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Abstract—In this paper, we study the stochastic optimization
of cloud radio access networks (C-RANSs) by joint remote radd
head (RRH) activation and beamforming in the downlink. Unlike
most previous works that only consider a static optimizatio
framework with full traffic buffers, we formulate a dynamic
optimization problem by explicitly considering the effecs of
random traffic arrivals and time-varying channel fading. The
stochastic formulation can quantify the tradeoff between pwer
consumption and queuing delay. Leveraging on the Lyapunov
optimization technique, the stochastic optimization prollem can

be transformed into a per-slot penalized weighted sum rate L .
maximization problem, which is shown to be non-determinisc ~ Shown in Fig[lL, a large number of remote radio heads (RRHs)

polynomial-time hard. Based on the equivalence between the are densely deployed in the space domain for C-RANs. Each
penalized weighted sum rate maximization problem and the RRH is configured only with the front radio frequency (RF)
penalized weighted minimum mean square error (WMMSE) = components and some basic transmission/reception functio

problem, the group sparse beamforming optimization based _,. . .
WMMSE algorithm and the relaxed integer programming based alities. The RRHs are connected to the baseband unit (BBU)

WMMSE algorithm are proposed to efficiently obtain the joint P0ol through high-bandwidth and low-latency fronthauksn
RRH activation and beamforming policy. Both algorithms can to enable real-time cloud computing. The C-RANs can act
_con\llerge tOda_ stationalrlylsolution Wgh |0hW-00mD|he_Xir%/ andlgln be as a platform for the practical implementation of coordiuiat
Implemented in a parallel manner, thus they are highly scalale to- mti_noint (CoMP) transmission concepfsl [5]. Specifigall
large-scale C-RANSs. In addition, these two proposed algdtims th BIFBJU ( | ) tes the b f . pE ['].ht P ﬁ_ly,,_a t
provide a flexible and efficient means to adjust the power-dely ep pool computes the beamforming weight coetlicients
tradeoff on demand. for different RRHs, and sends the precoded data to various
Index Terms—Cloud radio access networks (C-RANSs), Lya- active dRI;u;S'tT?er:;f?e ac:[[n[JeERR_lljls CO.O perlatlvsly trar:jsreilt th h
punov optimization, penalized weighted minimum mean squa precoded data 0_ _' eren ; S. The S'gna‘?‘ o SerYe at eac
error (WMMSE), Lagrangian dual decomposition. UE are superpositions of signals from multiple active RRHSs.
The beamforming weight coefficients are designed to steer th
data to their intended receivers in the spatial domain. That
|. INTRODUCTION for a given UE, the desired signals are combined coherently

The fifth-generation (5G) wireless networks are expectd/§t the interfering signals are combined out-of-phaseettee
to provide ubiquitous services to a larger number of simuRint beamforming aims to improve the signal-to-interfeze-
taneous mobile devices with device density far beyond tRéIS-noise ratio (SINR) in order to significantly improveeth
current wireless communication systems. To cope with the3Rectral efficiency of C-RANS.
challenges, ultra-dense low power nodes and cloud computin Various beamforming designs have been studied for CoMP
are regarded as two of the most promising techniqlés [j_r]_ C-RANs with different optimization objectives and con-
Leveraged on low power node and cloud computing, ttfdraints recently. In[[6] and_[7], the number of active front
cloud radio access network (C-RAN), first proposed![in [Zpaul links is minimized under a SINR constraint for each
is expected to revolutionize the architecture and operatioUser equipment (UE) and a power constraint for each RRH.
of future wireless systems, and it has attracted consitierahhe problem is solved by minimizing an approximate of the
amount of attentions in both academia and industry([3] [43. APriginal combinatorial objective function. The works in] [8
and [9] aim to jointly optimize the set of RRHs serving each
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Fig. 1. Architecture of heterogeneous cloud radio accessanks
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and downlink beamforming was studied in_[10], where thkigh network utility and deterministically bounded badkdo
problem was addressed using a mixed integer second-ormhside the network. The delay analysis was conducted in
cone program framework. Similar problem has been studiftB] for suboptimal scheduling in one-hop wireless netvgork
in [11], where the user association and beamforming wenéth general interference set constraints and time-caiedl
considered in both downlink and uplink C-RANSs. As existingraffic arrivals. There also have been lots of works that $ocu
solutions considering only the downlink like J10] cannot ben optimizing power under queue stability and interference
modified in a straightforward way to solve the problem iconstraints[[19][[20]. However, these works generally adop
[11, efficient algorithms were proposed utilizing the midi  highly simplified physical-layer models for wireless chals
downlink duality result. such as interference avoidance constraint or simple cliranne
The dense deployment of RRHs imposes new technigate mapping function. They do not consider the complex
challenges for the design and implementation of large scalen-linear relationship between signal power, interfeeen
C-RANs. With the centralized processing at the BBU poohower, and system throughput as in practical systems, which
the power consumed by the fronthaul links that provide higimakes the system design much more challenging. This paper
capacity connections with BBU pool becomes comparable fiondamentally differs from previous works in that we corsid
that for transmissiori [12]. Therefore, in order to reduc&g@o a power minimization problem by designing queue-aware
consumption of the entire network, we can reduce the numheint optimization algorithms for C-RANs where both RRH
of active RRHs by putting some of the RRHs into the sleegctivation set and beamforming vector are adaptive to queue
mode. The fronthaul links of sleeping RRH will also be turnestate information and channel state information. In additi
off to save power consumption. Therefore, the scheduling thfe non-linear impacts of interence are explicitly quagdifi
RRH activation plays a critical role in the development ofluring the system design. Therefore, existing solutions ca
energy-efficient C-RANs. Related problem has been studiadt be readily applied to the C-RAN setting considered is thi
in [13], where two efficient group sparse beamforming alg@aper.
rithms were proposed to obtain the subset of active RRHs andviotivated by these facts, we propose to study dynamic joint
their corresponding beamformers. The works in [14] comparRRH activation and beamforming for C-RANSs by considering
the energy efficiencies of two different downlink transrioss random traffic arrivals, queuing delays, and the time-vayyi
strategies in C-RANs by taking the RRH transmission powégding channels. To the best of our knowledge, this is the
RRH activation power, and load-dependent fronthaul powfifst such work in C-RANs. Unlike the static optimization
into considerations. Compared with the optimal exhaustiygoblems studied in the literatures, the problems consitler
search method, the computational complexity of the algor#t in this paper are formulated as stochastic optimizatiomschv
in [6]-[11], [13], [14] can be significantly reduced, which.are notoriously difficult to solve but are important for pieal
however, can still be very intensive for large-scale C-RANgystems. The main contributions of this paper are sumnthrize
This is due to the fact that a series of convex problems follows:
(e.g. SDP, SOCP) have to be solved centrally using standard . o - I
CVX solvers. Furthermore, the aforementioned literatunes ~ * The StOCh‘_”lSt'_C optimization of Jomt_RRH activation 3”0'
typically based on snapshot-based static models, which in- beamforming IS developeo_l for practical C'RANS' A wide
dicates that the stochastic and time-varying features ate n range of _detalled ope_rat|_0ns _and con_stramts, such as
considered into the formulations. Therefore, only the jtals beamformmg, RRH activation, time-varying channel, ran-
layer performance metrics such as power and throughput are dom traff.|c a”'V"?"S' and frontha}ul power consumption,
optimized and the resulting control policy is only adaptive are conS|dere_d n the formulauon. To thg best of our
to channel state information (CSI). In practice, delay soal k_nowledge, this is the first paper that a_ch|e_ves sto_ch_as-
a key metric to measure the quality-of-service (QoS), which tic control of power and delay_ by considering realistic
has also been neglected in these literatures. Intuititkére system operations across muliple prqtogol !ayers.
is a fundamental tradeoff between power consumption and® To tackle the NP.—hardness of the optimization problem,
queuing delay[T15], thus it is important to jointly consider two_low-complexity algorlthms are proposed using the
power consumption and delay to balance their tradeoff and to group sparse beamform_mg (GSB) approach and the re-
meet various performance requirement in C-RANS. laxed mteger programming (RIP) app_roach, respectively.
In practice, the stochastic control and delay analysis are Bpth algorithms can be |m_plemented in a parallel manner
usually investigated from the queue stability perspediiva with closed-form expressions, thus they are scalable to
time-varying system using the Lyapunov optimization tech- large-scale C-RANS.
nique. Many existing literatures have focused on stocbasti * The delay and power performance of the two proposed

