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Abstract

This paper studies multi-user wireless powered communication networks, where energy constrained

users charge their energy storages by scavenging energy of the radio frequency signals radiated from a

hybrid access point (H-AP). The energy is then utilized for the users’ uplink information transmission

to the H-AP in time division multiple access mode. In this system, we aim to maximize the uplink

sum rate performance by jointly optimizing energy and time resource allocation for multiple users in

both infinite capacity and finite capacity energy storage cases. First, when the users are equipped with

the infinite capacity energy storages, we derive the optimaldownlink energy transmission policy at the

H-AP. Based on this result, analytical resource allocationsolutions are obtained. Next, we propose the

optimal energy and time allocation algorithm for the case where each user has finite capacity energy

storage. Simulation results confirm that the proposed algorithms offer about30 % average sum rate

performance gain over conventional schemes.

I. INTRODUCTION

Recently, radio frequency (RF) signals have been considered as a new energy source for

electronic equipments [1] [2]. Unlike energy harvesting (EH) techniques based on natural energy

sources such as solar or wind, the RF signal based EH systems can charge energy demanding
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devices whenever it is necessary. In wireless communication networks, several researches in

[3]–[7] have exploited the RF signals for both wireless information transmission (WIT) and

wireless energy transfer (WET), and provided simultaneouswireless information and power

transfer (SWIPT) protocols in various system configurations. In the SWIPT systems, most works

were confined to downlink networks, and aimed to maximize both system performance (e.g. data

rate) and the harvested energy.

Wireless powered communication network (WPCN) [8]–[15] isanother technique which adopts

the WET concept in traditional wireless communication systems. In general, the WPCN systems

consist of two phases. First, in a downlink phase, devices charge their energy storages such as

rechargeable batteries or supercapacitor [16] by collecting the energy of the RF signal radiated

from an access point (AP). Second, in an uplink phase, the devices transmit their information

signals to the AP by utilizing the energy saved in the energy storages.

In [8], the WPCN protocol was proposed for a single antenna system where a hybrid-AP

(H-AP) broadcasts the energy signal to multiple users in thedownlink phase and decodes the

information in the uplink phase. To facilitate multi-user detection at the H-AP, the authors in

[8] employed a dynamic time division multiple access (TDMA)approach where time slots are

optimally allocated to each user for maximizing the uplink throughput. By applying multiple

antenna techniques [17]–[20] to the WPCN systems, the optimal WET and WIT beamforming

vectors were derived in [9] to maximize the minimum throughput among all users. In [10], a

large scale multiple antenna H-AP scenario was considered in the WPCN under an imperfect

channel estimation assumption. Also, the WPCN with full duplex H-AP protocol was presented

in [11] and [12], where the downlink WET and the uplink WIT areperformed at the same time to

enhance the system performance. The authors in [11] proposed joint energy and time allocation

algorithms for maximizing the uplink sum rate for both perfect and imperfect self interference

cancellation (SIC) scenarios. With infinite capacity energy storages at all users, [11] considered a

non-causal energy system which assumes that the energy to be harvested in the future is available

at the current time slot. However, this non-causal energy system may not be practical if users

have finite capacity energy storages, since the energy wouldbe insufficient for the users’ uplink

transmission. Furthermore, for the case of small devices such as sensor nodes which typically

store the harvested energy in supercapacitors, the non-causal energy scenario is difficult to realize

due to the supercapacitor’s high self discharge property [12] [16]. To overcome this issue, [12]
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investigated acausal energy system for full-duplex WPCN assuming the perfect SIC and the

infinite capacity energy storage scenarios. The authors in [12] optimized time allocation for

the sum rate maximization and total transmission time minimization problems under uniform

power allocation. For a single-user WPCN with an orthogonalfrequency division multiple access

technique, the optimal downlink and the uplink power allocation were obtained in [14].

In this paper, we study resource allocation problems in the multi-user WPCN where a H-

AP broadcasts the energy RF signal to users in the downlink, and receives the users’ uplink

information signals by applying a dynamic TDMA approach. Unlike the conventional scheme in

the non-causal energy WPCN [11], this paper considers practical causal energy systems where

the users can utilize only the energy harvested at the past time slots for their uplink transmissions.

In this configuration, we generalize the equal power allocation scheme in [12], and propose joint

energy and time allocation methods which maximize the uplink sum rate performance in both

the infinite and the finite capacity energy storage cases.

First, for the case where each user is equipped with an infinite capacity energy storage, we

present an optimal downlink energy transmission policy at the H-AP. In this policy, the H-AP

transfers the RF signals with the maximum power for the first few time slots, and then is turned

off for the remaining time slots. Based on this result, an analytical solution for the optimal energy

and time allocation is obtained. Simulation results confirmthat the proposed joint optimal energy

and time allocation method offers a significant performancegain compared to the equal power

allocation scheme in [12] which optimizes only the time durations. Also, we show that the

proposed method which exploits the casual energy achieves almost identical average sum rate

performance to the ideal non-causal energy system [11].

Next, we consider a practical finite capacity energy storagecase where the existing methods

for the infinite energy storage case in [11] and [12] cannot bedirectly applied due to energy

overflows at users. In this case, we propose an optimal resource algorithm which jointly computes

the energy and time allocation. From simulation results, itis verified that the proposed optimal

algorithm substantially improves the uplink sum rate performance compared to a conventional

equal resource allocation scheme.

