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Abstract—In millimeter-wave communication, large antenna
arrays are required to achieve high power gain by steering
towards each other with narrow beams, which poses the problem
to efficiently search the best beam direction in the angle domain
at both Tx and Rx sides. As the exhaustive search is time
consuming, hierarchical search has been widely accepted to
reduce the complexity, and its performance is highly dependent
on the codebook design. In this paper, we propose two basic
criteria for the hierarchical codebook design, and devise an effi-
cient hierarchical codebook by jointly exploiting sub-array and
deactivation (turning-off) antenna processing techniques, where
closed-form expressions are provided to generate the codebook.
Performance evaluations are conducted under different system
and channel models. Results show superiority of the proposed
codebook over the existing alternatives.

Index Terms—Millimeter wave communication, mmWave,
beamforming, codebook design, hierarchial search.

I. I NTRODUCTION

M ILLIMETER-WAVE (mmWave) communication is a
promising technology for next-generation wireless

communication owing to its abundant frequency spectrum
resource, which promises a much higher capacity than the
existing wireless local area networks (WLANs) and the current
cellular mobile communication. In fact, mmWave communi-
cation has received increasing attentions as an important can-
didate technology in both the next-generation WLANs [1]–[7]
and mobile cellular communication [8]–[16]. A fundamental
challenge to mmWave communication is the extremely high
path loss, thanks to the very high carrier frequency on the order
of 30-60 GHz. To bridge this significant link budget gap, joint
Tx/Rx beamforming is usually required to bring large antenna
array gains, which typically requires a large Tx/Rx antenna
array size (e.g., an antenna array size of 36 is used in [4].).
Fortunately, thanks to the small wavelength on the mmWave
frequency, large antenna arrays are possible to be packed into
a small area.
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In the mmWave domain, the high power consumption
of mixed signal components, as well as expensive radio-
frequency (RF) chains, make it difficult, if not impossi-
ble, to realize digital baseband beamforming as used in the
conventional multiple-input multiple-output (MIMO) systems.
Instead, analog beamforming is usually preferred, where all
the antennas share a single RF chain and have constant-
amplitude (CA) constraint on their weights [4], [6], [17], [18].
Meanwhile, a hybrid analog/digital precoding structure was
also proposed to realize multi-stream/multi-user transmission
[9], [12], [13], where a small number of RF chains are
tied to a large antenna array. No matter whether the analog
beamforming or the hybrid precoding structure is exploited,
entry-wise estimation of channel state information (CSI) is
time costly due to large-size antenna arrays, and a more
efficient antenna training algorithm is needed.

For the hybrid precoding structure, as the mmWave channel
is generally sparse in the angle domain, different compressed
sensing (CS) based channel estimation methods were pro-
posed to estimate the steering angles of multipath components
(MPCs) [9], [16], [19]–[21], where [19] is for point-to-point
multi-stream transmission, [20] is for multi-user transmission,
while [21], based on a presentation of antenna array with
virtual elements, further enhances the channel estimationover
[19]. For the analog beamforming structure, there in general
exist two different approaches. In [4], [6], [7], [22], an
iterative beamforming training approach is adopted, in which
the beamforming vector on one side (transmitter or receiver)
is alternatively optimized by fixing the beamforming vector
on the other side, and the alternation is repeated iteratively to
improve the beamforming gain one iteration upon another. On
the other hand, in [17], [18], [23], a switched beamforming
approach is adopted, where the beam search space (at the
transmitter and receiver side, respectively) is represented by
a codebook containing multiple codewords, and the best
transmit/receive beams are found by searching through their
respective codebooks. Both approaches have their own merit
and may be useful in different applications.

In this paper, we focus on switched beamforming for one-
stream transmissions. This is motivated by the fact that single-
stream beamforming is actually capacity achieving in the very-
low SNR case [24]. Furthermore, single stream beamforming
can be readily extended to the more complicated hybrid
precoding case [19]. For switched beamforming, an exhaustive
search algorithm may be used, which sequentially tests all
the beam directions in the angle domain and finds the best
pair of transmit/receive beamforming codewords. This is con-
ceptually straightforward. However, the overall search time is
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prohibitive, because the number of candidate beam directions
is usually large for mmWave communication. To improve the
search efficiency, a hierarchy of codebooks may be defined [3],
[17], [18], [25]–[27]. For example, a coarse codebook may be
defined with a small number of coarse/low-resolution beams
(or sectors) covering the intended angle range, while a fine
codebook may be defined with a large number of fine/high-
resolution beams covering the same intended angle range, and
that a coarse beam may have the same/similar coverage as that
of multiple fine beams together. A divide-and-conquer search
may then be carried out across the hierarchy of codebooks,
by finding the best sector (or coarse beam) first on the low-
resolution codebook level, and then the best fine beam on the
high-resolution codebook level, with the best high-resolution
beam contained by the best low-resolution beam.

Performances of the switched beamforming schemes, in-
cluding the search time and success rate, are highly dependent
on the hierarchical codebook design. In [17], [18], although
wider beams were proposed to speed up beam search, design
approaches to broaden the beams were not studied. In [25],
codewords with wider beams were generated by summing
two codewords with narrower beams, but the CA constraint
was no longer satisfied. In [26], a sub-array method was
proposed to broaden the beam width by pointing the sub-
array beams in slightly-gapped directions. However, a full
hierarchical codebook was not explicitly designed therein, and
this approach may be not feasible to design very wide or even
omni-directional beams. In [19], the hybrid precoding structure
was adopted to shape wider beams by exploiting the sparse
reconstruction approach, but high-quality wide beams can be
shaped only when the number of RF chains is large enough and
deep sinks within the angle range appear otherwise. In [27],a
binary-tree structured hierarchical codebook was designed by
using antenna deactivation, where wider beams were generated
by turning off part of the antennas. A complete codebook
was designed with closed-form expressions provided therein.
However, the number of active antennas is too small for
very wide or omni-directional beams, which may limit its
application in mmWave communication, where per-antenna
transmission power is limited.

In this paper, we first propose two basic criteria for arbitrary
hierarchical codebook designs, and then devise an efficient
hierarchical codebook by jointly exploiting sub-array andde-
activation (turning-off) antenna processing techniques.Closed-
form expressions are provided to generate the codebook. In
the proposed approach, the beams of the sub-arrays steer
towards widely-gapped directions to broaden beams, which is
essentially different from [26], and the deactivation operates on
the sub-arrays instead of individual antennas like that in [27].
To the best of our knowledge, this is the first to propose these
two criteria and the joint sub-array and deactivation codebook
design. Performance evaluations are conducted under both
line-of-sight (LOS) and non-LOS (NLOS) channels, as well
as with both total and per-antenna transmission power models.
Results show superiority of the proposed codebook over the
existing alternatives, especially when the per-antenna transmit
power is constrained.