optimization for time-varying wireless networks. A fundeam algorlthms_ are numﬁ_r |cal(ljybev;1r:uated. Slgglfllcan'Ftrr:erfodr-
tal approach to stochastic resource allocation and rodting mance gains are achieved by the proposed aigorithms due

heterogeneous data networks was presentéd in [16], where th to the fact that they are adaptive o the queue state infor-
flow control is crucial to ensure no network resources are ma'uon.. The proposed algorithms can provide a flexible
wasted whenever the traffic rates are inside or outside the ca and efficient means to control the delay-power trapieoff
pacity region. The authors df [L7] investigated stochasbic- on demand. Al the;e mak_e the p_rop(_)sed algorithms
trol for wireless networks with finite buffers, where therjbi attractive and useful in practical applications.

flow control, routing, and scheduling algorithms can achiev The remainder of this paper is organized as follows. In



Section II, we introduce the system model and formulate theAssume that each UE has its own data stream. d;éf)
stochastic optimization problem. In Section Ill, the Lyapu denote the data message for UEat slot ¢. Without loss
optimization is introduced and utilized to obtain a perediz of generality, we further assume th@a?(t)] = 1 and
weighted sum rate maximization problem for each slot. Theach a;(¢) is i.i.d. among UEs. With linear beamforming
optimization problem is solved by two efficient algorithm®perated centrally in the BBU pool, the baseband signal to
based on GSB approach and RIP approach in Section b¥ transmitted by RRH: at slott is
and Section V, respectively. Numerical results are present
in Section VI. Finally, we conclude our paper in Section VII. X (t) = Zw’fi(t)ai(t)' @)
The acronyms used in this paper are summarized in Table I. el

The encoded baseband sigsal(t) is delivered to RRHk
for radio transmission through corresponding fronthawk.li
It is worth noting that as we focus on the issue of power-

TABLE |
SUMMARY OF ACRONYMS

Acronym | Description delay tradeoff in this paper, we assume that the fronthaksli
géFfJAN gg):gb;%ouﬁﬁcess network are provisioned with sufficiently high capacity and nedlgi
RRH remote radio head latencyf] The signal observed by each UE is the superposition
MSE mean square error of signals from all RRHs. The received signal at WE given
MMSE minimum mean square error by

WMMSE | weighted minimum mean square error

GSB group sparse beamforming 4 TT. ) ) ] ) ) ]

RIP relaxed integer programming i (t) =H, (t)wl(t)al(t) + Z H; (t)wﬂ (t)aJ (t) +2i (t)’ (@)
BCD block coordinate descent J#i

LASSO least absolute shrinkage and selection operator Nx1 : . . . .
ADMM alternating direction method of multipliers where z;(t) € C is the additive white Gaussian noise
FJP full joint processing (AWGN) at slot¢ with distribution CA(0, *I). We assume

that all the UEs adopt single user detection and the intemfar

Throughout this paper, lower-case bold letters denote veés-treated as noise. The achievable data rate in the unit of
tors and and upper-case bold letters denote matdcdsnotes bps/Hz of UE: is given by
identity matrix.FC d_enote; complex domain an.d the complex Rit) = log, det(I + H, (£)w; (£)wH () HE (¢
Gaussian distribution with meam and covariance matrix (3 H-(t)w-(t)wH(t)Hﬂl t)+0121) 1 3)
R is represented by N(m,R). E[;] and det(-) represent iz g '
expectation and determinant operators, respectiiay:} is
the real part operatofi - ||, denote<,,-norm of a vector. The

) : B. Network Power Consumption Model
inverse, transpose, conjugate transpose operators aotéeden ] ] )
as(-)"1, ()T, (-)¥, respectively. In C-RANSs, the extensive use of high-capacity low-latency

fronthaul links makes the fronthaul power consumption com-
parable to the transmission power of RRHIs][22]. Here we
) o consider the passive optical network to provide the effecti
A. Scenario Description high-capacity fronthaul connections between the RRHs and

We consider a downlink C-RAN witlil’ RRHs andl UEs, the BBU pool. The passive optical network consists of optica
where each RRH is equipped witd antennas and each UEnetwork units and an optical line terminal that connectsta se
has N antennas. LefC andZ denote the set of RRHs andof associated optical network units through a single optica
the set of UEs, respectively. The bandwidth of the systemfiber [23]. From the perspective of energy saving, some RRHs
W. We also assume that the network operates in slotted tigwed their associated optical network units can be switched
with time dimension partitioned into decision slots indéky into sleep mode with negligible power consumption, but the
t € {0,1,2,...} with slot durationr. optical line terminal with constant power consumptiByyt

Let Hy;(t) € CN*M denote the channel state inforcannot go into sleep mode as it plays the roles of distributer
mation (CSI) matrix from RRHEk to UE ¢ at slot ¢, let aggregator and arbitrator of the transport network. Here we
H,(t) = [Hy;(t),Hai(t), ..., Hk(t)] € CN*ME denote the ignore Porr because it is a constant and will not affect
CSI matrix from all RRHs to UE at slott, and letH(t) = the scheduling and optimization results. LEfNY denote
[H;(t),..., H[(t)] € CN*MIK denote the network CSI at slotthe constant power consumed by the optical network unit
t. The channel is assumed to follow quasi-static block fadingssociated with active RRH:. Besides, due to the real-
where each element df(¢) keeps constant for the durationtime A/D and D/A processing at each RRH, static circuit
of a slot, but is identically and independently distributedower P} is also consumed. Thus, the amount of static power
(i.i.d.) across different slots. Lew;(t) € CM*! denote the consumption associated with RRH during active mode is
beamforming vector at RR# for UE i at slott, let w;(t) = P¢ = P + PPNY. When RRHk and its corresponding
Wl (t),..,wk.(t)]" € CMEX! denote the aggregated beamfronthaul link are switched into the sleep mode, there is no
former for UEi at slott, let Wy (t) = [w, (¢),...,wi, ()T €

CMIX1 denote the aggregated beamformer used by RRit 1The impact of finite fronthaul capacity on fronthaul comgiea and
| dl T sT -7 T MIKx1 quantization in C-RANSs has been investigated recently/ij, [@hich does not
slott, and letw(t) = [Wy (¢), ..., Wi (¢)]" €C eN0te  consider the power-delay tradeoff. It is expected thatefifionthaul capacity

the aggregated beamformer of the entire network attslot  will negatively affect the performance of the proposed &thm.

