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Using Massive Antenna Arrays

Salil Kashyap,Member, IEEE, Emil Björnson,Member, IEEE, and Erik G. Larsson,Fellow, IEEE

Abstract—We illustrate potential benefits of using massive
antenna arrays for wireless energy transfer (WET). Specifically,
we analyze probability of outage in WET over fading channels
when a base station (BS) with multiple antennas beamforms
energy to a wireless sensor node (WSN). Our analytical results
show that by using massive antenna arrays, the range of WET
can be increased for a given target outage probability. We prove
that by using multiple-antenna arrays at the BS, a lower downlink
energy is required to get the same outage performance, resulting
into savings of radiated energy. We show that for energy levels
used in WET, the outage performance with least-squares or
minimum mean-square error channel estimates is same as that
obtained based on perfect channel estimates. We observe that a
strong line-of-sight component between the BS and WSN lowers
outage probability. Furthermore, by deploying more antennas at
the BS, a larger energy can be transferred reliably to the WSN
at a given target outage performance for the sensor to be able
to perform its main tasks. In our numerical examples, the RF
power received at the input of the sensor is assumed to be on the
order of a mW, such that the rectenna operates at an efficiency
in the order of 50%.

Index Terms—Wireless energy transfer, massive MIMO, beam-
forming, outage probability, array gain

I. I NTRODUCTION

Wireless energy transfer (WET) is a promising energy har-
vesting technology where the destination node harvests energy
from electromagnetic radiations instead of traditional wired
energy sources [3]. The use of WET can help increase the
battery-lifetime of energy-constrained wireless sensor nodes
(WSNs) that are used for applications such as intelligent
transportation, intrusion detection, and aircraft structural moni-
toring [4]. Furthermore, WET can be used to charge low power
devices such as temperature and humidity meters and liquid
crystal displays [5]. Even low-end computation, sensing, and
communication can be performed by harvesting energy from
ambient radio frequency (RF) signals including TV, cellular
networks, and Wi-Fi transmissions [6].

However, there are several challenges that must be ad-
dressed in order to implement WET. Firstly, only a small
fraction of the energy radiated by an energy transmitter can
be harvested by the WSN which severely limits the range
of WET [4], [7]. Secondly, the received power levels that
are suitable for wireless information transfer are not suitable
for energy transfer, where the absolute received power is of
interest and not the signal-to-noise ratio (SNR).
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Massive multiple input multiple output (MIMO) systems,
where the base station (BS) uses antenna arrays equipped with
a few hundred antennas, have recently emerged as a leading
5G wireless communications technology that offer orders of
magnitude better data rates and energy efficiency than current
wireless systems [8]. Potentially, the use of massive arrays
could significantly boost the performance of WET as well.

A. Focus and Contributions

We consider a scenario where a multi-antenna BS commu-
nicates with and transfers RF power to a WSN. The motivation
of using an array of antennas is that the BS can exploit
an array gain, resulting from coherent combination of the
signals transmitted from each antenna, if it knows the channel
response. This array gain in turn may increase the operating
range and/or decrease the amount of transmit energy needed
to satisfy a given energy harvesting constraint. The drawback
is that the wireless channel between the BS and the WSN
fluctuates so that the channel state information (CSI) needsto
be acquired on a regular basis to enable coherent combining.

The communication between the array and the sensor takes
place in two phases as shown in Figure 1. In the first phase, the
sensor utilizes energy stored in a battery or capacitor to trans-
mit a pilot waveform which is measured at each antenna in the
BS array, in order to estimate the channel impulse response
from the sensor. In the second phase, the array beamforms
energy to the sensor, using the estimated channel responses
and exploiting reciprocity1 of the propagation channel. The
energy harvested by the sensor is used to recharge its capacitor
or battery, and needed in turn for pilot transmission in phase
one of the next round and also to perform the main tasks of the
sensor. In addition, both phases may involve communication
of information, although that is out of the scope of this paper.

The main questions asked and answered in this paper are:
1) What array gain can the massive MIMO setup provide, i.e.,
how does the required uplink pilot energy (and thereby the
energy storage requirements at the sensor, and the required
array transmit energy) scale with the number of antennas in
the array taking into account that all channel responses are
estimated from pilots? The goal is to determine the scaling

1We consider time-division duplexing (TDD) mode of communication
and both the uplink and the downlink communication take place over the
same narrowband channel. We adopt the widely used reciprocity assumption,
which implies that the channel gain from the BS to a WSN is the same
as the channel gain from the WSN to the BS [9]. Most physical channels
satisfy this assumption, but the transceiver hardware might not satisfy this
condition unless calibration algorithms are applied [10].However, there is
substantial evidence that such calibration can be performed accurately and
rather infrequently [11].

http://arxiv.org/abs/1506.02420v2
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Fig. 1. Proposed two-phase protocol: Parameters are explained in Section II.

laws for energy transfer using large arrays. 2) How does the
number of antennas at the BS depend on the path loss or the
distance between the BS and the WSN? 3) How do the answers
to the previous questions depend on propagation conditions
and the correlation between the adjacent antennas? 4) What
role does power adaptation based on the estimated CSI play
in improving the outage performance?

To this end, we derive new expressions that are valid for
any generic path loss model for the probability of outage
in energy transfer, defined here as the probability that the
energy harvested by the WSN is less than the energy that it
spends on uplink pilots plus the processing energy.2 We derive
expressions for both perfect CSI and imperfect CSI based on
least squares (LS) or minimum mean square error (MMSE)
channel estimation and for both Rayleigh fading (without
dominant channel components) and Rician fading (with domi-
nant channel components). We consider not just the scenarios
where the downlink array transmit energy is fixed but also
those where it is adapted based on the channel conditions. We
present numerical results to quantify the combined effectsof
path loss, energy spent on uplink pilot signaling, the downlink
energy, the processing energy, the energy harvesting efficiency,
the RicianK-factor, power adaptation, the correlation between
adjacent antennas, and imperfect CSI on the probability of
outage in energy transfer. To summarize, one of the main
goals of this paper is to estimate the link budget in order to
determine the feasibility of a system that performs WET using
multi-antenna arrays. We next discuss the relevant literature on
WET using multi-antenna arrays.

B. Related Literature

The optimal uplink pilot power and the number of antennas
at the sensor that need to be trained so as to maximize
the net average harvested energy at the sensor node was
characterized in [12]. However, reference [12] did not consider
the possibility of an outage in energy transfer. The amount
of time that must be allocated for channel estimation and for
WET in order to maximize the harvested energy for a multiple
input single output (MISO) system was investigated in [13].
In [14], a wireless powered communication network with one
multi-antenna BS and a set of single antenna users was studied
for joint downlink (DL) energy transfer and uplink (UL) infor-
mation transmission via spatial division multiple access.The
aim was to maximize the minimum data throughput among
all users by optimizing the DL-UL time allocation, DL energy

2We refer to the energy that is needed by the sensor node to perform its
main tasks as the processing energy.

beamforming, and UL transmit power allocation. While, the
optimal training design to maximize the net average harvested
energy at the sensor over frequency-selective channels was
studied in [15], energy transfer in the downlink to maximize
the minimum rate among all users was studied in [16].

Simultaneous wireless information and power transfer
(SWIPT), where a multi-antenna BS sends information and
energy simultaneously to several users which then perform in-
formation decoding or energy harvesting was studied in [17]–
[19]. The authors in [20] investigated when the receiver
should switch from the information decoding mode to the
energy harvesting mode based on the instantaneous channel
and interference conditions so as to achieve various trade-offs
between wireless information transfer and energy harvesting.
Receiver design for SWIPT over a point-to-point wireless link
was investigated in [21]. In [22], the authors studied a hybrid
network architecture that overlays an uplink cellular network
with randomly deployed power beacons for charging the mo-
bile devices wirelessly. The tradeoffs between the networkpa-
rameters such as transmission powers and the densities of BSs
and power beacons were derived under an outage constraint
on the data links. Using a stochastic geometry approach, upper
bounds on both transmission and power outage probabilities
for a downlink SWIPT system with ambient RF transmitters
was developed in [23]. Energy transfer in relay systems to
simultaneously harvest energy and process information was
investigated in [24]–[26].