The rest of this paper is as follows. In Section II, the
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Fig. 1. Illustration of the system.

system and channel models are introduced. In Section III,
the hierarchical codebook design is presented. In Section IV,
performance evaluation is conducted. The conclusion is drawn
lastly in Section V.

Symbol Notations:a, a, A, andA denote a scalar variable,
a vector, a matrix, and a set, respectively.(·)∗, (·)T and
(·)H denote conjugate, transpose and conjugate transpose,
respectively.E(·) denotes expectation operation.[a]i and[A]ij
denote thei-th entry ofa and thei-row andj-column entry
of A, respectively.[a]i:j denotes a vector with entries being
the i-th to j-th entries of[a]. | · | and‖ · ‖ denote the absolute
value and two-norm, respectively.

II. SYSTEM AND CHANNEL MODELS

A. System Model

Without loss of generality, we consider an mmWave com-
munication system with half-wave spaced uniform linear
arrays (ULAs) of NT and NR elements equipped at the
transmitter and receiver, respectively [5], [17], [28], [29], as
shown in Fig. 1, where a single RF chain is tied to the
ULA at both the transmitter and receiver, and thus the analog
beamforming structure is adopted. At the transmitter, each
antenna branch has a phase shifter and power amplifier (AP) to
drive the antenna, while at the receiver, each antenna branch
has a low-noise amplifier (LNA) to amplify the signal and
a phase shifter. It is noted that as the analog beamforming
can be seen as one of the branches of the hybrid precoding
structure, the proposed criteria and codebook design can be
naturally used by the hybrid precoding structure, which will
be shown in Section III-D. Additionally, in our system each
antenna branch can be deactivated or turned off, i.e., thereis
a switch in each antenna branch at both sides although not
depicted in the figure. Generally, all the PAs, as well as the
LNAs, have the same scaling factor if activated. Thus, each
element of the antenna weight vectors (AWVs) at the both
sides either has a constant amplitude or is zero.

Letting s denote the transmitted symbol with unit power,
the received signal is

y =
√

Ptotw
H
RHwTs+w

H
Rn, (1)

wherePtot is the total transmission powerof all the active
antennas,wT and wR are the transmit and receive AWVs,
respectively,H is the channel matrix,n is the Gaussian noise
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vector with powerN0, i.e.,E(nnH) = N0I. LetW(N) denote
a set of vectors withN entries as shown in (3), whereν is a
normalization factor such that all the vectors haveunit power.
We can find that each entry of an arbitrary vector inW(N)
has either an amplitudeν (activated) or is 0 (deactivated).
Consequently, we havewT ∈ W(NT), andwR ∈ W(NR). It
is noted that this signaling is based on the total transmission
power, and we can further define the total transmission SNR
as γtot = Ptot/N0, and the received SNR with the total
transmission power model as

ηtot = γtot|wH
RHwT|2. (2)

The power gain under this model is

Gtot =
ηtot
γtot

= |wH
RHwT|2, (4)

which is also the array gain.

On the other hand, in mmWave communication the scaling
abilities of PAs are generally limited. Thus, a per-antenna
transmission power model is also with significance to char-
acterize the best transmission ability of the transmitter,which
is shown as

y =
√

PperNTactw
H
RHwTs+w

H
Rn, (5)

wherePper is the per-antenna transmission power,NTact is the
number of active antennas ofwT, which varies as different
wT. Also, we havewT ∈ W(NT), and wR ∈ W(NR).
In addition, the per-antenna transmission SNR is defined as
γper = Pper/N0, and the received SNR with the per-antenna
transmission power model is defined as

ηper = γperNTact|wH
RHwT|2. (6)

The power gain under this model is

Gper =
ηper
γper

= NTact|wH
RHwT|2, (7)

which includes both the transmission power gain equal to
the number of active antennasNTact and the array gain
|wH

RHwT|2.

It is worth mentioning that the total and per-antenna trans-
mission power models are suitable for the cases that the scaling
abilities of PA are high enough and limited, respectively.
However, there is no difference for codebook design between
with these two models.

B. Channel Model

Since mmWave channels are expected to have limited
scattering [19], [29]–[32], MPCs are mainly generated by
reflection. That is, mmWave channels have the feature of
directionality. Different MPCs have different physical transmit
steering angles and receive steering angles, i.e., physical
angles of departure (AoDs) and angles of arrival (AoAs).
Consequently, mmWave channels are relevant to the geometry
of antenna arrays. With half-spaced ULAs adopted at the
transmitter and receiver, the channel matrix can be expressed

as [19], [26], [27], [29], [33], [34]

H =
√

NTNR

L
∑

ℓ=1

λℓa(NR,Ωℓ)a(NT, ψℓ)
H
, (8)

whereλℓ is the complex coefficient of theℓ-th path,L is the
number of MPCs,a(·) is thesteering vector function, Ωℓ and
ψℓ are cos(AoD) and cos(AoA) of theℓ-th path, respectively.
Let θℓ and ϕℓ denote thephysical AoD and AoAof the ℓ-
th path, respectively; then we haveΩℓ = cos(θℓ) andψℓ =
cos(ϕℓ). Therefore,Ωℓ andψℓ are within the range[−1 1].
For convenience, in the rest of this paper,Ωℓ andψℓ are called
AoDs and AoAs, respectively. Similar to [19], [29],λℓ can be
modeled to be complex Gaussian distributed, whileθℓ andϕℓ
can be modeled to be uniformly distributed within[0, 2π]. a(·)
is a function of the number of antennas and AoD/AoA, and
can be expressed as

a(N,Ω) =
1√
N

[ejπ0Ω, ejπ1Ω, ..., ejπ(N−1)Ω]T, (9)

whereN is the number of antennas (N isNT at the transmitter
and MR at the receiver),Ω is AoD or AoA. It is easy
to find thata(N,Ω) is a periodical function which satisfies
a(N,Ω) = a(N,Ω+2). The channel matrixH also has power
normalization

L
∑

ℓ=1

E(|λℓ|2) = 1. (10)

C. The Problem

From a system level, joint Tx/Rx beamforming is required
to maximize the received SNR, i.e.,

Maximize ηtot = γtot|wH
RHwT|2 or

ηper = γperNTact|wH
RHwT|2,

Subject to wR ∈ WR,wT ∈ WT.