The paper is organized as follows: In Section II, we introduce the system model and formulate

the problem for multi-user WPCN. Section III provides an analytical energy and time allocation

solution for the infinite energy storage case. Also, for the finite energy storage case, the optimal
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Fig. 1. Schematic diagram for multi-user WPCN

resource allocation algorithm is provided in Section IV. Section V evaluates the average sum

rate performance of the proposed algorithms through numerical simulations. Finally, the paper

is terminated with conclusions in Section VI.

II. SYSTEM MODEL

We consider aK-user WPCN in Figure 1 where a H-AP transfers the wireless energy to

single antenna users in the downlink, and at the same time, receives the users’ information

signals in the uplink. The H-AP has two antennas, each of which is dedicated for the downlink

WET and for the uplink WIT, respectively. It is assumed that the downlink WET and the uplink

WIT are scheduled over orthogonal frequency bands, i.e., the WET and the WIT signals do

not interfere with each other as in [12] and [14]. In this configuration, the H-AP has a stable

and fixed energy supply with average and peak power constraint PA and PP , respectively,1

while useri (i = 1, · · · , K) is powered by an energy storage with capacityBi which is empty

before transmission. To communicate with the H-AP, users first charge their energy storages by

collecting the energy of the RF signal radiated from the H-APin the downlink, and then utilize

it for their uplink information transmission.

1Throughout this paper, we assume that the peak power constraint at the H-AP is larger than the average power constraint,

i.e., PP > PA, without loss of generality.
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Fig. 2. Frame structure forK-user WPCN

The frame structure for theK-user WPCN systems is illustrated in Figure 2. For convenience,

we assume that the total duration of the frame is equal to1 without loss of generality. The frame

is divided intoK + 1 time slots. During all theK + 1 time slots, the H-AP keeps broadcasting

the RF signal to charge the users’ energy storages in the downlink. For the uplink WIT, the

TDMA approach is employed such that useri transmits its information to the H-AP in thei-th

time slot of durationτi for i = 1, · · · , K. Since the0-th time slot of durationτ0 is not scheduled

to any user, it is dedicated for the downlink WET. In this setting, we consider thecausal energy

scenario [12] where useri can only use the energy of the RF signal received at the past time

slots, i.e., the time slots0 ≤ j ≤ i− 1, since the energy of the future RF signals is not available

at the current time slot.

Assuming frequency-flat fading, the downlink and uplink channel coefficients between the H-

AP and useri are respectively defined ashD,i andhU,i for i = 1, · · · , K, which are assumed to be

constant during the transmission frame. In addition, we assume that all the channel coefficients

are perfectly known at the H-AP. The received signalyi,j at useri in the j-th time slot with

j 6= i is expressed as

yi,j =
√
pD,jhD,ixj + ni,j,

wherepD,j represents the downlink transmit power of the H-AP at thej-th time slot,xj stands
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for the energy symbol withE[|xj |2] = 1, andni,j ∼ CN (0, ς2i,j) indicates the additive Gaussian

noise at useri.

Then, the harvested energy from the signalyi,j in the j-th time slot is given by

Ei,j = ηiE[|yi,j|2] = ηigD,ipD,jτj , (1)

whereηi ∈ [0, 1] denotes the energy harvesting efficiency of useri, and gD,i = |hD,i|2 is the

downlink channel gain. In (1), we ignore the noise power since it is practically much smaller

compared to the signal power [3].

In the uplink information transfer, at thei-th time slot, only useri transmits its information

symbol si ∼ CN (0, 1) to the H-AP by using the energy charged in the energy storage.The

received signal at the H-APri in the i-th time slot can be written as

ri =
√
pU,ihU,isi + zi, (2)

where pU,i represents the uplink transmit power of useri and zi ∼ CN (0, σ2
i ) indicates the

additive Gaussian noise.

Due to the energy storage constraint at useri, the uplink powerpU,i is upper bounded by

pU,i ≤
Bi

τi
. (3)

Also, since a user can only utilize the energy harvested during the past time slots, it follows

pU,i ≤
1

τi

i−1
∑

j=0

Ei,j =
ηigD,i

τi

i−1
∑

j=0

pD,jτj . (4)

Let us define the downlink and uplink transmit energy asεD,i = τipD,i and εU,i = τipU,i,

respectively. Then, the achievable rate of useri is obtained as

Ri = τi log

(

1 +
gU,i
σ2
i

εU,i
τi

)

,

wheregU,i = |hU,i|2 is the uplink channel gain.

In this paper, we investigate the optimal energy and time allocation which maximizes the
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uplink sum rate. The uplink sum rate maximization problem can be formulated as

max
{τi},{εD,i},{εU,i}

K
∑

i=1

Ri (5)

subject to
K
∑

i=0

εD,i ≤ PA, (6)

εD,i ≤ τiPP , i = 0, · · · , K, (7)
K
∑

i=0

τi ≤ 1, (8)

εU,i ≤ Bi, i = 1, · · · , K, (9)

εU,i ≤ ηigD,i

i−1
∑

j=0

εD,j, i = 1, · · · , K, (10)

where (6) and (7) stand for the average and peak power constraint at the H-AP, respectively,

and (8) denotes the total time constraint, and constraint (9) and (10) come from (3) and (4),

respectively.

It is worth noting that the authors in [12] considered a uniform downlink power allocation

pD,i = εD,i/τi = PA, ∀i, with the infinite capacity energy storageBi = ∞, ∀i, for the casual

energy WPCN systems. Also, [11] studied joint energy and time allocation for the infinite

capacity energy storage case in the non-casual systems, i.e., constraints (9) and (10) were not

considered. Therefore, existing resource allocation methods in [11] and [12] cannot be directly

employed to solve problem (5). In the following sections, weprovide the optimal methods to

solve (5) in two different cases. First, for the infinite capacity energy storage case, an analytical

solution will be obtained. Second, we consider the practical finite capacity energy storage case,

and propose an algorithm to solve (5) optimally.

