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Abstract—In this paper, we study the stochastic optimization
of cloud radio access networks (C-RANs) by joint remote radio
head (RRH) activation and beamforming in the downlink. Unlike
most previous works that only consider a static optimization
framework with full traffic buffers, we formulate a dynamic
optimization problem by explicitly considering the effects of
random traffic arrivals and time-varying channel fading. The
stochastic formulation can quantify the tradeoff between power
consumption and queuing delay. Leveraging on the Lyapunov
optimization technique, the stochastic optimization problem can
be transformed into a per-slot penalized weighted sum rate
maximization problem, which is shown to be non-deterministic
polynomial-time hard. Based on the equivalence between the
penalized weighted sum rate maximization problem and the
penalized weighted minimum mean square error (WMMSE)
problem, the group sparse beamforming optimization based
WMMSE algorithm and the relaxed integer programming based
WMMSE algorithm are proposed to efficiently obtain the joint
RRH activation and beamforming policy. Both algorithms can
converge to a stationary solution with low-complexity and can be
implemented in a parallel manner, thus they are highly scalable to
large-scale C-RANs. In addition, these two proposed algorithms
provide a flexible and efficient means to adjust the power-delay
tradeoff on demand.

Index Terms—Cloud radio access networks (C-RANs), Lya-
punov optimization, penalized weighted minimum mean square
error (WMMSE), Lagrangian dual decomposition.

I. I NTRODUCTION

The fifth-generation (5G) wireless networks are expected
to provide ubiquitous services to a larger number of simul-
taneous mobile devices with device density far beyond the
current wireless communication systems. To cope with these
challenges, ultra-dense low power nodes and cloud computing
are regarded as two of the most promising techniques [1].
Leveraged on low power node and cloud computing, the
cloud radio access network (C-RAN), first proposed in [2],
is expected to revolutionize the architecture and operations
of future wireless systems, and it has attracted considerable
amount of attentions in both academia and industry [3] [4]. As
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Fig. 1. Architecture of heterogeneous cloud radio access networks

shown in Fig. 1, a large number of remote radio heads (RRHs)
are densely deployed in the space domain for C-RANs. Each
RRH is configured only with the front radio frequency (RF)
components and some basic transmission/reception function-
alities. The RRHs are connected to the baseband unit (BBU)
pool through high-bandwidth and low-latency fronthaul links
to enable real-time cloud computing. The C-RANs can act
as a platform for the practical implementation of coordinated
multi-point (CoMP) transmission concepts [5]. Specifically,
the BBU pool computes the beamforming weight coefficients
for different RRHs, and sends the precoded data to various
active RRHs. Then the active RRHs cooperatively transmit the
precoded data to different UEs. The signals observed at each
UE are superpositions of signals from multiple active RRHs.
The beamforming weight coefficients are designed to steer the
data to their intended receivers in the spatial domain. Thatis,
for a given UE, the desired signals are combined coherently
yet the interfering signals are combined out-of-phase. Here the
joint beamforming aims to improve the signal-to-interference-
plus-noise ratio (SINR) in order to significantly improve the
spectral efficiency of C-RANs.

Various beamforming designs have been studied for CoMP
in C-RANs with different optimization objectives and con-
straints recently. In [6] and [7], the number of active front
haul links is minimized under a SINR constraint for each
user equipment (UE) and a power constraint for each RRH.
The problem is solved by minimizing an approximate of the
original combinatorial objective function. The works in [8]
and [9] aim to jointly optimize the set of RRHs serving each
user and the corresponding beamformers, under the constraint
of front haul capacity. Specifically, power minimization is
studied in [8] and sum rate maximization is considered in
[9]. The design problems in [8] [9] fundamentally differ from
that in [6] [7] in that they explicitly consider the fronthaul
capacity. The problem of minimizing the overall power con-
sumption and CoMP operational costs by joint user association
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and downlink beamforming was studied in [10], where the
problem was addressed using a mixed integer second-order
cone program framework. Similar problem has been studied
in [11], where the user association and beamforming were
considered in both downlink and uplink C-RANs. As existing
solutions considering only the downlink like [10] cannot be
modified in a straightforward way to solve the problem in
[11], efficient algorithms were proposed utilizing the uplink-
downlink duality result.