In contrast to most existing works in the literature, we
focus on ascertaining whether the use of large antenna arrays
could substantially extend the feasible range of WET while
maintaining the receive power level in the same order such
that a reasonable rectenna efficiency can be maintained.

The paper is organized as follows: We present the system
model in Section II. The analysis of the probability of outage
in energy transfer for different scenarios is given in Section III
and summarized in Tables I and II. Numerical results and our
conclusions follow in Section IV and Section V, respectively.

The notationX ∼ CN (0, δ) means thatX is a circularly
symmetric complex Gaussian RV with zero mean and variance
δ, and x ∼ CN (m,C) means thatx − m is a circularly
symmetric complex Gaussian random vector with covariance
matrix C and zero mean vector. The expectation of a RVX
is denoted byE [X ]. The probability density function (PDF)
of a RV X is denoted byfX(x). The notation(·)† denotes
conjugate transpose. Given a complex numberz, we denote
its real part byRe(z) and imaginary part byIm(z).

II. SYSTEM MODEL

We consider a block-fading channel model in which the
channel impulse response from each antenna at the BS to
the WSN remains constant during a coherence interval ofτ
seconds. The channel realizations are random and they are
independent across blocks. We, therefore, need to estimatethe
channel after every coherence interval. We assume TDD mode
of communication so that the channel from the BS to the WSN
referred to as the downlink channel is the same as the channel
from the WSN to the BS referred to as the uplink channel.
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Therefore, the BS can take advantage of channel reciprocity
and make channel measurements using uplink signals.

We focus on a wireless network where a BS withM
antennas is used to transfer RF energy to a single antenna
WSN that has energy harvesting capabilities. We consider a
scenario where a line-of-sight (LoS) link might be present
between the BS and the WSN and for which the complex
channel gain vectorh from the BS to the WSN can be
represented by the Rician fading model as [27]

h =

√
βK

K + 1
hd +

√
β

K + 1
hs, (1)

wherehd ∈ C
Mx1 is a deterministic vector containing the line-

of-sight and the specular components of the channel,β denotes
distance-dependent path loss,K is the Rician factor defined
as the ratio of the deterministic to the scattered power, and
hs ∈ CMx1 denotes the scattered components of the channel
and is a random vector with i.i.d. zero mean unit variance
circular symmetric complex Gaussian entries. Furthermore,
hd =

[√
α0

√
α1e

jθ1(φ) · · · √
αM−1e

jθ(M−1)(φ)
]T

where αi, i = 0, . . . ,M − 1 denotes the gain of theith

antenna which takes a large value if theith link is good
and a small value if it is bad,θi(φ), i = 1, . . . ,M − 1
is the phase shift of theith antenna with respect to the
reference antenna andφ is the angle of departure/arrival of
the specular component. Thus,h ∼ CN (µ,Λh), whereµ =√

βK
K+1

[√
α0

√
α1e

jθ1(φ) · · · √
αM−1e

jθ(M−1)(φ)
]T

and Λh = β
K+1IM . By varying K, the model discussed

above captures a general class of wireless channels spanning
from a rich-scattering Rayleigh fading channel (K = 0) to a
completely deterministic channel (K → ∞).

A. Uplink Pilot Signaling and Channel Estimation

The signal3 y(t) received at the BS when the WSN
transmits a continuous-time pilot signal

√
Eup(t) of duration

T < τ such that
∫ T

0
|p(t)|2 dt = 1, is given by

y(t) =
√
Euhp(t) +w(t), for t ∈ [0, T ] , (2)

whereEu is the uplink pilot energy in Joule, andh ∈ CMx1

is the channel gain vector from the WSN to theM antennas
at the BS as defined in (1). Also,w(t) is the thermal noise
vector at the BS that is independent ofh. The objective of the
pilot signaling is to estimateh giveny(t).

Now, a sufficient statistic for estimatingh at the BS is

y =

∫ T

0

p∗(t)y(t)dt =
√
Euh+w, (3)

wherew ∈ CMx1 is the circular symmetric complex additive
white Gaussian noise (AWGN) at the BS. Furthermore,w ∼
CN (0, N0IM ), whereN0 is the noise power spectral density
in Joule. There are different ways of estimatingh depending
on which type of a priori information that is available at the
BS.

3This is the complex baseband representation of a physical quantity that
is proportional to the voltage measured across the load connected to the BS
antenna. The proportionality constant in turn depends on the load resistor
used.

1) LS Channel Estimation:This can be used when the
distributions of the noise and the channel are not known
a priori. The LS channel estimate is also the maximum
likelihood estimate in an AWGN setting. Thus, given the
observation vectory at the BS, the LS channel estimateĥLS

of h is given by [28]

ĥLS =
y√
Eu

. (4)

This can be simplified to obtain

ĥLS = h+ h̃LS, (5)

where h̃LS ∼ CN (0, N0

Eu
IM ) is the estimation error [28],

which is circularly symmetric and is independent ofh,
since it is a linear function ofw. Furthermore,ĥLS ∼
CN

(
µ, βEu+(K+1)N0

Eu(K+1) IM

)
.

2) MMSE Channel Estimation:If the distribution of the
channel and noise are known a priori, MMSE channel estima-
tion can be used. In that case, the MMSE estimateĥMMSE of
h is [28]

ĥMMSE = E [h|y] = E [h]+cov (h,y) (cov (y,y))
−1

(y−E [y]),
(6)

wherecov (h,y) is the cross-covariance matrix ofh and y

andcov (y,y) is the covariance matrix ofy. It is straightfor-
ward to show thatcov (h,y) = β

√
Eu

K+1 IM and cov (y,y) =
βEu+(K+1)N0

K+1 IM . Therefore, the MMSE estimate ofh in (6)
can be simplified to obtain

ĥMMSE = h+ h̃MMSE, (7)

where h̃MMSE ∼ CN (0, βN0

βEu+(K+1)N0
IM ) is the estimation

error [28], which is circularly symmetric since it consistsof
noise at the BS and a part of the true channel, both of which
are circularly symmetric. Also, it is independent ofĥMMSE.
Furthermore,̂hMMSE ∼ CN

(
µ, β2Eu

(βEu+(K+1)N0)(K+1)IM

)
.

B. Transmit Beamforming Based on the Estimated Channel

In this subsection, we will see how the BS performs transmit
beamforming based on either the LS or the MMSE channel
estimate and also characterize the energy harvested.

1) Transmit Beamforming Based on the LS Channel Es-
timate: Given the channel estimatêhLS, the BS performs
transmit beamforming of energy: it selects the signals emitted
from the different antennas so that they add up coherently at
the WSN, i.e., maximizes the harvested received energy. Thus,

on the downlink, it transmitsx(t) =
√
Ed

ĥ
†

LS

||ĥLS||
p′(t), where

Ed is the downlink array transmit energy in Joule, andp′(t)
is a unit energy continuous-time pulse of durationT ′. Also,
T +T ′ ≤ τ . The continuous-time signaly′(t) received by the
WSN is

y′(t) =
√
Ed

ĥ
†
LSh

||ĥLS||
p′(t) + w′(t), for t ∈ [0, T ′] , (8)

wherew′(t) is the thermal noise at the WSN. Letη denote
the energy harvesting efficiency of the WSN. Then, the energy
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harvestedEh in Joule is

Eh = ηEd

∣∣∣∣∣
ĥ
†
LSh

||ĥLS||

∣∣∣∣∣

2

. (9)

Note thatEh is a random variable since bothh and ĥLS are
random. We have neglected the contribution fromw′(t) to Eh,
since it is negligible.

Let us now define

ΨLS ,
ĥ
†
LSh

||ĥLS||
, (10)

which is the RV in the harvested energy expression in (9).
We state below a result that will be used in the performance
analysis in Section III-B.

