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Abstract—Designing efficient channel access schemes for wire-
less communications without any prior knowledge about the
nature of environments has been a very challenging issue, in
which the channel state distribution of all spectrum resources
could be entirely or partially stochastic or adversarial atdifferent
time and locations. In this paper, we propose an online learning
algorithm for adaptive channel access of wireless communications
in unknown environments based on the theory of multi-armed
bandits (MAB) problems. By automatically tuning two control
parameters, i.e., learning rate and exploration probability, our
algorithms could find the optimal channel access strategiesand
achieve the almost optimal learning performance over time in
different scenarios. The quantitative performance studies indicate
the superior throughput gain when compared with previous
solutions and the flexibility of our algorithm in practice, which
is resilient to both oblivious and adaptive jamming attackswith
different intelligence and attacking strength that rangesfrom no-
attack to the full-attack of all spectrum resources. We conduct
extensive simulations to validate our theoretical analysis.

Index Terms—Online learning, jamming attack, stochastic and
adversarial bandits, wireless communications, security.

I. I NTRODUCTION

The design of channel access schemes is a pivotal problem
in wireless communications. Stimulated by the recent appear-
ance of smart wireless devices with adaptive and learning
abilities, modern wireless communications have raised very
high requirements to its solutions, especially in complex envi-
ronments, where accurate instant channel states can barelybe
acquired before transmission and long term channel evolution
process are unknown (e.g., cognitive radio, smart vehicular
and military communications). Thus, it is critical for wireless
devices to learn and select the best channels to access in
general unknown wireless environments.

Many recent works have tackled the channel access problem
in unknown environments by online learning approaches, al-
most all of which are well formulated as the Multi-armed ban-
dit (MAB) problem [1] due to its inherent capability in keeping
a good balance between “exploitation” and “exploration” for
the selection of channels and the superior throughput gain
with the finite-time optimality guarantee, e.g., [2]–[13].The
main goal is to find a channel access strategy that achieves the
optimal expected throughput by minimizing the term “regret”
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as learning performance metric, i.e., the performance gap be-
tween the proposed strategy and the optimal fixed one known
in hindsight, accumulated over time. Briefly speaking, these
works can be categorized into two different types of MAB
models, namely, adversarial (non-stochastic) MAB [2]–[4]
[10], [11] and stochastic MAB [5]–[9] [12], [13]. Stochastic
MAB assumes that the channel state follows some unknown
i.i.d. process, while adversarial MAB assumes that the channel
state can be controlled arbitrarily by adversaries (e.g., jamming
attackers) where its distribution is not i.i.d (i.e., non-i.i.d.) any
more. Accordingly, the analytic approaches and performance
results of the two models are distinctively different. A well-
known truth is that stochastic MAB and adversarial MAB have
regrets of order “logarithmic-t” [18] and “root-t” [19] over
time t, respectively. Obviously, the learning performance of
the stochastic MAB highly outperforms that of the adversarial
MAB.

As we know, one key assumption of almost all existing
works is the nature of environments, as a known prior, is
either stochastic or adversarial. This is limited in describing
general wireless environments in practice, although it largely
captures the main characteristic of them. Because, in many
practical wireless applications, the nature of the environment
is not restricted to either the stochastic or the adversarial type,
and it usually can not be known in advance.

On the one hand, the application of existing models may
lead to bad learning performance when no prior about the
environment is available. Consider a wireless network de-
ployed in a potentially hostile environment. The number and
locations of attackers are often unrevealed to the wireless
networks. In this scenario, most likely, certain portions of
spatially-dispersed channels may (or may not) suffer from
denial of service attackers that are adversarial, while others
are stochastic distributed. Compared with the classic mind
that uses the adversarial MAB model [2]–[4] [10], [11], here
to design optimal channel access strategies, the use of the
stochastic MAB may not be feasible due to the existence of
adversaries. Meanwhile, the use of the adversarial MAB model
on all channels will lead to large values of regret, since a great
portion of channels can still be stochastically distributed. Thus,
it is hard to decide the type of MAB models to be used in the
first place.

On the other hand, the channel access strategy based on
stochastic MAB model [5]–[9] [12], [13] will face practical
implementation issues, even though it is certain that there
is no long term adversarial behavior. In almost all wireless
communication systems, the commonly seen occasionally dis-
turbing events would make the stochastic channel distribu-
tions contaminated. These include the burst movements of
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individuals, the jitter effects of electronmagnetic waves, and
the seldom but irregular replacement of obstacles, etc. In this
case, the channel distribution will not follow an i.i.d. process
for a small portion of time during the whole learning period.
Thus, whether the stochastic MAB theory is still applicable,
how the contamination affects the learning performance and
to what extend the contamination is negligible are not clearto
us. Therefore, the design of a unified channel access scheme
without any prior knowledge of the operating environment
is very challenging. It is highly desirable and bears great
theoretical value.

In this paper, we propose a novel adaptive multi-channel ac-
cess algorithm for wireless communications that achieves near-
optimal learning performance withoutany prior knowledge
about the nature of the environment, which provides the first
theoretical foundation of scheme design and performance char-
acterization for this challenging issue. The proposed algorithm
neither needs to distinguish the stochastic and adversarial
MAB problems nor requires the time horizon for run. To the
best of our knowledge, ours is the first work that bridges the
stochastic and adversarial MABs into a unified framework
with promising applications in practical wireless systems.

The idea is based on the famous EXP3 [19] algorithm
in the non-stochastic MAB by introducing a new control
parameter into the exploration probability for each channel.
By joint control of learning rate and exploration probability,
the proposed algorithm achieves almost optimal learning per-
formance in different regimes. When the environment happens
to be adversarial, our proposed algorithm enjoys the same
behavior as classic adversarial MABs-based algorithms and
has the optimal regret“root-t” bound in the adversarial regime.
When the environment happens to be stochastic, we indicate
a problem-dependent “polylogarithmic-t” regret bound, which
is slightly worse than the optimal “logarithmic” bound in [18].
Furthermore, we prove that the proposed algorithm retains the
“polylogarithmic-t” regret bound in the stochastic regimeas
long as on average the contamination over all channels does
not reduce the gap∆ between the optimal and suboptimal
channels by more than a half. Note that all regret bounds
are sublinear to time horizon, which indicates the optimal
channel access strategy is achievable. Our main contributions
are summarized as follows.

1) We categorize the features of the general wireless com-
munication environments mainly into four typical regimes:the
adversarial regime, the stochastic regime, the mixed adver-
sarial and stochastic regime, and the contaminated stochastic
regime. We provide solid theoretical results for them, eachof
which achieves the almost optimal regret bounds.

2) Our proposed AUFH-EXP3++ algorithm considers the
statistical information sharing of a channel that belongs to
different transmission strategies, which can be regarded as a
special type of combinatorial semi-bandit1 problem. In this
scenario, given the size of all channelsn and the number
of receiving channelskr, AUFH-EXP3++ achieves the regret
of order O(kr

√
tn lnn) in the adversarial regime (for usu-

1The term first appears in [32], which means the reward of each item
within the combinatorial MAB strategy as a played arm will berevealed to
the decision maker.

ally consideredoblivious adversary) and the regret of order
Õ(nkr log (t)

∆ ) in other stochastic regime up to timet. From the
perspective of parametersn andkr for different configurations
of wireless communications, AUFH-EXP3++ achieves tight
regret bound in both the adversarial setting [32] and the
stochastic setting [29]. We also study the performance of our
algorithm underadaptive adversary for the first time.

3) We provide a computational efficient enhanced version
of the AUFH-EXP3++ algorithm. Our algorithm enjoys linear
time and space complexity in terms ofn andkr that indicates
very good scalability, which can be implemented in large scale
wireless communication networks.

4) We conduct plenty of diversified numerical experiments,
and simulation results demonstrate that all advantages of the
AUFH-EXP3++ algorithm in our theoretical analysis is real
and can be implemented easily in practice.

The rest of this paper is organized as follows: Related works
are discussed in Section II. Section III describes the commu-
nication model, problem formulation, and the four regimes.
Section IV introduces the optimal adaptive uncoordinated fre-
quency hopping algorithm, AUFH-EXP3++. The performance
results for different regimes are presented in Section V, while
their theoretical proofs are shown in Section VI. Section
VII presents a computational efficient implementation of the
AUFH-EXP3++ algorithm. Numerical and simulation results
are available in Section VIII. Finally, we conclude the paper
in Section IX.

II. RELATED WORKS

Recently, online learning-based approaches to address wire-
less communications and networking problems in unknown
environments have gained growing attention. The characteris-
tics of learning by repeated interactions with environments are
usually categorized into the domain of reinforcement learning
(RL). It is worth pointing out that there exists extensive
literature in RL, which generally target at a broader set of
learning problems in Markov Decision Processes (MDPs) [33].
As we know, such learning algorithms can guarantee optimally
only asymptotically to infinity, which cannot be relied upon
in mission-critical applications. However, MAB problems con-
stitute a special class of MDPs, for which the regret learning
framework is generally viewed as more effective both in terms
of convergence and computational complexity. Thus, the use
of MAB models is highly identified. The works based on the
stochastic MAB model often consider about the stochastically
distributed channels in benign environments, such as dynamic
spectrum access [6] [28] [13], cognitive radio networks [5],
channel monitoring in infrastructure wireless networks [9]
[12], wireless scheduling [8], and channel access scheduling
in multi-hop wireless networks [7], etc. The adversarial MAB
model is applied to adversarial channel conditions, such as
the anti-jamming wireless communications [2] [3] [11], short-
path routing [21] [31], non-stochastic channel access affected
by primary user activity in cognitive radio networks [4] and
power control and channel selection problems [10].