Il. SYSTEM MODEL



static power consumption. Leti(t) C K denote the set of where the expectatiofi is taken with respect to the distri-
active RRHs at slot. The network power consumption at slobution of network power consumption, which depends on the
t is given by random RRH activation set and beamforming vectors. C1 is the
1 network stability constraint to guarantee a finite queugtlen
p(A(t),w(t)) = Z (—||v"vk(t)||§ + P;j), (4) for each queue. C2 is the constraint on the instantaneous per
kEA(L) RRH power consumption. In practical C-RANs, the random

wherer, is the drain efficiency of RF power amplifier at rrHyiraffic arrivals an_d the time-varying c_hannel conditiong ar
k. Note that the load-dependent fronthaul power consumpti§fnerally unpredictable. The stochastic nature of the rélan
model has been considered [n[14], while its impact on O&pnquns and trqﬁlc grrlvals m{;\kes it impractical to cddte _
formulation will be left for future study. The network powerIhe optimal soIg'uon in an offline manner. TO a..ddl‘eSS.thIS
consumption is a random process, in that it depends on ff@Plem. we will resort to Lyapunov optimization, which
policy of RRH activation set and corresponding beamformir?ln transform the stochastic optimization problén (7) iato
vectors, which is dynamically determined with the obséorat d€terministic one at each slot.

of traffic queues and channel conditions at each slot. Remark1: The queue stability constraint is used to depict
and control the average delay. According to Definition 1, the

. . queue stability is guaranteed if the average queue length is

C. Queue Stability ar]d ?roblem .Formulatlon finite. Note that average delay is proportional to averagaigu
The BBU pool maintaind traffic queues for the randomiength for a given traffic arrival rate from Little’s Theorem

traffic arrivals towards/ UEs. LetA(t) = [A1(?),..., Ar(t)] As suggested later in Section Ill, the average queue length

be the vector of stochastic traffic data arrivals (bits) ate¢hd can be arbitrarily bounded by choosing an appropriate obntr
of slott. We assume that the traffic arrival(t) is independent parameter.

w.r.t. ¢ and i.i.d. over slots according to a general distribution
with meanE[A4;(t)] = \;. Let Q(t) = [Q1(t),...,Qr(t)]
denote the vector of queue state information (QSI) (bits) folll. PROBLEM TRANSFORMATION BASED ON LYAPUNOV
the I UEs at the beginning of slot. Therefore, the queue OPTIMIZATION
dynamic for UE;: is given by
In this section, we will exploit the framework of Lyapunov
Qi(t +1) = max[Q;(t) — pi(t), 0] + A;(t), (5)  optimization to solve the stochastic optimization problem
where the amount of traffic departure at stots given by (]1]) Def'neQ the.quadratlc Lyapunov funct!on aQ(1)) =
i (t) = WrRi(t). 3 > Qi(t)”, which serves as a scalar metric of queue conges-

3

To model the impacts of joint RRH activation and beantion in the C-RAN. To keep the system stable by persistently
forming policy on average queue delay and average netw@ishing the Lyapunov function towards a lower congestion
power consumption, we first present the definitions of quegeate, the one-step conditional Lyapunov drift is defined as
stability, stability region and throughput optimal poli@s

follows [24]. AQ(1) = E[L(Q(t+1)) - LQM)QW)],  (8)
Definition 1 (Queue Stability): A discrete time queQét)
is strongly stable if whereE is the conditional expectation taken with respect to
o the distribution of Lyapunov drift given queue sta@jt). The
lim Sup% Z E[Q(t)] < oo. (6) Lyapunov drift-plus-penalty function is defined as
T— 00 =0
A(Q(1)) + VE[p(A(t), w(t)|Q(1)], )

Furthermore, a network of queues is stable if all individual

quSu]?s_qf th;_ ne;twglrllf ar;sta}ble. 4 Th hout-Ooti IWhereIE is the conditional expectation taken with respect to the
e |r1|t|on j (. .ta ”t)./ €glon an roughput-Optimalyiqi i tion of network power consumption given queueestat
PoI.|cy). The stability regiorC is the closure of the set Of all t.heQ(t), andV > (0 represents an arbitrary control parameter. The
arrival rate vectorsi = {A; B } that can pe_ sta_blhzed_ "N parametel” can be used to control the power-delay tradeof.
a C'RAN‘ Athrou_g_hput-opnmal resource opt|m|zat|o.n poli A larger V. means more emphasis will be put on power
a_po_hcy that stf_;\pmzes_all the arrival rate vectofs; : ¢ € I} minimization during the optimization. On the other handewh
W'Epr']n thE.Sta.b'“tY reglor_C. | | intain th g is small, queue stability carries more weight during the
e objective is to simultaneously maintain the networ ptimization. Suppose that the expectation of the penatty p

queue St&.lb.”ity and mir_1imi_ze the network power consumptio essp(A(t), w(t)) is deterministically bounded by some finite
by using joint RRH activation and beamforming. The prObler@onstantp iny Pmaxs 1-€. Pmin < E[p(A(t), w(t))] < pm

can be formulated as the following stochastic optimizatiqpet »* denote the theoretical optimal value &1 (7), then the
problem: relationship between the Lyapunov drift-plus-penaltydiion
and queue stability is established in Theorem 1 [24].

T-1
. - . l
P Tlgnoo T EO E[p(A(L), w(t))] ) Theorem1 (Lyapunov Optimization): Suppose there exist
s.t. C1 :Queue Q;(t) is strongly stable, Vi, positive constants3, ¢ and V' such that for all slotst €
C2 :||wil3 < P, {0,1,2,...} and all possible values 0€(¢), the Lyapunov



drift-plus-penalty function satisfies: following theorem characterizes the performancéaf (14)eun
I suboptimal solutions.
* Theorem3: Let ¢ andC be constants such that< ¢ < 1
A(Q(t))+VE[p(A(t), w(t 1)) < B+Vp"— i(t), X =
Q®) IP(A(®), wtDIQ()] P 6;Q ®) andC > 0. Suppose there is an> 0, such that

(10)
then all queues);(¢) are strongly stable. The average queue
length satisfies

A+ el € ¢C. (15)

If the suboptimal solution makes (possibly randomized)
T—1 decisions every slot to satisfy

I .
tmsup - 3~ 3 EiQu(n) < T ) gy I
=0 i=1 Z QiE[u:(1)|Q(t)] > ¢ (maxz Qi(t)ﬂi) - C, (16)

and the average penalty of power consumption satisfies i=1 i=1

B then the network is strongly stable.

T—-1
lim sup% Z Elp(A(t),w(t))] <p"+ v (12) Proof: The proof can follow that for Theorem 6.3 in[24].
T— 00 t=0 ]

Proof: The proof can follow that for Theorem 4.2 inf24]. ' neorem 3 suggests that the suboptimal solutions that
m satisfy [16) can provide stability whenever the traffic ati

The results in Theorem 1 motivate us to minimize thEtes are interior to @-scaled version of the stability region.
Lyapunov drift-plus-penalty in[{9) to achieve the maximunf? this paper, we will develop suboptimal solutions by réfix
queue stability region and obtain throughput-optimal @l and reformulating the optimization problem [n114), whilési

Rather than directly minimiz&X9), our policy actually sgekextremely difficult to quantify they andC' that the algorithms

to minimize the upper bound oF](9), which is given by th&an achieve. The stability region analysis for our proposed

following lemma [Lemma 4.6 of 23]. algorithms remains challenging and is left for future work.

Lemmal (Upper Bound of Lyapunov Drift-plus-penalty): Remark2: For the general case that the arrival rate vector
Under any control policy, the drift-plus-penalty has thds outside the stability regioff or the possible reduced one

following upper bound for alk, all possible values o€)(t) ¢C, cor_lgestlon ConFr_oIs are need tq constrain the arrival rate
and all parameters” > 0, vector into the stability region. In this case, the probleam c

be decomposed into a congestion control subproblem and join

A(Q(1)+VE[p(A(t), w(t))[Q(t)] < B+ RRH activation and beamforming subproblem by following
VE[p(A(t), w(t)|Q(t)] + > Qi(t)E[A;i(t) — ni(t)|Q(t)],  the framework in[[25]. By doing so, we can have the separate
ez (13) congestion control subproblem and joint RRH activation and
beamforming subproblem, and the deterministic worst-case

where B is a positive constant and for all sletsatisfiesB > .
I delay bound can be guaranteed for each traffic queue.