Lemma 1: Given the LS channel estimatêhLS, ΨLS is a
complex Gaussian RV with conditional mean

E

[
ΨLS|ĥLS

]
=

βEu

βEu + (K + 1)N0
||ĥLS||

+
(K + 1)N0

βEu + (K + 1)N0

ĥ
†
LSµ

||ĥLS||
, (11)

and conditional variance

var
[
ΨLS|ĥLS

]
=

βN0

βEu + (K + 1)N0
. (12)

Proof: The proof is given in Appendix A.
Corollary 1: For Rayleigh fading (K = 0), the RV ΨLS

given ĥLS is distributed as

ΨLS|ĥLS ∼ CN
(

βEu

βEu +N0
||ĥLS||,

βN0

βEu +N0

)
. (13)

2) Transmit Beamforming Based on the MMSE Channel
Estimate: If the BS performs transmit beamforming given
the MMSE estimatêhMMSE and on the downlink transmits

x(t) =
√
Ed

ĥ
†

MMSE

||ĥMMSE||
p′(t) instead, then the signaly′(t) re-

ceived by the WSN on the downlink is

y′(t) =
√
Ed

ĥ
†
MMSEh

||ĥMMSE||
p′(t) + w′(t). (14)

When using the MMSE estimate for beamforming, the
energy harvestedEh in Joule is

Eh = ηEd

∣∣∣∣∣
ĥ
†
MMSEh

||ĥMMSE||

∣∣∣∣∣

2

. (15)

We next characterize this RV that is based on the MMSE
estimate. To that end, let us define

ΨMMSE ,
ĥ
†
MMSEh

||ĥMMSE||
. (16)

We state below a result that will be used in the performance
analysis in Section III-C.

Lemma 2: Given the MMSE channel estimatêhMMSE,
ΨMMSE is a complex Gaussian RV with conditional mean

E

[
ΨMMSE|ĥMMSE

]
= ||ĥMMSE|| (17)

and conditional variance

var
[
ΨMMSE|ĥMMSE

]
=

βN0

βEu + (K + 1)N0
. (18)

Proof: The proof is given in Appendix B.
Corollary 2: For Rayleigh fading (K = 0), the RVΨMMSE

given ĥMMSE is distributed as

ΨMMSE|ĥMMSE ∼ CN
(
||ĥMMSE||,

βN0

βEu +N0

)
. (19)

The conditional statistics derived in this section are used
subsequently in the analysis of the probability of outage in
energy transfer in the next section.

III. A NALYSIS OF PROBABILITY OF OUTAGE IN ENERGY

TRANSFER

Ideally, we want the energy harvestedEh to be greater than
the sum of the energyEu spent on uplink pilot signaling
and the processing energyEp that is required by the sensor
to perform its main tasks. However, this cannot always be
guaranteed on fading channels. In this section, we compute
the probability of outage in energy transfer.

Definition 1: The probability of outage in energy transfer
Po is defined mathematically as

Po = Pr(Eh ≤ Eu + Ep). (20)

We compute this probability of outage for scenarios when
the BS has an LS or an MMSE estimate of the channel
from itself to the WSN. As a baseline, we also consider the
case of perfect CSI, in which case the BS knowsh exactly.
This reference case gives us a bound in terms of the best
outage performance that can be achieved and we include it
to understand when the uplink pilot is the limiting factor. We
develop outage expressions not only for scenarios when the
downlink array transmit energyEd is fixed but also when
Ed is adapted based on the channel conditions. Results for
different scenarios are summarized in Tables I and II.

A. Analysis with Perfect CSI

As mentioned before, the channel estimation is considered
error-free if we spendEu on uplink pilot signaling and there
is no noise in the estimation process. In this subsection, we
first investigate the scenario whereEd is fixed. Thereafter, we
analyze the probability of outage with power adaptation, where
Ed is varied based on the instantaneous channel conditions.

1) Without Power Adaptation:With fixed Ed, Po is given
as follows:

Theorem 1: For a Rician fading channel, the probability of
outagePo in energy transfer with perfect CSI and with fixed
Ed is given by

Po = 1−QM




√√√√2K

M−1∑

i=0

αi,

√
2(K + 1)(Eu + Ep)

ηβEd


 ,

(21)
where QM (·, ·) is the M th order Marcum-Q function [29,
Eqn. (4.59)].

Proof: The proof is given in Appendix C.
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TABLE I
PROBABILITY OF OUTAGE IN ENERGY TRANSFER FOR DIFFERENT SCENARIOS WITHOUT POWER ADAPTATION

Scenario Probability of outage in energy transfer

Perfect CSI,K = 0
γ
(
M,

Eu+Ep
ηβEd

)

(M−1)!

LS estimation,K = 0 1− βEu

βEu+No
exp

(

−Eu+Ep

ηβEd

)

∑M−1
k=0 ǫk

(

No

βEu+No

)k
Lk

(

−Eu(Eu+Ep)

ηEdNo

)

MMSE estimation,K = 0 1− βEu

βEu+No
exp

(

−Eu+Ep

ηβEd

)

∑M−1
k=0 ǫk

(

No

βEu+No

)k
Lk

(

−Eu(Eu+Ep)

ηEdNo

)

Perfect CSI,K 6= 0 1−QM

(

√

2K
∑M−1

i=0 αi,

√

2(K+1)(Eu+Ep)

ηβEd

)

LS estimation,K 6= 0 No closed-form, can be evaluated numerically using (24)
MMSE estimation,K 6= 0 Single integral form, can be evaluated numerically using (30)

Note that, if αi = 1, for all i = 0, . . . ,M − 1, then

Po = 1 −QM

(√
2KM,

√
2(K+1)(Eu+Ep)

ηβEd

)
. Next, we state

the probability of outage in energy transfer for a Rayleigh
fading channel.

Corollary 3: For Rayleigh fading (K = 0) and with fixed
Ed, Po is given as follows:

Po = 1−QM

(
0,

√
2(Eu + Ep)

ηβEd

)
=

γ
(
M,

Eu+Ep

ηβEd

)

(M − 1)!
, (22)

where the second equality in (22) follows from the identity
in [29, Eqn (4.71)] andγ(·, ·) is the lower incomplete Gamma
function [30, Eqn. (6.5.2)].

2) With Power Adaptation:The probability of outage in
energy transfer whenEd = ρ

||h||2 , whereρ is the power control
parameter, i.e.,Ed is adapted based on the channel conditions
is given as follows:4

Theorem 2: For a Rician or a Rayleigh fading channel, the
probability of outagePo in energy transfer with perfect CSI
and with power adaptation can be made zero if and only if

ρ ≥ Eu + Ep

η
. (23)

Proof: The proof is given in Appendix D.

B. Analysis with LS Channel Estimation

We now investigate the probability of outage in energy
transfer when the BS performs transmit beamforming using
the LS channel estimate, first with fixedEd and thereafter
with Ed adapted based on the estimated channel conditions.

1) Without Power Adaptation:With fixed Ed, Po for LS
channel estimation is as follows:

Theorem 3: For a Rician fading channel, the probability
of outagePo in energy transfer with LS channel estimate and
for a fixedEd is

Po=E

[
1−Q1

(√
ζ(ĥLS),

√
2(Eu+Ep)(βEu+(K + 1)N0)

ηβEdN0

)]
,

(24)

4Inverse channel inversion can be impractical for small number of antennas,
but not asM increases. This is another benefit of having an array of antennas.

where

ζ(ĥLS) =
2
(
βEu||ĥLS||2 +Re

(
ĥ
†
LSµ
)
(K + 1)N0

)2

βN0(βEu + (K + 1)N0)||ĥLS||2

+
2N0(K + 1)2

β(βEu + (K + 1)N0)



Im
(
ĥ
†
LSµ
)

||ĥLS||




2

.

(25)

Proof: The proof is given in Appendix E.
To compute (24) in closed-form, we need to find the distribu-
tion of ζ(ĥLS) given in (25). This is analytically intractable
but the expectation in (24) is easily evaluated numerically.
A closed-form expression for the outage probability for a
Rayleigh fading channel can, however, be obtained as stated
below.

Corollary 4: For a Rayleigh fading channel (K = 0), the
probability of outagePo in energy transfer with LS channel
estimate and fixedEd is

Po = 1− βEu

βEu +No
exp

(
−Eu + Ep

ηβEd

)

×
M−1∑

k=0

ǫk

(
No

βEu +No

)k

Lk

(
−Eu(Eu + Ep)

ηEdNo

)
,

(26)

whereLk(·) is thekth Laguerre polynomial and

ǫk =

{
1, k < M − 1,

1 + No

βEu
, k = M − 1.