The stochastic and adversarial MABs have co-existed in
parallel for almost two decades. Only until recently, the
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attempt of [25] to bring them together did not make it in
a full sense of unification, since the algorithm relies on the
knowledge of time horizon and makes an one-time irreversible
switch between stochastic and adversarial operation modesif
the beginning of the play exhibits adversarial behavior. The
first practical algorithm for both stochastic and adversarial
bandits is proposed in [24]. Our current work uses the idea of
introducing the novel exploration parameterξt(f) [24] into our
own special combinatorial exponentially weight algorithmby
exploiting the channel dependency among different strategies.

This new framework avoids the computational inefficiency
issue for general combinatorial adversary bandit problemsas
indicated in [7] [22]. It achieves a regret bound of order
O(kr

√
tn lnn), which only has a factor ofO(

√
kr) factor

off when compared to the optimalO(
√
krtn lnn) bound in

the combinatorial adversary bandit setting [32]. However,we
do believe that the regret bound in our framework is the
optimal one for the exponential weight (e.g. EXP3 [19])
type of algorithm settings in the sense that the algorithm
is computationally efficient. Thus, our work is also a first
computationally efficient combinatorial MAB algorithm for
general unknown environment2. What is more surprising and
encouraging, in the stochastic regimes (including the contami-
nated stochastic regime), all of our algorithms achieve a regret
bound of orderÕ(nkr log (t)

∆ ). In the sense of channel numbers
n and size of channels within each strategykr, this is the
best result for combinatorial stochastic bandit problems [29].
Please note that in [6], they have a regret bound of order
O(n

4 log (t)
∆ ); in [14], the regret bound isO(n

3 log (t)
∆ ); and in

[15], the regret bound isO(n
2 log3 (t)

∆ ). Thus, our proposed
algorithms are order optimal with respect ton and kr for
all different regimes, which indicate the good scalabilityfor
general wireless communication systems.

III. PROBLEM FORMULATION

A. System Model

We consider two wireless devices communicating in an
unknown environment, each is within the other device’s
transmission range. The sender transmits data packets to the
receiver synchronically over time. The wireless environment
is highly flexible in dynamics, where states of the channels
could follow different stochastic distributions and couldalso
suffer from different kinds of potentially adversarial attacks.
They can also vary over different time slots and channel sets.
Without loss of generality (w.l.o.g.), we consider the jamming
attack as the representative adversarial model. Specifically,
we will categorize the feature of wireless communication
environments into four typical regimes in our next discussions.
The transceiver pair selects multiple channels to send and
receive signals over a set ofn available orthogonal chan-
nels with possibly different data rates across them. We do
not differentiate channels and frequencies in our discussion.
During each time slot, the transmitter chooseskt out of n
channels to transmit data and the receiver chooseskr out

2 As noticed, the stochastic combinatorial bandit problem does not have
this issue as indicated in [7] [29].

of n channels to receive data. We assume the transmitter
and receiver do not pre-share any secrets with each other
before data communication, and there is no feedback channel
from the receiver to the transmitter. We assume one jammer
launches attack to the transceiver pair overn channels, and the
jammer does not have the knowledge about the transceiver’s
strategies before data communication. The data packets rate
at time slott from the transmitter on channelf is denoted by
gt(f), gt(f) ∈ [0,M ]. Here constantM is the maximum data
rate for all channels.

B. The Adaptive Uncoordinated Frequency Hopping Problem

Since no secret is shared and no adversarial event is
informed to the transceiver pair, the multi-channel wireless
communications in unknown environments are necessary to
use frequency hopping strategies to dynamically select a subset
of channels to maximize its accumulated data rates over time.
We name ours as theAdaptive Uncoordinated Frequency
Hopping (AUFH) protocol due to its flexibility to achieve
optimal performance in various scenarios, when compared to
the recent and sophisticated developed UFH protocol in [2]
[11]. Here the receiver’s selection of the frequency hopping
strategy to maximize the cumulated data packets reception has
the following challenge: 1) it does not know the transmitter
and adversarial events in the environment, thus it has no
good channel access strategy to begin with; 2) the receiver is
desirable to have an adaptively optimal channel access strategy
in all different situations.

We consider the AUFH problem as a sequential decision
problem, where the choice of receiving channels at each time
slot is a decision. Denote{0, 1}n as the vector space of all
n channels. The strategy space for the transmitter is denoted
asSt ⊆ {0, 1}n of size

(
n
kt

)
, and the receiver’s is denoted as

Sr ⊆ {0, 1}n of size
(
n
kr

)
. If the f th-channel is selected for

transmitting and receiving data, the value of thef -th entry of
a vector (channel access strategy) is1, and 0 otherwise. In
the case of the existence of jamming attack on a subset of
kj channels, the strategy space for the jammer is denoted as
Sj ⊆ {0, 1}n of size

(
n
kj

)
. For convenience, we say that the

f -th channel isjammed if the value of f -th entry is 0 and
otherwise is 1. At each time slot, after choosing a strategysr,
the value of the data rate (or called “reward”)gt(f) is revealed
to the receiver if and only iff is chosen as a receiving channel.

Formally, the frequency hopping multi-channel access game
can be formulated as a MAB problem that is described as
follows: at each time slott = 1, 2, 3, ..., the receiver as a
decision maker select a strategyIt from Sr. The cardinality
of Sr is |Sr| = N . The rewardgt(f) is assigned to each
channelf ∈ {1, ..., n} and the receiver only get rewards in
strategyi ∈ Sr. Note thatIt denotes a particular strategy
chosen at time slott from the receiver’s strategy setSr, and
i denotes a strategy inSr. The total reward of a strategyi
in time slot t is gt(i) =

∑

f∈i gt(f). Then, on the one hand,
the cumulative reward up to time slott of the strategyi is
Gt(i) =

∑t
s=1 gs(i) =

∑

f∈i

∑t
s=1 gs(f). On the other hand,

the total reward over all the chosen strategies by the receiver
up to time slott is Ĝt =

∑t
s=1 gs(Is) =

∑t
s=1

∑

f∈Is
gs(f),
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Fig. 1: Multi-channel Wireless Communications in Different Regimes

where the strategyIs is chosen randomly according to some
distribution overSr. The performance of this algorithm is
qualified byregret R(t), defined as the difference between the
expected number of successfully received data packets using
our proposed algorithm and the expected rewards that use the
best fixed solution up tot time slots for the game, i.e.,

R(t) = max
i∈Sr

E {Gt(i)} − E

[

Ĝt

]

, (1)

where the maximum is taken over all available strategies
to the receiver. However, during the theoretical analysis of
the AUFH-based algorithm in our next discussion, if we
use thegain (reward) model, we have to apply additional
smoothing of the playing distributionqt(f) regardingg̃t(f).
Thus, we can introduce theloss model by the simple trick of
ℓt(f) = 1−gt(f) for each channelf andℓt(i) = kr−gt(i) for
each strategy, respectively. Then, we haveLt(i) = tkr−Gt(i)
whereLt(i) =

∑t
s=1 ℓt(i) =

∑t
s=1

∑

f∈i ℓs(f), and sim-
ilarly, we have L̂t = tkr − Ĝt. We useEt[·] to denote
expectations on realization of all strategies as random variables
up to roundt. Therefore, the expected regretR(t) can be
rewritten as

E

[

L̂t

]

−min
i∈Sr

E {Lt(i)} = E

t∑

s=1
ℓt(It)−min

i∈Sr

E

t∑

s=1
ℓt(i)

= E[
t∑

s=1
Es[

∑

f∈Is

ℓs(f)]]−min
i∈Sr

(E[
t∑

s=1
Es[

∑

f∈i

ℓs(f)]]).
(2)

The expectation is taken over the possible randomness of the
proposed algorithm and loss generation model. The goal of the
algorithm is to minimize the regret. The above definition of
regret is usually named as thepseudo regret [1], which is upper
bounded by the expected regretE{R̄(t)} = E{∑t

s=1 ℓt(It)−
mini∈Sr

∑t
s=1 ℓt(i)}. Only when the adversary is oblivious,

who prepares the entire sequence of loss functionsℓt(It) (t =
1, 2, 3, ...) in advance, pseudo regret (2) coincides with the
standard expected regretE{R̄(t)} [1].

Note that the choice of the loss function at time slott of the
oblivious adversary is independent to the firstt−1 time slots.
Otherwise, the adversary can be called anadaptive adversary.
In this case, let us denote the decision maker’s entire sequence
of strategies up to current timslott as (I1, ..., It), which we
abbreviate byI1,...,t. The expected cumulative loss suffered
by the player aftert rounds isE[

∑t
s=1 ℓs(I1,...,s)]. We need

to compare it with acompetitor class Ct, which is simply a
set of deterministic strategy sequences of lengtht. Intuitively,
we would like to compare the decision maker’s loss with
the cumulative loss of the best action sequence inCt. In
practice, the most common way to evaluate the decision
maker’s performance is to measure itsexternal pseudo-regret
compared toCt [19]. Thus, the regret for adaptive adversary
is defined as,

R(t)= max
(y1,...,yt)∈Ct

E[
t∑

s=1

(ℓs(I1,...,s)− ℓs(I1,...,s−1, ys))]. (3)

This regret definition is suitable for most of the theoretical
works of the online learning and bandit setting. If the adversary
is oblivious, we haveℓt(I1,...,t) equals toℓt(It). With this
simplified notation, the regret in (3) becomes

E[

t∑

s=1

ℓs(Is)]− min
(y1,...,yt)∈Ct

t∑

s=1

ℓs(ys),

which is exactly the same as (2) withCt = Sr, if we take an
expectation over all the strategy sequence(y1, ..., yt).