The dense deployment of RRHs imposes new technical
challenges for the design and implementation of large scale
C-RANs. With the centralized processing at the BBU pool,
the power consumed by the fronthaul links that provide high-
capacity connections with BBU pool becomes comparable to
that for transmission [12]. Therefore, in order to reduce power
consumption of the entire network, we can reduce the number
of active RRHs by putting some of the RRHs into the sleep
mode. The fronthaul links of sleeping RRH will also be turned
off to save power consumption. Therefore, the scheduling of
RRH activation plays a critical role in the development of
energy-efficient C-RANs. Related problem has been studied
in [13], where two efficient group sparse beamforming algo-
rithms were proposed to obtain the subset of active RRHs and
their corresponding beamformers. The works in [14] compares
the energy efficiencies of two different downlink transmission
strategies in C-RANs by taking the RRH transmission power,
RRH activation power, and load-dependent fronthaul power
into considerations. Compared with the optimal exhaustive
search method, the computational complexity of the algorithms
in [6]–[11], [13], [14] can be significantly reduced, which,
however, can still be very intensive for large-scale C-RANs.
This is due to the fact that a series of convex problems
(e.g. SDP, SOCP) have to be solved centrally using standard
CVX solvers. Furthermore, the aforementioned literaturesare
typically based on snapshot-based static models, which in-
dicates that the stochastic and time-varying features are not
considered into the formulations. Therefore, only the physical
layer performance metrics such as power and throughput are
optimized and the resulting control policy is only adaptive
to channel state information (CSI). In practice, delay is also
a key metric to measure the quality-of-service (QoS), which
has also been neglected in these literatures. Intuitively,there
is a fundamental tradeoff between power consumption and
queuing delay [15], thus it is important to jointly consider
power consumption and delay to balance their tradeoff and to
meet various performance requirement in C-RANs.

In practice, the stochastic control and delay analysis are
usually investigated from the queue stability perspectivein a
time-varying system using the Lyapunov optimization tech-
nique. Many existing literatures have focused on stochastic
optimization for time-varying wireless networks. A fundamen-
tal approach to stochastic resource allocation and routingfor
heterogeneous data networks was presented in [16], where the
flow control is crucial to ensure no network resources are
wasted whenever the traffic rates are inside or outside the ca-
pacity region. The authors of [17] investigated stochasticcon-
trol for wireless networks with finite buffers, where the joint
flow control, routing, and scheduling algorithms can achieve

high network utility and deterministically bounded backlogs
inside the network. The delay analysis was conducted in
[18] for suboptimal scheduling in one-hop wireless networks
with general interference set constraints and time-correlated
traffic arrivals. There also have been lots of works that focus
on optimizing power under queue stability and interference
constraints [19] [20]. However, these works generally adopt
highly simplified physical-layer models for wireless channels,
such as interference avoidance constraint or simple channel-
rate mapping function. They do not consider the complex
non-linear relationship between signal power, interference
power, and system throughput as in practical systems, which
makes the system design much more challenging. This paper
fundamentally differs from previous works in that we consider
a power minimization problem by designing queue-aware
joint optimization algorithms for C-RANs where both RRH
activation set and beamforming vector are adaptive to queue
state information and channel state information. In addition,
the non-linear impacts of interence are explicitly quantified
during the system design. Therefore, existing solutions can
not be readily applied to the C-RAN setting considered in this
paper.

Motivated by these facts, we propose to study dynamic joint
RRH activation and beamforming for C-RANs by considering
random traffic arrivals, queuing delays, and the time-varying
fading channels. To the best of our knowledge, this is the
first such work in C-RANs. Unlike the static optimization
problems studied in the literatures, the problems considered
in this paper are formulated as stochastic optimizations, which
are notoriously difficult to solve but are important for practical
systems. The main contributions of this paper are summarized
as follows:

• The stochastic optimization of joint RRH activation and
beamforming is developed for practical C-RANs. A wide
range of detailed operations and constraints, such as
beamforming, RRH activation, time-varying channel, ran-
dom traffic arrivals, and fronthaul power consumption,
are considered in the formulation. To the best of our
knowledge, this is the first paper that achieves stochas-
tic control of power and delay by considering realistic
system operations across multiple protocol layers.