(27)

Proof: The proof is given in Appendix F.
Based on Theorems 1 and 3 and Corollaries 3 and 4,

we observe the following: For fixedM , Eu, Ep, η, and
β, using (22) for perfect CSI or using (26) for LS channel
estimation, one can findEd so that a target probability of
outage in energy transfer is maintained. One can infer how
the required value ofM scales with the path lossβ or with
the distance between the BS and the WSN, for a givenPo.
The loss due to estimation errors can be quantified using the
analysis in this section. One can also evaluate the role played
by the LoS component, i.e., the Rician-K factor on the outage
probability using (21) for perfect CSI and using (24) for LS
channel estimation.
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TABLE II
PROBABILITY OF OUTAGE IN ENERGY TRANSFER FOR DIFFERENT SCENARIOS WITH POWER ADAPTATION

Scenario Probability of outage in energy transfer

Perfect CSI,K = 0, K 6= 0 0, providedρ ≥ Eu+Ep

η

LS, K=0
∑M

l1=1

(

2
µ′

)l1−1 χ
3l1−2
2

(1−χ2
2)

2l1−1

∑l1−1
l2=0

(2l1−l2−2
l1−1

)

(

1−χ2
2

χ2
2

)l2(

κ′
(

l1−1
l2

)

−χ2

(

l1
l2

)

)

− χ1(κ
′
−χ1)

1−χ2
1

MMSE estimation,K = 0
∑M

n=1

(

2
µ

)n−1 ζ
3n−2
2

(1−ζ22 )
2n−1

∑n−1
c=0

(2n−c−2
n−1

)

(

1−ζ22
ζ22

)c (

κ
(

n−1
c

)

− ζ2
(

n
c

)

)

− ζ1(κ−ζ1)

1−ζ21

LS estimation,K 6= 0 No closed-form, can be evaluated numerically using (28)
MMSE estimation,K 6= 0 Single integral form, can be evaluated numerically using (32)

2) With Power Adaptation:WhenEd = ρ

||ĥLS||2
is varied

based on the LS channel estimate, the probability of outage is
given by the following result.

Theorem 4: For a Rician fading channel and with power
adaptation, the probability of outagePo in energy transfer with
LS channel estimate is

Po = E

[
1−Q1

(√
ζ(ĥLS),

√
2(Eu+Ep)(βEu+(K + 1)N0)

ηβρN0
||ĥLS||

)]
,

(28)

whereζ(ĥLS) is given by (25).
Proof: The proof is given in Appendix G.

Again, (28) cannot be simplified any further but the expec-
tation in (28) is easily evaluated numerically. A closed-form
expression for the outage probability with power adaptation
and for a Rayleigh fading channel is stated below.

Corollary 5: For a Rayleigh fading channel and with

power adaptation, whereρ ≥ Eu+Ep

η

(
βEu+No

βEu

)2
, the prob-

ability of outage Po in energy transfer with LS channel
estimation is

Po =

M∑

l1=1

(
2

µ′

)l1−1
χ3l1−2
2

(1− χ2
2)

2l1−1

l1−1∑

l2=0

(
2l1 − l2 − 2

l1 − 1

)

×
(
1− χ2

2

χ2
2

)l2 (
κ′
(
l1 − 1

l2

)
− χ2

(
l1
l2

))
− χ1(κ

′ − χ1)

1− χ2
1

,

(29)

where κ′ = βEu+No

βEu

√
Eu+Ep

ηρ , µ′ = 2(βEu+No)
No

√
Eu+Ep

ηρ ,

a0 =
√

2Eu

No

βEu

(βEu+No)
, b0 =

√
2(βEu+No)

No

Eu+Ep

ηβρ , p0 =

Eu

βEu+No
, u1 =

a2
0+b20
2a0b0

, u2 =
2p0+a2

0+b20
2a0b0

, χ1 = u1 −
√
u2
1 − 1,

andχ2 = u2 −
√
u2
2 − 1.

Proof: The proof is given in Appendix H.

C. Analysis with MMSE Channel Estimation

In this subsection, we will analyze the probability of outage
with MMSE channel estimation first with fixedEd and then
with Ed adapted based on the estimated channel conditions.

1) Without Power Adaptation:With fixed Ed, Po for a
Rician fading channel is as follows:

Theorem 5: For a Rician fading channel (K 6= 0), the
probability of outagePo in energy transfer with MMSE
channel estimate and fixedEd is

Po = 1− 2Λ1(K + 1)
M+1

2

(K
∑M−1

i=0 αi)
M−1

2

exp(−Λ1K

M−1∑

i=0

αi)

×
∫ ∞

0

yM0 exp(−Λ1(K+1)y20)IM−1


2Λ1

√√√√K(K + 1)

M−1∑

i=0

αiy0




×Q1

(
√
Λ2y0,

√
Λ2(Eu + Ep)

ηβEd

)
dy0, (30)

whereIM−1(·, ·) is the(M −1)th order modified Bessel func-
tion of the first kind [29, Eqn. (4.36)],Q1(·, ·) is the first order
Marcum-Q function [29, Eqn. (4.33)],Λ1 = βEu+(K+1)N0

βEu
,

andΛ2 = 2(βEu+(K+1)N0)
N0

.
Proof: The proof is given in Appendix I.

Note that (30) is in the form of a single integral iny0 and
probably cannot be simplified any further as the integrand
involves the product of a modified Bessel function and a
Marcum-Q function. It is, however, easy to evaluate numeri-
cally. An integral-free closed-form expression for the outage
probability for a Rayleigh fading channel can be obtained as
stated below.

Corollary 6: For a Rayleigh fading channel (K = 0), the
probability of outagePo in energy transfer for a fixedEd and
with MMSE channel estimation is

Po = 1− βEu

βEu +No
exp

(
−Eu + Ep

ηβEd

)

×
M−1∑

k=0

ǫk

(
No

βEu +No

)k

Lk

(
−Eu(Eu + Ep)

ηEdNo

)
,

(31)

whereLk(·) is the kth Laguerre polynomial andǫk is given
by (27).

Proof: The proof is given in Appendix J.
Note that the expressions for the probability of outage in

energy transfer is the same for both the MMSE and LS
estimators under i.i.d. Rayleigh fading and for fixedEd.
This is because under i.i.d. Rayleigh fading, the LS and the
MMSE estimates differ only in terms of the scaling factor.
Since, we normalize the beamforming vector, this scaling has
no impact on the end performance. However, under spatial
correlation or even for uncorrelated Rician fading, MMSE
gives a better outage performance compared to LS estimator,



7

TABLE III
ESTIMATES OFPATH LOSS AND THECORRESPONDINGBS-WSN

SEPARATION FROM [7]

Path loss (β) BS-WSN distance
60 dB 7.8 m
55 dB 4.1 m
50 dB 2.2 m
45 dB 1.1 m

the difference being significant particularly at low SNRs as
shown in Section III-D2 and in Figures 8 and 10 in Section IV.

2) With Power Adaptation:If, however,Ed = ρ

||ĥMMSE||2
is adapted based on the MMSE estimate, the probability of
outage in energy transfer for a Rician fading channel is as
follows:

Theorem 6: For a Rician fading channel (K 6= 0) and
with power adaptation, the probability of outagePo in energy
transfer with MMSE channel estimate is

Po = 1− 2Λ1(K + 1)
M+1

2

(K
∑M−1

i=0 αi)
M−1

2

exp(−Λ1K

M−1∑

i=0

αi)

×
∫ ∞

0

yM0 exp(−Λ1(K+1)y20)IM−1


2Λ1

√√√√K(K + 1)

M−1∑

i=0

αiy0




×Q1

(
√
Λ2y0,

√
Λ2(Eu + Ep)

ηρ
y0

)
dy0. (32)

Proof: The proof is given in Appendix K.
Note that (32) is in the form of a single integral iny0 and

probably cannot be simplified any further as the integrand
involves the product of a modified Bessel function and a
Marcum-Q function. It is, however, easily evaluated numer-
ically. The outage probability for a Rayleigh fading channel
with power control is given by the following result.