C. The Four Regimes of Wireless Environments

Since our algorithm does not need to know the nature of the
environments, there exist different features of the environments
that will affect its performance. We categorize them into the
four typical regimes as shown in Fig. 1.

1) Adversarial Regime: In this regime, there is a jammer
sending interfering power or injecting garbage data packets
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over alln channels such that the transceiver’s channel rewards
are completely suffered by an unrestricted jammer (See Fig.1
(a)). When we assume the use of the same level of transmission
power as in the stochastic regime, the data rate will be
significantly reduced in the adversarial regime. Note that,as a
classic model of the well known non-stochastic MAB problem
[19], the adversarial regime implies that the jammer often
launches attack in almost3 every time slot. It is the most
general setting and the other three regimes can be regarded as
special cases of the adversarial regime. Obviously, a strategy
i ∈ argmini′∈Sr

{E[∑t
s=1 Lt(i

′)]} is known as abest strategy
in hindsight for the first t round.

Attack Model: Different attack philosophies will lead to
different level of effectiveness. We classify various types of
jammers into the following two categories in the adversarial
regime:

a) Oblivious jammer: an oblivious jammer could attack
different channels with different jamming strength as a result
of different data rate reductions. Its current attacking strategy
is not based the observed past communication records. As
described in [11], oblivious jammer can usestatic andrandom
strategies to attack wireless channels. If its attacking strategy
is time-independent (e.g. static jammer), we can simply regard
it as a stochastic channel with bad channel quality. Usually, the
attacking strategy for oblivious jammer can change with time.
As noticed, many other kinds of jammers, such as partial band
jamming, sweep jamming etc. [26] all belong to the oblivious
attack model. Briefly, it is a simple attack model that does
not react to the defending algorithm, although the attackers’
attacking strategies could be largely different.

b) Adaptive jammer: an adaptive jammer, also named as
non-oblivious jammer, adaptively selects its jamming strength
on the targeted (sub)set of jamming channels by utilizing its
past experience and observation of the previous communica-
tion records. In the adversarial regime, we consider that the
adaptive jammer is very powerful in the sense that it does
not only know the communication protocol and able to attack
with different level of strength over a subset of channels for
data communications during a single time slot, but it also can
monitor all then available channels during the same time slot.
For example, the reactive jammer with the behavior described
in [26] belongs to this type. As shown in a recent work
[16], no bandit algorithm can guarantee a sublinear regreto(t)
against an adaptive adversary with unbounded memory. The
adaptive adversary can mimic and perform the same learning
algorithm as the decision maker, i.e., the receiver in our work.
It can set the same channel access probabilities as the channel
access algorithm, which will lead to a linear regret. Therefore,
we consider a more practicalm-memory-bounded adaptive
adversary [16] model, which is constrained to choose loss
functions that depend only on them+1 most recent strategies.

2) Stochastic Regime: In this regime, the transceiver com-
municates overn stochastic channels as shown in Fig.1 (b).

3 Strictly speaking, according to the definition and analysisof the con-
taminated stochastic regime in the next discussion, when the total number of
contaminated locations of round-channel pairs(t, f) by the jammer on each
channel up to timet is largely great thant∆(f)/4 on average, then we can
regard it belongs to the adversarial regime.

The channel lossesℓt(f), ∀f ∈ 1, ..., n (Obtained by transfer-
ring the reward to lossℓt(f) = 1 − gt(f)) of each channel
f are sampled independently from an unknown distribution
that depends onf , but not ont. We useµf = E [ℓt(f)] to
denote the expected loss of channelf . We define channelf
as thebest channel if µ(f) = minf ′{µ(f ′)} and suboptimal
channel otherwise; letf∗ denote some best channel. Similarly,
for each strategyi ∈ Sr, we have thebest strategy µ(i) =
mini′{

∑

f∈i′ µ(f)} andsuboptimal strategy otherwise; leti∗

denote some best strategy. For each channelf , we define the
gap∆(f) = µ(f) − µ(f∗); let ∆f = minf :∆(f)>0 {∆(f)}
denote the minimal gap of channels, or the gap from the
second best channel(s). Similarly, for each strategyi, we have
∆(i) = µ(i) − µ(i∗); let ∆i = mini:∆(i)>0 {∆(i)} denote
the minimal gap of strategies. LetNt(f) and Nt(i) be the
respective number of times channelf and strategyi was
played up to timet, the regret can be rewritten as̃R(t) based
on Nt(f), and we have

R(t) =
∑

i

E [Nt(i)]∆(i) ≤ R̃(t) =
∑

f

E [Nt(f)]∆(f).(4)

Note that we calculate the upper bound regretR̃(n) from
the perspective of channel setK, where the regret is upper
bounded by the regret from the perspective of strategies set
N . This is because the set of strategies is of the size

(
n
kr

)
that

grows exponentially with respect ton and it does not exploit
the channel dependency among different strategies. We thus
calculate the upper regret from the perspective of channels,
where tight regret bounds are achievable.

3) Mixed Adversarial and Stochastic Regime: This regime
assumes that the jammer only attackkj outn channels at each
time slot. As shown in Fig.1 (c), there is always akj/n portion
of channels that suffers from jamming attack while the other
(n − kj)/n portion is stochastically distributed. We call this
regime the mixed adversarial and stochastic regime.

Attack Model: We consider the same type of jammer as
described in the adversarial regime for the mixed adversarial
and stochastic regime, which includes: static jamming and
random jamming of the oblivious jammer and the adaptive
jammer. The difference here is that the jammer only attacks a
subset of channels of sizekj over the totaln channels not all
channels.

4) Contaminated Stochastic Regime: The definition of the
contaminated stochastic regime comes from many practical
observations that only a few channels and time slots are
exposed to adversary. Here comes the question: is this en-
vironment still stochastic or adversarial? We are fortunate to
answer this question. In this regime, for oblivious jammer,it
selects some slot-channel pairs(t, f) as “locations” to attack
before the multi-channel wireless communications start, while
the remaining channel rewards are generated the same as the
stochastic regime. We can introduce and define theattacking
strength parameterζ ∈ [0, 1/4). After certainτ timslots, for
all t > τ the total number of contaminated locations of each
suboptimal channel up to timet is t∆(f)ζ and the number of
contaminated locations of each best channel ist∆fζ.

We call a contaminated stochastic regimemoderately con-
taminated, if by the definitionζ is at most1/4, we can prove
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that for all t > τ on the average over the stochasticity of
the loss sequence the adversary can reduce the gap of every
channel by at most one half. Thus, if the attacking strength
ζ ∈ [0, 1/4], the environment can still be regarded as benign
that behaves stochastically (though it is contaminated).

Algorithm 1 AUFH-EXP3++: An MAB-based Algorithm for
AUFH

Input : n, kr, t, and See text for definition ofηt andξt(f).
Initialization : Set initial channel and strategy losses∀i ∈
[1, N ], L̃0(i) = 0 and ∀f ∈ [1, n], ℓ̃0(f) = 0, respec-
tively; Then the initial channel and strategy weights∀i ∈
[1, N ],W0(i) = kr and ∀f ∈ [1, n], w0(f) = 1, respec-
tively. The initial total strategy weightW0 = N =

(
n
kr

)
.

Set: βt=
1
2

√
lnn
tn ; εt (f)=min

{
1
2n , βt, ξt (f)

}
, ∀f ∈ [1, n].

for time slot t = 1, 2, ... do
1: The receiver selects a channel hopping strategyIt at
random according to the strategy’s probabilitypt(i), ∀f ∈
[1, n], with pt(i) computed as follows:

pt(i) =







(

1−∑n
f=1 εt(f)

)
wt−1(i)
Wt−1

+
∑

f∈i

εt(f) if i ∈ C
(

1−∑n
f=1 εt(f)

)
wt−1(i)
Wt−1

if i /∈ C
The computation is taken for the probability distributions
over all strategiespt = (pt(1), pt(2), ..., pt(N)).
2: The receiver computes the probabilityqt(f), ∀f ∈
[1, n], as

qt(f) =
∑

i:f∈i

pt(i) =
(

1−∑n
f=1 εt(f)

) ∑

i:f∈i wt−1(i)

Wt−1

+
∑

f∈i

εt(f) |{i ∈ C : f ∈ i}| .

Then, the probability distributions over all channels are
qt = (qt(1), qt(2), ..., qt(n)).
3: The receiver calculates the loss for channelf ,
ℓt−1(f), ∀f ∈ It based on the received channel gain
gt−1(f) by usingℓt−1(f) = 1 − gt−1(f). Compute the
estimated loss̃ℓt(f), ∀f ∈ [1, n] as follows:

ℓ̃t(f) =

{
ℓt(f)
qt(f)

if channelf ∈ It
0 otherwise.