3 2 E[AZ(t) + 13 (D)1Q(1)].

=1
Proof: The proof is in Appendix A. ] IV. GSB-BASED EQUIVALENT PENALIZED WMMSE
By the principle ofopportunistically minimizing an expec- ALGORITHM
tation [24], the policy that minimize&[f(¢)|Q(t)] is the one
that minimizesf(¢) with the observation ofQ(¢). Besides,
neither >~ Q;(t)A;(t) nor B in (@3) will be affected by the

i€T
policy at slott. Therefore, the optimization problem can b
simplified to

In this section, we will use the GSB approach to solve the
optimization problem in[(14).

%. Group Sparse Beamforming Formulation

Since only a subset RRHs will be active, we can solve the
x| > Qi(t)pi(t) — Vp(A(L), wit)). (14)  problem by exploiting the group sparse structure of the @ggr
W e

gated beamforming vectow (t) = [Wi(t),--- ,Wwk(t)]T €
The following theorem justifies the throughput optimality " where the coefficients s () form a group[27].
by solving problem[{14) optimally. When the RRHE is switched off, all the coefficients in the

Theorem2: The RRH activationA(t) and beamforming Vectorw;, are 0, which results in the group sparse structure.

w(t) given by solving [[T4) optimally achieves the maximunfhe mixed (;/f,-norm is shown to be effective to induce
stability regionC in C-RANS. group sparsity and has attracted lots of attentions [28]him

Proof: The proof is in Appendix B. m Subsection, we try to construct a convex relaxation[df (4),

However, the weighted sum rate term in](14) is nod€sulting in a weighted mixed, /¢>-norm. Specifically, we
convex and is shown to be NP-hard in wireless networii&st calculate theightest positively homogeneous lower bound
with interference [[26]. It is thus extremely difficult, if ho Of P(w) with the definitionp, (w) = g;fop(%w)’o < ¢ < oo
impossible, to get the globally optimal solution fo](14)ahgh which is still nonconvex. We then calculate the Fenchel
efficient algorithms in polynomial time. Rather than seegkinconjugate to provide its convex envelgjiev), which is called
global optimality, we will focus on developing low-complgx as thetightest convex positively homogeneous lower baoind

algorithms that produce suboptimal solutions fo](14). Thew) and is given by the following proposition.



Proposition1: The tightest convex positively homogeneowgherea = {«;|i € Z} is the set of non-negative mean squared

lower bound of[(#) is given by error (MSE) weightsg; = uf/( %:IHinWfol + o), —
J
. Pg 2Re{uf’H,;w;} + 1 is the MSE for estimating;, u = {u; €
p(w(t)) =2 Z n—k||Wk(t)||2, (17) CN*1)j € T} is the collection of the receiving vectors for all
keK -
hich i iahted mi Eﬂ UEs, ands, = % is the parameter that will affect the
which s a weighted mixe 1/ég—nqrm. number of active RRHSs.
Proof: The proof is in Appendix C. [ |

It is worth noting that problen{{19) is not jointly convex
in a,u,w, while it is convex with respect to each of the

) . . ) individual optimization variables when fixing the other@ T
it can further introduce group sparsity to, that is, many sub-

o , ) ) this end, the block coordinate descent (BCD) method is
vectors,wy will be 0, which corresponds to inactive RRHs

Hile th ) ¢ q h tilized to obtain the stationary point of problem }19). As
While t e active se_t_o .R.RHS correspon St‘?t € non-zero S%?bven in [30], once the iterative process converges to al fixe
vectors inw. By minimizing the weighted mixed, /¢>-norm

(7) of w, the zero entries ofv will be made to align to the point of problem[(IB), the fixed point is also a stationarynpoi

- . ) f the problem[(IB). It should be noted that the stationaigtpo
same groupwy, such that the corresponding RRH is forcea problem [I8) or[[19) might not be globally optimal.
to switch off. The weight for each group embraces additionaIUnder fixedw and e, minimizing the weighted sum-MSE

system parameters. Intuitively, the RRH with a higher Statfeads to the well-known MMSE receiver:
power consumption and a lower RF power amplifier drain

The above proposition indicates that the mixXed/>-norm
can provide a convex relaxation for the cost functidn (4)isth

efficiency will have a high priority being forced to switchfof u; = (Z Hyw;w[ H]' + o°I)" "H;w;. (20)
Using the weighted mixed; /¢2-norm as a surrogate ob- JET
jective function in [(T#), we finally have the following queue With the MMSE receiver, the MSE; can be written as
aware group sparse beamforming problem: -1
max. > QiR — _QV\CVP:T W2, ei=1—wiH] ZHiWinH? +0’l Hiw;
w7 kek (18) jezT
s.t. |[Wi||3 < P (21)
In the above formulation, the slot indexis skipped to  Under fixedw andu, the closed-formx can be obtained
simplify the notation. as follows according to the first-order optimality conditso
Remark3: The objective function in[{18) is a convex -1

Q; =€,

relaxation to the original probleri(I14) using the group sjtsar (22)
inducing norm. It has been shown in Proposition 1 that (18) Under fixedu and «, the optimalw can be obtained by
is the tightest convex positively homogeneous lower bous@lving the following convex problem:

of (I4), that is, among all convex positively homogeneous iy, . SSwHCw; — 2 3 Re{dfw;} + 3 Bl [We|2,
functions, [[IB) has the smallest gap withl(14). It is very ¥ ez i€z kek

challenging to quantify the exact performance gap, whiah no -t ||V~Vk||f < P,

mally requires specific prior information, e.g., in comsies aoon " (23)
sensing, the sparse signal is assumed to obey a power YiF€C = %:ZQjajHj uju; Hj andd; = QiaiHj u;.

(see Eq. (1.8) in[[29]). However, our problem fundamentally The algorithm is summarized in Algorithi 1.

differs from the existing compressive sensing problems in

that we do not have any prior information about the optim&lgorithm 1 GSB-based Penalized WMMSE Algorithm
solution. The optimality analysis of the queue-aware groUR. For each slot, observe the current QSQ(¢) and CSI
sparse beamforming algorithm will be left to our future work  H(¢), then make the queue-aware joint RRH activation

that produces a stationary solution [01(18) by introducing a ,. |nitialize w, u anda:

equivalent formulation. 3: Repeat

4:  Fix w, compute the MMSE receiver according to[(20)
B. Equivalent Formulation and Penalized WMMSE algorithm and corresponding MSE;

The equivalence between weighted sum rate maximizatioff ~ Update the MSE weightv according to[(22);
problem and WMMSE problem is first established[inl[30] for 6 ~ Calculate the optimal beamformer under fixedu and
multiple-input and multiple-output (MIMO) broadcast clmah « by solving [28);
and generalized to MIMO interfering channel in_[31]. By 7 Until certain stopping criteria is met,
extending the equivalence in [30]]31], the penalized waigh & Update the traffic queue);(¢) according tol(p),
sum rate maximization problem is equivalent to the follagvin
penalized WMMSE problem, The objective function in[{23) contains two parts: the
min. 5 Qi(ares —logai) + 3 Bel[Wella, quadratic part}. w//Cw; — 2 3" Re{d['w;}, and the/l,-

auw i€ _ €T . .
T e kek (19) norm part 3 Bi|[Wk||2. Unlike the objective ofstandard
s.t. ||Wk||2 < Py, kex




group least absolute shrinkage and selection operator®3S and definev = [v1,...,vE]T € CMEI*1 The optimization
problem, the two parts are functions of different variapleproblem in [28) can be equivalently expressed as

i.e., w; and wy, rather than the same variable. Therefore, . H " -
existing computationally efficient algorithms developeat f H‘}J%gzwl Cw; — 2%21}{6{(11’ wit+ k;,c Bil ¥l
group LASSO in[[32] cannot be readily applied to solve our g, 9512 < Py,

modifiedgroup LASSO problen{(23). This fact motivates us Vi = Wy
to find a new approach to solve the problem [in](23). Our (29)
approach is based on the famous ADMM algorithm, which The partial augmented Lagrangian function of the above
will be briefly reviewed below. problem is given by