(11)

Clearly, if H is known at the transmitter and receiver,
and there is no CA constraint, the optimalwT and wR

can be easily solved by singular value decomposition (SVD).
However, in mmWave communication it is too time costly
for entry-wise estimation of the channel matrix, which has a
large scale due to large antenna arrays, and there exists theCA
constraint. Thus, the SVD approach is basically not feasible
for mmWave communication.

Fortunately, according to (8) the mmWave channel has
uncertainty mainly on AoDs/AoAs at both sides. In such a
case, the one-stream beamforming problem in (11) can be
simplified to find the AoD/AoA of an arbitrary strong MPC
(or better the strongest MPC)1, and setwT and wR as the
Tx/Rx steering vectors pointing to these AoD/AoA.

To this end, a straightforward way is to evenly sample the
angle domain[−1, 1] with a small interval, e.g.,1/N for
an N antenna-array, and sequentially test all these sampled
angles with corresponding steering vectors at both sides. This
is the exhaustive search method. Clearly the codebooks for

1Basically, under LOS channel, where there is a LOS componentsignif-
icantly stronger than the other MPCs, the best MPC (the LOS component)
needs to be found; while under NLOS channel, where all the MPCs have
similar strengths, an arbitrary strong MPC can be feasible.
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W(N) = {ν[β1ejθ1, β2ejθ2 , ..., βNejθN ]T
∣

∣βi ∈ {0, 1}, θi ∈ [0, 2π), i = 1, 2, ..., N} (3)

exhaustive search are composed by only steering vectors.
Although exhaustive search is feasible and can always find
the best MPC, it has a time complexityO(N2) [27], [35],
which is too high for large arrays. Thus, hierarchical search is
widely used to reduce the search time. In fact, the search time
is highly dependent on the design of the Tx/Rx codebooks,
which are subsets ofWT and WR, respectively. Hence, we
focus on the codebook design in this paper.

III. H IERARCHICAL CODEBOOK DESIGN

In this section, we design a hierarchical codebook composed
by codewords (or AWVs) with different beam widths, which
helps the search efficiency in finding the steering vectors of
a strong or the strongest MPC at both sides. It is noted that,
based on the specific structure of the mmWave channel model,
the codebook design is to establish a relationship between
the codewords in the angle domain to speed up the beam
search. Thus, the codebook design is in fact irrelevant to
the instantaneous channel response. When beamforming is
required in practice before data transmission, a beam search
process needs to be launched based on the designed codebook
to find the suitable beamforming weights (steering vectors)for
a given channel. For different channels, the codebook is the
same, but the searched optimal steering vectors are different
depending on the channel responses.

Although several hierarchial search schemes have been
proposed for beam search in both literatures [25]–[27] and
some standards, like IEEE 802.15.3c and IEEE 802.11ad [3],
[17], [18], to the best of our acknowledge, there are no
criteria proposed to judge whether a codebook is suitable or
not, and there are few complete hierarchical codebooks with
closed-form expressions provided for mmWave communica-
tion. Therefore, in this section, we first propose two basic
criteria to design a hierarchical codebook, and then design
one jointly using sub-array and deactivation techniques based
on the proposed criteria.

A. Two Criteria

Before introducing the two criteria, we first introduce two
definitions here. LetA(w,Ω) denote the beam gain ofw along
angleΩ, which is defined as

A(w,Ω) =
√
Na(N,Ω)Hw =

N
∑

n=1

[w]ne
−jπ(n−1)Ω, (12)

whereN is the number of elements ofw.
Let CV(w) denote the beam coverage in the angle domain

of AWV w, which can be mathematically expressed as

CV(w) =
{

Ω
∣

∣ |A(w,Ω)| > ρmax
ω

|A(w, ω)|
}

, (13)

where ρ is a factor within (0, 1) to determine the beam
coverage ofw. It is easy to find that the coverage is smaller
as ρ becomes greater. Whenρ = 1/

√
2, the beam coverage

is the 3dB coverage, and the beam width is the well-known
3dB beam width. Different codebook design methods may
have different values ofρ, and codewords with different beam
widths in the same codebook may also have different values
of ρ.

Hierarchical search is simplylayeredsearch, i.e., the AWVs
within the codebook arelayeredaccording to their beam width.
AWVs with a lower layer have larger beam width. Letting
w(k, n) denote then-th codeword (or AWV) in thek-th layer,
the two criteria are presented as follows.

Criterion 1: The union of the beam coverage of all the
codewords within each layer should cover the whole angle
domain, i.e.,

Nk
⋃

n=1

CV(w(k, n)) = [−1, 1], k = 0, 1, ...,K, (14)

whereNk is the number of codewords in thek-th layer,K
it the maximal index of the layer (there areK + 1 layers in
total).

Criterion 2: The beam coverage of an arbitrary codeword
within a layer should be covered by the union of those of
several codewords in the next layer, i.e.,

CV(w(k, n)) ⊆
⋃

m∈Ik,n

CV(w(k+1,m)), k = 0, 1, ...,K−1,

(15)
whereIk,n is the index set with indices of the codewords in
the(k+1)-th layer for then-th codeword in thek-th layer. For
convenience, we callw(k, n) a parent codeword, and{w(k+
1,m)|m ∈ Ik,n} the child codewords ofw(k, n).

It is clear that Criterion 1 guarantees the full coverage, i.e.,
there is no miss of any angle during the beam search, while
Criterion 2 establishes a tree-fashion relationship between the
codewords, which enables hierarchical search. If each parent
codeword hasM child codewords, all the codewords in the
codebook constitute anM -way tree with respect to their beam
coverage in the angle domain. In such a case, hierarchical
search can be easily realized by using the tree search algorithm
in both the receiver and transmitter as following [19], [27].

The Hierarchical Search:Initially, we fix the transmitter
to be in an omni-directional mode, and run anM -way tree
search forlogM (NR) stages to find the best receive codeword.
And then we fix the receiver to be in a directional mode
with the found best receive codeword, and then run anM -
way tree search forlogM (NT) stages to find the best transmit
codeword. In each stage, we haveM candidate codewords,
which are theM child codewords of a parent codeword found
in the last stage. We need to test all theM codewords one by
one to find the best one, and treat it as a new parent codeword
for the next-stage search. Therefore, the search time (number
of tests) for Tx/Rx joint training is

T =M logM NT +M logM NR. (16)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, XXX 20XX 5

�(0,1)

�(1,1) �(1,2)

�(2,1) �(2,2) �(2,3) �(2,4)

�(log ! , 1) �(log ! ,!)…

Angle Domain -1 +1

The 0-th Layer

The 1-st Layer

The 2-nd Layer

The Last Layer

Fig. 2. Beam coverage of a binary-tree structured codebook.