4: The receiver updates all the weights as

wt (f) = wt−1 (f) e
−ηtℓ̃t(f) = e−ηtL̃t(f).

w̄t (i) =
∏

f∈i

wt(f) = w̄t−1 (i) e
−ηtℓ̃t(i).

where L̃t(f) = L̃t−1(f) + ℓ̃t−1(f), ℓ̃t−1(e) =
∑

f∈i ℓ̃t−1(f) and L̃t(i) = L̃t−1(i) + ℓ̃t−1(i). The sum
of the total weights of the strategies is

Wt =
∑

i∈Sr

w̄t (i)

end for

IV. T HE OPTIMAL ADAPTIVE UNCOORDINATED

FREQUENCY HOPPINGALGORITHM

In this section, we develop an AUFH algorithm in the re-
ceiver side. The design philosophy is that the receiver collects
and learns the rewards of the previously chosen channels,

based on which it can decide the next time slot channel access
strategy. The main difficulty is that the algorithm is required
to appropriately balance betweenexploitation andexploration.
On the one hand, the algorithm needs to keep exploring the
best set of channels to receive the data packets due to the
dynamic changing of the environments; on the other hand,
the algorithm needs to exploit the already selected best setof
channels so that they will not be under-utilized.

We describe the Algorithm 1 named as AUFH-EXP3++. It
is a variant based on EXP3 algorithm and [11], whose perfor-
mance in the four regimes will be asymptotically optimal. Our
new algorithm uses the fact that when rewards of channels of
the chosen strategy are revealed as in step1 of the Algorithm 1,
this also provides some information about the rewards of each
strategy sharing common channels with the chosen strategy,
i.e., the probability that all the strategies that share thesame
channel would be projected to it in step2. As noticed, the
conversion from rewards (gains) to losses is done to facilitate
subsequent performance analysis. During each time slot, we
assign a channel weight that is dynamically adjusted based on
the channel losses revealed to the receiver as shown in step3.
Then, in the step4, the weight of a strategy is determined by
the product of weights of all channels.

Compared to [11] that targets only forsecure wireless
communications, our algorithm has two control parameters:
the learning rate ηt and the exploration parametersξt(f) for
each channelf , whereas the algorithm in [11] does not explore
the using of the parametersξt(f) to detect the other regimes
of the environment. The key innovation here is that we have
used the advancedmartingale concentration inequalities (i.e.,
Lemma 8) to detect i.i.d, contaminated and non-i.i.d. behaviors
without the knowledge about the nature of the environments,
and the exploration parameterξt(f) is tuned individually for
each channel depending on the past observations.

Let N denote the total number of strategies at the receiver
side. A set ofcovering strategy is defined to ensure that each
channel is sampled sufficiently often. It has the property, for
each channelf , there is a strategyi ∈ C such thatf ∈ i.
Since there are onlyn channels and each strategy includeskr
channels, we have|C| = ⌈ n

kr
⌉. The value

∑

f∈i εt(f) means
the randomized exploration probability for each strategyi ∈ C,
which is the summation of each channelf ’s exploration prob-
ability εt (f) that belongs to the strategyi. The introduction
of

∑

f∈i εt (f) ensures thatpt(i) ≥
∑

f∈i εt(f) so that it is
a mixture of exponentially weighted average distribution and
uniform distribution [23] over each strategy.

In the following discussion, the learning rateηt is sufficient
to control and obtain the regret of the AUFH-EXP3++ in
the adversarial regime, regardless of the choice of exploration
parameterξt(f). The exploration parameterξt(f) is sufficient
to control the regret of AUFH-EXP3++ in the stochastic
regimes regardless of the choice ofηt, as long asηt ≥ βt.
To facilitate the AUFH-EXP3++ algorithm without knowing
about the nature of environments, we can apply the two control
levers simultaneously by settingηt = βt and use the control
parameterξt(f) in the stochastic regimes such that it can
achieve the optimal “root-t” regret in the adversarial regime
and almost optimal “logarithmic-t” regret in the stochastic
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regime (though with a suboptimal power in the logarithm).

V. PERFORMANCERESULTS IN DIFFERENT REGIMES

We analyze the regret performance of our proposed AUFH-
EXP3++ algorithm in different regimes in the following
section. W.l.o.g., we normalizeM = 1 in all our results
to facilitate clear comparisons with regret bounds of others’
works.

A. Adversarial Regime

We first show that tuningηt is sufficient to control the
regret of AUFH-EXP3++ in the adversarial regime, which is
a general result that holds for all other regimes.

Theorem 1.Under theoblivious jamming attack, no matter
how the status of the channels change (potentially in an
adversarial manner), forηt = βt and anyξt(f) ≥ 0, the regret
of the AUFH-EXP3++ algorithm for anyt satisfies:

R(t) ≤ 4kr
√
tn lnn.

Theorem 2. Under them-memory-bounded adaptive jam-
ming attack, no matter how the status of the channels change
(potentially in an adversarial manner), forηt = βt and any
ξt(f) ≥ 0, the regret of the AUFH-EXP3++ algorithm for any
t is upper bounded by:

R(t) ≤ (m+ 1)(4kr
√
n lnn)

2
3 t

2
3 + o(t

2
3 ).

B. Stochastic Regime

Now we show that for anyηt ≥ βt, tuning the exploration
parametersξt(f) is sufficient to control the regret of the
algorithm in the stochastic regime. We consider a different
number of ways of tuning the exploration parametersξt(f) for
different practical implementation considerations, which will
lead to different regret performance of AUFH-EXP3++. We
begin with an idealistic assumption that the gaps∆(f), ∀f ∈ n
is known, just to give an idea of what is the best result we
can have and our general idea for all our proofs.

Theorem 3. Assume that the gaps∆(f), ∀f ∈ n, are
known. Let t∗ be the minimal integer that satisfyt∗(f) ≥
4c2n ln (t∗(f)∆(f)2)

2

∆(f)4 ln(n)
. For any choice ofηt ≥ βt and any

c ≥ 18, the regret of the AUFH-EXP3++ algorithm with
ξt(a) =

c ln(t∆(f)2)

t∆(f)2
in the stochastic regime satisfies:

R(t) ≤
n∑

f=1,∆(f)>0

O
(

kr ln (t)2

∆(f)

)

+
n∑

f=1,∆(f)>0

∆(f)t∗(f)

= O
(

krn ln (t)2

∆f

)

+
n∑

f=1,∆(f)>0

Õ
(

n
∆(f)3

)

.

From the upper bound results, we note that the leading
constantskr andn are optimal and tight as indicated in Com-
bUCB1 [29] algorithm. However, we have a factor ofln(t)
worse of the regret performance than the optimal “logarithmic”
regret as in [18] [29].

1) A Practical Implementation by estimating the gap:
Because of the gaps∆(f), ∀f ∈ n can not be known in
advance before running the algorithm. In the next, we show
a more practical result that using the empirical gap as an
estimate of the true gap. The estimation process can be

performed in background for each channelf that starts from
the running of the algorithm, i.e.,

∆̂t(f) = min

{

1,
1

t

(

L̃t(f)−min
f ′

(L̃t(f
′))

)}

. (4)

This is a first algorithm that can be used in many real-world
applications.

Theorem 4. Let c ≥ 18 and ηt ≥ βt. Let t∗ be the
minimal integer that satisfiest∗ ≥ 4c2 ln (t∗)4n

ln(n) , and lett∗(f) =

max
{

t∗,
⌈

e1/∆(f)2
⌉}

and t∗ = max{f∈n}t
∗(f). The regret

of the AUFH-EXP3++ algorithm withξt(f) = c(ln t)2

t∆̂t−1(f)
2 ,

termed as AUFH-EXP3++AVG, in the stochastic regime sat-
isfies:

R(t) ≤
n∑

f=1,∆(f)>0

O
(

kr ln (t)3

∆(f)

)

+
n∑

f=1,∆(f)>0

∆(f)t∗(f)

= O
(

nkr ln (t)3

∆f

)

+ nt∗.

From the theorem, we see in this more practical case, another
factor ofln(t) worse of the regret performance when compared
to the idealistic case. Also, the additive constantst∗ in this
theorem can be very large. However, our experimental results
show that a minor modification of this algorithm performs
comparably to ComUCB1 [29] in the stochastic regime.

C. Mixed Adversarial and Stochastic Regime

The mixed adversarial and stochastic regime can be re-
garded as a special case of mixing adversarial and stochastic
regimes. Since there is always a jammer randomly attacking
kj channels constantly over time, we will have the following
theorem for the AUFH-EXP3++AVG algorithm, which is a
much more refined regret performance bound than the general
regret bound in the adversarial regime.

Theorem 5.Let c ≥ 18 andηt ≥ βt. Let t∗ be the minimal
integer that satisfiest∗ ≥ 4c2 ln (t∗)4n

ln(n) , and Let t∗(f) =

max
{

t∗,
⌈

e1/∆(f)2
⌉}

and t∗ = max{f∈n}t
∗(f). The regret

of the AUFH-EXP3++ algorithm withξt(f) = c(ln t)2

t∆̂t−1(f)
2 ,

termed as AUFH-EXP3++AVG underoblivious jamming attack,
in the mixed stochastic and adversarial regime satisfies:

R(t) ≤
n−kr∑

f=1,∆(f)>0

O
(

kr ln (t)3

∆(f)

)

+
n−kr∑

f=1,∆(f)>0

∆(f)t∗(f)

+4kj
√
tn lnn

= O
(

(n−kj)kr ln (t)3

∆f

)

+ nt∗ +O
(

kj
√
tn lnn

)

.

Note that the results in Theorem 5 has better regret perfor-
mance than the results obtained by adversarial MAB as shown
in Theorem 1 and the anti-jamming algorithm in [11].