III. I NFINITE CAPACITY ENERGY STORAGE CASE

In this section, we investigate the optimal solution of (5) with infinite capacity energy storages

at all users. By settingBi = ∞ in problem (5), the energy storage constraint (9) is removed.

Since the uplink rateRi increases withεU,i, the optimal uplink energyε⋆U,i for i = 1, · · · , K is

given by the maximum in (10) as

ε⋆U,i = ηigD,i

i−1
∑

j=0

ε⋆D,j,
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whereε⋆D,i indicates the optimal downlink energy allocation.

Substituting this into (5), the problem can be recast to

max
{τi},{εD,i}

K
∑

i=1

τi log

(

1 + γi

∑i−1
j=0 εD,j

τi

)

(11)

subject to
K
∑

i=0

εD,i ≤ PA,

K
∑

i=0

τi ≤ 1,

εD,i ≤ τiPP , i = 0, · · · , K,

whereγi = ηigD,igU,i/σ
2
i . Before solving problem (11), we present the following lemma which

is useful for identifying an analytical solution for (11).

Lemma 1: The optimally allocated time{τ ⋆i }Ki=0 for problem (11) is always greater than0,

i.e., τ ⋆i > 0 for i = 0, · · · , K.

Proof: See Appendix A

By using Lemma 1, we first address the optimal downlink energyallocation policy{ε⋆D,i}Ki=0

in Section III-A. Next, the computation of the optimal time allocation {τ ⋆i }Ki=0 will be given in

Section III-B.

A. Optimal Downlink Energy Allocation

In order to obtain{ε⋆D,i}Ki=0, we introduce auxiliary variablesAi =
∑i

j=0 εD,j for i = 0, · · · , K
in problem (11), which represent the transmitted energy until the i-th time slot. Then, problem

(11) can be rewritten as

max
{τi},{Ai}

K
∑

i=1

log

(

1 + γi
Ai−1

τi

)

(12)

subject to
K
∑

i=0

τi ≤ 1,

Ai − Ai−1 ≤ τiPP , i = 0, · · · , K,

Ai−1 ≤ Ai, i = 0, · · · , K + 1, (13)

whereA−1 , 0, AK+1 , PA, and constraint (13) is added due to the definition ofAi.

Since the objective in (12) is an increasing function ofAi, the optimalA⋆
i for problem (12)

is determined by its maximum value as

A⋆
i = max{A⋆

i+1, A
⋆
i−1 + τ ⋆i PP}, (14)
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whereA⋆
−1 , 0 and A⋆

K+1 , PA. Based on (14), we provide the following theorem on the

optimal downlink energy allocation solution in the infinitecapacity energy storage case.

Theorem 1: For an arbitrarily givenL ∈ [0, K], the optimal downlink energy allocation of

problem (11) is expressed as

ε⋆D,i =























τ ⋆i PP , for i = 0, 1, · · · , L− 1, (15)

PA − PP

L−1
∑

j=0

τ ⋆j , for i = L, (16)

0, for i = L+ 1, · · · , K, (17)

whereL indicates the largest time slot index satisfyingε⋆D,L > 0. The computation of the optimal

value ofL will be addressed later in Section III-B.

Proof: By subtractingA⋆
i−1 in both sides of (14), it follows

ε⋆D,i = max{ε⋆D,i + ε⋆D,i+1, τ
⋆
i PP}. (18)

By using this result, we will prove (15), (17), and (16) sequentially. Consider an arbitrary time

slot indexS such that the optimal downlink energy is positive, i.e.,ε⋆D,S > 0. Then, we first

showε⋆D,i = τ ⋆i PP for i = 0, · · · , S−1 by contradiction. From (18), the optimalε⋆D,S−1 is given

by eitherε⋆D,S−1 + ε⋆D,S or τ ⋆S−1PP . If ε⋆D,S−1 = ε⋆D,S−1 + ε⋆D,S, then we haveε⋆D,S = 0, which

contradicts the factε⋆D,S > 0. Therefore, the optimal energy for the(S−1)-th slot is obtained as

ε⋆D,S−1 = τ ⋆S−1PP . Utilizing this result, it is easy to proveε⋆D,i = τ ⋆i PP for i = 0, 1, · · · , S − 2,

because the optimalτ ⋆i is positive as presented in Lemma 1.

Next, suppose an arbitrary time slot indexM (M ≤ K) satisfyingε⋆D,M = 0. Then, we now

show ε⋆D,i = 0 for i = M + 1,M + 2, · · · , K. From (18), it followsmin{ε⋆D,M+1, τ
⋆
MPP} = 0.

Since this condition must be fulfilled with any positiveτ ⋆M , the optimal downlink energy at the

(M +1)-th time slot is zero. Thus, it can be shown thatε⋆D,i = 0 for i = M +2,M +3, · · · , K.

Since the optimal downlink energyε⋆D,i for i = 0, 1, · · · , L− 1 is always positive, the time slot

indexM must be larger thanL, i.e.,M ≥ L+ 1. Then, by settingS = L andM = L+ 1, we

verify (15) and (17).