Corollary 7: For a Rayleigh fading channel (K = 0) and
with power adaptation whereρ ≥ Eu+Ep

η , the probability of
outagePo in energy transfer with MMSE channel estimate is

Po =

M∑

n=1

(
2

µ

)n−1
ζ3n−2
2

(1− ζ22 )
2n−1

n−1∑

c=0

(
2n− c− 2

n− 1

)

×
(
1− ζ22
ζ22

)c (
κ

(
n− 1

c

)
− ζ2

(
n

c

))
− ζ1(κ− ζ1)

1− ζ21
, (33)

whereκ =
√

Eu+Ep

ηρ , µ = 2βEu

No

√
Eu+Ep

ηρ , a =
√

2(βEu+No)
βNo

,

b =
√

2(βEu+No)
No

Eu+Ep

ηβρ , p = βEu+No

β2Eu
, v1 = a2+b2

2ab , v2 =
2p+a2+b2

2ab , ζ1 = v1 −
√
v21 − 1, andζ2 = v2 −

√
v22 − 1.

Proof: The proof is given in Appendix L.

D. Extensions to Non-Identical and Correlated Channels

1) Independent and Non-Identically Distributed Rayleigh
Fading Channels:For analytical tractability, we focus on the
scenario where theM wireless links from the BS to the
WSN see independent but non-identically distributed (i.n.i.d.)
Rayleigh fading and derive the outage probability with perfect
CSI. We do not discuss the case with LS or MMSE channel

estimation as they are analytically intractable and do not
provide any additional insights.

Theorem 7: For i.n.i.d Rayleigh fading channels without
power adaptation and with perfect CSI, the probability of
outagePo in energy transfer is

Po =

M∑

j=1

βM−1
j

(
1− exp

(
−Eu+Ep

ηβjEd

))

∏M
k=1,k 6=j(βj − βk)

. (34)

Proof: The proof involves finding the CDF of||h||2,
where eachhi ∼ CN (0, βi) and which can be obtained using
the result in [31, Eqn. (3)].

2) Correlated Channels:To analyze the effect of spatial
correlation on outage probability, we generate the channel
covariance matrixR using the exponential correlation matrix
model from [32]. For this model, the(i, j)th element ofR is
given by

[R]i,j =

{
rj−i, i ≤ j,(
ri−j

)∗
i > j.

(35)

This model basically represents a uniform linear array where
the correlation coefficient between adjacent antennas is given
by |r|, for 0 ≤ |r| ≤ 1.

The outage probability analysis developed in this section
gives us insights about the feasibility of WET using multi-
antenna arrays.

IV. N UMERICAL RESULTS

In this section, we present numerical results to quantify
the potential of using massive antenna arrays for WET using
the two phase communication scheme in Figure 1. Unless
mentioned otherwise, we takeEu = 10−8 J (e.g., 100µW
during 100 µs), Ed = 10−3 J (e.g., 1 W during 1 ms),
Ep = 10−7 J (e.g., 1 mW during 100µs), η = 0.5,5 and

5The rectenna efficiency depends on the RF input power becausethe
rectifier consists of a diode whose impedance varies non-linearly as a function
of the input power level. The efficiency also depends on the rectenna
design, the power management unit, the frequency of operation, and the load
connected to the sensor node [4], [33]. As illustrated in Figure 7 in [4], for a
specific rectenna design, if the RF power input is above a certain threshold, the
efficiency does not vary much, whereas below this threshold (which depends
on the technology used), the efficiency reduces. For the numerical example
given in Figure 7 of [4], it can be observed that the rectenna efficiency reaches
almost45% at an input power level of1 mW and increases marginally to50%
when the input power level is around6 mW. In our numerical examples,
we use an efficiency figure ofη = 0.5 and make sure that the input RF
power is sufficient to justify this value. For example, withEd = 10−3 J,
β = −50 dB, andM = 30, the received energy is about30 × 10−8 J.
Over a100 µs duration, this corresponds to a received power of3 mW. So,
an appropriate justifiable choice of the time duration for the receive signal
would ensure that the input power is in the order of a mW. As thepath loss
increases orEd reduces, more antennas can be deployed to ensure that the
received RF power remains the same. As mentioned above, if the RF power
received at the sensor is lower than a certain threshold (1 mWfor the cited
rectenna) then the energy harvesting efficiency reduces anda value less than
0.5 (depending on the input power) will have to be considered [4]. Note that
an intermediate power management unit is needed to impedance match the
rectenna to the energy storage unit in the sensor node. The design of the
associated power management unit is discussed in [34]–[36]. Received power
levels on the order of a mW are envisioned in applications like charging
of hearing aids, wireless keyboards and mouses [37]. As another example,
the commercially available equipment Powercast (TX91501)harvests about
4 mW with a 3 W transmitter at a range of 1 meter at 915 MHz carrier
frequency. Another potential application of our work couldbe in millimeter-
wave cellular networks where received power on the order of amW is
considered reasonable [38].
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N0 = kBT 10
F/10 = 10−20 J, wherekB = 1.38× 10−23 J/K,

T = 300 K, and the receiver noise figure isF = 7 dB.
Also, we consider a uniform linear array6 for which θi(φ) =
2πdi cos(φ), i = 1, . . . ,M − 1. We take φ = π/3 and
d = λ

2 = 0.06 m, whereλ is the wavelength at a frequency
of 2.45 GHz. We also detail below estimation of typical
product of path loss and energy harvesting efficiency from
experimental results in [7], that we will use in our numerical
examples.

Estimation of path loss and energy harvesting efficiency
from experiments in [7]:From [7], when a4 W transmitter
connected to a vertically polarized fan beam array antenna
(with gainGT = 9 dB) is employed, the DC power harvested
as a function of the distance from the transmitter in a LoS
situation is plotted in Figure 3 of [7]. The carrier frequency
(fc) used in the experiment in [7] is2.45 GHz. Also, this
experiment was carried out in an office corridor environment.
From this plot, the productηβ of the energy harvesting
efficiency and the path loss can be estimated as follows:

ηβ =
PDC

PTGTGR
(36)

wherePDC is the DC power harvested by the sensor,PT is
the transmit power,GT , andGR are the gains of the transmit
and receive antennas respectively. We assume thatGR = 0 dB.
Figure 3 given in [7] shows that at a distance of1.1 m from the
transmitter, the DC power harvested is about0.5 mW. There-
fore, from (36),ηβ = Pdc

PT GTGR
= 1.58 × 10−5 = −48 dB.

Assuming an energy harvesting efficiencyη = 0.5, this gives
us a path loss ofβ = −45 dB at a distance of1.1 m. Similarly,
different estimates of the path loss and the corresponding
distances between the BS and the WSN can be obtained as
listed in Table III. We varyβ around a nominal value of
−50 dB in our examples.

Our numerical results are based on analytical expressions
developed in the paper and since the Monte Carlo simulations
overlap with these and do not provide any additional informa-
tion, they are not shown.7

Figure 2 plotsPo as a function ofM for different values
of β and for K = 2. We observe that by deploying more
antennas at the BS, a larger path loss (larger distance between
the BS and the WSN) can be tolerated while keeping the
outage probability fixed. For example, by going from about
20 antennas to100 antennas at the BS, an outage probability
of 10−6 can be maintained even if the path loss increases from
45 dB to 55 dB. Also, for Eu = 10−8 J andEd = 10−3 J,
the difference in performance among MMSE, LS, and perfect
CSI is negligibly small.

Figure 3 plotsPo as a function ofEd for different values
of M and forK = 2. It can be observed that asEd increases,
the outage probability decreases. Moreover, as more antennas
are deployed at the BS, a lowerEd is required to keep the
outage probability at the same value. For example, by going
from about10 to 40 antennas at the BS,Ed can be reduced

6Each antenna in the array is omnidirectional, only the arrayas a whole
can form a beam and not each antenna on its own.

