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Abstract

In this paper, we study the resource allocation algorithsigtefor distributed antenna multiuser
networks with full-duplex (FD) radio base stations (BSs)ahrenable simultaneous uplink and downlink
communications. The considered resource allocation iltgordesign is formulated as an optimiza-
tion problem taking into account the antenna circuit powensumption of the BSs and the quality
of service (QoS) requirements of both uplink and downlinleras We minimize the total network
power consumption by jointly optimizing the downlink beamrher, the uplink transmit power, and
the antenna selection. To overcome the intractability ef thsulting problem, we reformulate it as
an optimization problem with decoupled binary selectiomialZles and non-convex constraints. The
reformulated problem facilitates the design of an itemtigsource allocation algorithm which obtains
an optimal solution based on the generalized Bender’s dposition (GBD) and serves as a benchmark
scheme. Furthermore, to strike a balance between commuattomplexity and system performance, a
suboptimal algorithm with polynomial time complexity isgmosed. Simulation results illustrate that the
proposed GBD based iterative algorithm converges to thbajloptimal solution and the suboptimal
algorithm achieves a close-to-optimal performance. Osulte also demonstrate the trade-off between
power efficiency and the number of active transmit antennlasmthe circuit power consumption is
taken into account. In particular, activating an exceelgitagge number of antennas may not be a power
efficient solution for reducing the total system power caonption. In addition, our results reveal that
FD systems facilitate significant power savings comparetdaitional half-duplex systems, despite the

non-negligible self-interference.
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I. INTRODUCTION

The next generation wireless communication systems angregtjto support ubiquitous and
high data rate communication applications with guarantpeality of service (QoS). These re-
guirements translate into a tremendous demand for banklaitt energy consumption. Multiple-
input multiple-output (MIMO) is a viable solution for addi®ng these issues as it provides extra
degrees of freedom in the spatial domain which facilitatésde-off between multiplexing gain
and diversity gain. Hence, a large amount of work has beeontddwo MIMO communication
over the past decades [1]] [2]. However, the modest conipuatdtcapabilities of mobile devices
limit the MIMO gains that can be achieved in practice. Anattive alternative for realizing
the performance gains offered by multiple antennas is mséti MIMO, where a multiple-
antenna transmitter serves multiple single-antennavexesimultaneously [3]/[4]. In fact, the
combination of multiuser MIMO and distributed antennas idely recognized as a promising
technology for mitigating interference and extending eencoverage’ [5]+[7]. Specifically, dis-
tributed antennas introduce additional capabilities tonbating both path loss and shadowing by
shortening the distances between the transmitters anceteevers. Nevertheless, if the number
of antennas is very large, the circuit power consumptionstfibuted antenna networks becomes
non-negligible compared to the power consumed for trarsons However, this problem has
not been considered in most of the existing literature [B]-n power efficient communication
network design. Furthermore, even with these powerful MIGhniques, spectrum scarcity is
still a major obstacle in providing high speed uplink and dbmk communications.

Traditional communication systems are designed for haffiek (HD) transmission since
this mode of operation facilitates low-complexity trangee design. In particular, uplink and
downlink communication are statically separated in eitlmee or frequency, e.g. via time division
duplex or frequency division duplex, which leads to a losspectral efficiency. Even though
different approaches have been proposed for improvinggeetsal efficiency of HD systems, e.g.
dynamic uplink-dowlink scheduling/allocation in time @ion duplex communication systems
[8], [9], the fundamental spectral efficiency loss inducgdhe HD constraint remains unsolved.
On the contrary, full duplex (FD) transmission allows doivkland uplink transmission to occur
simultaneously at the same frequency. In fact, FD radio hagbtential to double the spectral

efficiency of conventional HD communication systems. Hosveun practice, the downlink



transmission in FD systems creates self-interferenceetafiink receive antennas which can be
exceedingly large compared to the received power of theuugdgbrmation signals. In fact, the
huge difference in the power levels of the two signals sétsrthe dynamic range of the analog-
to-digital converter (ADC) essentially preventing FD coomcation. Fortunately, several recent
breakthroughs in hardware (/signal processing algoritthes)gn for suppressing self-interference
have been reported and FD radio prototypes have been sfidepsesented[[10]-[14]. As a
result, FD radio has regained the attention of both induis}-[18] and academia [19]-[23].
In [19], the authors studied techniques for self-intenfieee suppression and cancellation for FD
multiple-antenna relays. 16 [20], the outage probabilitiWdMO FD single-user relaying systems
was investigated. Ii_[21], a resource allocation algorithas proposed for maximization of the
achievable end-to-end system data rate of multicarrietiosdr MIMO FD relaying systems.
In [22], a suboptimal beamformer design was considered fare the spectral efficiency of a
FD radio base station enabling simultaneous uplink and dolwieommunication. In[[23], the
concept of FD communication was extended to the case of weaB4iMO where a FD radio
relay is equipped with a large number of antennas for supprgshe self-interference and for
enhancing the system throughput. However, the benefits diipl@santenna FD radio do not
come for free. The rapidly escalating cost caused by the poargsumption of the circuitries of
large antenna systems has lead to significant financial ¢atpdins for service providers, which is
often overlooked in the literature [10]-[23]. In fact, thgstems in[[10]4[28] are designed to serve
peak service demands by activating all available antenhtesystem, without considering the
power consumption in the off-peak periods. However, th@iserloads vary across a wireless
network in practice, depending on the geographic locatioth@® receivers and the time of day.
Thus, we expect that extra power savings can be achievedrmgnugally switching off some of
the antennas. Nevertheless, the optimal number of actiemaas has not been investigated from
a system power efficiency point of view for FD radio commutima yet. In addition, there
may be fewer degrees of freedom for self-interference sggon at each FD radio base station
in distributed antenna systems if the total number of ardenn the network is fixed. Thus,
it is unclear whether the distributed antenna architecteiaels to power savings for FD radio
communication. Furthermore, unlike for the orthogonahsraission adopted in HD systems,
the uplink and downlink transmit powers are coupled in FDteayss which make the design of

efficient resource allocation algorithms particularly lidraging.



In this paper, we address the above issues and study thecesdlocation algorithm design for
multiuser distributed antenna communication networks. iiegimize the total network power
consumption while taking into account the circuit power sumption of the distributed BS
antennas and ensuring the QoS of both uplink and downlinksuse particular, we propose an
optimal iterative resource allocation algorithm basedtmdeneralized Bender’'s decomposition
[24]-[26]. Furthermore, we propose a suboptimal resoutioeation scheme with polynomial
time computational complexity based on the difference ofvea functions (d.c.) programming
[27] which finds a local optimal solution for the considergatimization problem.

Il. SYSTEM MODEL
A. Notation

Matrices and vectors are represented by boldface capithlaaver case letters, respectively.
A" AT Tr(A), andRank(A) represent the Hermitian transpose, the transpose, the @ad
the rank of matrixA, respectively;A - 0 and A > 0 indicate thatA is a positive definite and a
positive semidefinite matrix, respectively; is the N x N identity matrix;CY>** andH" denote
the sets of allV x M matrices andV x N Hermitian matrices with complex entries, respectively;
diag(zq,- - -, rx) denotes a diagonal matrix with the diagonal elements givefuh, - - - , xx };
|-| denotes the absolute value of a complex scalar; the citgudgmmetric complex Gaussian
distribution is denoted by (i, C) with mean vectog: and co-variance matri&; ~ stands for
“distributed as”;£{-} denotes statistical expectation; axid / denotes the gradient of a function

f with respect to vectok.