Now, the remaining part is to prove (16). One can check that
∑K

i=0 ε
⋆
D,i = PA is true since

the objective function is non-decreasing with respect to individual {εD,i}Ki=0. In other words, if
∑K

i=0 εD,i < PA, then a larger uplink sum rate can be achieved by increasing someεD,i. Hence,

to satisfy the equality
∑K

i=0 ε
⋆
D,i = PA with (15) and (17), we have (16). Theorem 1 is finally

proved.
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Fig. 3. Optimal and suboptimal downlink energy allocation policies with infinite capacity energy storage

Theorem 1 implies that for the firsti = 0, 1, · · · , L− 1 time slots, the H-AP should transmit

the energy RF signal with the maximum energyε⋆D,i = τ ⋆i PP , and for theL-th time slot, the

remaining energyPA−PP

∑L−1
j=0 τ ⋆j is utilized. Then, the H-AP is turned off until the end of the

frame. This result can be explained as follows: Due to the energy causality assumption, users can

only leverage the energy harvested in the past time slots. Therefore, as shown in Figure 3 (a), it

is beneficial for the H-AP to consume all available energyPA as soon as possible so that more

energy can be transferred to users. Otherwise, the overall harvested energy of all users decreases

as illustrated in Figure 3 (b), and thus the sum rate performance would be degraded. Thanks

to Theorem 1, we can obtain the optimal energy allocation foran arbitrarily givenL. In the

following, we proceed to determine the optimal time allocation {τ ⋆i } and the optimal time slot

indexL⋆.

B. Optimal Time Allocation

Based on Theorem 1, the problem in (11) for a givenL can be reformulated as

RL , max
{τi}

L
∑

i=1

τi log

(

1 + γiPP

∑i−1
j=0 τj

τi

)

+
K
∑

i=L+1

τi log

(

1 + γi
PA

τi

)

(19)

subject to
K
∑

i=0

τi ≤ 1,

whereRL indicates the optimal value of problem (19). To solve the problem efficiently, we

introduce an auxiliary variableT which splits the total time constraint in (19) into
∑L

i=0 τi ≤ T
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and
∑K

i=L+1 τi ≤ 1− T .

With givenT andL, the above problem can be decoupled into the following two subproblems:

R(1)
L (T ) , max

{τi}

L
∑

i=1

τi log

(

1 + γiPP

∑i−1
j=0 τj

τi

)

(20)

subject to
L
∑

i=0

τi ≤ T,

and

R(2)
L (T ) , max

{τi}

K
∑

i=L+1

τi log

(

1 + γi
PA

τi

)

(21)

subject to
K
∑

i=L+1

τi ≤ 1− T,

whereR(1)
L (T ) andR(2)

L (T ) denote the optimal values of problems (20) and (21), respectively.

Then, the optimalT ⋆ andL⋆ are obtained by the maximum point ofR(1)
L (T )+R(2)

L (T ). Hence,

we should first investigateR(1)
L (T ) andR(2)

L (T ) for given T andL, and then the optimalT ⋆

andL⋆ will be determined.

1) Optimal Solutions for (20) and (21): We first present a solution for subproblem (20). One

can show that the optimal solution of (20) is given by [12]

τ ⋆i =
T −∑L

j=i+1 τ
⋆
j

1 + xi

, for i = 0, · · · , L. (22)

It is worth noting thatτ ⋆i in (22) is only affected by its future values{τ ⋆j }Lj=i+1, and thus it can

be calculated in the reverse order. Here,xi for i = 0, 1, · · · , L is defined as

xi =







0, for i = 0,

1
γiPP

(

γiPP−1
wi

− 1
)

, for i = 1, · · · , L,
(23)

wherewi = W
(

(γiPP−1) exp(−1−∑i−1
j=1

γjPP

1+γjPP xj
)
)

andW(·) represents the Lambert W func-

tion [21]. Sincexi only depends on the previous values{xj}i−1
j=1, we can calculatex1, x2, · · · , xL

sequentially.

Next, we solve the second subproblem (21). The optimal time allocation {τ ⋆i }Ki=L+1 satisfies

the following condition [8]:

γL+1

τ ⋆L+1

=
γL+2

τ ⋆L+2

= · · · = γK
τ ⋆K

= C, (24)
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where the constantC is obtained asC =
∑K

j=L+1
γj

1−T
since the equality

∑K

i=L+1 τ
⋆
i = 1−T always

holds [8]. Combining this and (24), the optimal solution for(21) is written by

τ ⋆i =
(1− T )γi
∑K

j=L+1 γj
, for i = L+ 1, · · · , K. (25)

2) Optimal T ⋆ and L⋆: For solving the original problem (11), we need to find the optimal

T ⋆ and L⋆, which maximizeR(1)
L (T ) + R(2)

L (T ). By substituting the optimal time allocation

solutions (22) and (25) into the objective functions of (20)and (21), respectively, we have

R(1)
L (T ) = aLT andR(2)

L (T ) = (1− T ) log
(

1 +
PA

∑K
i=L+1 γi

1− T

)

,

where

aL =
L
∑

i=1

∏L
j=i+1 xj

∏L
j=i(1 + xj)

log(1 + γiPPxi).

It is easy to verify thatR(1)
L (T )+R(2)

L (T ) is a concave function with respect toT , and thus the

optimalT ⋆ can be determined from the stationary pointT̃ , which is computed as

T̃ =
PA

∑K
i=L+1 γi

1/W(− exp(−1 − aL)) + 1
+ 1.

Now, we check the feasible region ofT with a givenL. Due to the factT =
∑L

i=0 τ
⋆
i , we

can rewriteε⋆D,L in (16) asε⋆D,L = PA − PP (T − τ ⋆L). Sinceε⋆D,L is positive, it follows

T ≤ PA

PP

+ τ ⋆L =
PA

PP

(

1 +
1

xL

)

.