L(w,v,y) =min.> wHCw,; — 2 Y Re{dfw,}
C. Review of ADMM algorithm WV oier i€

The ADMM algorithm, originally introduced in the 1970s, +k§/CBk||Vk||2+k§IC ¥ (7 = W) (30)

is a simple but powerful algorithm that is well suited to +£ > [V —wil3,
distributed convex optimization, and arbitrary-scale veon kek
optimization. Specifically, the ADMM is designed to solveyhere y = $7, .., 5217, with 5. = [yL,..y5])T €
the following structured convex problem [33] CMIx1 peing the vector of Lagrangian dual variables for the
i equality constraints in[{29), and > 0 is some constant.
xeCnmecm f(x) +9(2), The main steps of the ADMM algorithm are summarized in
s.t. Ax + Bz = c, (24) Algorithm [2.
x € C1,z € Co,

Algorithm 2 ADMM Algorithm for (23)

s 1 Initialize all primal variablesw(®, v(*) and all dual
variablesy (©).

where A € Ckn B € Ck*™, ¢ € CF, f(-) andg(-) are
convex functions, and; andC, are non-empty convex set
Correspondingly, the partial augmented Lagrangian foncti

is given by 2: Repeat
3. Solve the following problem and obtaw(™*1),
LP(szaY):f(x)+g(z)+Re(yH(Ax+ Bz — C)) (25) . (n) (n)
+ £]|Ax + Bz — c|l3, min. L{w ™, v, y™),

. _ | st [[94]13 < Pes
wherey € C* is the vector of Lagrangian dual variables
associated with the linear equality constraint, gnd- 0 is 4. Solve the following problem and obtaiw (™ +1),
a constant. The ADMM algorithm consists of the following

iterations: mvivn . L(W7V(n+1)’y(n));
(n+1) _ ~ (n) (n)
X =argmin L,(x,z"""/, , 26 o
B ol y™) (26) 5. Update the multipliers/("*+1) by
2" = arg mzin Lp(x(nqul),z,y(n))7 (27) S’l(anrl) _ S’;(gn) i p({,](ng»l) _ €V1(cn+1))§
y D) = y () 4 pAx(HD 4 B (D) _ ), (28) 6 Until certain stopping criteria is met.

It can be easily seen that the ADMM algorithm takes the
form of a decomposition-coordination procedure, in whicé t
solutions to small local sub-problems are coordinatedutyino
dual variable updatd (28) to find a solution to a large glob
problem. Furthermore, the convergence is establishedén t
following theorem[[38].

Theorem4: Assume thatA” A and BT B are invertible,
and the optimal solution to[(24) exists. Then the updat
sequence{x(™, z(™ y(™1 is bounded and the converge
{x(™ z(™} is an optimal solution of[{24).

Before obtaining the closed-form expressions for each iter
ation in the above algorithm, the convergence of Algorithm 2
5 first discussed.
Theorem5: Every limit pointw(™ andv(") generated by
Igorithm 2 is an optimal solution of problefa {23).
Proof: The proof is in Appendix D. |

dIn Algorithm 2, givenw andy, the step to obtainv can

e further decomposed intA sub-problems, each of which
Is associated with a RRH and can be solved in a parallel
manner. By completing the squares [nl(30), fhéh convex

sub-problem for RRH; can be simplified to
D. ADMM Algorithm to [2B)

In this subsection, based on splitting the variabéesthe
tightly coupled large-sized problem ih_(23) will be decom- s.t. ||‘~’k||f < B
posed into several sub-problems and solved efficiently by th .o corresponding Karush-Kuhn-Tucker (KKT) conditions
ADMM algorithm with closed-form solutions. are given by

To account for the difference betweeny andw;, in (23),
we introduce a copyv, for the original beamformesv,, pbr — (p + 27y € Bed(||Vill2), (32)

min . Be|[Ve|l2 + 2|[Ve — Wi + ¥ /p|3,
i 59l + 81 CER



I[¥5113 < P,y >0, (|[¥5]13 — Pe)yi =0,  (33)  2) Parallelized ImplementationEach step of Algorithm 1
and Algorithm 2 can be carried out in a parallel manner. Ex-
cept for the MSE weighte and the Lagrangian dual variables
y, the computation for beamform@y. and beamformew,; can

be performed in the parallel computing units of BBU pool for
each RRH and each UE, respectively, without any information

where b, = W, — ¥i/p, v is the optimal Lagrangian
multiplier associated with the power constraint, &i¢lv;||2)
represents the subdifferential &-norm||-||2 at the pointvy,
which can be expressed as follows][34]

_ Vi VE£0 exchange. After that, bottx andy are updated with outputted
A(|Ivill2) = villa” . : (34) §, and w,. Once the update is dond, and w; can be
{x [|x[[2 <1}, 93 =0 vk N P " i

calculated simultaneously again in the parallel computini¢s
Therefore, we havé; = 0 whenever|pby||o < 8. When  of BBU pool.

|[obk|l2 > Bk, we have 3) Computational Complexity:The proposed solution is
_.  (plbi]l2 = Br)by highly efficient as each step of Algorithm 1 and Algorithm 2 is
Vi = (o + 270 [bxllz (35) in closed-form. Specifically, the main computational coexpl

ity is related to the matrix inversion if_(20) and {38), which
Rave computational complexity in the order 6f(N3) and
O((MK)?), respectively. Compared with the standard interior

Furthermore, according to the complementary conditio

i =0 if ||(p”bf’;g|‘§7k_‘ﬁ’“)b’“||§ < P,. Otherwise, we should

have ||%II% = P, which indicates that;, = point method, which has a computational complexity in the
pllbells—Be—pvPr |y 5 summary, the closed-form solution forfder of O((M K1)3%), the proposed GSB-based solution has
updat?@ is given by a lower computational complexity, especially for larg@lsc
C-RANSs.
0, Ibil2 < 2
V= W, Be < |Ibll2 < 2+ VPr,  (36) V. RIP-BASED EQUIVALENT PENALIZED WMMSE
—'ﬂ’;)\k/ﬁ_; , otherwise. ALGORITHM

In this section, we will use the RIP approach to solve the

As for the step to obtaimw, it can be further decomposed . " ™. .
P | . P @ptimization problem in[{14).

into I sub-problems, each of which is associated with a U

and can be solved in a parallel manner. By completing the

squares in[{30), theé-th unconstrained convex sub-problenf. Mixed Integer Programming Formulation

for UE i can be simplified as A set of binary variables = {s; : s, € {0,1},k € K}

min . w Cw; — 2Re{d w;} + P Z s — 5 — 50/ pl[2 is first introduced to indicate the active/sleeping statés o
wi ! L) BT Uk T IRIPIZE aach RRH, wheres, — 1 when RRHE is activated, and

(37) sk =0 when RRHE is asleep. Withs(¢), the network power
Since the summation term i _(37) is the summatiogonsumption mode[{4) can be rewritten as

of squared/s-norms, it can be alternatively expressed as B - 9 .