B. System Model

We consider a distributed antenna multiuser communicatawork. The system consists of
a central processor (CP), FD radio base stations (BSs), aAdmobile users, cf. Figurle 1. Each
FD radio BS is equipped witiVy > 1 antennas for downlink transmission and uplink reception
The K users employ single-antenna HD mobile communication @svio ensure low hardware
complexity. In particularKy and K, users are scheduled for simultaneous uplink and downlink
transmission, respectively, such thét + K = K. On the other hand, the CP is the core unit of

the network. In particular, the FD radios are connected ¢0QR via backhaul links. In addition,

We assume that the antennas equipped at the FD BSs can tramshrieceive simultaneously which has been successfully

demonstrated in some FD radio prototypes [12].
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Multiuser downlink distributed antenna commurimatsystem model witl, = 3 full duplex (FD) radio base stations

(BSs), Ku = 1 uplink user, andKp = 1 downlink user. For the depicted case, the antennas equigipE® radio BS2 are

switched to idle mode for reducing the total power consuamptn the network.

the CP has the full channel state information of the entitevok and the data of all downlink

users for resource allocation. In this paper, we assumahbatP is a powerful computing unit,

e.g. a series of baseband units as in cloud radio accessmket{@RAN), which computes the

resource allocation policy and broadcasts it to all FD rd&i8s. Each FD radio BS receives the

control signals for resource allocation and the data offyedownlink users from the CP via a

backhaul link. Furthermore, the FD radio BSs transfer tloeived uplink signals via backhaul

links to the CP, where the information is decoded. In thisgpapre assume that the backhaul

links are implemented with optical fiber and have sufficigtakge capacity and low latency to

support real time information exchange between the CP amdrEh radio BSs. For studies on

the impact of a limited backhaul capacity on the performapiceireless systems, please refer

to [2], [28].
C. Channd Model

A frequency flat fading channel is assuvﬂénl this paper. The received signals at downlink

userk € {1,..., Kp} and theL FD radio BSs are given by

Ky
ye" = hj x+ Z\/PjUgj,kdy +ny and
j=1

co—channel interference

Ky

yob = E P]UhUjd}J%— Hgqx +z,
=1
J= self —interference

(1)

(2)

2The frequency flat fading channel can be interpreted as oheastier of an orthogonal frequency division multiplexing

system.



respectively, whera ¢ CVt1*! denotes the joint transmit signal vector of thé=D radio BSs to
the K downlink users. The downlink channel between thED radio BSs and uséris denoted
by hp, € CNt2*! and we usgy,; € C to represent the channel between uplink usemd
downlink userk. d}J andeU are the transmit data and transmit power sent from uplink jise
the L FD radio BSs, respectiveljry, € CV***! is the uplink channel between uplink ugeand
the L FD radio BSs. Due to simultaneous uplink reception and dimkritansmission at the FD
radio BSs, self-interference from the downlink impairs th@ink signal reception. In practice,
different interference mitigation techniques such asramdecancellation, balun cancellation, and
circulators [12], [18] have been proposed to alleviate thpairment caused by self-interference.
In order to isolate the resource allocation algorithm dedigm the specific implementation of
self-interference mitigation, we model the residual seiérference after interference cancellation
by matrix Hg; € CNt2* L Variableshp,, g;, Hgi, andhy, capture the joint effect of path
loss and multipath fading. ~ CN(0, 071y, ) andn;, ~ CN (0,07, ) represent the additive white
Gaussian noise (AWGN) at the FD radio BSs and usek, respectively.

In each scheduling time slokp independent signal streams are transmitted simultangatis|
the same frequency to th€p downlink users. Specifically, a dedicated downlink beamiog
weight, w! € C, is allocated to downlink usek at thel-th, [ € {1,..., NrL}, antenna to
facilitate downlink information transmission. For the ealif presentation, we define a super-

vectorw,, € CNtx! for downlink userk as
_ 1,2 NtIT 3
Wk—[wkwk...wk ] . 3)

w, represents the joint beamformer used by Mgl antennas shared by the FD radio BSs for
serving downlink usek. Then, the information signal to downlink uskerx;, can be expressed

as
X, = widy, (4)

whered? € C is the data symbol for downlink usér. Without loss of generality, we assume
that£{|d?P|*} = 5{|dﬂ2} =1,Vke{l,...,Kp},je{l,..., Ky}

D. Network Power Consumption Model

In our system model, we include the circuit power consunmptb the system in the objec-

tive function in order to design a resource allocation athar which facilities power-efficient



communication. Thus, we model the power dissipation in §stesn as the sum of one static

term and four dynamic terms as foIIOV\Ls__[24]
Nt L

UTP<Wk,Sl,PJU) = P0+ZSPACt1VC+Z PIdlC

Antenna power consumption
NtL Kp

+0) ) eplwkl’ + ZsU@PU (5)

=1 k=1

J/

Ampllfer power consumption

whereP, is the aggregated static power consumption of the CP, alleidBSs, and all backhaul
links. s; € {0,1} is a binary selection variable. In particulaf,= 1 and s, = 0 indicate that

the [-th antenna in the FD communication system is in active modkeidle mode, respectively,

s; will be optimized to minimize the total network power consution in the next section.
PActive > () is the signal processing power that is consumed if an anteh@aative. PActve
includes the power dissipations of the transmit filter, miXeequency synthesizer, digital-to-
analog converter, etc. In this paper, an FD radio antennarisidered active if it serves at least
one user in the systen®!d > ( is the required power consumption of an antenna in idle mode,

NrElwl|? is the

i.e., if it is not serving any user, an#t*<ve > Pldle holds in generaly_r>
total power radiated by thé FD radio BSs for downlink transmissioap > 1 andey > 1

are constants which account for the inefficiency of the poawaplifier adopted for downlink
and uplink transmission, respectively. In other wordsy ;> 5" |w}|* andey Y- 1Y PV are

the total power consumptions of the power amplifiers for davknand uplink transmission,
respectivelyn > 0 and¢; > 0 in the last two terms of {5) are constant weights which can be
chosen by the system designer to prioritize the importamdkeototal downlink transmit power

and the transmit power of individual uplink users {1,..., Ky}, respectively.

I1l. PROBLEM FORMULATION

In this section, we first introduce the QoS metrics for thesidered FD radio communi-
cation network. Then, we formulate the resource allocaéilgorithm design as a non-convex

optimization problem.

3We assume Class A power amplifiers with linear characterist implemented in the transceivers. In practice, the mai

power efficiency of Class A amplifiers i%5%.