Also, from the peak power constraintε⋆D,L ≤ τ ⋆LPP , T should be lower bounded byT ≥ PA/PP .

Therefore, a closed-form expression forT ⋆ is calculated by

T ⋆ =



















PA

PP
, if T̃ < PA

PP
,

PA

PP

(

1 + 1
xL

)

, if T̃ > PA

PP

(

1 + 1
xL

)

,

T̃ , otherwise,

= min

{

max
{

T̃ ,
PA

PP

}

,
PA

PP

(

1 +
1

xL

)

}

. (26)

For a givenL, we can attain the optimal valueRL of problem (19) asRL = R(1)
L (T ⋆) +

R(2)
L (T ⋆). Then, the optimal time slot indexL⋆ is determined as

L⋆ = arg max
0≤L≤K

RL. (27)
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Note that in order to computeRl for l = 0, · · · , K, we only need{xi}Ki=1 in (23), which can

be calculated in advance. After we obtainL⋆ and the correspondingT ⋆, the optimal resource

allocation solution{τ ⋆i , ε⋆D,i}Ki=0 can be obtained from (15)-(17), (22) and (25). An algorithm for

solving the uplink sum rate maximization problem in (11) is summarized below.

Algorithm 1: Optimal algorithm with infinite capacity energy storage

Compute{xi}Ki=1 from (23).

ObtainL⋆ from (27) and the correspondingT ⋆ from (26).

Compute{τ ⋆i }Ki=0 from (22) and (25) withT = T ⋆ andL = L⋆.

Compute{ε⋆D,i}Ki=0 from (15)-(17) withT = T ⋆ andL = L⋆.

IV. FINITE CAPACITY ENERGY STORAGE CASE

In this section, we propose the optimal energy and time allocation algorithm for the practical

finite energy storage capacity scenario, i.e.,Bi < ∞, ∀i, by investigating the original problem

in (5). It is worth noting that problem (5) is convex and satisfies the Slater’s condition, and

thus the duality gap is zero. As a result, we can apply the Lagrange duality method to solve (5)

optimally. The Lagrangian of (5) is expressed as

J =

K
∑

i=1

τi log

(

1 +
gU,i
σ2
i

εU,i
τi

)

+ ν

(

PA −
K
∑

i=0

εD,i

)

+ λ

(

1−
K
∑

i=0

τi

)

+

K
∑

i=1

βi

(

ηigD,i

i−1
∑

j=0

εD,j − εU,i

)

,

whereν, λ, and{βi}Ki=1 represent the dual variables corresponding to the constraint (6), (8), and

(10), respectively.

Then, the dual functionG(ν, λ, {βi}Ki=1) is given by

G(ν, λ, {βi}Ki=1) = max
{τi},{εD,i},{εU,i}

J (28)

subject to0 ≤ εD,i ≤ τiPP , i = 0, · · · , K,

0 ≤ εU,i ≤ Bi, i = 1, · · · , K.

Therefore, to solve the dual problem of (5), which is defined as minν,λ,{βi} G(ν, λ, {βi}Ki=1), we

first consider the maximization problem in (28) with the given dual variables. Then, the optimal

dual solutionsν⋆, λ⋆, and{β⋆
i }Ki=1 can be obtained by solving the dual problem.
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It is worthwhile to note that the LagrangianJ can be rewritten byJ =
∑K

i=0 Ji + λ+ νPA,

where

Ji =















−λτ0 +

(

∑K
i=1 ηigD,iβi − ν

)

εD,0, for i = 0,

τi log

(

1 +
gU,i

σ2
i

εU,i

τi

)

− λτi +

(

∑K
j=i+1 ηjgD,jβj − ν

)

εD,i − βiεU,i, for i = 1, · · · , K.

Since Ji depends only onτi, εD,i, and εU,i, problem (28) can be decomposed intoK + 1

independent optimization problems. Thei-th problem fori = 0, · · · , K is given by

max
τi,εD,i,εU,i

Ji (29)

subject to 0 ≤ εD,i ≤ τiPP ,

0 ≤ εU,i ≤ Bi.

In the following lemma, we provide solutions of problem (29){τ̃i}Ki=0, {ε̃D,i}Ki=0, and{ε̃U,i}Ki=1

which maximize the LagrangiansJi for i = 0, · · · , K.

Lemma 2: With givenν, λ, and{βi}Ki=1, the solutions{τ̃i}Ki=0, {ε̃D,i}Ki=0, and{ε̃U,i}Ki=1 which

maximize the Lagrangian is expressed by

τ̃i =























1, for i = 0 andPP ζ0 − λ > 0,

0, for i = 0 andPP ζ0 − λ ≤ 0,

−gU,i/σ
2
i

1/bi + 1
ε̃U,i, for i = 1 · · · , K,

(30)

ε̃D,i =







τ̃iPP , if ζi > 0,

0, otherwise,
(31)

ε̃U,i =



















Bi, if βi = 0 or βi < −gU,ibi/σ
2
i ,

0, if βi = gU,i/σ
2
i or βi > −gU,ibi/σ

2
i ,

zi, otherwise,

(32)

where bi , W(− exp(−1− λ+ PP ζi)) for i = 1, · · · , K, ζi , (
∑K

j=i+1 ηjgD,jβj − ν)+ for

i = 0, · · · , K with (x)+ , max{0, x}, andzi ≤ Bi for i = 1, · · · , K is a non-negative number

which will be determined later. Also, to guarantee feasibleτ̃i and ε̃U,i, we should satisfy the

dual constraintPP ζi − λ ≤ 0 for i = 1, · · · , K − 1 andβi ≤ gU,i/σ
2
i for i = 1, · · · , K.