Theorem 6.Let c ≥ 18 andηt ≥ βt. Let t∗ be the minimal
integer that satisfiest∗ ≥ 4c2 ln (t∗)4n

ln(n) , and Let t∗(f) =

max
{

t∗,
⌈

e1/∆(f)2
⌉}

and t∗ = max{f∈n}t
∗(f). The regret

of the AUFH-EXP3++ algorithm withξt(f) = c(ln t)2

t∆̂t−1(f)
2 ,

termed as AUFH-EXP3++AVG m-memory-bounded adaptive
jamming attack, in the mixed stochastic and adversarial regime
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satisfies:

R(t) ≤
n−kr∑

f=1,∆(f)>0

O
(

kr ln (t)3

∆(f)

)

+
n−kr∑

f=1,∆(f)>0

∆(f)t∗(f)

+(m+ 1)(4kj
√
n lnn)

2
3 t

2
3 + o(t

2
3 )

= O
(

(n−kj)kr ln (t)3

∆f

)

+ nt∗ +O
(

(kj
√
n lnn)

2
3 t

2
3

)

.

The results shown in Theorem 6 provides the first quantitative
regret performance under adaptive jamming attack, while the
related work [11] with the similar adversary model and the
same communication scenario in this case only provided
simulation results demonstrations.

D. Contaminated stochastic regime

We show that the algorithm AUFH-EXP3++AVG can still
retain “polylogarithmic-t” regret in the contaminated stochas-
tic regime with a potentially large leading constant in the
performance. The following is the result for themoderately
contaminated stochastic regime.

Theorem 7. Under the setting of all parameters given in
Theorem 3, fort∗(f) = max

{

t∗,
⌈

e4/∆(f)2
⌉}

, wheret∗ is

defined as before andt∗3 = max{f∈n}t
∗(f), and the attacking

strength parameterζ ∈ [0, 1/2) the regret of the AUFH-
EXP3++ algorithm in the contaminated stochastic regime that
is contaminated afterτ steps satisfies:

R(t)≤
n∑

f=1,∆(f)>0

O
(

kr ln (t)3

(1−2ζ)∆(f)

)

+
n∑

f=1,∆(f)>0

∆(f)max{t∗(f), τ}.

= O
(

nkr ln (t)3

(1−2ζ)∆f

)

+Kt∗3.

If ζ ∈ (1/4, 1/2), we can find that the leading factor1/(1−
2ζ) is very large, which isseverely contaminated. Now, the
obtained regret bound is not quite meaningful, which could
be much worse than the regret performance in the adversarial
regime for both oblivious and adaptive adversary.

VI. PROOFS OFREGRETS INDIFFERENTREGIMES

We prove the theorems of the performance results from the
previous section in the order they were presented.

A. The Adversarial Regimes

The proof of Theorem 1 borrows some of the analysis of
EXP3 of the loss model in [1]. However, the introduction of
the new mixing exploration parameter and the truth of chan-
nel/frequency dependency as a special type of combinatorial
MAB problem in the loss model makes the proof a non-trivial
task, and we prove it for the first time.

Proof of Theorem 1.
Proof: Note first that the following equalities can

be easily verified:Ei∼pt
ℓ̃t(i) = ℓt(It),Eℓ̃t∼pt

ℓt(i) =

ℓt(i),Ei∼pt
ℓ̃t(i)

2 = ℓt(It)
2

pt(It)
andEIt∼pt

1
pt(It)

= N .
Then, we can immediately rewriteR(t) and have

R(t) = Et

[
t∑

s=1

Ei∼ps
ℓ̃s(i)−

t∑

s=1

EIs∼ps
ℓ̃s(i)

]

.

The key step here is to consider the expectation of the
cumulative losses̃ℓt(i) in the sense of distributioni ∼ pt. Let
εt(i) =

∑

f∈i εt(f). However, because of the mixing terms
of pt, we need to introduce a few more notations. Letu =

(
∑

f∈1
εt(f), ...,

∑

f∈i
εt(f), ...,

∑

f∈|C|
εt(f)

︸ ︷︷ ︸

i∈C

, 0, ..., 0
︸ ︷︷ ︸

i/∈C

) be

the distribution over all the strategies. Letωt = pt−u
1−∑

f εt(f)

be the distribution induced by AUFH-EXP3++ at the timet
without mixing. Then we have:
Ei∼ps

ℓ̃s(i) = (1−∑

f εs(f))Ei∼ωs
ℓ̃s(i) + εs(i)Ei∼u ℓ̃s(i)

= (1−∑

f εs(f))(
1
ηs

lnEi∼ωs
exp(−ηs(ℓ̃s(i)

−Ej∼ωs
ℓ̃t(j))))

− (1−∑

f εs(f))

ηs
lnEi∼ωs

exp(−ηsℓ̃s(i)))

+Ei∼uℓ̃t(i).

(5)

Recall that for all the strategies, we have distributionωt =
(ωt(1), ..., ωt(N)) with

ωt(i) =
exp(−ηtL̃t−1(i))

∑N
j=1 exp(−ηtL̃t−1(j))

, (6)

and for all the channels, we have distributionωt,f =
(ωt,f (1), ..., ωt,f(n))

ωt,f(f
′) =

∑

i:f ′∈i exp(−ηtL̃t−1(i))
∑N

j=1 exp(−ηtL̃t−1(j))
. (7)

In the second step, we use the inequalitieslnx ≤ x− 1 and
exp(−x)− 1 + x ≤ x2/2, for all x ≥ 0, to obtain:

lnEi∼ωs
exp(−ηs(ℓ̃s(i)− Ej∼ωs

ℓ̃s(j)))

= lnEi∼ωs
exp(−ηsℓ̃s(i)) + ηsEj∼ωs

ℓ̃s(j)

≤ Ei∼ωs
(exp(−ηsℓ̃s(i))− 1 + ηsℓ̃s(j))

≤ Ei∼ωs

η2
s ℓ̃s(i)

2

2 .

(8)

Moreover, take expectations over all random strategies of
lossesℓ̃s(i)2, we have

Et

[

Ei∼ωs
ℓ̃s(i)

2
]

= Et

[
N∑

i=1

ωs(i)ℓ̃s(i)
2

]

= Et

[
N∑

i=1

ωs(i)(
∑

f∈i

ℓ̃s(f))
2

]

≤ Et

[
N∑

i=1

ωs(i)kr
∑

f∈i

ℓ̃s(f)
2

]

=Etkr

[
n∑

f=1

ℓ̃s(f)
2 ∑

i∈Sr:f∈i

ωs(i)

]

=krEt

[
n∑

f ′=1

ℓ̃s(f
′)2ωs,f (f

′)

]

= krEt

[
n∑

f ′=1

(
lt(f

′)
qs(f ′)1t(f

′)
)2

ωs,f (f
′)

]

≤ krEt

[
n∑

f ′=1

ωs,f (f
′)

qs(f ′)2
1t(f

′)

]

= kr
n∑

f ′=1

ωs,f (f
′)

qs(f ′)

= kr
n∑

f ′=1

ωs,f (f
′)

(1−
∑

f εt(f))ωs,f (f ′)+
∑

f∈i εt(f)|{i∈C:f∈i}| ≤ 2krn,

(9)

where the last inequality follows the fact that
(1−∑

f εt(f)) ≥ 1
2 by the definition ofεt(f).

In the third step, note that̃L0(i) = 0. Let Φt(η) =
1
η ln 1

N

∑N
i=1 exp(−ηL̃t(i)) andΦ0(η) = 0. The second term

in (5) can be bounded by using the same technique in [1]
(page 26-28). Let us substitute inequality (9) into (8), and
then substitute (8) into equation (5) and sum overt and take
expectation over all random strategies of losses up to timet,
we obtain

Et

[
t∑

s=1
Ei∼ps

ℓ̃s(i)

]

≤ krn
t∑

s=1
ηs +

lnN
ηt

+
t∑

s=1
Ei∼uℓ̃s(i)

+Et

[
t−1∑

s=1
Φs(ηs+1)− Φs(ηs)

]

+
t∑

s=1
EIs∼ps

ℓ̃s(i).
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Then, we get

R(t) = Et

t∑

s=1

Ei∼ps
ℓ̃s(i)− Et

t∑

s=1

EIs∼ps
ℓ̃s(i)

≤ krn
t∑

s=1

ηs +
lnN

ηt
+

t∑

s=1

Ei∼uℓ̃s(i)

(a)

≤ krn

t∑

s=1

ηs +
lnN

ηt
+ kr

t∑

s=1

n∑

f=1

εs(f)

(b)

≤ 2krn

t∑

s=1

ηs +
lnN

ηt

(c)

≤ 2krn

t∑

s=1

ηs + kr
lnn

ηt
.

Note that, the inequality(a) holds by setting ℓ̃s(i) =
kr, ∀i, s, and the upper bound iskr

∑

i∈C

∑

f∈i εt(f) =

kr
∑t

s=1

∑n
f=1 εs(f). The inequality(b) holds is because of,

for every time slott, ηt ≥ εt(f). The inequality(c) is due to
the fact thatN ≤ nkr . Settingηt = βt, we prove the theorem.

Proof of Theorem 2.
Proof: To defend against the m-memory-bounded adap-

tive adversary, we need to adopt the idea of the mini-batch
protocol proposed in [16]. We define a new algorithm by
wrapping AUFH-EXP3++ with a mini-batching loop [17]. We
specify a batch sizeτ and name the new algorithm AUFH-
EXP3++τ . The idea is to group the overall time slots1, ..., t
into consecutive and disjoint mini-batches of sizeτ . Viewing
one signal mini-batch as a round (time slot), we can use
the average loss suffered during that mini-batch to feed the
original AUFH-EXP3++. Note that our new algorithm does not
need to knowm, which only appears as a constant as shown in
Theorem 2. So our new AUFH-EXP3++τ algorithm still runs
in an adaptive way without any prior about the environment.