A. Achievable Data Rate

The achievable data rate (bit/s/Hz) between thé-D radio BSs and downlink user €
{1,...,Kp} is given by

|h W]€|2
= (6)

2|h W2+ 38 PYgkl? + 02,

Cr = log, (1 +TP"), where T'PF =

is the receive signal-to-interference-plus-n0|se ra8tNR) at downlink usek.
On the other hand, we assume that the CP employs a lineaveeder decoding of the
received uplink information. Therefore, the achievabléadate between thé FD radio BSs

and uplink userj is given by

PYlviThy |2
UL _ (1 FUL> TVL = —5 13 U5 7
Cj Og2 + j ) O_2||Vj||2_|_l ( )
I = (ZHSIWka HY v, + ZPU|thUT|2 8)
T#]

wherev; € CNt2x! is the receive beamforming vector for decoding of the infation for uplink

userj. In this paper, maximum ratio combining (MRC) is adopted.,, ithe receive beamformer

for uplink useryj is chosen as; = Zf\ff s;R;hy, to maximize the signal strength of the received

signal, whereR, £ diag (O, --.0,1,0,--- ,O),Vl € {1,..., LNy}, is a diagonal matrix. It is
—— ——

(1-1) LNt—1
known that MRC achieves a good system performance, esfyeiallarge number of antennas

is employed, and has been widely adopted in the literattd4B

Remark 1: We note that zero-forcing beamforming (ZFBF) or minimum me&guare error
beamforming (MMSE-BF) are not considered for uplink sigdatection since they do not
facilitate an efficient resource allocation algorithm desfor the considered network.
Using MRC, the uplink SINR of usef is given by

f’JU Tr (hU]’ hg] ENT_L NTIL SmSanhUjhgj Ri[)

m=1

L — — . Where (9)
o2 Tr (Zl:T sihy, hg,Rl) s
NtL NtL
Ij = Tr (Z HSIWka HSI Z Z SmSnRm, hU hH RH) (10)
m=1 n=1
NtL NtL
+ Z PYTx (hu,bfl 303" spsaRoho bl RY). (11)

r#j m=1 n=1



B. Optimization Problem Formulation

The system objective is to minimize the total network powensumption while providing
QoS for reliable communication to both uplink and downlirdets simultaneously. We obtain

the optimal resource allocation algorithm policy by sotytte following optimization problem:

minimize Urp (Wk, Sq, PjU)

wkvshPJU
h# wy|?
s.t. CLi— i, wi| >To, Vke{l,...,Kp},
K
%‘hgkwt|2 + Ej:Ul PjU‘gj,kP + ng

C2:T/M >T,h  Vjed{l,...,Ku},

req;?

Kp
C3: > Jwp* < PPk, Ve {l,... NrL}, C4:0< P’ <Py . Vie{l, ... Ky},

max;’ max;’
k=1
C5:5 € {0,1},Vie{1,...,NtL}. (12)

I'Rq, andliy in constraints C1 and C2 denote the minimum receive SINRiregjiby downlink
userk and uplink userj for successful information decoding, respectively. In @&, constrain
the maximum radiated power of ttigh antenna in the system 1@} to satisfy the maximum
power spectral mask limit. C4 limits the maximum transmivpo and ensures the non-negativity
of the transmit power of uplink user. C5 constrains the optimization variables which control
the active and idle states of the antennas in the system tanbeyb

Remark 2: In this paper, energy/power saving is achieved by optingiziot only the uplink
and downlink transmit powers, but also by optimizing theestaf the antennas in the network.
Thereby, it is expected that switching the antennas on dmablaptively according to the channel
conditions is an effective strategy for reducing the nekyMoower consumption when the QoS

requirements are not stringent or the number of users is low.

IV. RESOURCEALLOCATION ALGORITHM DESIGN

The optimization problem in[(12) is a mixed non-convex ananbmatorial optimization
problem. The combinatorial nature is due to the binary selewariables in C5. Also, variable
s; is coupled with both downlink beamforming vecter, and uplink power allocation variable
PjU in constraint C2. Furthermore, constraint C1 is non-conwath respect tow,. In the

following, we first transform the optimization problem iné&m equivalent form and obtain the
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global optimal solution by using the generalized Bendeg&sainposition. Then, we propose a
suboptimal polynomial time algorithm which is inspired bhetdifference of convex functions

program.

A. Problem Reformulation

In this section, we reformulate the considered optimizapeoblem in [(1R) using the defini-
tions W, = wy,w,’, Hp, = hp, hfj , andHy, = hUJ.h{j_. This leads to

NTL NTL

minimize Py + Z g PActive 4 Z (1 —s)P"e 4 g Z ep Tr(Wy) + ey Z CJPU

NrL U ,
W eH 7817P, ;dm,n =1 =1 =1 j=1

Ky
Tr(Hp, Wy)
st. ClL.—————= DL k > ZTT (Hp,W;) + Z PjU|9j,k|2 + 0121k7\v/k7

redk t#£k Jj=1
P NtL NtL
H
c2: rUg Tr (Ho, D 3" gunRoHu, RY)
re m=1 n=1
NTL NTL NTL
> ag, Tr (Z QllHU Rl> + Tr (ZHSIWRHSI Z Z Gm, nR HU RH)
m=1 n=1
NpL NpL
+ 30T (Ho, D037 PR o RE ), V) € {1, Ko},
r#j m=1 n=1

Kp
C3: > Tr(W,R)) < s, Ppy, VIe€{l,...,NrL}, C4, C§

max;’
k=1
C6: Wy, = 0, Vk, C7: Rank(Wy) <1, Vk,C8:0 < ¢ < Spm, Vm,n € {1,..., NyL},
CO: @ < Spy, Ymyn, CLO:qp, > sy + S — 1, Vm,n. (23)

Constraints C6, C7, an8V, € H"tX Vk, are imposed to guarantee tiéf;, = w,w;’ holds
after optimizationyg,, ,, is an auxiliary continuous optimization variable which igroduced to
handle the product of two binary variabless,, in constraint C2, cf.[{9)£E(11). In particular,
because of constraints C8 — CXf),,, will have a binary value ifs; is binary.

We note that constraint C2 is still non-convex due to the pevpdermsq,, ., X and g, ., Wy,
which is an obstacle for the design of a computationally iefficresource allocation algorithm.
In order to circumvent this difficulty, we adopt the big-M ffoulation [29], [30] to decompose

the product terms. First, we introduce auxiliary variabf%m = Pqum,n andWZ“” = Witmn-
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Then, we impose the following additional constraints:

C11: P}, < P Gmn, Vi, m,m, C12: PY. . < PV Vj,m,n, (14a)
C13:PY,., > P/ — (1 = gpn) Py sy Vs 110, 70, C14:P?, . >0, (14b)
C15: W} < Iy, PPL g, Yk, m, C16: W™ < W, Vk,m,n, (14c)
C17: W} = Wi — (1 — ) Iny . PR Yk, m,n, C18: W™ = 0,Vk, m, n. (14d)

In particular, constraints C11-C18 involve only conting@ptimization variables, i.€E;, P; .,

am.n, aNd' Wy, which facilitates the design of an efficient resource altmn algorithm. Subse-

quently, we substltutéjijn = P)]‘UQm,n and W‘ZL’" = Wyqm . into the coupled variables in C2
which yields
N 1 NtL NtL
. H
C2: T Tr (HU]. S ]manHUjRn)
re m=1 n=1
NTL KD NTL NTL
> 2Ty (qulHU Rl> FTr (ZZ 3 HoW;HE4R,, Hy, RH>
=1 m=1 n=1
NpL NpL
+ ZTI (HUTZZ rmanHUjR{;[)u v.] S {17"'7KU}' (15)
r#j m=1 n=1

The big-M formulation linearizes the terms, ,PY andg,,, W} such that constrair€2 is an
affine function with respect to the new optimization vare'mP]Umn and VV,T’". We note that
constraints C2 an@€2 are equivalent when constraints C5 and C11-C18 are edtisfi

As a result, the considered optimization probléml (13) carnréesformed into the following

equivalent problem:
NrpL NrtL

Kp Ky
minimize Po+ ) siPA 4y (1= s) P 4> ep Tr(Wi) + Y eu( P
WkeHNTLywz’L’nﬁly(Im,n, =1 =1 k=1 j=1

pY pU
Jjtgm,n

sit. C1C2 C3, C4, C6C8 — C18
C5: s, € {0,1},¥, C7: Rank(W) < 1, Vk, (16)

and we can focus on the design of an algorithm for solving thnozation problem in[(16).
Now, the remaining non-convexity of optimization problei@) is due to constraints C5 and
C7.