7Results with LS estimator also overlap with that of the MMSE estimator
for typical energy levels required to enable WET.
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Fig. 2. MMSE/LS channel estimation: Impact ofβ andM on Po (Ed =
10−3 J, Eu = 10−8 J, Ep = 10−7 J, N0 = 10−20 J,K = 2, αi = 1, for
all i = 0, . . . ,M − 1, andη = 0.5). The corresponding perfect CSI results
are shown using ‘◦’.
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Fig. 3. MMSE/LS channel estimation: Impact ofEd andM on Po (β =
−50 dB, Eu=10−8 J, Ep=10−7 J, N0 =10−20 J, K = 2, αi = 1, for
all i = 0, . . . ,M − 1, andη=0.5). The corresponding perfect CSI results
are shown using ‘◦’.

by 8 dB, while keeping the outage probability fixed at10−6.
Thus, the array gain obtained by deploying multiple antennas
at the BS results in huge savings of radiated energy. One can
also see that the difference in performance among MMSE,
LS, and perfect CSI is negligibly small at practical operating
points.

Figure 4 plotsPo as a function ofM for three different
values of the Rician-K factor, namely,K = 0, K = 2, and
K = 4 and for both perfect and imperfect CSI obtained again
using MMSE/LS channel estimation. It can be observed that as
K increases, the channel becomes more deterministic and the
outage probability improves with perfect or imperfect CSI.In
other words, a strong line-of-sight component in the channel
helps in lowering the outage probability. Also, for the energy
levels Eu = 10−8 J andEd = 10−3 J, the difference in
performance among MMSE, LS, and perfect CSI is negligibly
small. Thus, at these energy levels, one can as well use
LS channel estimation instead of an MMSE estimator that
assumes a priori knowledge of the angle of arrival, basically
hd, the Rician-K factor, the channel and noise distributions
without degrading the outage probability relative to the perfect
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Fig. 4. MMSE/LS channel estimation: Impact ofK andM on Po (Eu =
10−8 J, Ep = 10−7 J, Ed = 10−3 J, β = −50 dB, N0 = 10−20 J,
αi = 1, for all i = 0, . . . ,M − 1, andη = 0.5). The corresponding perfect
CSI results are shown using ‘◦’.
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Fig. 5. I.n.i.d channels: Impact ofEp and M on Po (Eu = 10−8 J,
Ed = 10−3 J, N0 = 10−20 J, K = 0, Λh = diag(β1, . . . , βM ), and
η = 0.5). Perfect CSI results from (34) are shown using different line types,
corresponding MMSE results using ‘◦’ and LS using ‘⋆’.

CSI scenario.
Figure 5 plotsPo as a function ofM for different values

of the processing energyEp and for i.n.i.d. channels. It can
be observed that by deploying more antennas at the BS, the
WSN gets higher amount of processing energy to perform its
main tasks at a given target outage probability. Thus, multiple
antennas at the BS can help transfer more energy to the energy-
constrained WSNs.

As shown in Figure 6, with MMSE/LS channel estimation,
a too high uplink pilot energy would lead to an increase in the
outage probability as a larger portion of the harvested energy
is spent on training. A too low uplink pilot energy would
again increase the outage probability due to increased channel
estimation errors. Note that for i.i.d. Rayleigh fading chan-
nels, MMSE and LS estimation give the same performance
irrespective ofEu. With perfect CSI, for smallerEu’s the
outage performance essentially remains the same, sinceEu is
much smaller thanEp.

Figure 7 plotsPo as a function ofM for two different values
of K with and without power adaptation for both LS and
MMSE estimation. As expected, power adaptation at the BS
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Fig. 6. Impact of uplink pilot energy onPo (Ed = 10−3 J,Ep = 10−7 J,
N0 = 10−20 J, β = −50 dB, K = 0, r = 0, andη = 0.5).
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Fig. 7. Impact of power control onPo (N0 = 10−20 J, β = −50 dB,
Ep = 10−7 J, Eu = 10−8 J, ρ = 2.204 × 10−7 J, αi = 1, for all
i = 0, . . . ,M − 1, andη = 0.5. MMSE results are shown using linetypes
and LS results using ‘◦’).

helps to improve the outage probability. For the case whenEd

is adapted based on the channel conditions, while with perfect
CSI, the outage probability is zero irrespective ofM , with
MMSE/LS channel estimation it is non-zero but decays very
quickly to zero asM increases for an appropriately chosen
value ofρ for bothK = 0 andK = 2. Note that we choose
ρ to be greater than or equal to(Eu + Ep)/η otherwise, the
outage probability is1 even with perfect CSI and as stated in
Theorem 2.

Figure 8 plotsPo as a function ofM for perfect CSI,
LS, and MMSE channel estimation and for two different
values of the uplink pilot energyEu, basically the low SNR
regime for uncorrelated Rician fading. Please note that the
outage performance with perfect CSI is the same for both
Eu = 10−14 J or Eu = 10−15 J sinceEu is much smaller
than Ep. While MMSE performs marginally better than LS
estimation atEu = 10−14 J, the gap in performance is
significantly higher atEu = 10−15 J.

Figure 9 plotsPo as a function ofM for different values
of r. As expected, with an increase in antenna correlation, the
probability of outage in energy transfer deteriorates. In other
words, by deploying more antennas at the base station, a higher
antenna correlation factor can be tolerated while maintaining
a given target outage probability. Note that for the chosen
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Fig. 8. Impact of estimation error onPo (Ed = 10−3 J, Ep = 10−7 J,
N0 = 10−20 J, β = −50 dB, K = 2, αi = 1, for all i = 0, . . . ,M − 1,
andη = 0.5).
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Fig. 9. MMSE/LS channel estimation: Impact of spatial correlation r on Po

(Ed = 10−3 J,Eu = 10−8 J,Ep = 10−7 J,N0 = 10−20 J,β = −50 dB,
K = 0, andη = 0.5). The corresponding perfect CSI results are shown using
‘◦’.
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Fig. 10. Impact of estimation error under spatial correlation onPo (Ed =
10−3 J, Ep = 10−7 J, N0 = 10−20 J, β = −50 dB, K = 0, r = 0.7 ,
andη = 0.5).

parameters, MMSE and LS channel estimation perform as well
as perfect CSI for all values ofr.

Figure 10 plotsPo as a function ofM for perfect CSI, LS,
and MMSE channel estimation and for two different values of
the uplink pilot energyEu for spatially correlated Rayleigh
fading channels. From this figure, it is clear that MMSE
outperforms LS channel estimation under spatial correlation
and at low signal-to-noise ratios. While atEu = 10−14 J,
MMSE performs marginally better than LS estimation, the gap
is significant forEu = 10−15 J. Note that with perfect CSI,
the outage performance is the same for bothEu = 10−14 J or
Eu = 10−15 J, becauseEu is very small compared toEp.

V. CONCLUSIONS

We investigated the feasibility of using multiple antennasat
the transmitter for WET. Specifically, we derived expressions
for the outage probability when the BS uses an array of
antennas to focus and transfer energy to a WSN and where
the channel from the array to the WSN is estimated using
pilots sent by the WSN. This is done both with perfect CSI
and with LS or MMSE channel estimates and for Rayleigh
fading (without dominant components) and Rician fading
(with dominant components). We proved that by adding more
antennas at the BS, we can extend the range for WET while
maintaining a given target outage probability. We further
observed that a lower downlink energy is required to get the
same performance due to huge array gains obtained by multi-
antenna beamforming.

We observed that for the typical energy levels that are
used in WET, the difference in outage performance among
LS, MMSE, and perfect CSI is negligibly small. Further,
we show that a strong LoS component between the BS and
the WSN helps improve the outage probability. We also
show that by deploying more antennas at the BS, a larger
energy can be transferred to the WSN for it to be able to
perform its main tasks. While with perfect CSI, outage can
be completely eliminated by power adaptation based on the
channel conditions. With power adaptation based on LS or
MMSE estimate, it can be considerably reduced.

APPENDIX

A. Proof of Lemma 1

Conditioned onĥLS, ΨLS is a complex Gaussian RV with
mean

E

[
ΨLS|ĥLS

]
=

ĥ
†
LS

||ĥLS||
E

[
h|ĥLS

]
. (37)

Using standard results on conditional Gaussian RVs [28], it
can be shown that

E

[
h|ĥLS

]
= µ+

β

K + 1
IM

(
βEu + (K + 1)N0

Eu(K + 1)
IM

)−1

×
(
ĥLS − µ

)
. (38)



11

SubstitutingE
[
h|ĥLS

]
in (37) and simplifying yields (11).