If we set the batchτ = (4kr
√
n lnn)−

1
3 t

1
3 in Theorem 2 of

[16], we can get the regret upper bound in our Theorem 2.

B. The Stochastic Regime

Our proofs are based on the following form of Bernstein’s
inequality with minor improvement as shown in [24].

Lemma 8. (Bernstein’s inequality for martingales). Let
X1, ..., Xm be martingale difference sequence with respect
to filtration F = (Fi)1≤k≤m and let Yk =

∑k
j=1 Xj be

the associated martingale. Assume that there exist positive
numbersν andc, such thatXj ≤ c for all j with probability

1 and
∑m

k=1 E

[

(Xk)
2|Fk−1

]

≤ ν with probability 1.

P[Ym >
√
2νb+

cb

3
] ≤ e−b.

We also need to use the following technical lemma, where
the proof can be found in [24].

Lemma 9. For anyc > 0, we have
∑∞

t=0 e
−c

√
t = O

(
2
c2

)
.

To obtain the tight regret performance for AUFH-EXP3++,
we need to study and estimate the number of times each of
channel is selected up to timet, i.e.,Nt(f). We summarize it
in the following lemma.

Lemma 10. Let {εt(f)}∞t=1 be non-increasing deterministic
sequences, such thatεt(f) ≤ εt(f) with probability 1 and
εt(f) ≤ εt(f

∗) for all t andf . Defineνt(f) =
∑t

s=1
1

krεs(f)
,

and define the eventEf
t

t∆(f)− (L̃t(f
∗)− L̃t(f))

≤
√

2(νt(f) + νt(f∗))bt +
(1/kr + 0.25)bt

3krεt(f
∗)

(Ef
t ).

Then for any positive sequenceb1, b2, ..., and anyt∗ ≥ 2 the
number of times channelf is played by AUFH-EXP3++ up
to roundt is bounded as:

E[Nt(f)] ≤ (t∗ − 1) +
t∑

s=t∗
e−bs + kr

t∑

s=t∗
εs(f)1{Ef

t }

+
t∑

s=t∗
e−ηshs−1(f),

where

ht(f) = t∆(f)−
√

2tbt

(
1

krεt(f)
+ 1

krεt(f
∗)

)

− ( 1
4+

1
kr

)bt

3εt(f
∗) .

Proof: Note that the elements of the martingale difference
sequence{∆(f)− (ℓ̃t(f)− ℓ̃t(f

∗))}∞t=1 by max{∆(f) +
ℓ̃t(f

∗)} = 1
krεt(f

∗) + 1. Sinceεt(f
∗) ≤ εt(f

∗) ≤ 1/(2n) ≤
1/4, we can simplify the upper bound by using 1

krεt(f
∗) +1 ≤

( 1
4+

1
kr

)

εt(f
∗) .

We further note that
t∑

s=1
Es

[

(∆(f)− (ℓ̃s(f)− ℓ̃s(f
∗)))

2
]

≤
t∑

s=1
Es

[

(ℓ̃s(f)− ℓ̃s(f
∗))

2
]

=
t∑

s=1

(

Es

[

(ℓ̃s(f)
2
]

+ Es

[

(ℓ̃s(f
∗)2

])

≤
t∑

s=1

(
1

qs(f)
+ 1

qs(f∗)

)

(a)

≤
t∑

s=1

(
1

krεs(f)
+ 1

krεs(f∗)

)

≤
t∑

s=1

(
1

krεs(f)
+ 1

krεs(f
∗)

)

= νs(f) + νs(f
∗)

with probability 1. The above inequality (a) is due to the
fact that qt(f) ≥ ∑

f∈i εt(f) |{i ∈ C : f ∈ i}|. Since each
f only belongs to one of the covering strategiesi ∈ C,
|{i ∈ C : f ∈ i}| equals to 1 at time slott if channel f is
selected. Thus,qt(f) ≥

∑

f∈i εt(f) = krεt(f).

Let Ēf
t denote the complementary of eventEf

t . Then by the
Bernstein’s inequalityP[Ēf

t ] ≤ e−bt . The number of times the
channelf is selected up to roundt is bounded as:

E[Nt(f)] =
t∑

s=1

P[As = f ]

=
t∑

s=1
P[As = f |Ef

s−1]P [Ef
s−1]

+P[As = f |Ef
s−1]P [Ef

s−1]

≤
t∑

s=1
P[As = f |Ef

s−1]1{Ef
s−1}

+ P[ES
s−1]

≤
t∑

s=1
P[As = f |Ef

s−1]1{Ef
s−1}

+ e−bs−1 .
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We further upper boundP[As = f |Ef
s−1]1{Ef

s−1}
as follows:

P[As = f |Ef
s−1]1{Ef

s−1}
= qs(f)1{Ef

s−1}
≤ (ωt(f) + krεs(f))1{Ef

s−1}

= (krεs(f) +
∑

i:f∈i ws−1(i)

Ws−1
)1{Ef

s−1}

= (krεs(f) +
∑

i:f∈i e
−ηsL̃s−1(i)

∑

N
i=1 e−ηtL̃s−1(i)

)1{Ef
s−1}

(a)

≤ (krεs(f) + e−ηs(L̃s−1(i)−L̃s−1(i
∗)))1{Ef

s−1}
(b)

≤(krεs(f) + e−ηs(L̃s−1(f)−L̃s−1(f
∗)))1{Ef

s−1}
(c)

≤ krεs(f)1{Ef
s−1}

+ e−ηshs−1(f).

The above inequality (a) is due to the fact that channelf
only belongs to one selected strategyi in t− 1, inequality (b)
is because of the cumulative regret of each strategy is great
than the cumulative regret of each channel that belongs to the
strategy, and the last inequality (c) we used the fact thatt

εt(f)

is a non-increasing sequenceυt(f) ≤ t
krεt(f)

. Substitution of
this result back into the computation ofE[Nt(f)] completes
the proof.

Proof of Theorem 3.
Proof: The proof is based on Lemma 10. Letbt =

ln(t∆(f)2) and εt(f) = εt(f). For any c ≥ 18 and any
t ≥ t∗, where t∗ is the minimal integer for whicht∗ ≥
4c2n ln (t∗∆(f)2)

2

∆(f)4 ln(n)
, we have

ht(f) = t∆(f)−
√

2tbt

(
1

krεt(f)
+ 1

krεt(f∗)

)

− ( 1
4+

1
kr
)bt

3εt(f∗)

≥ t∆(f)− 2
√

tbt
krεt(f)

− ( 1
4+

1
kr
)bt

3εt(f)

= t∆(f)(1 − 2√
krc

− ( 1
4+

1
kr
)

3c )
(a)

≥ t∆(f)(1 − 2√
c
− 1.25

3c ) ≥ 1
2 t∆(f).

The above inequality (a) is due to the fact that(1 − 2√
krc

−
( 1

4+
1
kr
)

3c is an increasing function with respect tokr(kr ≥ 1).
Plus, as indicated in work [30], by a bit more sophisticated
boundingc can be made almost as small as 2 in our case. By
substitution of the lower bound onht(f) into Lemma 10, we
have

E[Nt(f)] ≤ t∗ + ln(t)

∆(f)2
+ kr

c ln (t)2

∆(f)2
+

t∑

s=1

(

e−
∆(f)

4

√

(s−1)ln(n)
n

)

≤ kr
c ln (t)2

∆(f)2
+ ln(t)

∆(f)2
+O( n

∆(f)2
) + t∗,

where we used lemma 3 to bound the sum of the exponents.
In addition, please note thatt∗ is of the orderO( krn

∆(f)4 ln(n)
).

Proof of Theorem 4.
Proof: The proof is based on the similar idea of Theorem

2 and Lemma 10. Note that by our definition̂∆t(f) ≤ 1 and
the sequenceεt(f) = εt = min{ 1

2n , βt,
c ln (t)2

t } satisfies the

condition of Lemma 10. Note that whenβt ≥ c ln (t)2

t }, i.e., for

t large enough such thatt ≥ 4c2 ln (t)4n
ln(n) , we haveεt =

c ln (t)2

t .
Let bt = ln(t) and lett∗ be large enough, so that for allt ≥ t∗

we havet ≥ 4c2 ln (t)4n
ln(n) andt ≥ e

1
∆(f)2 . With these parameters

and conditions on hand, we are going to bound the rest of
the three terms in the bound onE[Nt(f)] in Lemma 10. The

upper bound of
∑t

s=t∗ e
−bs is easy to obtain. For bounding

kr
∑t

s=t∗ εs(f)1{Ef
s−1}

, we note thatEf
t holds and we have

∆̂t(f) ≥ 1
t (max

k
(L̃t(k)) − L̃t(f)) ≥ 1

t (L̃t(f
∗)− L̃t(f))

≥ 1
tht(f) =

1
t

(

t∆(f)− 2
√

tbt
krεt

− ( 1
4+

1
kr

)bt

3εt

)

= 1
t

(

t∆(f)− 2t√
ckr ln(t)

− ( 1
4+

1
kr

)t

3c ln(t)

)

(a)

≥ 1
t

(

t∆(f)− 2t√
c ln(t)

− 1.25t
3c ln(t)

)

(b)

≥ ∆(f)
(

1− 2√
c
− 1.25

3c

)

≥ 1
2∆(f),

where the inequality (a) is due to the fact that1
t (t∆(f) −

2t√
ckr ln(t)

− ( 1
4+

1
kr

)t

3c ln(t) ) is an increasing function with respect

to kr(kr ≥ 1) and the inequality (b) due to the fact that for
t ≥ t∗ we have

√

ln(t) ≥ 1/∆(f). Thus,

εn(f)1{Ef
n−1}

≤ c(ln t)
2

t∆̂t(f)
2 ≤ 4c2(ln t)

2

t∆(f)
2

andkr
∑t

s=t∗ εs(f)1{Ef

n−1}
= O

(
kr ln (t)3

∆(f)2

)

. Finally, for the

last term in Lemma 10, we have already getht(f) ≥ 1
2∆(f)

for t ≥ t∗ as an intermediate step in the calculation of bound
on ∆̂t(f). Therefore, the last term is bounded in a order of
O( n

∆(f)2
). Use all these results together we obtain the results

of the theorem. Note that the results holds for anyηt ≥ βt.