Remark 3: We note that the uplink-downlink duality approach(inl][332] cannot be applied
to our problem for the following two reasons. First, the ogliand downlink transmit power
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variables are coupled in constraints C1 and C2. Second piivékuiand downlink transmit powers

of each transceiver are constrained.

B. Optimal Iterative Resource Allocation Algorithm

Now, we adopt the generalized Bender's decomposition (GEBDhandle the constraints
involving binary optimization variables [24]-[26], i.€C3, C8, C9, and C10. In particular, we de-
compose the problem ia{IL6) into two sub-probleffas:a primal problemwhich is a non-convex
optimization problem involving continuous optimizatioariables{ W, VVZ”‘, P].U, Pj-lfm,n, Gmon )}

(b) a master problem which is a mixed integer linear program (MILP). Specificaliye primal
problem is solved for giver; which yields an upper bound for the optimal value [of] (16). In
contrast, the solution of the master problem provides aideeand for the optimal value of (16).
Subsequently, we solve the primal and master problemdiuelauntil the solutions converge.
In the following, we first propose algorithms for solving themal and master problems in the
i-th iteration, respectively. Then, we describe the itgegirocedure between the master problem
and the primal problem.

1) Solution of the primal problem in the i-th iteration: For given and fixed input parameters
s; = s(i) obtained from the master problem in th¢h iteration, we minimize the objective
function with respect to variable§W,,, VV,T’", Py, ]5].U

, M

s @m,n ) IN the primal problem:

NtL NrL Kp Ky

minimize Py + Z sy PACve 1 Z(l — 5)) P 4 q Z ep Tr(Wy) +eu Z CijU
Wi HNTE Wi g, =1 =1 k=1 j=1

pY pU
J ot gm.n

sit. C1C2 C3, C4, C16 — C18. (17)

We note that constraint C5 ifi([16) will be handled by the nrgsteblem since it involves only
the binary optimization variable,. Now, the only obstacle in solving (IL7) is the combinatorial
rank constraint in C7 and we adopt the SDP relaxation apprttabandle this non-convexity. In
particular, we relax constraint CRank(W,) < 1 by removing it from the problem formulation,
such that the considered problem [in]l(17) becomes a convexadRan be solved efficiently
by numerical methods designed for convex programming sscimtarior point methods [33].
If the solutionW, of the relaxed version of (17) is a rank-one matrix for all ddink users,
then the problem in{17) and its relaxed version share theesggtimal solution and the same

optimal objective value.
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Now, we study the tightness of the adopted SDP relaxatiome $BP relaxed version of
(@I2) is jointly convex with respect to the optimization \asies and satisfies Slater’s constraint
qualification. Thus, strong duality holds and solving thaldporoblem is equivalent to solving

(@7). To obtain the dual problem, we define the Lagrangiarhefrelaxed version of (17) as

£(©, @) = thrp (Wi 51, P) + f1(©, @)+ f2(©, @), where (18)
NrL NrL
Urp (Wk, si, P! ) PO+Z s PACtve Z (1 — )Pl 4 ”Z ep Tr(Wy) +eu Z ¢;PY (19)
k=1 7j=1
Ky NrL NrL Ky
fi(©.®) Z T(ZeWe) =3 3 > BimnPlina+ D NP = Pi)
k=1 j=1m=1 n=1 j=1
Kp Ky Ky
Tr(Hp, Wy)
+3 o] - TED W) S T (o, W) 37 Pgft ¢ of| =Y rf
k=1 T t#£k Jj=1 Jj=1
Ky (=T (Ho, SN N 2L, Ry Hy, RY ) NoL
S - cot e (3 )
j=1 req; =1
Kp NrL NpL NrL NpL
(Z Z Z HSIWm "HIR HU]RH) ZTr (HU Z Z ,,manHUij;I))
k=1 m=1 n=1 r#j m=1 n=1
Ky NpL NpL ) Ky NpL NpL )
159) 3) SITSHE T APSRES 9 9 DI (; ITESAT N
7j=1 m=1 n=1 7j=1 m=1 n=1
Ky NrL NtL NtL NtL
22D Tima P = B = D0 D Smantin
7j=1 m=1 n=1 m=1 n=1

Kp NtL NtL . .

+3° 33 1iDey,, (W;n,n - Pmaxlqmm) + Doy, (W;n,n B Wk)
k=1 m=1 n=1
Kp NtL NtL

33w {Dc%m’n (Wk — (1= o )TNy PP — WZ"”’") . W;”’"}, and (20)

k=1 m=1 n=1

Kp NrL NrL NpL
B = 303 (VR ) 35S o)
k=1 [=1 m=1 n=1
Nt L NtL NtL Nt L
+ Z Z (pm,n((Jm,n - Sn) + Z Z wm,n(sn + Sm — 1- qm,n) (21)
m=1 n=1 m=1 n=1

Here,@ - {ka SI,P Wmn P mn>Qm n} and@ — {O‘kawjapla {)‘]7Xj} Zka {gm ns Rm n} Pm,n,

Winons HgmonTjmoms Sjmoms 51’"%"7Dka,m,nvDClSk,m,n’Dka,n . DC18 } are the collections of



primal and dual variables, respectively; > 0,1; > 0,p;, > 0,{X\;, x;} > 0,Zy > 0,6y, >
0, Kmmn = 0,0mn = 0,Wmn = 0, jmn = 0, Tjmn = 0,8 mn = 0,Bmn = O7D015k,m_n >
0,D¢y, ., = 0,Dcy, =0, and Dcy, = 0, are the scalar/matrix dual variables for
constralnts Cl-C4, C8 C18, respectlvely Functigs <Wk,sl, U) in (19) is the objective
function of the SDP relaxed version of probleml(17)(©, ®) in (20) is a function involving
the constraints that do not depend on the binary optimizat@riables;f,(©, ®) in (21) is
a function involving the constraints including(i). These functions are introduced here for
notational simplicity and will be exploited for facilitatgy the presentation of the solutions for
both the primal problem and the master problem.

For a givens;, the dual problem of the SDP relaxed optimization problerdlif) is given by

max;mize mingnize E(@, ‘I>). (22)
We define®*(i) = {W73, sl,P]U*,VAV;”’"*,PU;n,qmn} and ®(i) = {®*} as the optimal primal
solution and the optimal dual solution of the SDP relaxedfam in (17) in thei-th iteration.

Now, we introduce the following theorem regarding the tigdss of the adopted SDP relax-
ation.

Theorem 1: Assuming the channel vectors of the downlink uséis,, & € {1,..., Kp}, can
be modeled as statistically independent random variabiles, the solution of the SDP relaxed
version of [17) is rank-one, i.eRank(W}) = 1,Vk, with probability one. Thus, the optimal
downlink beamformer for usek, i.e., wy, is the principal eigenvector oiV,.