Proof: Please see Appendix B.

From Lemma 2, we can obtain the primal optimal solutions maximizing J with the given

dual variablesν, λ, and {βi}Ki=1. Also, Lemma 2 implies that the optimal downlink energy
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allocation policy in (31) is similar to that of the infinite capacity energy storage case, i.e., the

H-AP transmits the energy RF signal with its maximum energyε̃D,i = τ̃iPP during the first few

time slots, and then it will be turned off. Based on Lemma 2, the dual problem can be written by

min
ν,λ,{βi}

G(ν, λ, {βi}Ki=1)

subject toν ≥ 0, λ ≥ 0,

0 ≤ βi ≤
gU,i
σ2
i

, i = 1, · · · , K, (33)

PP ζi − λ ≤ 0, i = 1, · · · , K − 1, (34)

where constraint (33) and (34) come from Lemma 2.

The optimal dual solutionsν⋆, λ⋆, and {β⋆
i }Ki=1 can be efficiently determined by subgradi-

ent methods, e.g., the ellipsoid method [22]. Note that the subgradient of the dual function

G(ν, λ, {βi}Ki=1) is computed asµ = [µν , µλ, µβ1
, · · · , µβK

], where µν = PA − ∑K

i=0 ε̃D,i,

µλ = 1−∑K

i=0 τ̃i, andµβi
= ηigD,i

∑i−1
j=0 ε̃D,j − ε̃U,i for i = 1, · · · , K. In addition, we need the

subgradient of the constraint in (34), which is not easy to derive due to the definition ofζi. To

this end, we introduce the following lemma which provides the equivalent condition of (34).

Lemma 3: The constraint in (34) fori = 1, · · · , K − 1 is equivalent to

PP

( K
∑

j=2

ηjgD,jβj − ν

)

− λ ≤ 0. (35)

Proof: We prove this lemma for two casesζ1 = 0 and ζ1 =
∑K

j=2 ηjgD,jβj − ν > 0. First,

if ζ1 = 0, i.e.,
∑K

j=2 ηjgD,jβj − ν ≤ 0, then we haveζi = 0 for i = 2, · · · , K − 1, sinceβi

is a non-negative number. In this case, both the constraint (34) and the condition (35) become

equivalent toλ ≥ 0, i.e., (34) and (35) are the same. On the other hand, for the second case

of ζ1 =
∑K

j=2 ηjgD,jβj − ν > 0, the condition (35) is equivalent to (34) fori = 1. Also, if the

condition (35) is satisfied, the inequalities (34) fori = 2, · · · , K − 1 are directly obtained since

βi ≥ 0. This completes the proof.

After we computeν⋆, λ⋆, and{β⋆
i }Ki=1, it still remains to findzi in (32). This can be determined

by the complementary slackness condition of problem (5) as

β⋆
i

(

ηigD,i

i−1
∑

j=0

ε⋆D,j − ε⋆U,i

)

= 0, (36)
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where{ε⋆D,i}Ki=0 and {ε⋆U,i}Ki=1 indicate the optimal solution for problem (5) with the optimal

dual variablesν⋆, λ⋆, and{β⋆
i }Ki=1. Let us define the setS asS = {i|β⋆

i > 0}. Then, to satisfy

(36), the optimal uplink energy allocation is given byε⋆U,i = ηigD,i

∑i−1
j=0 ε

⋆
D,j for i ∈ S. It is

worth noting that from (32), we haveε⋆U,i = Bi for i ∈ Sc, whereSc is the complementary set

of S.

Combining these results and (30), the optimal time allocation solution{τ ⋆i }Ki=1 can be written

by τ ⋆i =
−gU,i/σ

2
i

1/b⋆i + 1
ε⋆U,i for i = 1, · · · , K, whereb⋆i is equal tobi with the optimal dual variables.

Also, one can prove thatτ ⋆0 = ε⋆D,0/PP , since otherwise we haveε⋆D,0 = 0 from (31) which

implies ε⋆D,i = 0 for i = 1, · · · , K due to the factβ⋆
i ≥ 0, and obviously, this is not the optimal

solution. Withτi = τ ⋆i and εU,i = ε⋆U,i, ∀i, problem (5) becomes a linear programming (LP) in

terms of{εD,i}Ki=0. The optimal downlink energy allocation{ε⋆D,i}Ki=0 can be efficiently identified

by solving this LP via the simplex algorithm or the interior-point method [22]. We summarize

the overall algorithm for the finite capacity energy storagecase below.2

Algorithm 2: Optimal algorithm with finite capacity energy storage

Initialize ν, λ, and{βi}Ki=1.

Repeat

Compute{τ̃}Ki=0, {ε̃D,i}Ki=0, and{ε̃U,i}Ki=1 from (30)-(32).

Updateν, λ, and{βi}Ki=1 by using the ellipsoid method.

Until convergence

Obtain{ε⋆D,i}Ki=0 by solving the problem (5) withτi = τ ⋆i (i = 0, · · · , K)

andεU,i = ε⋆U,i (i = 1, · · · , K).