5 I~ 9 u/pl} = 3 lIwi Vi~ yi/oll. Diffr pleft)wit) = 2 sz + 7). (@9)

kel . i . . S )
entiating the objective with respect to; and setting the result Replacing the penalty term dF{lL4) with the power consump-

equal to Z€r0, th? optimat; is given by the following closed- tion model defined in[(39), we have the following penalized
form expression: weighted sum rate maximization problem:

* —1
w; = (2C + pI)""(2d; + pvi + yi), (38) max. Y QiR — ¢ 3 su(|[Wil2 + PY),

keKx

. s,w

wherey; = Iyl . yL )T € CMEXL with y,; € CMx! s.t. IIéVekIH% < Py < (40)
being thei-th block of y. sy = {0, 1},

E. Discussions on Implementation and Complexity wherep = V/(Wrlog;). As can be seen, the nonlinear cross-

multiplication terms (NCMTS) in the cost function impose a
g]reeat challenge on algorithm design. Inspired by the faat th
wy, is equal to0 if RRH £ is turned off, we can cancel all the
NCMTs in the objective function and constraint as follows:

1) Further Reduction of the Number of Active RRH%I
further decrease the number of active RRHs by enhancing
group-sparsity for the beamformer, the reweighting proced
that adaptively reweights the coefficied in (23) can be

utilized. Specifically, this can be done in step 6 of Algarith max. Y. QR —¢ Y (||[Will3 + spPy),
; ; i WS ieT keEK
1 by solving problem[{23) and updating the coefficight s.t. [[Wel2 < sk Py, (41)

iteratively, see Section V-C in[13] for details. By doingthe
number of active RRHs is expected to be smaller than that sk = 10,1},

obtained by solving probleni_(23) only once. However, the The above problem is a mixed integer nonlinear program-
enhanced Algorithm 1 with the reweighting procedure wilning, and some standard algorithms have been developed to
involve two loops, which results in a high computationaolve it, e.g., the branch-and-bound (BnB) algoritim] [35].
complexity. As a result, the tradeoff between complexitg arHowever, the computational complexity of BnB is prohibétiv
accuracy should be carefully considered in the implem@mtat for a large-scale C-RAN. For the worst cagé, iterations is



required, thus their computational complexity is approatiea )
as O(2K(KMT1)>°), which grows exponentially with the D(6) = min. L(s, w, 0), (45)

number of RRHs and cannot be applied in practice. Efficient s_ﬂt, sk €[0,1],

algorithm will be studied in the following subsection. and the dual optimization problem is formulated as

B. Equivalent Formulation with Relaxed Integer Programgnin migxéi(g)v (46)
s.t. 8 = 0.

Utilizing the established equivalence between penalized
weighted sum rate maximization and penalized WMMSE The Lagrangian functioi.(w, s, 8) is linear withé for any
in section 1V, and relaxing the binary variablg to take fixeds andw, while the dual functionD(8) is the maximum
continuous value in0, 1], the problem can be transformecbf these linear functions. Therefore, the dual optimizatio

as: problem is always concave.
min. > Qi(ase; —loga;) +¢ > (||Wi||2 + skPf), Given Lagrangian dual variables, the problem of RRH
GWSWieT ke activation and beamforming can be decomposed and solved
s.t. || Wil < sk Py, separately. For the problem of RRH activation, it can behent
sk € [0,1]. decomposed intdX independent problems and solved in a

(42) - '
The above problem is strongly convex for individual Vari_parallel manner. The activation problem for RRHs given

ab!e a anq u When. fixing the rest. Co_rrespondingly, the min (¢ P¢ — 0 Py)sk,
unique optimal solutiongx* and u* are given by [(20) and Sk

(22), respectively. Furthermore, when fixing and u, the s.t. 0 < s, < 1.
optimization problem fos andw is convex and is given by It can be easily seen that the optimal solutiorsa$ given

(47)

- H G — Hyy c i (15.l12).  BY
T .;:le Cwi 2i%:IRe{dl Wil sLljce/c(SkPk—i—HWk”Q)’ g1 0 o< P/ Py, (48)
st Wi |2 < sk Py, k 1, Oy > 9Pg/Py.

sk € [0,1]. It is worth noting that after the integer relaxation ej(t),

. . . (4.3) we can still obtain optimal solution that is binary. Themefo
Therefore, a stationary solution can be obtained with trt‘ﬁe integer relaxation does not introduce performancedass
BCD method by iteratively optimizing over three block vari- 9 P

ables «, u and {s,w}. The algorithm is summarized intherg 'S ho gap W.'th Integer rellaxat|on. .
Algorithm 3. Given Lagrangian dual variables, the problem to derive

beamforming vectors is given by

Algorithm 3 RIP-based Penalized WMMSE Algorithm min. ZleCWi—2ZRe{dZHWi}+ Z (o + 01 || W ]|2,
1: For each slot, observe the current QSD(¢) and CSI ez i€l kek

H(t), then make the queue-aware joint RRH activation ) (49)
and beamforming according to the following steps: ~ Which can be further rewritten as

3: Repeat _ _ i€ €T i€
E;Xéna;n;nvg'tﬁgrzzl::gsthgn%wsfﬂé?ewm according where Q = diag([¢ + 01,...,¢ + 0k] ® 1) is a diagonal
5 Update the MSE wei fm aclzcgrd'n .to[(ZIZ)' matrix, ® denotes the Kronecker product of two vectors, and
6: OEt i the RRH w tl'g tion d 1Ing r tr’] b 1), denotes a length\/ all-one vector. The probleni_(b0)
’ ain the _activation decision an e. €aM- is an unconstrained convex problem, and it can be further
former w under fixedu and « by solving [43); S .
. . . o ) decomposed inté independent problems, each corresponding
7: Until certain stopping criteria is met; UE and solved i llel Th di
& Update the traffic queud);(t) according tol[B) to an and solved in a parallel manner. Thus, according to
: ' ' the first-order optimality condition, the optimal beamfangn
vector for UEi is given by

wi = (C+Q)'d;. (51)

C. RRH Activation and Beamforming based on Lagrangian
Dual Decomposition

. ) o D. Lagrangian Dual Variables Update
The Lagrangian function of problerh (43) is given by|[36]

As the dual problem is always concave w.ft. we can
adopt the subgradient projection method to solvé ii [36]. In

L(w,s,0) = EZZW?CWi -2 %Re{dqui} particular, it is easy to prove that the subgradient of thal du
Y (9P~ 0 Psk+ S (4 00 [Wll2. (44)  tfunction is obtained by
kex kex n ~ (n n
A6 = 113 = s P (52)

where@ = [01,6,,...,0k] = 0 is the vector of dual variables ) . o _ _
associated with the network power consumption constraintgheres, " is the optimal RRH activation according {0 {48) in
Correspondingly, the Lagrange dual function is given by the n-th iteration givend("™), andvir,i”) can be obtained from
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the optimal beamformer for each UE in theth iteration given UEs are configured with 1 antennas, and they are uniformly
0, and independently distributed in the square region [-500] 50
Hence, with the subgradient projection method, the update [-500 500] meters. Besides, we assume that the mean
equation for the dual variablg, in the (n + 1)-th iteration is arrival rate is the same for all the UEs, i.e,, = A. We
given by fix the power budget of each RRH a3, = 2 W. Each
ot = g\ D ApTY) (53) point of the the simulation results is averaged over 4000

slots in the simulations. Our simulations mainly compare th

where ¢"*+1) is a sufficiently small positive step size. Th roposed algorithms with the full joint processing algmit
whole procedure to solvé (13) is summarized in Algorifim FJP). In FJP algorithm, all the RRHs are active, and only

i i _ i the transmission power of RRHs is minimized by solving
Algorithm 4 Lagrangian Dual Decomposition Algorithm fory penalized weighted sum rate maximization beamforming

@3) — design problem based on the Lyapunov optimization. The FIP
1: Initialize s, w, 6, n = 0; algorithm can achieve the highest cooperative beamforming
2: Repeat gain with all the RRHs active, and the results from the FJP