Proof: Please refer to Appendix A for a proof of Theordm

On the other hand, we formulate dp-minimization problem for the case wheh [17) is

infeasible for given binary variables(i). The [;-minimization problem is given as:

NrL NpL NpL
minimize E v+ g E Vs T v n T 1/,%1,? (23)
NpL A\
WkeH T 7WZ7I nvqm,’nn =1 m=1 n=1
P]U7Pj15m7n’7/lcg7”797,8,717”797,?717”7911,%
sit. C1C2 C4, C6, C11 — C18

C3: Tr(WiRy) < (i) PPE + P vl e {1,...,NrL},

maxg

C8:0 < G < 5(i) + 158

m,n?

Vm,n € {1,...,NyL}, C9: ¢y < sp(i )+an> Vm,n,

CL10: 5" + G > 50 (0) + 83 (i) — 1, Ym,m, CL9:0 % w8 v WS > 0,V1,m,n, k.

Y mn7 m,n? mn



15

Equation [(2B) is an SDP problem and can be solved by intenort pnethods with polynomial
time computational complexity. We note that the objectivaction in [23) is the sum of the
constraint violations with respect to the probleninl (17sBles, the corresponding dual variables
and the optimal primal variables will be used as the inpuhtorhaster problem for the next iter-
ation [25]. We adopt a similar notation as [n{13) to denotepghimal and dual variables in_(23).
In particular, the primal and dual solutions for theminimization problem in[(23) are denoted as
© = (W5, P W[ PV, G} and® = (@, 01, 51 10 X5} Zis Sy Fonas o s D
Tjmins Timms s Bjmms Do, »Dews, » Doy, Dey, |}, respectively. The primal
and dual variables will be exploited as inputs for the caists of the master problem.

2) Solution of the master problem in the i-th iteration: For notational simplicity, we defing
andZ as the sets of all iteration indices at which the primal peabls feasible and infeasible,
respectively. Then, we formulate the master problem whitlzes the solutions of[(13) and

(23). The master problem in theth iteration is given as follows:

minimize o (24a)

st. C5 | (24b)
0> E(®(t),s),te{l,....i}NF, (24c)
0>&(®(t),s),te{l,....i}NT, (24d)

wheres; and p are optimization variables for the master problem and

E®(1),5) = minimize  Ure (Wi, s, P) + £1(©,8(1)) + (0, 2(1)),  (25)
W eHNTL W™ g s
pYU, PV

,P
J,m,n

§(®(t),s) =  minimize  f1(0, B(1)) + £2(0, D(1)). (26)
W €HNTE W™ gy,
pY pU

Equations [(25) and_(26) are two different minimization peobs defining the constraint set
of the master problem if_(24). In particular,> &(®(t),s;),t € {1,...,i} N F in (248) and

0 > &(@(t),s),t € {1,...,i} N Z in (24d) denote the sets of hyperplanes spanned by the
optimality cut and thefeasibility cut from the first to thei-th iteration, respectively. The two
different types of hyperplanes reduce the search regioth@global optimal solution. Moreover,
both&(®(t),s;) and&(®(t), s;) are also functions of; which is the optimization variable of the

outer minimization in[(24).
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OPTIMAL ITERATIVE RESOURCEALLOCATION ALGORITHM BASED ONGBD 16

Algorithm Generalized Bender's Decomposition
1: Initialize the maximum number of iteratiodsnax, UB(0) = oo, LB(0) = —oo, and a small constant — 0

2: Set iteration index = 1 and start withs; (i) = 1, Vk, [

3: repeat {Loop}

4: Solve [IT) by SDP relaxation for a given setspfi)

5. if (ITD) is feasiblethen

6: Obtain an intermediate resource allocation pol@y(i) = {Wy,, si, P]U/7WZL*7LI,15]?,/,“7“(1;1,”}, the corresponding

Lagrange multiplier sef (i), and an intermediate objective valyg

7: The upper bound value is updated wittB(¢7) = min{UB(: — 1), fi}. If UB(:) = f;, we set the current optimal
policy Ocurrent = O(7)
else
9: Solve the I;-minimization problem in [(23) and obtain an intermediatesotgce allocation policy@(i) =

{W;mshP]U/,WZ’",7I:’ﬁ;n,mq;n,n} and the corresponding Lagrange multiplier §e(ti)
10:  endif
11:  Solve the master problem in_{24) fer, saves;(i + 1) = s;, and obtain the-th lower bound, i.e.LB(%)
12:  if |[LB(i) — UB(#)| < ¢ then

13: Global optimal =true, return {W;;,s;“,P]U*,VVz""*,PJ?;’n,q:nyn} = {Ocurrent }
14: dse

15: t=1+1

16: end if

17: until 7 = Liax

Now, we introduce the following proposition for the solutiof the two minimization problems
in (28) and [(ZB).

Proposition 1: The solutions of[(25) and_(26) for indexe {1,...,i} are the solutions of
([@7) and [(2B) in the-th iteration, respectively.

Proof: Please refer to Appendix B for a proof of Propositidn 1.

The master problem if(24) is transformed to an MILP by apmyPropositiori 1l to solve
(28) and [(26). Hence, the master problem can be solved bg gsamdard numerical solvers for
MILPs such as MoseK [34] and Gurobi [35]. We note that an @it constraint is imposed
to the master problem in each additional iteration, thusdhpctive value of[(24), i.e., the
lower bound of[(16), is a monotonically non-decreasing fiomcwith respect to the number of
iterations.

3) Overall algorithm: The proposed iterative resource allocation algorithm iswsarized
in Table[] and is implemented by a repeated loop. For theatiith, we first set the iteration
index: to one and the binary variableg(i) to one, e.gs;(1) = 1, Vi. In thei-th iteration, we

solve the problem in[(17) via SDP relaxation. Two differeyytes of Lagrange multipliers are
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defined depending on the feasibility of the primal problehthé problem is feasible for a given
(i) (lines 6, 7), then we obtain an intermediate resource dilmtaolicy © (i), an intermediate
objective valuef], and the corresponding Lagrange multiplier &¢t). In particular,®(i) is used

to generate aoptimality cut in the master problem. Also, the optimal resource allocagiolicy
and the performance upper boud@(:) are updated if the computed objective value is the lowest
across all the iterations. On the contrary, if the primalbpem is infeasible for a given,(7)
(line 9), then we solve thg-minimization problem in[(23) and obtain an intermediatsotece
allocation policy(:)(z') and the corresponding Lagrange multiplier €€t). This information will

be used to generate anfeasibility cut in the master problem. We note that the upper bound
is obtained only from the feasible primal problem. Subsetjyewe solve the master problem
based on®(t) and ®(i), ¢t € {1,...,i}, via a standard MILP numerical solver. Due to weak
duality [26], the optimal value of the original optimizatigoroblem in [(1V) is bounded below
by the objective value of the master problem in each itematiche algorithm stops when the
difference between theth lower bound and theéth upper bound is smaller than a predefined
thresholdy > 0 (lines 12 — 14). We note that when the master and the primdll@mos can be
solved in each iteration, the proposed algorithm is guarxhto converge to the optimal solution
[25, Theorem 6.3.4].