C. Mixed Adversarial and Stochastic Regime

Proof of Theorem 5.
Proof: The proof of the regret performance in the mixed

adversarial and stochastic regime is simply a combination
of the performance of the AUFH-EXP3++AVG algorithm in
adversarial and stochastic regimes. It is very straightforward
from Theorem 1 and Theorem 3.

Proof of Theorem 6.
Proof: Similar as above, the proof is very straightforward

from Theorem 2 and Theorem 3.

D. Contaminated Stochastic Regime

Proof of Theorem 7.
Proof: The key idea of proving the regret bound under

moderately contaminated stochastic regime relies on how to
estimate the performance loss by taking into account the
contaminated pairs. Let1⋆

t,f denote the indicator functions
of the occurrence of contamination at location(t, f), i.e.,1⋆

t,f

takes value1 if contamination occurs and0 otherwise. Let
mt(f) = 1

⋆
t,f ℓ̃t(f)+(1−1

⋆
t,f)µ(f). If either base armf was

contaminated on roundt thenmt(f) is adversarially assigned
a value of loss that is arbitrarily affected by some adversary,
otherwise we use the expected loss. LetMt(f) =

∑t
s=1 mt(f)

then(Mt(f)−Mt(f
∗))−

(

L̃t(f)− L̃t(f
∗)
)

is a martingale.
After τ steps, fort ≥ τ ,
(Mt(f)−Mt(f

∗)) ≥ tmin{1⋆
t,f ,1

⋆
t,f∗}(ℓ̃t(f)− ℓ̃t(f

∗))
+tmin{1− 1

⋆
t,f , 1− 1

⋆
t,f∗}(µ(f)− µ(f∗))

≥ −ζt∆(f) + (t− ζt∆(f))∆(f) ≥ (1 − 2ζ)t∆(f).
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Define the eventZf
t :

(1−2ζ)t∆(f)−
(

L̃t(f)− L̃t(f
∗)
)

≤ 2
√

νtbt+

(
1
4 + 1

kr

)

bt

3εt
,

where εt is defined in the proof of Theorem 3 andνt =
∑t

s=1
1

krεt
. Then by Bernstein’s inequalityP[Zf

t ] ≤ e−bt . The
remanning proof is identical to the proof of Theorem 3.

For the regret performance in the moderately contaminated
stochastic regime, according to our definition with the attack-
ing strengthζ ∈ [0, 1/4], we only need to replace∆(f) by
∆(f)/2 in Theorem 5.

VII. T HE COMPUTATIONAL EFFICIENT IMPLEMENTATION

OF THE AUFH-EXP3++ ALGORITHM

The implementation of algorithm1 requires the computation
of probability distributions and storage ofN strategies, which
is obvious to have a time and space complexityO(nkr ). As
the number of channels increases, the strategy will become
exponentially large, which is very hard to be scalable and
results in low efficiency. To address this important problem,
we propose a computational efficient enhanced algorithm by
utilizing the dynamic programming techniques, as shown in
Algorithm 2. The key idea of the enhanced algorithm is to
select the receiving channels one by one untilkr channels are
chosen, instead of choosing a strategy from the large strategy
space in each time slot.

We use S
(
f̄ , k̄

)
to denote the strategy set of which

each strategy selects̄k channels fromf̄ , f̄ + 1, f̄ , ..., n. We
also useS̄

(
f̄ , k̄

)
to denote the strategy set of which each

strategy selects̄k channels from channel1, 2, ..., f̄ . We de-
fine Wt(f̄ , k̄) =

∑

i∈S(f̄ ,k̄)

∏

f∈iwt(f) and Wt(f̄ , k̄) =
∑

i∈S̄(f̄ ,k̄)

∏

f∈iwt(f), Note that they have the following
properties:

Wt(f̄ , k̄) = Wt(f̄ + 1, k̄) + wt(f̄)Wt(f̄ + 1, k̄ − 1), (10)

Wt(f̄ , k̄) = Wt(f̄ − 1, k̄) + wt(f̄)Wt(f̄ − 1, k̄ − 1), (11)
which implies bothWt(f̄ , k̄) andW̄t(f̄ , k̄) can be calculated in
O(krn) (LettingWt(f̄ , 0) = 1 andW (n+1, k̄) = W̄ (0, k̄) =
0) by using dynamic programming for all1 ≤ f̄ ≤ n and
1 ≤ k̄ ≤ kr.

In step 1, a strategy should be drawn from
(
n
kr

)
strategies.

Instead of drawing a strategy, we select channel for the strategy
one by one until a strategy is found. Here, we select channels
one by one in the increasing order of channel indices, i.e., we
determine whether the channel1 should be selected, and the
channel2, and so on. For any channelf , if k ≤ kr channels
have been chosen in channel1, .., f − 1, we select channelf
with probability

wt−1(f)Wt(f + 1, kr − k − 1)

Wt−1(f, kr − k)
(12)

and not selectf with probability Wt(f+1,kr−k−1)
Wt−1(f,kr−k) . Let w(f) =

wt−1(f) if channelf is selected in the strategyi; w(f) = 0
otherwise. Obviously,w(f) is actually the weight off in the
strategy weight. In our algorithm,wt−1(f) =

∏n
f=1 w(f).

Let c(f) = 1 if f is selected ini; c(f) = 0 otherwise.
The term

∑f̄
f=1 c(f) denotes the number of channels cho-

sen among channel1, 2, ..., f̄ in strategy i. In this imple-
mentation, the probability that a strategyi is selected is

n∏

f̄=1

w(f̄)Wt−1(f̄+1,kr−
∑f̄

f=1 c(f))

Wt−1(f̄ ,kr−
∑f̄−1

f=1 c(f))
=

n
∏

f̄=1

w(f̄)

Wt−1(1,kr)
= wt−1(i)

Wt−1
.

This probability is equivalent to that in Algorithm 1, which
implies the implementation is correct. Because we do not
maintainwt(i), it is impossible to computeqt(f) as we have
described in Algorithm 1. Thenqt(f) can be computed within
O(nkr) as in Eq.(4) for each round.

Moreover, for the exploration parametersεt(f), since there
arekr parameters ofεt(f) in the last term of Eqs. (6) and there
aren channels, the storage complexity isO(krn). Similarly,
we have the time complexityO(krnt) for the maintenance of
exploration parametersεt(f). Based on the above analysis, we
can summarize the conclusions into the following theorem.

Theorem 11. The Algorithm 2 has time complexity
O(krnt) and space complexityO(krn), which has the linear
scalability along with roundst, and parameterskr andn.

Algorithm 2 An Computational Efficient Implementation of
AUFH-EXP3++

Input : n, kr, t, and See text for definition ofηt andξt(f).
Initialization : Set initial channel weightw0(f) = 1, ∀f ∈
[1, n]. Let Wt(f, 0) = 1 andW (n + 1, k) = W̄ (0, k) = 0
and computeW0(f, k) andW̄0(f, k) follows Eqs. (10) and
(11), respectively.
for time slot t = 1, 2, ... do

1: The receiver selects a channelf, ∀f ∈ [1, n] one by
one according to the channel’s probability distribution
computed following Eq. (12) until a strategy withkr
chosen channels are selected.
2: The receiver computes the probabilityqt(f), ∀f ∈
[1, n] according to Eq. (6).
3: The receiver calculates the loss for channelf ,
ℓt−1(f), ∀f ∈ It based on the received channel gain
gt−1(f) by usingℓt−1(f) = 1 − gt−1(f). Compute the
estimated loss̃ℓt(f), ∀f ∈ [1, n] as follows:

ℓ̃t(f) =

{
ℓt(f)
qt(f)

if channelf ∈ It
0 otherwise.

4: The receiver updates all channel weights aswt (f) =

wt−1 (f) e
−ηt ℓ̃t(f) = e−ηtL̃t(f), ∀f ∈ [1, n], and com-

putesWt(f, k) andW̄t(f, k) follows Eqs. (10) and (11),
respectively.

end for

Besides, because of the channel selection probability for
qt(f) and the updated weights of Algorithm 2 equals to
Algorithm 1, all the performance results in Section IV still
hold for Algorithm 2.