3 Make the RRH activation decisianaccording tol(48); a|gorithm can serve as a delay performance lower bound of

_ the proposed algorithms.
4:  Calculate the beamforming vector; for each UE

according to[(511);

5. Update the dual variables according to[[52): B. Sys_tem Perff)rmance versus_ControI Paraméter
Setn =n+1: We first consider a C-RAN withk' = 9 RRHs andl = 6

? Until ||9](Cn) _ 9](;1—1)” < 50N> Ny UEs. To indicate the heterogeneous power consumption of
different RRHs and the fronthaul links, we set the static
power consumption a® = (2 + k/2) W and set the drain
efficiency of each RRH ag;, = 0.4. In Fig.[2 and(B, we
E. Discussions on Implementation and Complexity evaluate the average queue delay and the average network
1) Parallelized Implementation:Similarly, each step of power cor.wsumpnon.agamst the_ control param@te/vhgn the
Algorithm 3 and Algorithm 4 can be carried out in a paralle'l“ean a}rrlval rate\ is 1.25 MblFs/slot and 1.75 Mb|_ts/slot,
manner. Except for the MSE weights and the Lagrangian res_pecuvely. For all the algonthms, a larger traffic mean
dual variabless, the computation for RRH activatios, and a_rrlval rate always results in a longer average delay _and
beamformerw; can be performed in the parallel computinéé'gher network power consumptions. This can be explained
I

units of BBU pool for each RRH and each UE, respective Y the fact that more power is needed in order to timely
without any information exchange. After that, bathand 6 ransmit larger amount of traffic arrivals. Under a given mea
are updated with outputtesi, and w;. Once the update is arrival rate, the average network power consumption is a

done, s, and w; can be calculated simultaneously again ifonetonically decreasing function . The rate of power
the parallel computing units of BBU pool. decreasing starts to diminish with excessive increasé of

2) Computational ComplexityThe proposed solution is On the other hand, a largéf can adversely affect the dellay
highly efficient as each step of Algorithm 3 and AlgorithrTP(?ncO””n"’\nce because the average queue length grows yinearl

4 is in closed-form. Specifically, the most computationall ith ,V' This is _due to the fact that the system with a larger
intensive operation is the matrix inversion {0 {20) ahd] (51 will emphasize less on dglay performance but more on
which have computational complexity in the order®fN?) he network power consumption performance. Therefore _the
and O((MK)?), respectively. Compared with the standarfarametet features the tradeoff between power consumption

interior point method, which has a computational compjexi@d delay performance. From both figures, it is observed
in the order of O((MKI)*5) in our setting, the proposedthat GSB-based WMMSE algorithm always outperforms RIP-

tgased WMMSE algorithm, but only by a small margin. Both
[gorithms achieve significant power saving compared to the
FJP algorithm.

Fig. [@ shows the average number of sleeping RRHs for
the two proposed algorithms against different values of the
In this section, we use simulation and numerical resulggntrol parametel’. The average number of sleeping RRHs
to evaluate and compare the performance of the proposgfinonstrates a similar trend as the average network power

RIP-based solution has a lower computational complexi
especially for large-scale C-RANS.

VI. NUMERICAL RESULTS

algorithms. consumption performance. To reduce network power con-
sumption for a largé/, it is necessary to turn off as many
A. Scenarios and Parameters Setting RRHs and the corresponding fronthaul links as possible, at

The pathloss model 927 + 25log,y(d) with d (km) "€ COStof longer average queue length.

being the propagation distance. The fast fading is modeled o

as independent complex Gaussian random variable digtdbufs: Quantitative Control of the Power-Delay Tradeoff
according taCN (0, 1) and the noise power is -112 dBm. We The power-delay tradeoffs of various algorithms are com-
assumed that the RRHs are configured with 2 antennas, peged in Fig.[b. The different tradeoff points are obtained
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Fig. 2. Average delay vs. parameter Fig. 5. Quantitative delay-power tradeoff under different

70

Average Network Power Consumption (W)
Average Network Power Consumption (W)

A =11.25 Mbits/slot

0.5 1 15 2 25 3 35 4
Static Power Consumption Pi (w)

Fig. 3. Average network power consumption vs. paraméter Fig. 6. Average network power consumption vs. static povegrsamption

by varying the control parametdr. The average network FJP algorithm, yielding the same network power consumption
power consumption is decreasing and convex in the averdfethe small delay regime, the proposed algorithms provide
delay. When the delay is small, slightly increasing the ylel@ flexible and efficient means to balance the power-delay
requirement can achieve a significant amount of power savirigdeoff, given that a slight loosening of the delay require
When the delay is excessively large, increasing the deldient contributes to significant energy savings. To achieve a
further results in only a very small power saving. . 5 shovgertain power-delay tradeoff, all we need to do is choosimg a
that GSB- and RIP-based algorithm provide significantlydset appropriate control parametéf.

power-delay tradeoff than the FJP algorithm. In addition,

when the average delay decreases, the power consumption

gap between the proposed algorithms and the FJP algoritRm System Performance versus Static Power Consumption

becomes smaller. _Th|s means th_at more RRHs need to be, compare the average network power consumption with
turned on with a stricter delay requirement. In the extreasec different static power consumption, we set the static power
when all the RRHs are active, all the algorithms will perfo"Eonsumption to be the same for all RRHs. Hily. 6 shows the
average power consumption as a function of the static power
consumption when the control parameterlis= 5 x 10%.
g ‘ ‘ ‘ ‘ ‘ ‘ As expected, the average network power consumptions for all
\ A = 1.75 Mbitsisiot algorithms are increasing functions of the static power-con
sumption. In addition, the proposed algorithms signifigant
outperform the FJP algorithm, especially in the high static
power consumption regime. Wherf = 4 W, the GSB-based
algorithm achieves a power saving of 24.6% and 43.5%, at
A = 1.75 Mbits/slot and 1.25 Mbits/slot, respectively. On
the other hand, the performance gap between the proposed
algorithms and the FJP algorithm decrease$’aslecreases.
When P¢ = 0, all algorithms require almost the same network
power consumption. When the static power consumption is

smaller, more RRHs will be activated to achieve a higher
Fig. 4. Average number of active RRHs vs. paraméfer beamforming gain.

Average Number of Active RRHs

A = 1.25 Mbits/slot

2 4 6 8 10 12 14
v x10°
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. . Fig. 8. Average number of iterations to reach convergence
Fig. 7. Average delay vs. mean arrival rate

E. System Performance versus Mean Arrival Rate algorithm can achieve flexible and efficient tradeoff betwee

Fig.[4 compares the average delay with different mean trafﬁgtwork power consumption and delay by adjusting a single

arrival rates for the two proposed algorithms and the bawwaparameter. The stochastic optimization problem of jointRR

: . S . activation and beamforming has been transformed into a
grgedy selection (BGS)-based aIgonthr_n, Wh'Ch. 't.eray'veﬁenalized weighted sum ragtlte maximization problem based
switches off one RRH at eac.h_step, \_/vh|Ie re-optimizing th%n the Lyapunov optimization technique. Both GSB and
E;zeze;};ngz:?n?rh]:st E)Zee;esmiwlnn?oaz)cf:gr?ylfgyosp?itﬁ];?griiagp approaches have been used to reformulate the penalized
optimal solutions for RRH activation [13]. We set the cohtrg eighted sum rate maximization problem. The corresponding

parameter a¥’ — 8 x 107 It is observed that, when the meanalgonthms for both approaches have been proposed, and they

traffic arrival rate is relatively low. the average delavstios were derived based on the equivalence between the weighted
y ' 9 y sum rate maximization problem and the WMMSE problem.