C. Suboptimal Resource Allocation Algorithm Design

The optimal iterative resource allocation algorithm pregd in the last section has a non-
polynomial time computational complexity due to the MILPstex problenH. In this section, we
propose a suboptimal resource allocation algorithm whi$ dn polynomial time computational
complexity. The starting point for the design of the progbseboptimal resource allocation
algorithm is the reformulated optimization problem [in](13)

1) Problem reformulation via difference of convex functions programming: The major obstacle

in solving [13) are the binary constraints. Hence, we re@ngdnstraint C5 in its equivalent form:
NrL NrtL

Csa: 0<s <1,¥vle{l...,L} and C5b:) 51— ) 57 <0. (27)
=1 =1

Now, optimization variabless; in C5a are continuous values between zero and one while

constraint C5b is the difference of two convex functions.uByng the SDP relaxation approach

“The optimal algorithm serves mainly as a performance beadkiior the proposed suboptimal algorithm.
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Algorithm Successive Convex Approximation

1: Initialize the maximum number of iteratiors...., penalty factorp >> 0, iteration index: = 0, andsl(i)

2: repeat {Loop}

3. Solve[31) for a given!""" and obtain the intermediate resource allocation pofyy,, sj, P, W™ | PY. b .}

R

Sets!"™) = s andi =i+ 1

5: until Convergence of = Lax

as in the optimal resource allocation algorithm, we canrretdate the optimization problem as

mNinimizQ UTP <Wk, S, fDJU> (28)
WLeHVTE WL PUPY, g
s.t. ® €D, C5h

whereD denotes the convex feasible solution set spanned by constGiL 62 C3, C4, Cha, C6
and C8 — C18. The only non-convexity [0 {28) is due to constr@bb which is a reverse convex
function [27]. Now, we introduce the following Theorem foardling the constraint.

Theorem 2: For a large constant valug>> 1, (28) is equivaIthto the following problem:

NtL NrL
thiinimiZQ Z/{Tp <Wk, S, 1D]U> + ¢( Z S; — Z S?) (29)
WieHNTE WL PO PY L dmn =1 =1
S.t. ®cD.

In particular,¢ acts as a large penalty factor for penalizing the objectivetion for anys; that
is not equal ta) or 1.
Proof: Please refer to Appendix C for a proof of TheorEim 2.

The problem in[(2B) is in the canonical form of difference aheex (d.c.) functions pro-
gramming. Specificallyy(s;) = Zf\ff s? is a concave function and we minimize d.c. functions
over a convex constraint set. As a result, we can apply ssiseesonvex approximation [36] to
obtain a local optimal solution of (29).

2) Suboptimal iterative algorithm: Sinceg(s;) is a differentiable convex function, inequality
g(s) > g(s\) + Vag(s) (s — s), Wl € {1,..., NoL}, (30)

always holds for any feasible poi@f), where the right hand side df (30) is an affine function

[33] and represents a global underestimatoy @f).

SHere, equivalence means that both problems share the saimeabgpbjective value and the same optimal resource aliocat

policy.
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As a result, for any given value Q:f), we solve the following optimization problem,

NtL NtL NtL

minimize Urp (V\/'k7 51, PjU) + ¢< Z 5 — Z(Sl(i))z _9 Z Sl(z')(sl _ Sl(z'))>
=1 =1 =1

WkeHNTvai’bvshP]U?P‘U »dm,n

s.t. ® €D, (31)

which leads to an upper bound ¢f {29). Then, to tighten thainbtl upper bound, we employ
an iterative algorithm which is summarized in Table Il. Einge initialize the value o%l(i) for
iteration index: = 0. Then, in each iteration, we solMe {31) for given valuegl(@f, cf. line 3,
and updatesl(i“) with the intermediate solution;, cf. line 4. The proposed iterative method
generates a sequence of feasible solutiq(ﬁEl) with respect to[(29) by solving the convex
upper bound probleni(B1) successively. As shownlin [36], gfreposed suboptimal iterative
algorithm converges to a local optimal solutioof (29) with polynomial time computational
complexity. In fact, the proposed suboptimal algorithm dféa from the convexity of[(31)
and different numerical methods can be used to efficientlyes@1). In particular, when the
primal-dual path-following interior-point method is used with a proper choice of kernel(/barrier)
function, cf. [37], [38], the computational complexity dfie proposed suboptimal algorithm
iS O(Lymax(NtL)?In((NtL)?/€)) with respect toNtL for a given solution accuracy > 0
[39], whereO(-) stands for the big-O notation. The computational compyeistsignificantly
reduced compared to the computational complexity of an @sthae search which is given by
O(2NtL (Nt LIn(NtL/€)) with respect toNtL, i.e., cf. Figure B.

Remark 4: The proposed algorithm requireg) to be a feasible point for the initialization,

i.e., fori = 0. This point can be easily obtained since the constraint $pan a convex set.
V. SIMULATION RESULTS

In this section, we evaluate the system performance of thiegsed resource allocation designs
via simulations. There aré = 3 FD radio BSs in the system, which are placed at the corner
points of an equilateral triangle. The inter-site distabeéween any two FD radio BSs %0
meters. The uplink and downlink users are uniformly disti@al inside a disc with radius00
meters centered at the centroid of the triangle. We set thstaot weights for the downlink and

uplink power consumption ag= ¢; = 1,Vj € {1,..., Ky}. The penalty ternp for the proposed

®By following a similar approach as in the proof of Theorem tican be shown thaRank(W}) = 1 holds despite the
adopted SDP relaxation.



TABLE 11l

SYSTEM PARAMETERS 20
Carrier center frequency and path loss exponent 1.9 GHz and3.6
Multipath fading distribution and total noise varianee, Rayleigh fading and-62 dBm
Minimum required SINR for uplink usef, T'req 10 dB

Power amplifier power efficiency and antenna power consumpti idle mode,P'¥¢ | 1/ep = 1/ey = 0.2 and0 dBm

Max. transmit power for downlink and uplink?y;,, and Pyl 48 dBm and23 dBm

suboptimal algorithm is set tth ) . Also, P, = 0 is adopted in all simulation reSlHtsUnIess
specified otherwise, we assum@dB of self-interference cancellativat the FD radio BSs and
the circuit power consumption per antennafsce = 30 dBm. The antenna gains for the BSs
and the users aré0 dBi and 0 dBi, respectively, and there a¥r = 20 antennas equipped
in each FD BS resulting invVyL = 60 antennas in the network. Furthermore, all downlink
users require identical minimum SINRs, i.EpL = T’ Vk. The performance of the proposed
algorithms is compared with the performances of the folimpMour baseline systems designed
for peak system load when all the available antennas areagadi. In particular, we minimize
the total system power consumption of all four baselineesyistusing a similar approach as for
the schemes proposed in this paper butsset 1,VI € {1,..., NrL}. The baseline systems are
configured as followsBaseline 1: a FD distributed antenna system (FD-DABgseline 2: a HD
distributed antenna system (HD-DASaseline 3: a FD system with co-located antennas (FD-
CAS); Baseline 4: a HD system with co-located antennas (HD-CAS). For the HDmaoinication
systems, we adopt static time division duplex such thatnipéind downlink communication
occur in non-overlapping equal-length time intervals. thes words, both self-interference and
the uplink-to-downlink co-channel interference are aedidFor a fair performance comparison
between HD and FD systems, we Bet, (1+TUE ) = 1/21log, (1+TUE"HP) andlog, (1+T2L ) =

req; req; req;

1/2log,(1+ T2 ") such that the minimum required SINRs for the uplink usefg; ", and

req;

downlink users" "1, becomel', o~ = (1 4+ T )? — L and g™ = (1 4+ 1020)% — 1,
respectively, to account for the penalty due to the loss etspl efficiency of the HD protocol.
Also, the power consumption of downlink and uplink transsias in the objective function of
the HD systems is reduced by a factor of two as at a given titleereuplink or downlink
transmission is performed. For the CAS, we assume that ikeoaly one BS located at the

center of the system, which is equipped with the same nunib@ntennas as all FD BSs in the

"We note that the value aP, does not affect the resource allocation algorithm design.