In the next subsection we will design a codebook with
M = 2, for the reason that whenM = 2 the codebook
tree is a typical binary tree, and the number of antennas
is powers of two, which is generally used in antenna array
design. Nevertheless, extending the proposed method to other
values ofM is straightforward.

B. The Deactivation Approach

As a basis of the joint sub-array and deactivation approach,
we first introduce the deactivation (DEACT) approach in this
subsection to design a binary-tree codebook, which has the
beam coverage shown in Fig. 2, where there arelog2(N) + 1
layers with indices fromk = 0 to k = log2(N), and the
number of codewords in thek-th layer Nk = 2k. HereN
denotes the number of antennas of an arbitrary array. Thus,
N = NT at the transmitter andN = NR at the receiver.
Besides, we have

CV(w(k, n)) = CV(w(k + 1, 2n− 1)) ∪ CV(w(k + 1, 2n)),

k = 0, 1, ..., (log2(N)− 1), n = 1, 2, 3, ..., 2k.
(17)

In our method, we define

CV(a(N,Ω)) =
[

Ω− 1

N
,Ω +

1

N

]

, (18)

which means that the steering vectors have a beam width2/N
centering at the steering angle [24]. In other words, within
the beam coverage ofa(N,Ω), it has the maximal beam gain
along the angleΩ, while the minimal beam gain along the
anglesΩ±1/N . Thus, we can compute the value ofρ for our
codebook as

ρ =

∣

∣

∣

∣

a(N,Ω− 1/N)Ha(N,Ω)

a(N,Ω)Ha(N,Ω)

∣

∣

∣

∣

or

∣

∣

∣

∣

a(N,Ω + 1/N)Ha(N,Ω)

a(N,Ω)Ha(N,Ω)

∣

∣

∣

∣

=
1

N

∣

∣

∣

N
∑

n=1

ejπ(n−1)/N
∣

∣

∣
.

(19)

Although the value ofρ depends onN , we haveρ ≈ 0.64
given thatN is large, e.g.,N ≥ 8. Even whenN is small,ρ
is still close to 0.64, e.g.,ρ = 0.65 whenN = 4.

Notice that theN codewords in the last layer cover an angle
range[−1, 1] in total, which means that all these codewords
must have the narrowest beam width2/N with different
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for the DEACT approach, whereN = 128.

steering angles. In other words, the codewords in the last layer
should be the steering vectors with angles evenly sampled
within [−1, 1]. Consequently, we haveCV(w(log2(N), n)) =
[−1 + 2n−2

N ,−1 + 2n
N ], n = 1, 2, ..., N . With the beam

coverage of the last-layer codewords, we can further obtain
that of the codewords in the other layers in turn as an order
of descending layer indices, i.e., obtainCV(w(log2(N) −
1, n)), CV(w(log2(N) − 2, n)), ..., CV(w(0, n)) in turn.
Finally, the beam coverage of all the codewords can be
uniformly written as

CV(w(k, n)) = [−1 +
2n− 2

2k
,−1 +

2n

2k
],

k = 1, 2, ..., log2N, n = 1, 2, 3, ..., 2k.
(20)

Comparing (20) with (18), it is clear that when

w(k, n) = [a(2k,−1 +
2n− 1

2k
)T,0T

(N−2k)×1]
T, (21)

(20) is satisfied. This is just the deactivation approach that was
proposed in [27], where the number of active antennas is2k

in thek-th layer, and the other antennas are all turned off. Fig.
3 shows an example of beam pattern of the DEACT approach
for the case ofN = 128. From this figure we find that the
beam coverage ofw(0, 1) is just the union of those ofw(1, 1)
andw(1, 2), while the beam coverage ofw(1, 1) is just the
union of those ofw(2, 1) andw(2, 2).

C. The Joint Sub-Array and Deactivation Approach

It is noted that for the deactivation approach, whenk is
small, the number of active antennas is small, or even 1 when
k = 0. This greatly limits the maximal total transmission
power of an mmWave device. In general, we hope the number
of active antennas is as large as possible, such that higher
power can be transmitted, because in mmWave communication
per-antenna transmission power is usually limited. To achieve
this target, we consider jointly using the sub-array and deac-
tivation approach here. As the key of this approach is beam
widening via single-RF subarray, we term it BMW-SS.
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We also want to design a codebook with the beam coverage
shown in Fig. 2. According to (18), in thek-th layer, each
codeword has a beam width of2/2k. For the codewords of
the last layer, we can also adopt the steering vectors according
to (21). Compared with the codewords in the last layer, those
in the lower layers have wider beams, and according to (20),
codewords in the same layer have the same beam widths but
different steering angles. Thus, there are two basic tasks in the
codebook design, namely to rotate the beam along required
directions and to broaden the beam by required factors. We
first introduce beam rotation.

1) Beam Rotation:Beam rotation can be realized according
to the following theorem.

Theorem 1. CV(w ◦
√
Na(N,ψ)) = CV(w) + ψ, where◦

represents entry-wise product (a.k.a. Hadamard product),N
is the number of elements ofw, ψ is an arbitrary angle.A+ψ
is a new angle set with elements being those of the angle set
A added byψ.

The proof is referred to Appendix A, and this theorem can
be used not only for the BMW-SS approach, but also for other
codebook design methods.

Theorem 1 implies that given an arbitrary codewordw,
we can rotate its beam coverageCV(w) by ψ with w ◦√
Na(N,ψ). This theorem helps to design all the other

codewords in the same layer once one codeword in this layer
is found. To explain this, we need to emphasize that all the
codewords in the same layer have the same beam widths but
different steering angles according to (20), which means that
the beam coverage of all the codewords can be assumed to
have the same shape but different offsets in the angle domain.
Thus, we can obtain one codeword based on another in the
same layer as long as we know the angle gap between them
according to Theorem 1. In particular, suppose we find the first
codeword in thek-th layerw(k, 1). According to (20), we do
know that the angle gap between then-th codeword in the
k-th layer, i.e.,w(k, n), andw(k, 1) is 2n−2

2k
, n = 2, 3, ..., 2k.

Then we can obtain the all the other codewords in this layer
based onw(k, 1) according to Theorem 1 (see Corollary 1
below).