VIII. I MPLEMENTATION ISSUES ANDSIMULATION

RESULTS

In this section, we consider the wireless communications
from a transmitter to a receiver that is by default in the
stochastic regime with Bernoulli distributions for rewards.
W.l.o.g., we assume a constant unitary data packet rate from
the transmitter for each channelkt ⊆ St over every time slot
t, i.e. M = 1 packet, wherekt = 4. All experiments were
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(1−
∑n

f=1
εt(f))

∑kr−1
k=0 W̄t−1(f − 1, k)wt−1(f)Wt−1(f + 1, kr − k − 1)

Wt−1(1, k)
+
∑

f∈i

εt(f) |i ∈ C : f ∈ i| (6)
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Fig. 2: Performance Comparison in the Stochastic Regime.
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Fig. 3: Performance Comparison in the Contaminated Stochastic Regime.
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Fig. 4: Performance Comparison in the Oblivious Adversarial Regime.

conducted on an off-the-shelf desktop with dual6-core Intel
i7 CPUs clocked at2.66Ghz. For all the suboptimal channels
the rewards are Bernoulli with bias0.5, and we set a single
best channel whose reward is Bernoulli with bias0.5 + ∆.

To show the advantages of our AUFH-EXP3++ algorithms,
we compare their performance to other existing MAB based
algorithms, which includes: the EXP3 based anti-jamming
algorithm in [11], and we named it as “Anti-Jam-EXP3”;
The combinatorial UCB-based algorithm “CombUCB1” with
almost tight regret bound as proved in [29]; the combinatorial
version of the Thompson’s sampling algorithm [35]. Here we
consider the use of the Thompson’s sampling algorithm for
comparison due to its empirically good performance indicated

in [30]. We make ten repetitions of each experiment to reduce
the performance bias. In Fig. 2-5, the solid lines in the
graphs represent the mean performance over the experiments
and the dashed lines represent the mean plus on standard
deviation (std) over the ten repetitions of the corresponding
experiments. Note that, for a given optimal channel access
strategy, small regret values indicate the large number of data
packets reception.

At first, we run our experiments by choosing different size
of available channelsn = 8, 16, 60. The size of receiving
channels and gap is alwayskr = 4 and∆ = 0.2, respectively.
Our first set of experiments shown in Fig. 2, we run each of
the algorithm for107 rounds. We choose(n, kr) pairs equals
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Fig. 5: Performance Comparison in the Adaptive AdversarialRegime.

to (8, 4), (16, 4), (60, 4) to see how our algorithms perform
from a small size of channel access strategy set (

(
8
4

)
= 70) to

a large size of channel access strategy set (
(
60
4

)
= 487635).

For different versions of our AUFH-EXP3++ algorithms, they
are parameterized byξt(f) =

ln(t∆̂t(f)
2)

32t∆̂t(f)
2 , where∆̂t(f) is the

empirical estimate of∆t(f) defined in (V-B1). The target
of our experiment is to demonstrate that in the stochastic
regime the exploration parameters are in full control of the
performance we run the AUFH-EXP3++ algorithm with two
different learning rates. AUFH-EXP3++EMP corresponds to
ηt = βt and AUFH-EXP3++ACC corresponds toηt = 1. Note
that only AUFH-EXP3++EMP has a performance guarantee
in the adversarial regime. For our AUFH-EXP3++ algorithms,
we transform the rewards into losses viaℓt(f) = 1 − gt(f),
other algorithms operate directly on the rewards.

From the results presented in Fig. 2, we see that in all
the experiments, the performance of AUFH-EXP3++EMP is
almost identical to the performance of CombUCB1. That
means our algorithm can attain almost optimal transmission
efficiency in stochastic environments, and our algorithm scales
well in the large channel access strategy setting. Thus, AUFH-
EXP3++EMP has all advantages of the stochastic MAB al-
gorithms, and has much better performance gain than Anti-
Jam-EXP3 [11]. Moreover, unlike CombUCB1 and Thomp-
son’s sampling, AUFH-EXP3++EMP is secured against a
potential adversary during the wireless communications game.
In addition, the AUFH-EXP3++ACC algorithm can be seen
as a special teaser to show the algorithm performance in
the condition ofηt > βt. It performs better than AUFH-
EXP3++EMP , but it does not have the adversarial regime
performance guarantee.

In our second set of experiments, we simulate moderately
contaminated stochastic environment by drawing the first
2,500 rounds of the game according to one stochastic model
and then switching the best channel and continuing the game
until 8 ∗ 106 rounds. This action can be regarded as an
occasional jamming behavior. In this case, the contamination
is not fully adversarial, but drawn from a different stochastic
model. We run this experiment with∆ = 0.2, kr = 2 and
n = 4, 8, 16 to see the noticed leaning performance. The
results are presented in Fig. 3. Although it is hard to see the
first 2,500 rounds on the plot, their effects on all the algorithms
is clearly visible. Despite the initial corrupted rounds the
AUFH-EXP3++EMP algorithm successfully returns to the

stochastic operation mode and achieves better results than
Anti-Jam-EXP3 [11].

To the best of our knowledge, it is very hard to simulate
the fully adversarial regime with arbitrarily changing oblivious
jammer. In our third set of experiments shown in Fig. 4,
we emulate the adversary regime under oblivious jamming
attack by setting the∆ value of the best channel randomly
from [0.1, 0.3] and switch the best channel to different indices
of channels in the channel set at every other time slot by
a pseudorandom sequence generator function. The channel
rewards are determined before running the algorithm. It is not
difficult to feel that the reward sequences still follow certain
stochastic pattern, but not that obvious. We set the typical
parameterkr = 2, ∆ = 0.2 and run all the algorithms up to
8 ∗ 106 rounds. It can be found that our AUFH-EXP3++EMP

algorithm will be close to and have slightly better performance
when compared to Anti-Jam-EXP3 [11], which confirms with
our theoretical analysis.

In our fourth set of experiments shown in Fig. 5, we
simulate the adaptive jamming attack case in the adversarial
regime with a typical memorym = 80. We can see large
performance degradations for all algorithms when compared
to the oblivious jammer case. We can find that the performance
of AUFH-EXP3++EMP and Anti-Jam-EXP3 [11] still enjoys
the almost the same regret performance, and their large regrets
indicate their sensitiveness to the adaptive jammer.

We also compared the computing time of the two versions
of AUFH-EXP3++EMP , Algorithm 1 and Algorithm 2, with
different set of(n, kr) pairs for each round. The results are
listed in table I. From the results, we can see that Algorithm
2 scales linearly with the increase of the size ofn and kr,
and have very low computational cost than the Algorithm
1. Imagine in a practical typical multi-channel wireless com-
munication system with(n, kr) = (64, 12), the Algorithm 1
takes about162 seconds to finish one round calculation that is
infeasible, while the Algorithm 2 takes about.134 seconds to
finish one round calculation that is very reasonable in practical
implementation.

For brevity, we do not plot the regret performance figures
for the mixed adversarial and stochastic regime. However, in
our last experiments, we compare the received data packets
rate (Mbps) for all the four different regimes after a relative
long period of learning roundst = 2 ∗ 107. Here we assume
M = 1 packet contains1000 bits and each time slot is
just one second. We setkr = 2 and ∆ = 0.2 as fixed
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Fig. 6: Received Data Packets Rate in Different Regimes. Thelegend below corresponds to all figures.

TABLE I: Computation Time Comparisons of Algorithm 1 and Algorithm 2

(n, kr)
Alg. Ver. vs Comp. Time (micro seconds) (12, 4) (24, 4) (48, 6) (48, 12) (64, 6) (64, 12) (64, 24)
AUFH-EXP3++EMP :Algorithm1 23 167 699 2247 8375 162372 862961
AUFH-EXP3++EMP :Algorithm2 4 9 31 57 74 134 280

values for all different size of channel setn. We plot our
results in Fig. 6. It is easy to find that our algorithm AUFH-
EXP3++EMP attains almost all the advantages of the stochas-
tic MAB algorithms CombUCB1, and has better throughput
performance than Anti-Jam-EXP3. As we have noticed, we
also put the results of CombUCB1 [29] in the oblivious
adversarial, adaptive adversarial and contaminated regimes,
etc., although the algorithm is not applicable in theory. This
proves that our proposed algorithm AUFH-EXP3++ can be
applied for general unknown communication environments in
different regimes with flexibility. Interestingly, we find that the
Thompson’s sampling algorithm [35] performs superiorly in
all regimes, and this empirical fact is observed in the machine
learning society. We believe it is a promising direction to study
its theoretical ground from the beginning for the collected
(security) non–i.i.d. data inputs.

IX. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed the first adaptive
multichannel-access algorithm for wireless communications
without the knowledge about the nature of environments. At
first, we captured the feature of the general wireless environ-
ments and divided them into four regimes, and then provided
solid theoretical analysis for each of them. Through theoretical
analysis, we found that the almost optimal performance is
achievable for all regimes. Extensive simulations were con-
ducted to verify the learning performance of our algorithm in
different regimes and much better performance improvements
over classic approaches. The proposed algorithm could be

implemented efficiently in practical wireless communication
systems with different sizes. Our framework is of general
value, which can be extended by incorporating power control
module based on estimated gradient algorithms (under bandit
feedback), taking power budgets into account and accessing
problems based on observed side information (as “contextual
bandit” [1]) for wireless communication scenarios under un-
expected security attacks. The idea of this work could also be
combined with other online learning-based channel prediction
algorithms to perform the joint optimal resource allocation
with the configuration of physical layer techniques, such asthe
MIMO channel and its power allocations. We plan to extend
our proposed algorithms to general combinatorial settingsand
forecast that their variants can be applied in many practical
tough environments for wireless networks monitoring, secure
routing problems, rumors propagation in social networks (with
contextual bandit setting), etc.
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