8We assume a balun analog circuit is implemented in the FDorB&s which can cancel0 dB of self-interferencel[11].

The residual self-interference is handled by the beamfagnmatrix W, via the proposed optimization framework.
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Fig. 2. Convergence of the proposed iterative algorithms. Fig. 3. Computational complexity versus the total number

of transmit antennas in the systefiy L.
distributed setting combined, i.eNtL. Furthermore, for all baseline systems, we remove the
maximum transmit power constraints imposed for the downéind uplink transmissions, i.e.,
constraints C3 and C4. The key parameters adopted in thdations are provided in Tablelll.

A. Convergence and Computational Complexity of the Proposed Iterative Algorithms

Figure[2 illustrates the convergence of the proposed optamd suboptimal algorithms for
different minimum required SINRs for downlink usefﬁg. There areKp = 4 downlink users
and Ky = 2 uplink users in the system. It can be seen from the upper lidfigure[2 that
the proposed optimal algorithm in Table | converges to thenwad solution in less thars50
iterations, i.e., the upper bound value meets the lower dmatue. On the other hand, from the
lower half of Figure[ 2, we observe that the suboptimal atgami converges to a local optimal
value after less thafo0 iterations. In the sequel, we show the performance of thestiral
iterative algorithm for20 iterations.

Figure[3 compares the computational complexity of the bfoitee approach with that of the
proposed suboptimal aIgoritIHﬂor 20 iterations and solution accuracy= 0.1. The system
setting is identical to the scenario in Figlide 2 and the tesale computed based on the big-
O complexity analysis in Section IV. As can be observed, th@ppsed suboptimal resource
allocation algorithm requires a significantly lower comgdidnal complexity compared to the

brute force approach, especially for large numbers of avaten

° The proposed optimal algorithm may have the same compogtammplexity as the brute force approach in the worst case

scenario although this seldom happens in practice.
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B. Average Total System Power Consumption

In Figure[4, we study the average total system power consampersus the minimum
required SINRs of the downlink userE?(j;. There areKp = 4 downlink users and{y = 2
uplink users in the system. It can be observed that the agdrdgl system power consumption
increases gradually Witlﬁr%ﬁ. In fact, as the QoS requirements of the downlink users becom
more stringent, a higher downlink transmit power is neededutfill the requirement. At the
same time, the self-interference power increases with tventink transmit power. Thus, the
FD radio BSs have to utilize more degrees of freedom for issdfiference suppression, and
as a consequence, less degrees of freedom are availablediacimg the total system power
consumption. On the other hand, the proposed suboptinratiite resource allocation algorithm
offers practically the same performance as the optimalrdhgo for the considered scenario. As
can be observed, the two proposed algorithms facilitat@fsgnt power savings compared to all
baseline system architectures (which activate alwaysvallable antennas), especially for low to
moderate system loads, i.@{?eg < 21 dB. Indeed, activating all antennas may not be beneficial
for the total system power consumption when the load of tistesy is relatively small, since
in this case, the power consumption caused by an extra antencuit outweighs the power
reduction for information transmission offered by the axdctivated antenna. Nevertheless, the

performance gap between the two proposed algorithms arelit@systeml diminishes as
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the minimum required SINRs for the downlink users incredsearticular, the BSs are forced
to transmit with high power to satisfy the more stringent Qe§uirements when the number
of activated antennas is small. As a result, the two propesgorithms have to activate more
antennas, cf. also Figufd 6, for improving the power efficyenf the system which yields
a similar resource allocation as baseline systemdditionally, the two proposed algorithms
outperform HD baseline systerisand4 by a considerable margin. As can be seen, in the HD
systems, an exceedingly large system power consumptiagisred to meet the more stringent
minimum required downlink SINRs to compensate for the gpédafficiency loss inherent
to the HD protocol. Furthermore, the distributed antennaglayed in the proposed systems
provide spatial diversity across the network which shartdre distance between transmitters
and receivers. This accounts for the power saving enablethéytwo proposed algorithms
compared to baseline CASsand4.

Figure[® depicts the average total system power consumpéisus the number of downlink
users for a minimum required downlink SINR D eﬁ = 21 dB. There areky = 2 uplink users
in the system. It is observed that the average total systemempoonsumption increases with the
number of downlink users. As more downlink users requestncomcation services from the
system, more QoS constraints are imposed on the optimizatiablem in [(I2) which reduces
the size of the feasible solution set and thus results in aehnitptal system power consumption.

In addition, the two proposed resource allocation algorghoutperform all baseline schemes
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due to the adopted optimization framework and the distetntenna architecture.

C. Average Number of Activated Antennas

In Figure[®, we study the average number of activated ansewaisgus the minimum required
downlink SINR, TD%, for different numbers of downlink users. It can be obsertieat the
average number of activated antennas increases with siegeainimum required SINR for
the downlink users. Although activating an extra antenmasignal transmission and reception
consumes extra power in the circuit, i.25%ve— pldle > ( a larger number of activated antennas
increases the degrees of freedom of the system which is betefithe QoS constraints are
stringent. Specifically, with more antennas, the directidrbeamforming matrixW, can be
more accurately steered towards downlink usewhich substantially reduces the necessary
downlink transmit power to achieve a certain QoS. Moreotte, reduced downlink transmit
power also decreases the self-interference which in tudnoes the required uplink transmit
power. In fact, for a small number of activated antennas, RBeradio BSs are required to
transmit with exceedingly high power 11‘3{; is large. As a result, the FD radio BSs prefer to
activate more antennas to improve the power efficiency afrmétion transmission, when the
cost of activating extra antennas is less than the assdgmatential transmit power saving. On
the other hand, it can be observed that the proposed schetegemore antennas when more
downlink users are in the system. In fact, the downlink carctel interference increases with
the number of downlink users. Furthermore, the co-chanmmelference cannot be suppressed
by simply increasing the downlink transmit power for all ddimk users. Thus, extra spatial
degrees of freedom are beneficial for decreasing the systemrpconsumption.

In Figure¥, we show the average number of activated antemeess the circuit power
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consumption per active antenn&?<v¢ (dBm), for different minimum required SINRs for the
downlink users. It is expected that the FD radio BSs prefeadtivate more antennas when
the circuit power consumption per antenna is small or theRStBlquirements of the downlink
users are demanding, since in this case, the power savihgs/ad by activating extra antennas
surpasses the corresponding circuit power consumptiorih®ugontrary, when the circuit power
consumption per antenna is high, the FD radio BSs become puiservative in activating
antennas since using a large number of antennas may no lbegbeneficial to the overall
system power consumption.
VI. CONCLUSIONS

In this paper, we formulated the resource allocation aloridesign for power efficient
distributed FD antenna networks as a mixed combinatoriginem-convex optimization problem,
where the antenna circuit power consumption and the QoSiregnents of the uplink and
downlink users were taken into account. Applying the gdimd Bender's decomposition, we
developed an optimal iterative resource allocation athorifor solving the problem optimally. In
addition, a polynomial time computational complexity sptimal algorithm was also proposed
to strike a balance between computational complexity arioinafity. Simulation results showed
that the proposed suboptimal iterative resource allopasilgorithm approaches the optimal
performance in a small number of iterations. Furthermotg, results unveiled the substantial
power savings enabled in FD radio distributed antennasarksaby dynamically switching off
a subset of the available antennas; an exceedingly largéemuai activated antennas may not
be a cost effective solution for reducing the total systerwgroconsumption when the QoS

requirements of the users are not stringent.