Corollary 1. Given the first codeword in thek-th layer
w(k, 1), all the other codewords in thek-th layer can be
found through rotatingw(k, 1) by 2n−2

2k
, n = 2, 3, ..., 2k,

respectively, i.e.,w(k, n) = w(k, 1) ◦
√
Na(N, 2n−2

2k ).

Proof: To prove this corollary, we need to prove that,
according to (20), whenw(k, n) = w(k, 1)◦

√
Na(N, 2n−2

2k
),

w(k, n) ∈ W(N) andCV(w(k, n)) = [−1+ 2n−2
2k

,−1+ 2n
2k
].

Since

[w(k, n)]i = [w(k, 1) ◦
√
Na(N,

2n− 2

2k
)]i

=[w(k, 1)]ie
jπ(n−1) 2n−2

2k ,

(22)

we have|[w(k, n)]i| = |[w(k, 1)]i|. As w(k, 1) ∈ W(N),
w(k, n) ∈ W(N).

In addition,w(k, 1) has a beam coverage[−1,−1 + 2
2k
].

According to Theorem 1,

CV(w(k, n))

=CV(w(k, 1) ◦
√
Na(N,

2n− 2

2k
))

=CV(w(k, 1)) +
2n− 2

2k

=[−1,−1 +
2

2k
] +

2n− 2

2k

=[−1 +
2n− 2

2k
,−1 +

2n

2k
].

(23)

2) Beam Broadening:The remaining task is to broaden the
beam for each layer. Given anN -element array, generally we
would expect a beam width of2/N . Nevertheless, this beam
width is in fact achieved by concentrating the transmission
power at a specific angleΩ0, i.e., by selecting AWV to
maximize |A(w,Ω0)|. Intuitively, if we design the AWV to
disperse the transmission power along different widely-spaced
angles, the beam width can be broadened. More specifically,
if a large antenna array is divided into multiple sub-arrays,
and these sub-arrays point at sufficiently-spaced directions, a
wider beam can be shaped.

To illustrate this, let us separate theN -antenna array intoM
sub-arrays withNS antennas in each sub-array, which means
N =MNS. In addition, lettingfm = [w](m−1)NS+1:mNS

, we
have[fm]n = [w](m−1)NS+n, m = 1, 2, ...,M . fm can be seen
as the sub-AWV of them-th sub-array. Therefore, the beam
gain ofw writes

A(w, ω) =

N
∑

n=1

[w]ne
−jπ(n−1)ω

=
M
∑

m=1

NS
∑

n=1

[w](m−1)NS+n
e−jπ((m−1)NS+n−1)ω

=
M
∑

m=1

NS
∑

n=1

e−jπ(m−1)NSω[fm]ne
−jπ(n−1)ω

=
M
∑

m=1

e−jπ(m−1)NSωA(fm, ω),

(24)
which means that the beam gain ofw can be seen as the
union of those offm. According to (18), by assigningfm =
ejθma(NS,−1 + 2m−1

NS
), whereejθm can be seen as a scalar

coefficient with unit norm for them-th sub-array, them-th
sub-array has beam coverageCV(fm) = [−1 + 2m−2

NS
,−1 +

2m
NS

], m = 1, 2, ...,M . Hence,w has the beam coverage

CV(w) =

M
⋃

m=1

CV(fm) = [−1,−1+
2M

NS
] = [−1,−1+

2M2

N
],

(25)
i.e., the beam width has been broadened byM2 by using the
sub-array technique, where a broadening factorM comes from
the number of sub-arrays, while another factorM results from
the reduction factor of the sub-array size.

However, in the above process, the mutual effects between
different sub-arrays are not taken into account. In the caseof
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fm = ejθma(NS,−1 + 2m−1
NS

), we have

A(w, ω)
∣

∣ fm = ejθma(NS,−1 +
2m− 1

NS
)

=
√

NS

M
∑

m=1

e−jπ(m−1)NSωejθm×

a(NS, ω)
H
a(NS,−1 +

2m− 1

NS
).

(26)

As the steering vector has the properties thata(NS,−1 +
2m−1
NS

)Ha(NS,−1 + 2n−1
NS

) = 0 whenm 6= n, the beam gain
of fm along the angle−1 + 2m−1

NS
is affected little byfn. It

is clear that|A(w,−1+ 2m−1
NS

)| =
√
NS for m = 1, 2, ...,M ,

which means that the beam gains along anglesω = 1+ 2m−1
NS

are significant.
Additionally, to reduce the beam fluctuation, it is required

that the intersection points in the angle domain of these
coverage regions, i.e.,ω = −1+ 2n

NS
, n = 1, 2, ...,M −1, also

have high beam gain, and this can be realized by adjusting
coefficientsejθm . Concretely, we have (28), where in (a) we
have used the fact thata(NS, ω1)

H
a(NS, ω2) is small and can

be neglected when|ω1−ω2| > 2/NS, in (b) we have exploited
the condition thatNS is even in this paper. To maximize
|A(w, ω)|2, we face the problem

maximize
∆θ

|f(NS,∆θ)|2, (27)

which has a solution that∆θ = (2k − NS−1
NS

)π, wherek ∈
Z. Thus, we may chooseθm = −jmNS−1

NS
π, which satisfies

∆θ = π, to reduce the fluctuation of the beam.
In summary, by using the sub-array method and setting

fm = e
−jm

NS−1

NS
π
a(NS,−1 + 2m−1

NS
), m = 1, 2, ...,M , we

obtain a codewordw with a beam width2M
NS

= 2M2

N . If we
jointly using the sub-array and deactivation method, we may
obtain codewords with beam widths2NA

NS
= 2MNA

N by setting
as

fm =







e
−jm

NS−1

NS
π
a(NS,−1 +

2m− 1

NS
), m = 1, 2, ..., NA,

0NS×1, m = NA + 1, NA + 2, ...,M.
(29)

whereNA is the number of active sub-arrays.
3) Codebook Generation:Recall that we need to design

w(k, n) with beam widths2/2k in the k-th layer.
Whenk = log2(N), we havew(log2(N), n) = a(N,−1+

2n−1
N ), n = 1, 2, ..., N .
When k = log2(N) − ℓ, whereℓ = 1, 2, ..., log2(N), we

obey the following procedures to computew(k, n):

• Separatew(k, 1) into M = 2⌊(ℓ+1)/2⌋ sub-arrays with
fm = [w(k, 1)](m−1)NS+1:mNS

, where⌊·⌋ is the flooring
integer operation,m = 1, 2, ...,M ;

• Setfm as (29), whereNA =M/2 if ℓ is odd, andNA =
M if ℓ is even;

• According to Corollary 1, we havew(k, n) = w(k, 1) ◦√
Na(N, 2(n−1)

N ), wheren = 2, 3, ..., 2k;
• Normalizew(k, n).