Also, the conditional variance is

var
[
ΨLS|ĥLS

]
=

ĥ
†
LScov

(
h|ĥLS

)
ĥLS

||ĥLS||2
. (39)

Again, using standard results on conditional Gaus-
sian RVs [28], it can be shown thatcov

(
h|ĥLS

)
=

βN0

βEu+(K+1)N0
IM . Therefore, the conditional variance ofΨLS

simplifies to (12).

B. Proof of Lemma 2

Conditioned on̂hMMSE, ΨMMSE is a complex Gaussian RV
with mean

E

[
ΨMMSE|ĥMMSE

]
=

ĥ
†
MMSE

||ĥMMSE||
E

[
h|ĥMMSE

]
. (40)

Using standard results on conditional Gaussian RVs [28], itis
easy to show that

E

[
h|ĥMMSE

]
=

(
µ+

β2Eu

(βEu + (K + 1)N0)(K + 1)
IM

×
(

β2Eu

(βEu + (K + 1)N0)(K + 1)
IM

)−1 (
ĥMMSE − µ

))

(41)

Upon simplification, this yieldsE
[
ΨMMSE|ĥMMSE

]
=

||ĥMMSE||.
And conditional variance is given by

var
[
ΨMMSE|ĥMMSE

]
=

ĥ
†
MMSEcov(h|ĥMMSE)ĥMMSE

||ĥMMSE||2
. (42)

Again using standard results on conditional Gaussian
RVs [28], it can be shown that

cov(h|ĥMMSE) =
βN0

βEu + (K + 1)N0
IM . (43)

Therefore, the conditional variance ofΨMMSE simplifies
to (18).

C. Proof of Theorem 1

With perfect CSI,Ψ = ΨLS = ΨMMSE = ĥ
†
h

||ĥ|| = ||h||,
where ĥ = h can be either the LS or the MMSE channel
estimate. Therefore,

Po = Pr(ηEd|Ψ|2 ≤ Eu + Ep)

= Pr

(
2(K + 1)

β
||h||2 ≤ 2(K + 1)(Eu + Ep)

ηβEd

)

= 1−QM




√√√√2K

M−1∑

i=0

αi,

√
2(K + 1)(Eu + Ep)

ηβEd


 .

(44)

Note that (44) follows from the fact that2(K+1)
β ||h||2 is a non-

central chi-square distributed RV with2M degrees of freedom
and non-centrality parameter2K

∑M−1
i=0 αi.

D. Proof of Theorem 2

With power adaptation,Ed = ρ
||h||2 . Therefore, the proba-

bility of outage in energy transfer is

Po = Pr(ηEd||h||2 ≤ Eu + Ep) = Pr

(
ρ ≤ Eu + Ep

η

)
.

(45)
Since the expression is deterministic,Po is one ifρ ≤ Eu+Ep

η .

If, on the other hand,ρ ≥ Eu+Ep

η , then the energy harvested
Eh = ηEd||h||2 = ηρ ≥ Eu + Ep and there will never be an
outage.

E. Proof of Theorem 3

With LS channel estimation,

Po = E

[
Pr

(
|ΨLS|2 ≤ Eu + Ep

ηEd

∣∣∣∣ĥLS

)]
. (46)

Let Ψ̃LS = ΨLS√
βN0

2(βEu+(K+1)N0)

. Therefore,Po in (46) can be

written as

Po = E

[
Pr

(
|Ψ̃LS|2 ≤ 2(Eu + Ep)(βEu + (K + 1)N0)

ηβEdN0

∣∣∣∣ĥLS

)]
.

(47)
Using Lemma 1, it can be shown that

given ĥLS, Re(Ψ̃LS) and Im(Ψ̃LS) are indepen-
dent Gaussian RVs with conditional statistics

E

[
Re(Ψ̃LS)|ĥLS

]
=

√
2
(
βEu||ĥLS||2+Re

(
ĥ

†

LSµ
)
(K+1)N0

)

√
βN0(βEu+(K+1)N0)||ĥLS||

,

E

[
Im(Ψ̃LS)|ĥLS

]
=

√
2N0(K+1)√

β(βEu+(K+1)N0)

Im
(
ĥ

†

LSµ
)

||ĥLS||
and

var
[
Re(Ψ̃LS)|ĥLS

]
= var

[
Im(Ψ̃LS)|ĥLS

]
= 1.

Thus, givenĥLS, |Ψ̃LS|2 is a non-central chi-square dis-
tributed RV with 2 degrees of freedom and non-centrality
parameter given by

ζ(ĥLS) =
2
(
βEu||ĥLS||2 +Re

(
ĥ
†
LSµ
)
(K + 1)N0

)2

βN0(βEu + (K + 1)N0)||ĥLS||2

+
2N0(K + 1)2

β(βEu + (K + 1)N0)



Im
(
ĥ
†
LSµ
)

||ĥLS||




2

. (48)

Substituting the cumulative distribution function (CDF) of
|Ψ̃LS|2 given ĥLS in (47) yields (24).

F. Proof of Corollary 4

For a Rayleigh fading channel, by substitutingK = 0
in (24), we get

Po = E

[
1−Q1

(√
2Eu

N0

βEu

βEu +N0
||ĥLS||,

√
2(βEu +N0)(Eu + Ep)

ηβEdN0

)]
, (49)

where Q1(·, ·) is the first order Marcum-Q function [29,
Eqn (4.33)].
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To compute (49), we need to find the distribution ofY =

||ĥLS|| =

√
|ĥLS1 |2 + · · ·+ |ĥLSM

|2. Note that forK = 0,

ĥLSi
∼ CN

(
0, βEu+N0

Eu

)
. This implies that 2Eu

βEu+N0
Y 2 is a

chi-square distributed RV with2M degrees of freedom since it
is the sum of the squares of2M independent standard normal
RVs. Therefore, the RVZ = Y 2 has the PDF given by

fZ(z)=

(
Eu

βEu +N0

)M
zM−1

(M − 1)!
exp

( −Euz

βEu +N0

)
, z ≥ 0.

(50)
By transformation of RVs, it can be shown thatY =

√
Z =

||ĥLS|| has the PDF given by

fY (y)=2

(
Eu

βEu +N0

)M
y2M−1

(M − 1)!
exp

( −Euy
2

βEu +N0

)
, y ≥ 0.

(51)
Substituting the PDF ofY from (51) in (49), we get

Po = 1−
2
(

Eu

βEu+N0

)M

(M − 1)!

∫ ∞

0

y2M−1 exp

( −Euy
2

βEu +N0

)

×Q1

(√
2Eu

N0

βEu

βEu +N0
y,

√
2(βEu +N0)(Eu + Ep)

ηβEdN0

)
dy.

(52)

Note the variabley in just one of the arguments of the
Marcum-Q function. Using the identity in [39, Eqn. (9)], (52)
can be simplified to yield (26).

G. Proof of Theorem 4

With LS channel estimation and with power adaptation,

Po = E

[
Pr

(
|ΨLS|2
||ĥLS||2

≤ Eu + Ep

ηρ

∣∣∣∣∣ĥLS

)]
. (53)

Let Ψ̃LS = ΨLS√
βN0

2(βEu+(K+1)N0)

. Therefore,Po in (53) can be

written as

Po

= E

[
Pr

(
|Ψ̃LS|2
||ĥLS||2

≤ 2(Eu+Ep)(βEu+(K + 1)N0)

ηβρN0

∣∣∣∣∣ĥLS

)]
.

(54)

From Appendix E, we know that given̂hLS, |Ψ̃LS|2 is a non-
central chi-square distributed RV with2 degrees of freedom
and non-centrality parameter given by (48). Substituting the
CDF of |Ψ̃LS|2 given ĥLS in (54) yields (28).

H. Proof of Corollary 5

For a Rayleigh fading channel, by substitutingK = 0
in (28), we get

Po = E

[
1−Q1

(√
2Eu

N0

βEu

βEu +N0
||ĥLS||,

√
2(βEu +N0)(Eu + Ep)

ηρβN0
||ĥLS||

)]
. (55)

To compute (55), we need the distribution ofY = ||ĥLS|| =√
|ĥLS1

|2 + · · ·+ |ĥLSM
|2 that we have already evaluated

in (51). Substituting the PDF ofY from (51) in (55), we get

Po = 1−
2
(

Eu

βEu+N0

)M

(M − 1)!