APPENDIX
A. Proof of Theorem[1

We start the proof by rewriting the Lagrangian function o ffirimal problem in[(1l7) in terms

of the beamforming matridv,:

Kp
c(e.®) - ;Tr(Aka ZTr( Z). + O‘l’j:?)wk) +A (32)

NrL NtL NtL

and Ay = neplyy, + Z%HD + Z R+ > > (Do, ~ Doy, ) (33)

i#k m=1 n=1
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A denotes the collection of variables that are independeMWf For convenience, the optimal
primal and dual variables of the SDP relaxed versior of (1&)denoted by the corresponding
variables with an asterisk superscript. By exploiting therwsh-Kuhn-Tucker (KKT) optimality

conditions, we obtain the following equations:

2,70, o >0, Vk, (34)

Z:W? =0, (35)
. . oH

Zk = Ak - kDLDk ) (36)

where A} in (38) is obtained by substituting the optimal dual varés®* into (33). From[(35),
we know that the optimal beamforming matrW; is a rank-one matrix wheiank(Z;) =
NrL — 1. In particular, W} is required to lie in the null space spanned By for W; # 0.
As a result, by revealing the structure &f, we can study the rank of beamforming matrix
W7. In the following, we first show by contradiction that; is a positive definite matrix with
probability one. To this end, we focus on the dual probleniZid)( For a given set of optimal
dual variables®*, and a subset of optimal primal variablgs;, P, W,T’"*, 15]?,;;,”, G }r the
dual problem in[(2R) can be written as

minimize c((a, <I>*). (37)

W, eHNT
SupposeA; is negative semi-definite, i.eA; < 0, then we can construct a beamforming
matrix W,, = rw;wil as one of the solutions of (B7), where> 0 is a scaling parameter and
w, is the eigenvector corresponding to one of the non-posgigenvalues ofA;. We substitute
W, = rw,wi into (37) which yields

Kp Kp *
c (@, <1>) - ]; Te(rALw,wi) —r ]; Tr (mw,{jf (Z;, + O‘l’:?; )) +A. (38)

7

<0
Besides, constraint C1 is satisfied with equality for theimat solution and thusy, > 0.

Furthermore, since the channel vectors of the downlinksyses.,hp , Vk € {1,..., Kp}, are

assumed to be statistically independent, we obtairy_ 1>, Tr (wkvv,?(z; + 2o )) — —00

reqy
when we setr — oo. Thus, the dual optimal value becomes unbounded from befety.the
optimal value of the primal problem ifi(lL7) is non-negatice rg{;k > 0 which leads to

a contradiction as strong duality does not hold. Thereféwe the optimal solution A} is a

positive definite matrix with probability one aritlank(Aj) = NtL, i.e., A has full rank.
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Then, by exploiting[(36) and basic rank inequality resulie,have the following implication:

Hp . Hp
Rank(Zj) + Rank (o —5==) > Rank (Z} + aj—57~) = Rank(A}) = NrL
reqy, reqg

= Rank(Z;) > NrL — 1. (39)

Furthermore W = 0 is required to satisfy C1 for2L > 0. Thus,Rank(Z;) = NyL — 1 and

reqy,

Rank(W7) = 1 hold with probability one. [

B. Proof of Proposition 1]

We start the proof by studying the solution of the SDP relaxesion of [1¥) via its dual
problem in [(22). For a given set of optimal dual variabieg), we have® (i)
= arg Hgn Z/{Tp (Wk, S, fDJU> —|—f1(®, ‘I’(l))

Kp NtL NtL NtpL
+ Z Z Pl Tr<Wle) + Z Z Rmn4m,n + Pmnldmn — Wmnldm,n, (40)
k=1 I=1 m=1 n=1

where the first equality is due to the KKT conditions of the Si2Raxed version of[(17). On
the other hand, we can rewrite functiot®(¢), s;x),t € {1,...,i}, in (Z8) as&(®(t), six)

{ Kp NrL NpL NpL

mmgmze Z/{TP(Wk,Sl, j)+f1 (O, P(i +ZZpl Tr(W,R;) +Z Z/—cmnqmn
k=1 [=1 m=1 n=1
NtL NtL

+80m,an,n - Wm,an,n} + Z Z wm,n<5n + Sm — 1) - Km,nsm - @m,nsn

m=1 n=1
Kp NtL

- Z Z Slprgixl (41)

k=1 I=1
The difference betweefi (40) arid{41) is a constant offsetsJ®(¢) is also the solution for the
minimization in the master problem in_(41) for tieh constraint in[(24c). The same approach
can be adopted to prove that the solution[ofl (23) is also théiso of (28). [ |

C. Proof of Theorem[2
We start the proof of Theorel 2 by using thlestract Lagrangian duality [27], [40], [41]. In

particular, the optimization problem ib(28) can be writéEn

minimize maéflzr(r]uze L(O, ) (42)
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where
NrL NrL

L(©,0) = UTP<Wk,Sz, >+¢(Zsl Z ) (43)

=1

and the dual problem of (28) is given by

majglzrguze mu(})lerglze L(O, ). (44)

For notational simplicity, we define

Qo) = miimize L(O, ). (45)
Then, we have the following inequalities:
maximize Qo) = maximize minimize L(O, ) (46a)
(2) inimi imize L£(0,¢) = (28 46b
< minimize ma:gnguze (©,¢) = (28), (46b)

where (a) is due to the weak dualify [33]. We note that"" s, — S."" s? > 0 for © € D such

that £(©, ¢) is a monotonically increasing function ift In other words(¢) is increasing in

¢ and is bounded from above by the optimal value[ofl (42). Supgbe optimal solution for

(463) is denoted as; and ©@* = {Wk,sl,P]U,WLb, PP s G}, Where0 < ¢f < oco. Then,

we study the following two cases for the solution structur§d@ad). In the first case, we assume
Nl STtk 52 — 0 for (46a). As a resul®* is also a feasible solution to (28). Subsequently,

we substitute®* into the optimization problem ir_(28) which yields:

O(05) = Usp (Wi, 51, PY) > (@8) (47)
By utilizing (46a) and[(4l7), we can conclude that

minimize maximize L(©,$) = maximize minimize L£(©,¢) (48)
®cD >0 »>0 ®cD
must hold fory """ s, "l 2 — 0. Furthermore, the monotonicity 61(¢) with respect to
¢ implies that
Qo) = (28), Vo > ¢y, (49)
and the result of Theorefd 2 follows immediately.

Now, we study the case of " s, — SN  s? > 0 at the optimal solution for(46a). The

optimization problemnazggnze Q(¢) — oo is unbounded from above due to the monotonicity
of function 2(¢) with resp_)ect tap. This contradicts the inequality ih (46a) @sl(28) is finitel an
positive. Thus, for the optimal solutiop, " s, — """ s? = 0 holds and the result of Theorem

[2 follows immediately from the first considered case. |
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