Fig. 4 shows an example of the beam pattern of the BMW-
SS approach in the case ofN = 128. From this figure we find
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Fig. 4. Beam patterns ofw(2, 1), w(2, 2), w(1, 1), w(1, 2) andw(0, 1)
for the BMW-SS approach, whereN = 128.

that the beam coverage ofw(0, 1) is just the union of those of
w(1, 1) andw(1, 2), while the beam coverage ofw(1, 1) is
just the union of those ofw(2, 1) andw(2, 2). Comparing the
beam pattern of DEACT shown in Fig. 3 with that in Fig. 4, it
can be observed that although there are small-scale fluctuations
for BMW-SS, the beams of BMW-SS appear flatter than those
of DEACT within the covered angle.

On the other hand, for BMW-SS all the codewords either
have all the antennas activated, or have half of them activated,
which shows a significant advantage over DEACT in terms
of the maximal total transmission power, especially for the
low-layer codewords. Fig. 5 shows the comparison of beam
patterns of BMW-SS, DEACT, and the approach in [19]
(termed as Sparse) with the per-antenna transmission power
model, where all the weights of active antennas have a unit
amplitude. From this figure, we find that BMW-SS offers
much higher beam gains than DEACT due to exploiting much
greater number of active antennas. In addition, for the Sparse
codebook, when the number of RF chains is small, there
are deep sinks within the beam coverage of the wide-beam
codewords, and the sink is more severe when the number of
RF chains is smaller, which are in accordance with the results
in [19] (Fig. 5 therein). Clearly, if the AoD or AoA of an
MPC is along the sink angle, it cannot be detected with the
codeword, which results in miss detection of the MPC. By
contrast, BMW-SS does not have such deep sinks.

It is noted that the corresponding hierarchical search of the
designed codebook will eventually converge to a codeword
of the last layer, i.e., a steering vector, at both ends. We
can find that the angle resolution of the last layer is2/N .
Thus, the designed codebook is just coarse codebook, while
the corresponding search method is coarse search, like those in
[27]. If a higher angle resolution is required, a fine codebook
composed by steering vectors with a smaller sampling gap
than2/N is necessary. Details are referred to [27].
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A(w, ω)
∣

∣

{

fm = ejθma(NS,−1 +
2m− 1

NS
), ω = −1 +

2n

NS

}

=
√

NS

M
∑

m=1

e−jπ(m−1)NSωejθma(NS, ω)
H
a(NS,−1 +

2m− 1

NS
)

(a)
≈
√

NSe
−jπ(n−1)NSωejθna(NS,−1 +

2n

NS
)Ha(NS,−1 +

2n− 1

NS
) +

√

NSe
−jπnNSωejθn+1a(NS,−1 +

2n

NS
)Ha(NS,−1 +

2n+ 1

NS
)

=
1√
NS

e−jπ(n−1)NSωejθn ×
(

NS
∑

i=1

e−jπ(i−1)/NS + ejπNSωej(θn+1−θn)
NS
∑

i=1

ejπ(i−1)/NS

)

(b)
=

1√
NS

e−jπ(n−1)NSωejθn ×
(

NS
∑

i=1

e−jπ(i−1)/NS + ej∆θ
NS
∑

i=1

ejπ(i−1)/NS

)

∆
=

1√
NS

e−jπ(n−1)NSωejθnf(NS,∆θ),

(28)
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Fig. 5. Comparison of the beam patterns of BMW-SS, DEACT, andthe
approach in [19] (termed as Sparse) with the per-antenna transmission power
model, whereN = 32. Ld = 1 for the Sparse approach.

D. Generalization

1) For the Hybrid Precoding Structure:In this paper we
adopt an analog beamforming structure, and both the proposed
two criteria and the BMW-SS approach are based on the
analog beamforming structure. However, they are naturally
feasible for the hybrid precoding structure, because the analog
beamforming structure can be seen as one of the branches of
the hybrid precoding structure [19].

To realize multi-stream transmission with the hybrid pre-
coding structure, the AoDs and AoAs of multiple MPCs need
to be searched. The search process with BMW-SS based on
the beamforming structure in this paper can be adopted to
search the AoD and AoA of each single MPC. In fact, similar
extension from one-stream transmission to multi-stream trans-
mission has been studied for the Sparse codebook in [19].

2) For Other Types of Antenna Arrays:In this paper we
adopt a ULA model. There are other types of antenna arrays in
practice, e.g., uniform planar array (UPA) and uniform circular
array (UCA). The proposed criteria and the BMW-SS approach
can be easily extended to the UPA model. In particular, for

a typical 2-dimensional grid UPA withm × n elements, its
steering vector can be expressed as the Kronecker product of
those of two ULAs withm×1 andn×1 elements, respectively
[26]. The search process as well as the codebook design could
be extended to the UPA model and will be studied later.

On the other hand, for a UCA model, the two criteria
are also feasible, but that the beam coverage in Criterion 1
should be extended to a 2-dimensional angle range, including
both the azimuth and elevation angle ranges. However, the
proposed BMW-SS approach can hardly be extended to the
UCA model, because the relation between the elements of
a steering vector changes. It would be indeed interesting to
design a new codebook according to the proposed criteria with
a UCA mode.

3) For Arbitrary Number of Antenna Elements:In this
paper we require that the number of elements of a ULA (N ) is
Mp for some positive integerp, which is because the BMW-
SS approach needs to divide the array or a sub-array intoM
smaller sub-arrays. For a ULA with an arbitrary number of
elements, the sub-array technology is infeasible ifN is not
M to an integer power. Hence, the proposed approach may
not be extended to with arbitrary number of antenna elements.
There are two possible choices in practice. One is to select a
ULA with N beingM to an integer power when designing
the system, which is reasonable because the beamforming
method should be considered in system planning. The other
one is to exploit BMW-SS for beamforming withM ⌊logM N⌋

antennas while deactivating the other ones, where⌊·⌋ is the
floor operation. Afterwards, further beam refinement can be
launched with all the antennas activated.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the designed
hierarchical codebook by the BMW-SS approach, and compare
it with the alternatives. We consider two different system
models on the transmission power, namely total transmission
power and per-antenna transmission power, which correspond
to the signal models in (1) and (5), respectively. The total
transmission power signal model reflects the performance for
the case that the transmission power on each antenna branch
can be high enough, while the per-antenna transmission power
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signal model reflects the limit performance for the case that
the transmission power on each antenna branch is limited2.
The per-antenna transmission power model makes more sense
in mmWave communication, where the output power of a
single power amplifier is generally limited [2], [4]. The
activation/deactivation operations of a codebook are irrelevant
to the power models. In particular, no matter which power
model is adopted, the codewords of BMW-SS either have all or
half of the antennas activated, those of DEACT have varying
numbers of the antennas activated and the number may be
quite small, while those of Sparse always have all the antennas
activated.

