi ≥ 0,∀i.

Substituting N1 = (µ− µ̂)
∑

j 6=k Pk into (42e), we have

ρ(d0) ≥
µ̂N0

µ
(
(µ− µ̂)

∑
j 6=k Pk +N0

) . (43)

When the users transmit equal power, i.e., P1 = P2 = · · · = PK = P , we have

ρ(d0) ≥
µ̂N0

µ ((µ− µ̂)(K − 1)P +N0)
. (44)
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