two_proposed algorithms are slightly larger than that of thﬁwe algorithms are guaranteed to converge to a stationary
BGS-based algorithm . Furthermore, the average delaySIforS%lution_ The solutions do not require any prior-knowledge

algorithms increase sharply and tend to infinity as the M8 stochastic traffic arrivals and channel statistics, aaual loe

arriyal rates are beyond certain thresholds_(i.e., the_il'ﬂ;;ab implemented in a parallel manner. Finally, the efficiencd an
regions). Specifically, the BGS-based algorithm aCh'e""‘ﬁ fthe efficacy of the proposed algorithms have been confirmed

biggest stability region, fo_llowed by the GSB—baseq algum by the numerical simulations. For future works, it would be
and the RIP-based algorithm. Therefore, congestion clantr teresting to consider the queue-aware energy-efficint |

should b.e aglopted_ to guarantee_the queue stapi_lity_ when H activation and beamforming algorithms for C-RANs with
network is with traffic load exceeding current stability icas. imperfect channel state information (CSI) or capacityitérd

fronthaul links.
F. Convergence of the Algorithms

Fig.[8 shows the average number of outer BCD iterations
and the average number of inner iterations required by the APPENDIXA
GSB-based WMMSE algorithm and RIP-based WMMSE al- PROOF OFLEMMA 1
gorithm, respectively, with respect to the network scatgda _
©. Here the network scale factor indicates that the consitlere BY leveraging on the fact thatnax[a — b, 0] + )’ <a’+
C-RAN is with K — 90 RRHs andl — 60 UEs dis- 0°+¢®—2a(b—c),Va,b,c > 0 and squaring Eq[15), we have
tributed uniformly in the squared regida500v/0, 500v/0)] x
[—500v/©, 5001/0] meters. We can gbserve that both]GSBQ?(t +1) = QF(t) < pF(t) + AF(t) — 2Qi(1) (ua(t) — Ai(1)),
based algorithm and RIP-based algorithm can convergg fairl (54)
fast under different network scale, thus both algorithmes ar According to the definition of the Lyapunov drift function,
highly scalable to large-scale C-RANS. It is observed thaten We then have the following expression by summing over all
iterations are required by the RIP-based solutions condgare inequalities in[(5#) and taking expectation over both sides
that of GSB-based solutions. Meanwhile, as can be seen in Fig

5, the GSB-based solution slightly outperforms the RIRedas A(Q(t) < IE [Z p2(t) + A2(1)|Q(t)
solution. Thus, the GSB-based solution is more preferable i i€T (55)
practice. - ZIQi(L‘)E[Mz‘(L‘) - A4;(1)1Q()].

1€

VIlI. CONCLUSION

I
1 2 2 i
We have developed a joint RRH activation and beamforming Let B 2 3 l; E[A7(t) + 1 (1)|Q(1)]. Finally, the
algorithm for a downlink slotted C-RAN, by consideringupper bound in ﬂ[]3) can be obtained by adding
random traffic arrivals and time-varying channel fadingse T VE[p(A(t), w(t))|Q(¢)] to both sides of[(35).
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PROOF OFTHEOREM 2

Suppose that the traffic arrivals with mean arrival rate

A = (A1,..., A1) is strictly interior to the stability regior®
(Definition 2) such that\ + €1 € C,Ve > 0. Since channel
conditions are i.i.d. over slots, according to Theorem 4.5 i
[24], there exists a stationary randomized control poliagtt
is independent of)(¢) and yields

E[ui(t)|Q(#)] = Elui(t)] > Ai + €,Vi, (56)
E[p(A(t), w(1))|Q(1)] = E[p(A(t), w(t))] = ple)-

= sup

= xcv,x#40 2V FX)

13

diagonal block beingy,I,; and nikIMI, respectively. The
Fenchel conjugate af;, (w) is given by

p;(z)=sup (2T ATEw—2/F(T(w))T(w))

weCk

sup (zLALErwy —2(/F(X)T(wy))
XeV wxeCl¥l (60)
0, ifp*(z)= sup lzxAxll <y

f— 3

oo,  otherwise.

where zy is the |X|-dimensional vector formed with the

entries ofz indexed byX (similarly for w), and Ay is the

As the stationary randomized control policy is simply a pa
ticular control policy, it certainly satisfieE ({L3) in Lemraln
addition, since[(14) is obtained by minimizing the rightda

| x | x|-dimensional matrix formed with both the rows and
the columns ofA indexed byX (similarly for E). Consider
the normp(w) whose dual norm is defined @8 (z) in Eq.

side (R.H.S.) of [(I13) among all feasible policies (incIngin). According to Proposition 2 i [37h(w) is the convex

the stationary randomized control policy), by combinih@)(5
with (I3), we have

envelope ofp(w).
Therefore, the tightest convex positively homogenous fowe

bound ofp(w) has the following inequality:

(57)
Using the results in the proof of Theorem 1, it follows
that 3 Q,(t) < 22 which proves that solving{14)

i€l
optimally stabiles all the queues.

pw)= sup wlz< sup Y |lwz,2llzz, |2
p*(z)<1 p*(z)<1 ke
PC
< sup < —E\lwr 2> <max Ik |z 2>
s (5 wall) (s Fe e

PC
= 2szc T llwz, |2,
€
(61)

which is obtained using the norm properties. Actually, the

APPENDIXC
PROOF OFPROPOSITION1

Let L = KMI and define the index sét = {1,2,..., L},
then we havew = [w; : | € V|. Define the setZ, =
{(k=1)MI+1,..,kEMI} as a partion of), then we have
wi = wz, = [w; : I € Z;]. Furthermore, define the support

77, =2

above inequalit;I/{ always holds with equality. Specificalét,

B Wi,
Mk IIW%{kllz

such thatp*(z) = 1, then we have

PC
W) = sup wlz > ZW%kZIk =2 Z n—:HWIkHZ,

p*(z)<1

keKx kex

(62)

of beamformerw as 7(w) = {l|w; # 0}, then the power which is obtained using the definition of convex envelope.

consumption model can be rewritten as

pw) = <nik||wIk||§ + PEI(T(w) N Ty £ 0)),

keKx

wherel(€) is an indicator function with value 1 if the event
€ is true and 0 otherwise. To simplify notation, [E{(w) =
> sellwz, |3, and let F(T(w)) = PCI(T (w) N Zi # 0).
kek

It can been seen thdt(-) is combinatorial inw and is non-

. Pg ~
Therefore, we finally have k%:’Cq/n—kHwIkHQ < plw) <
Pg .
(58) 2kz’c,/n_:||wzk||2, i.e., @)
€

APPENDIXD
PROOF OFTHEOREM6

By comparing probleni(24) and problem129), wher- v

convex. We will obtain a convex relaxation of the combinatoyq, — w we can observe that

rial objective function.

We first construct the tightest positively homogeneous fowe

bound ofp(w), which is given by[[37]

pr(w) = inf PG = inf 6T (w) + SF(T(w)

= 2/F(T(w)T(w).

The last equality in[(39) is obtained by solvi@é’%/&b =
0. However,pp,(w) is still non-convex inw.

(59)

f(x) = > Bell¥ille,

ke
g(z) = 3. wHCw,; — 2 Y Re{dHw,},
€L i€
.tA::LB:I’C:O7
Cr = (x| [|V4]]? < P, Vk €K),Co = z.

(63)

SinceATA =1 andB”B =1 are invertible, and botlf;
and(C, are convex sets, then according to Theorem 3, we can

We next calculate the convex envelopegfiw). Define conclude that every limit pointv(™ and v(™ generated by
diagonal matricesA € REY*L, B ¢ REXE with the k-th  Algorithm 2 is an optimal solution of probleri(23).
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