Besides, in the simulations, both LOS and NLOS channel
models are considered based on (8). For LOS channel, the
first MPC has a constant coefficient and random AoD and
AoA, while the other NLOS MPCs have complex Gaussian-
distributed coefficients and random AoDs and AoAs [26],
[29]. The LOS MPC is generally much stronger than the
NLOS MPCs. For NLOS channel, all the MPCs have complex
Gaussian-distributed coefficients with the same variance and
random AoDs and AoAs [19], [26], [29]. Both the LOS
and NLOS channels are sparse in the angle domain, because
the number of MPCs is much smaller than the numbers of
the Tx/Rx antennas [19], [26], [29]. For all the codebooks,
the hierarchical search method introduced in Section III-A
is used. The performances of received SNR and success rate
are all averaged on the instantaneous results of104 random
realizations of the LOS/NLOS channel.

A. Total Transmission Power Model

In this subsection, the total transmission power signal model
shown in (1) is used. With this model, the deactivation of
antennas will not affect the total transmission power, i.e., the
total transmission power is the same for the involved schemes.

Fig. 6 shows the received power during each search step
with the BMW-SS and DEACT codebooks under both LOS
and NLOS channels, whereNT = NR = 64, L = 3, Ptot = 1
W, and N0 = 10−4 W, i.e., the SNR for beam training
is sufficiently high, which means the length of the training
sequence is sufficiently long. The upper bound is achieved
by the exhaustive search method. For the LOS channel, the
LOS component has 15dB higher power than that of an
NLOS MPC. From this figure we can find that the received-
power performance of these two codebooks is similar to each
other. Under both channels, at the beginning, i.e., in the first
two steps, DEACT behaves slightly better than BMW-SS;
while in the following steps, BMW-SS slightly outperforms
DEACT, until both methods achieve the same performance
after the search process, because they have the same last-
layer codewords. Meanwhile, both approaches reach the upper
bound under LOS channel, while achieve a performance close
to the upper bound under NLOS channel. This is because
under LOS channel, the LOS component is the optimal MPC,
and it is acquired by all BMW-SS, DEACT and the exhaustive
search. However, under NLOS channel, BMW-SS and DEACT

2The limit performance here refers to the performance in the case that all
the active antennas transmit with maximal power.

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

Steps of the Hierarchical Search

R
ec

ei
ve

d 
P

ow
er

 (
dB

W
)

 

 

LOS, DEACT
LOS, BMW−SS
LOS, Upper Bound
NLOS, DEACT
NLOS, BMW−SS
NLOS, Upper Bound

Fig. 6. Received power during each search step with the BMW-SS and
DEACT codebooks under both LOS and NLOS channels, whereNT = NR =
64, L = 3, Ptot = 1 W, andN0 = 10−4 W. Step 1 to Step 6 is for Rx
training, while Step 7 to Step 12 is for Tx training.

acquire an arbitrary MPC of theL NLOS MPCs, which may
not be the optimal one acquired by the exhaustive search.

Fig. 7 shows the success rate of hierarchical search with the
BMW-SS, DEACT and Sparse (proposed in [19]) codebooks
under LOS channel, whereNT = NR = 64, L = 3. η is
the power difference in dB between the LOS component and
an NLOS MPC. From this figure, it is observed that both the
transmission SNRγtot and η affect the success rate. For all
the codebooks, the success rate improves asγtot increases.
However, due to the mutual effect of MPCs (i.e., spatial
fading), the success rate improves little whenγtot is already
high enough. Basically whenη is bigger, the mutual effect is
less, and the success rate is higher. For the Sparse codebook,
the performance also depends on the number of RF chains.
When the number of RF chains is small, e.g., only 2, the
deep sinks within the covered angle (See Fig. 5) will sharply
reduce the success rate, as shown in Fig. 7. Furthermore, we
can find that the success rate with the BMW-SS codebook is
higher than that with the DEACT codebook. This is because
the beams of the BMW-SS codebook are flatter than those of
the DEACT codebook; thus they are more robust to the spatial
fading. Also, the success rate with the BMW-SS codebook is
higher than that with the Sparse codebook when the number
of RF chains is not large.

Fig. 8 shows the success rate of hierarchical search with
the BMW-SS, DEACT and Sparse codebooks under NLOS
channel, whereNT = NR = 64. From this figure, the same
performance variation with respect to the transmission SNR
γtot can be observed as that in Fig. 7, and Sparse with 2 RF
chains also has the poorest performance. In addition, BMW-SS
basically outperforms DEACT and Sparse with 4 RF chains,
and the superiority depends onL. WhenL = 1, i.e., there is
only one MPC, both BMW-SS and DEACT achieve a 100%
success rate whenγtot is high enough, because there is no
spatial fading. In contrast, Sparse cannot achieve a 100%
success rate even whenL = 1, due to the deep sinks within
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the covered angle. WhenL > 1, all these schemes can hardly
achieve a 100% success rate, due to the mutual effect of
multiple MPCs.

It is noteworthy that the superiority of BMW-SS versus
DEACT in Fig. 6 is different from that in Figs. 7 and 8. Fig.
6 just shows the variation of the received power during the
search process with a high SNR, while Figs. 7 and 8 show
the search results over a wide SNR range. Fig. 6 actually
corresponds to the search process for a set of points in Figs.
7 and 8 with SNR equal of 40dB, and the received-power
superiority of BMW-SS over DEACT in Fig. 6 will become
larger if smaller SNR values are adopted.

B. Per-Antenna Transmission Power Model

In this subsection, the per-antenna transmission power
signal model shown in (5) is used to compare the limit

performances of BMW-SS and DEACT with the same per-
antenna transmission power. With this model, the deactivation
of antennas will significantly affect the total transmission
power. In particular, the total transmission power is lowerif
the number of active antennas is smaller.