∫ ∞

0

y2M−1 exp

( −Euy
2

βEu +N0

)

×Q1

(√
2Eu

N0

βEu

βEu +N0
y,

√
2(βEu +N0)(Eu + Ep)

ηρβN0
y

)
dy.

(56)

Note the variabley in both the arguments of the Marcum-Q

function. If ρ ≥ Eu+Ep

η

(
βEu+No

βEu

)2
, (56) can be simplified

using the identity in [40, Eqn. (25)] to obtain (29).

I. Proof of Theorem 5

With MMSE channel estimation and for a Rician fading
channel,

Po = E

[
Pr

(
|ΨMMSE|2 ≤ Eu + Ep

ηEd

∣∣∣∣ĥMMSE

)]
. (57)

Let Ψ̃MMSE = ΨMMSE√
βN0

2(βEu+(K+1)N0)

. Therefore, (57) reduces to

Po

=E

[
Pr

(
|Ψ̃MMSE|2≤

2(Eu+Ep)(βEu+(K + 1)N0)

ηβEdN0

∣∣∣∣ĥMMSE

)]
.

(58)

GivenĥMMSE, Re(Ψ̃MMSE) andIm(Ψ̃MMSE) are independent
Gaussian RVs. Using Lemma 2, it can be shown that

E

[
Re(Ψ̃MMSE)|ĥMMSE

]
=

√
2
(

βEu+(K+1)N0

βN0

)
||ĥMMSE||,

E

[
Im(Ψ̃MMSE)|ĥMMSE

]
= 0, and the conditional

variances are given byvar
[
Re(Ψ̃MMSE)|ĥMMSE

]
=

var
[
Im(Ψ̃MMSE)|ĥMMSE

]
= 1. Thus, given ĥMMSE,

|Ψ̃MMSE|2 is a non-central chi-square distributed RV
with 2 degrees of freedom and non-centrality parameter
2
(

βEu+(K+1)N0

βN0

)
||ĥMMSE||2. Therefore, (58) reduces to

Po = E

[
1−Q1

(
√
Λ0||ĥMMSE||,

√
Λ0(Eu + Ep)

ηEd

)]
,

(59)
whereΛ0 = 2

(
βEu+(K+1)N0

βN0

)
.

To compute (59), we need to find the distribution of

Y0 = ||ĥMMSE|| =

√
|ĥMMSE1

|2 + · · ·+ |ĥMMSEM
|2. It can

be shown that2(K+1)(βEu+(K+1)N0)
β2Eu

Y 2
0 is a non-central chi-

square distributed RV with2M degrees of freedom and non-

centrality parameter2K
∑M−1

i=0 αi(βEu+(K+1)N0)

βEu
. Therefore,
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the RVZ0 = Y 2
0 has the PDF

fZ0(z0) =
(K + 1)

M+1
2

(Kβ
∑M−1

i=0 αi)
M−1

2

Λz
M−1

2
0

× exp

(
−Λ

(
(K + 1)z0 +Kβ

M−1∑

i=0

αi

))

× IM−1


2Λ

√√√√βK(K + 1)
M−1∑

i=0

αiz0


 , z0 ≥ 0, (60)

whereΛ = βEu+(K+1)N0

β2Eu
andIM−1(·) is the modified Bessel

function of the(M − 1)th order and first kind.
By transformation of RVs, it can be shown thatY0 =√
Z0 = ||ĥMMSE|| has the PDF

fY0(y0) =
2Λ(K + 1)

M+1
2

(Kβ
M−1∑
i=0

αi)
M−1

2

exp(−ΛKβ

M−1∑

i=0

αi)y
M
0

×exp(−Λ(K+1)y20)IM−1


2Λ

√√√√βK(K + 1)
M−1∑

i=0

αiy0


 .

(61)

Substituting the PDF ofY0 from (61) in (59) and a simple
change of variables yields (30).

J. Proof of Corollary 6

For a Rayleigh fading channel, by substitutingK = 0
in (59), we get

Po = E

[
1−Q1

(√
2 (βEu +N0)

βN0
||ĥMMSE||,

√
2(βEu +N0)(Eu + Ep)

ηβEdN0

)]
. (62)

To compute (62), we need to find the distribution ofY1 =

||ĥMMSE|| =

√
|ĥMMSE1

|2 + · · ·+ |ĥMMSEM
|2. Note that for

K = 0, ĥMMSEi
∼ CN

(
0, β2Eu

βEu+N0

)
. This implies that

2(βEu+N0)
β2Eu

Y 2
1 is a chi-square distributed RV with2M degrees

of freedom since it is the sum of the squares of2M indepen-
dent standard normal RVs. Therefore, the RVZ1 = Y 2

1 has
the PDF (forz1 ≥ 0)

fZ1(z1)=

(
βEu +N0

β2Eu

)M
zM−1
1

(M − 1)!
exp

(−(βEu +N0)z1
β2Eu

)
.

(63)
By transformation of RVs, it can be shown thatY1 =

√
Z1 =

||ĥMMSE|| has the PDF (fory1 ≥ 0)

fY1(y1)=2

(
βEu +No

β2Eu

)M
y2M−1
1

(M − 1)!
exp

(−(βEu +No)y
2
1

β2Eu

)
.

(64)

Substituting the PDF ofY1 from (64) in (62), we get

Po = 1−
2
(
βEu+No

β2Eu

)M

(M − 1)!

∫ ∞

0

y2M−1
1 exp

(−(βEu +No)y
2
1

β2Eu

)

×Q1

(√
2

(
βEu +N0

βN0

)
y1,

√
2

(
βEu +N0

N0

)
(Eu + Ep)

ηβEd

)
dy1.

(65)

Note the variabley1 in just one of the arguments of the
Marcum-Q function. Using the identity in [39, Eqn. (9)], (65)
can be simplified to yield (31).

K. Proof of Theorem 7

With MMSE channel estimation for a Rician fading channel
and with power adaptation,

Po = E

[
Pr

(
|ΨMMSE|2
||ĥMMSE||2

≤ Eu + Ep

ηρ

∣∣∣∣∣ĥMMSE

)]
. (66)

Let Ψ̃MMSE = ΨMMSE√
βN0

2(βEu+(K+1)N0)

and rewrite (66) as

Po=E

[
Pr

(
|Ψ̃MMSE|2
||ĥMMSE||2

≤

2(Eu + Ep) (βEu + (K + 1)N0)

ηβρN0

∣∣∣∣ĥMMSE

)]
.

(67)

From Appendix I, we know that given ĥMMSE,
|Ψ̃MMSE|2 is a non-central chi-square distributed RV
with 2 degrees of freedom and non-centrality parameter
2
(

βEu+(K+1)N0

βN0

)
||ĥMMSE||2. Therefore, (67) reduces to

Po = E

[
1−Q1

(
√
Λ0||ĥMMSE||,

√
Λ0(Eu + Ep)

ηρ
||ĥMMSE||

)]
.

(68)
Substituting the PDF of||ĥMMSE|| from (61) in (68) and a

simple change of variables yields (32).

L. Proof of Corollary 7

For a Rayleigh fading channel, by substitutingK = 0
in (68), we get

Po = E

[
1−Q1

(√
2

(
βEu +N0

βN0

)
||ĥMMSE||,

√
2

(
βEu +N0

βN0

)
Eu + Ep

ηρ
||ĥMMSE||

)]
.

(69)

Substituting the PDF of||ĥMMSE|| from (64) in (69), we get

Po=1−
2
(
βEu+No

β2Eu

)M

(M − 1)!

∫ ∞

0

y2M−1
1 exp

(−(βEu +No)y
2
1

β2Eu

)

×Q1

(√
2(βEu +N0)

βN0
y1,

√
2(βEu +N0)

βN0

Eu + Ep

ηρ
y1

)
dy1.

(70)
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Note the variabley1 in both the arguments of the Marcum-Q
function. Forρ ≥ Eu+Ep

η , (70) can be simplified using the
identity in [40, Eqn. (25)] to obtain (33).
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