V. SIMULATION RESULTS

In this section, we provide numerical results evaluating the average sum rate performance of

the proposed algorithms for the infinite capacity and finite capacity energy storage cases. In the

simulations, we set the energy harvesting efficiencyηi as ηi = 0.7, ∀i, and the noise power at

the H-APσ2
i asσ2

i = −50 dBm, ∀i. Also, it is assumed that all users’ energy storages have the

2The sum rate maximization problem for the infinite storage case can also be solved via Algorithm 2. However, Algorithm 1 is

still meaningful because of the computational complexity.It is worth noting that Algorithms 1 and 2 requireO(K) andO(K3)

computations, respectively [22]. Therefore, in the special case ofBi = ∞, Algorithm 1 is more efficient than Algorithm 2.
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Fig. 4. Average sum rate performance as a function ofPA for infinite capacity energy storage case withPP = 5PA

same capacity, i.e.,Bi = B, ∀i, and we employ the Rayleigh fading channel model with30 dB

average signal attenuation from the H-AP to all users.

Figure 4 depicts the average sum rate performance as a function ofPA in the infinite capacity

energy storage case. For comparison, we also plot the performance of two conventional schemes

in [11] and [12]. In [11], an ideal non-causal energy system was considered, and the optimal joint

energy and time allocation algorithm was proposed for the infinite capacity energy storage case.

Meanwhile, [12] assumed equal power allocation, i.e.,pD,i = PA, ∀i, and provided the optimal

time allocation algorithm in the causal energy WPCN systems. In this plot, it is observed that

at PA = 30 dBm, the proposed algorithm under the same causal energy scenario provides about

29% and24% gains over the time allocation scheme in [12] forK = 3 andK = 5, respectively.

This implies that the energy allocation optimization offers large performance gains over the

system without energy allocation. Note that although the proposed algorithm considers practical

causal energy WPCN systems, the performance gap with respect to the non-causal energy system

is less than1 dB for the average sum rate of4 bps/Hz.

In Figure 5, we illustrate the average sum rate performance of the WPCN systems as a function
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of PA with differentB. Here, the equal time allocation scheme indicates the case with equal time

duration for all time slots, i.e.,τi = 1
K+1

, ∀i, and employs the optimal downlink energy allocation

policy in (31). Then, the downlink energy can be computed from (15)-(17) withL =
⌊

PA

PP (K+1)

⌋

,

where⌊·⌋ stands for the floor operation. We can check in the figure that for a smallPA, the

average sum rate performance in the finite capacity energy storage case is quite similar to that

in the infinite capacity energy storage case, since the H-AP cannot transfer enough energy to

users regardless ofB with a smallPA. On the other hand, at a highPA regime, the user’s energy

storage is fully charged for a finiteB, and thus the user transmits the information signal with

the maximum energyεU,i = Bi. Therefore, the average sum rate with a finiteB saturates in

the highPA regime. Also, it is shown that the performance gap between the proposed optimal

algorithm and the equal time allocation scheme increases asB grows, and atB = 50 µJ and

PA = 30 dBm, the proposed optimal algorithm offers about30% average sum rate gain.

Next, with the fixed energy storage capacityB = 50 µJ, we demonstrate the average sum

rate of the proposed optimal algorithm and the equal time allocation method with different peak

power constraintPP in Figure 6. We can check that asPP gets larger, the average sum rate with
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B = ∞ increases for allPA, while the performance is saturated at highPA andPP in the finite

capacity energy storage case.

Figure 7 exhibits the average sum rate of the WPCN systems with differentK as a function

of PA. We can see that the average sum rates of both the proposed optimal algorithm and the

equal time allocation scheme improve with the number of userK. With PA = 30 dBm, the

proposed optimal algorithm provides34% and24% gains over the equal time allocation scheme

at K = 3 and7, respectively.

In Figure 8, the average sum rate performance is presented asa function ofB atPA = 20 dBm.

With a largeB, the proposed algorithm for the finite capacity energy storage case provides the

performance almost identical to the infinite energy storagecase. It is observed thatB = 150 µJ

is enough to achieve the performance upper bound atPA = 20 dBm. On the other hand, the

equal time allocation scheme cannot achieve the performance upper bound even ifB goes to

infinity.
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VI. CONCLUSION

In this paper, we have studied the multi-user WPCN under the causal energy assumption. Joint

energy and time allocation problems for maximizing the uplink sum rate have been optimally

solved in both the infinite capacity and the finite capacity energy storage cases. First, with the

infinite energy storage case, we have derived the optimal downlink energy allocation policy. In

this policy, the H-AP consumes all available energy in the first few time slots, and then is turned

off during the remaining time slots. Based on this optimal strategy, an analytical solution for the

resource allocation problem has been provided. Next, we have proposed the optimal algorithm

for the finite capacity energy storage case, which jointly computes energy and time allocation.

From the simulation results, we have confirmed that the proposed optimal algorithms provide

remarkably enhanced performance compared with conventional techniques.

APPENDIX A

PROOF OFLEMMA 1

Let us define the optimal solution of problem (11) as{τ ⋆i , ε⋆D,i}Ki=0, and the corresponding

objective value asR({τ ⋆i , ε⋆D,i}Ki=0). Suppose that the optimal time allocation solution of problem

(11) is given byτ ⋆i = 0 and τ ⋆j > 0 for j 6= i. Then, by contradiction, we will show that

{τ ⋆i , ε⋆D,i}Ki=0 is not the optimal solution withτ ⋆i = 0 for i = 0, · · · , K. First, we investigate the

case ofτ ⋆0 = 0. Due to the peak power constraintε⋆D,0 ≤ τ ⋆0PP = 0, it follows ε⋆D,0 = 0, and

thus the uplink rateR1 for user1 is zero. Now we consider positive numbersτ̂0, τ̂1, ε̂D,0, and