Fig. 9 shows the received power during each search step
with the BMW-SS and DEACT codebooks under both LOS
and NLOS channels, whereNT = NR = 64, L = 3, Pper = 1
W, andN0 = 10−4 W. The upper bound is achieved by the
exhaustive search method. For the LOS channel, the LOS
component has 15dB higher power than that of an NLOS
MPC. Comparing this figure with Fig. 6, we find a significant
difference that with the per-antenna transmission power model
BMW-SS has a distinct superiority over DEACT during the
search process, especially at the beginning of the search
process. The superiority is about 15 dB at the beginning, andit
becomes less as the search goes on, until vanishes at the end of
beam search, i.e., the two methods achieve the same received
SNR after the search process. The superiority of BMW-SS
results from the fact that the number of the active antennas
for the codewords with wide beams is significantly greater
than that for DEACT, and thus BMW-SS has a much higher
total transmission power than DEACT when the per-antenna
transmission power is the same.

Moreover, the increasing speed of received power is the
same from Step 1 to Step 6 for both of the two schemes,
but from Step 7 to Step 12, the increasing speed for BMW-
SS varies, and that for DEACT becomes greater than that
from Step 1 to Step 6. This is because with per-antenna trans-
mission power, there are two power gains during the search
process according to (4), namely the array gain provided by
narrowing the Tx/Rx beams and the total transmission power
gain provided by increasing the number of active transmit
antennas. For DEACT, there is only Rx array gain from Step
1 to Step 6, where Rx training is performed, while there are
both Tx array gain and total transmission power gain from
Step 7 to Step 12, where Tx training is performed; thus, the
increasing speed of received power is greater from Step 7
to Step 12. For BMW-SS, there is also only Rx array gain
from Step 1 to Step 6 for Rx training; thus the received
power consistently increases with the same speed as DEACT.
But from Step 7 to Step 12 for Tx training, although the
Tx beam consistently becomes narrower, which means that
Tx array gain is consistently improved, the number of active
antennas alternatively changes betweenNT andNT/2, which
means that the total transmission power may become larger
or smaller. Hence, when both the Tx array gain and total
transmission power increase, the received power improves
with a speed the same as DEACT, while when the Tx array
gain increases but the total transmission power decreases,the
received SNR does not improve and may even decrease.

It is noted that the superiority of BMW-SS over DEACT at
the beginning of the search process is with big significance
for mmWave communication, where per-antenna transmission
power is generally limited. This superiority guarantees that
with the BMW-SS codebook, the success rate of beam search
will be upgraded with the same transmission distance, or the
transmission distance will be extended with the same success
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Fig. 9. Received SNR during each search step with the BMW-SS and DEACT
codebooks under both LOS and NLOS channels, whereNT = NR = 64,
L = 3, Pper = 1 W, andN0 = 10−4 W. Step 1 to Step 6 is for Rx training,
while Step 7 to Step 12 is for Tx training.

rate of beam search.
Figs. 10 and 11 show the success rates of hierarchical search

with the BMW-SS and DEACT codebooks under LOS and
NLOS channels, respectively. The same simulation conditions
are adopted as those in Figs. 7 and 8, respectively, and the
same results can be obtained from Figs. 10 and 11 as those
from Figs. 7 and 8, respectively, except that the superiority of
BMW-SS over DEACT becomes more significant in Figs. 10
and 11, which benefits from not only the fact that the beams
of the BMW-SS codebook are flatter than those of the DEACT
codebook, but also that the number of the active antennas of
the BMW-SS codewords is basically much greater than that of
DEACT, which offers much higher total transmission power.
Also, Figs. 10 and 11 reveal that even with low per-antenna
transmission power, the success rate of BMW-SS can be close
to 100%, which is evidently better than those of DEACT and
Sparse.

V. CONCLUSION

In this paper hierarchical codebook design has been studied
for mmWave communication. Firstly, two basic criteria have
been proposed for the codebook design. Next, a complete
binary-tree structured hierarchical codebook has been designed
by jointly using sub-array and deactivation techniques, i.e.,
the BMW-SS approach. Performance evaluation has been
conducted with both a total transmission power and a per-
antenna transmission power system models. Results show
that the BMW-SS codebook offers two advantages over the
deactivation codebook, namely flatter beams and much larger
number of active antennas. Both of these two advantages
basically provide performance superiorities in terms of re-
ceived power during the search process and the success rate of
beam search under both transmission power models, and the
performance superiority is especially significant with theper-
antenna transmission power system model. In addition, the
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Fig. 10. Success rate of hierarchical search with the BMW-SSand DEACT
codebooks under LOS channel, whereNT = NR = 64, L = 3. η is the
power difference in dB between the LOS component and an NLOS MPC.
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BMW-SS codebook also outperforms the Sparse codebook,
since there are no deep sinks within the beam coverage for
BMW-SS.

APPENDIX A
PROOF OFTHEOREM 1

Given an arbitraryN -element vectorw and two arbitrary
anglesψ andΩ, we want to prove thatCV(w◦

√
Na(N,ψ)) =

CV(w) + ψ, whereA + ψ is a new angle set with elements
being those of the angle setA added byψ. Note thatw ◦√
Na(N,ψ) is actually a new vector achieved based onw

and the steering vectora(N,ψ). Let us first see the beam
gain of this new vector.
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A(w ◦
√
Na(N,ψ),Ω)

(a)
=
√
Na(N,Ω)H(w ◦

√
Na(N,ψ))

(b)
=

N
∑

n=1

[w]ne
jπ(n−1)ψe−jπ(n−1)Ω

=

N
∑

n=1

[w]ne
−jπ(n−1)(Ω−ψ)

(c)
=A(w,Ω− ψ),

(30)

where (a) and (c) are according to the definition of the beam
gain in (12), while (b) is obtained according to definition of
the entry-wise product.

Thus, we further have

CV(w ◦
√
Na(N,ψ))

(a)
={Ω| |A(w ◦

√
Na(N,ψ),Ω)| >

ρmax
ω

|A(w ◦
√
Na(N,ψ), ω)|}

(b)
={Ω| |A(w,Ω− ψ)| > ρmax

ω
|A(w, ω − ψ)|}

(c)
={Ω| |A(w,Ω− ψ)| > ρmax

ω
|A(w, ω)|}

(d)
={Ω0 + ψ| |A(w,Ω0)| > ρmax

ω
|A(w, ω)|}

(e)
={Ω0| |A(w,Ω0)| > ρmax

ω
|A(w, ω)|} + ψ

=CV(w) + ψ,

(31)

where (a) is according to the definition of beam coverage in
(13), (b) is according to (30), (c) is based on the fact that the
maxima of|A(w,Ω−ψ)| does not depend on the angle offset
ψ, (d) is obtained by lettingΩ = Ω0 + ψ, and (e) is obtained
according to the definition of an angle set plus a single angle
in Theorem 1.
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