• To tackle the NP-hardness of the optimization problem,
two low-complexity algorithms are proposed using the
group sparse beamforming (GSB) approach and the re-
laxed integer programming (RIP) approach, respectively.
Both algorithms can be implemented in a parallel manner
with closed-form expressions, thus they are scalable to
large-scale C-RANs.

• The delay and power performance of the two proposed
algorithms are numerically evaluated. Significant perfor-
mance gains are achieved by the proposed algorithms due
to the fact that they are adaptive to the queue state infor-
mation. The proposed algorithms can provide a flexible
and efficient means to control the delay-power tradeoff
on demand. All these make the proposed algorithms
attractive and useful in practical applications.

The remainder of this paper is organized as follows. In
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Section II, we introduce the system model and formulate the
stochastic optimization problem. In Section III, the Lyapunov
optimization is introduced and utilized to obtain a penalized
weighted sum rate maximization problem for each slot. The
optimization problem is solved by two efficient algorithms
based on GSB approach and RIP approach in Section IV
and Section V, respectively. Numerical results are presented
in Section VI. Finally, we conclude our paper in Section VII.
The acronyms used in this paper are summarized in Table I.

TABLE I
SUMMARY OF ACRONYMS

Acronym Description
C-RAN cloud radio access network
BBU baseband unit
RRH remote radio head
MSE mean square error
MMSE minimum mean square error
WMMSE weighted minimum mean square error
GSB group sparse beamforming
RIP relaxed integer programming
BCD block coordinate descent
LASSO least absolute shrinkage and selection operator
ADMM alternating direction method of multipliers
FJP full joint processing

Throughout this paper, lower-case bold letters denote vec-
tors and and upper-case bold letters denote matrices.I denotes
identity matrix.C denotes complex domain and the complex
Gaussian distribution with meanm and covariance matrix
R is represented byCN (m,R). E[·] and det(·) represent
expectation and determinant operators, respectively.Re{·} is
the real part operator.|| · ||p denotesℓp-norm of a vector. The
inverse, transpose, conjugate transpose operators are denoted
as (·)−1, (·)T , (·)H , respectively.

II. SYSTEM MODEL

A. Scenario Description

We consider a downlink C-RAN withK RRHs andI UEs,
where each RRH is equipped withM antennas and each UE
hasN antennas. LetK and I denote the set of RRHs and
the set of UEs, respectively. The bandwidth of the system is
W . We also assume that the network operates in slotted time
with time dimension partitioned into decision slots indexed by
t ∈ {0, 1, 2, ...} with slot durationτ .

Let Hki(t) ∈ CN×M denote the channel state infor-
mation (CSI) matrix from RRHk to UE i at slot t, let
Hi(t) = [H1i(t),H2i(t), ...,HKi(t)] ∈ CN×MK denote the
CSI matrix from all RRHs to UEi at slot t, and letH(t) =
[Hi(t), ...,HI(t)] ∈ CN×MIK denote the network CSI at slot
t. The channel is assumed to follow quasi-static block fading,
where each element ofH(t) keeps constant for the duration
of a slot, but is identically and independently distributed
(i.i.d.) across different slots. Letwki(t) ∈ CM×1 denote the
beamforming vector at RRHk for UE i at slot t, let wi(t) =
[wT

1i(t), ...,w
T
Ki(t)]

T ∈ CMK×1 denote the aggregated beam-
former for UEi at slott, let w̃k(t) = [wT

k1(t), ...,w
T
kI(t)]

T ∈
CMI×1 denote the aggregated beamformer used by RRHk at
slot t, and letw(t) = [w̃T

1 (t), ..., w̃
T
K(t)]T ∈ CMIK×1 denote

the aggregated beamformer of the entire network at slott.