ε̂D,1 which fulfill the following conditions:

τ̂0 + τ̂1 = τ ⋆1 , ε̂D,0 + ε̂D,1 = ε⋆D,1, ε̂D,0 ≤ τ̂0PP , and ε̂D,1 ≤ τ̂1PP . (37)

It is worth noting that witĥτ0, τ̂1, ε̂D,0, andε̂D,1 in (37), we can achieve non-zeroR1 without

reducing other users’ uplink rate, since the harvested energy of userj for j = 2, · · · , K does

not change due to the condition̂εD,0 + ε̂D,1 = ε⋆D,1. Furthermore, we havêεD,0 + ε̂D,1 =

ε⋆D,1 ≤ (τ̂0 + τ̂1)PP = τ ⋆1PP , and thus the positive numberŝτ0, τ̂1, ε̂D,0, and ε̂D,1 satisfying

(37) always exist. Therefore, by settinĝτj = τ ⋆j and ε̂D,j = ε⋆D,j for j = 2, · · · , K, it follows

R({τ̂j , ε̂D,j}Kj=0) > R({τ ⋆j , ε⋆D,j}Kj=0). This contradicts with the assumption that{τ ⋆j , ε⋆D,j}Kj=0 is

optimal.
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Second, to show thatτ ⋆i = 0 for i = 1, · · · , K do not achieve an optimal solution, we formulate

the optimization problem to find a positive solutionτ̂i as

max
0≤τi≤τ⋆i+1

τi log
(

1 + γi

∑i−1
j=0 ε

⋆
D,j

τi

)

+ (τ ⋆i+1 − τi) log
(

1 + γi+1

∑i−1
j=0 ε

⋆
D,j

τ ⋆i+1 − τi

)

, (38)

where we have used the factε⋆D,i = 0. It is worthwhile to note that onlyRi and Ri+1 are

dependent onτi, and thus we can improve the sum rate performance by solving (38) without

reducingRj , ∀j 6= i, i+ 1.

It is known that the optimal̂τi must satisfies [8]

γi

∑i−1
j=0 ε

⋆
D,j

τ̂i
= γi+1

∑i−1
j=0 ε

⋆
D,j

τ ⋆i+1 − τ̂i
.

Therefore, we have

τ̂i =
γi

γi + γi+1
τ ⋆i+1. (39)

Since (39) fulfills0 < τ̂i < τ ⋆i+1, new solutions{τ̂i, ε̂D,i}Ki=0 such thatτ̂i+1 = τ ⋆i+1 − τ̂i, τ̂j =

τ ⋆j , ∀j 6= i, i+ 1 and ε̂D,j = ε⋆D,j for j = 0, · · · , K increase the sum rate performance, i.e., the

assumptionR({τ̂j, ε̂D,j}Kj=0) ≤ R({τ ⋆j , ε⋆D,j}Kj=0) is contradiction. This completes the proof.

APPENDIX B

PROOF OFLEMMA 2

First, we proceed to solve (29) fori = 0. In this case, problem (29) becomes a LP since

J0 is an affine function onτ0 and εD,0. Thus, it is not difficult to show that a solutioñεD,0

maximizingJ0 is obtained as (31). Plugging this result intoJ0, it follows J0 = (PP ζ0 − λ)τ0.

Since0 ≤ τ0 ≤ 1, the optimalτ̃0 that maximizesJ0 is given by τ̃0 = 1 if the coefficient ofτ0

in J0 is positive, i.e.,PP ζ0 − λ > 0. Otherwise, we havẽτ0 = 0. Therefore, a solutioñτ0 can

be written by (30).

Next, we investigate problem (29) fori = 1, · · · , K. Similar to the case ofi = 0, a solution

ε̃D,i for i = 1, · · · , K is determined by (31), sinceJi is an affine function of̃εD,i. Substituting

(31) intoJi yields

Ji = τi log

(

1 +
gU,i
σ2
i

εU,i
τi

)

+ (PP ζi − λ)τi − βiεU,i. (40)
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Then, by using the zero gradient condition∂Ji

∂τi
= 0 and ∂Ji

∂εU,i
= 0, we have

log
(

1 +
gU,i
σ2
i

εU,i
τi

)

+
1

1 +
gU,i

σ2
i

εU,i

τi

= 1 + λ− PP ζi, (41)

gU,i

σ2
i

1 +
gU,i

σ2
i

εU,i

τi

= βi. (42)

It can be shown that a solution of the equation (41) does not exist if PP ζi − λ > 0 since
gU,i

σ2
i

εU,i

τi
≥ 0 in general. Therefore, from (41), we can obtain a solutionτ̃i for i = 1, · · · , K as in

(30), and the dual variables must satisfy the conditionPP ζi − λ ≤ 0.

Also, combining (42) and the constraint0 ≤ εU,i ≤ Bi, a solutionε̃U,i can be expressed by

ε̃U,i = min

{(

1

βi

− σ2
i

gU,i

)

τ̃i, Bi

}

. (43)

Here, to ensurẽεU,i ≥ 0, the dual variableβi must be upper bounded byβi ≤ gU,i/σ
2
i . Then,

from (30) and (43), we can see thatε̃U,i is equal to a solution of the following fixed point

equation:

εU,i = min

{−gU,i/σ
2
i

1/bi + 1

(

1

βi

− σ2
i

gU,i

)

εU,i, Bi

}

. (44)

With any feasible initial point0 ≤ zi ≤ Bi, a solution of (44) is computed as (32). This completes

the proof.
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