Assume that each UE has its own data stream. Letai(t)
denote the data message for UEi at slot t. Without loss
of generality, we further assume thatE[a2i (t)] = 1 and
each ai(t) is i.i.d. among UEs. With linear beamforming
operated centrally in the BBU pool, the baseband signal to
be transmitted by RRHk at slot t is

xk(t) =
∑

i∈I
wki(t)ai(t). (1)

The encoded baseband signalxk(t) is delivered to RRHk
for radio transmission through corresponding fronthaul link.
It is worth noting that as we focus on the issue of power-
delay tradeoff in this paper, we assume that the fronthaul links
are provisioned with sufficiently high capacity and negligible
latency.1 The signal observed by each UE is the superposition
of signals from all RRHs. The received signal at UEi is given
by

ri(t) = Hi(t)wi(t)ai(t) +
∑

j 6=i

Hi(t)wj(t)aj(t) + zi(t), (2)

where zi(t) ∈ CN×1 is the additive white Gaussian noise
(AWGN) at slot t with distribution CN (0, σ2I). We assume
that all the UEs adopt single user detection and the interference
is treated as noise. The achievable data rate in the unit of
bps/Hz of UEi is given by

Ri(t) = log2 det(I+Hi(t)wi(t)w
H
i (t)HH

i (t)
(
∑

j 6=i

Hi(t)wj(t)w
H
j (t)HH

i (t) + σ2I)−1). (3)

B. Network Power Consumption Model

In C-RANs, the extensive use of high-capacity low-latency
fronthaul links makes the fronthaul power consumption com-
parable to the transmission power of RRHs [22]. Here we
consider the passive optical network to provide the effective
high-capacity fronthaul connections between the RRHs and
the BBU pool. The passive optical network consists of optical
network units and an optical line terminal that connects a set
of associated optical network units through a single optical
fiber [23]. From the perspective of energy saving, some RRHs
and their associated optical network units can be switched
into sleep mode with negligible power consumption, but the
optical line terminal with constant power consumptionPOLT

cannot go into sleep mode as it plays the roles of distributer,
aggregator and arbitrator of the transport network. Here we
ignore POLT because it is a constant and will not affect
the scheduling and optimization results. LetPONU

k denote
the constant power consumed by the optical network unit
associated with active RRHk. Besides, due to the real-
time A/D and D/A processing at each RRH, static circuit
powerP s

k is also consumed. Thus, the amount of static power
consumption associated with RRHk during active mode is
P c
k = P s

k + PONU
k . When RRH k and its corresponding

fronthaul link are switched into the sleep mode, there is no

1The impact of finite fronthaul capacity on fronthaul compression and
quantization in C-RANs has been investigated recently in [21], which does not
consider the power-delay tradeoff. It is expected that finite fronthaul capacity
will negatively affect the performance of the proposed algorithm.
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static power consumption. LetA(t) ⊆ K denote the set of
active RRHs at slott. The network power consumption at slot
t is given by

p(A(t),w(t)) =
∑

k∈A(t)

(

1

ηk
||w̃k(t)||22 + P c

k

)

, (4)

whereηk is the drain efficiency of RF power amplifier at RRH
k. Note that the load-dependent fronthaul power consumption
model has been considered in [14], while its impact on our
formulation will be left for future study. The network power
consumption is a random process, in that it depends on the
policy of RRH activation set and corresponding beamforming
vectors, which is dynamically determined with the observation
of traffic queues and channel conditions at each slot.

C. Queue Stability and Problem Formulation

The BBU pool maintainsI traffic queues for the random
traffic arrivals towardsI UEs. LetA(t) = [A1(t), ..., AI(t)]
be the vector of stochastic traffic data arrivals (bits) at the end
of slot t. We assume that the traffic arrivalAi(t) is independent
w.r.t. i and i.i.d. over slots according to a general distribution
with mean E[Ai(t)] = λi. Let Q(t) = [Q1(t), ..., QI(t)]
denote the vector of queue state information (QSI) (bits) for
the I UEs at the beginning of slott. Therefore, the queue
dynamic for UEi is given by

Qi(t+ 1) = max[Qi(t)− µi(t), 0] +Ai(t), (5)

where the amount of traffic departure at slott is given by
µi(t) = WτRi(t).

To model the impacts of joint RRH activation and beam-
forming policy on average queue delay and average network
power consumption, we first present the definitions of queue
stability, stability region and throughput optimal policyas
follows [24].

Definition 1 (Queue Stability): A discrete time queueQ(t)
is strongly stable if

lim sup
T→∞

1

T

T−1
∑

t=0

E[Q(t)] < ∞. (6)

Furthermore, a network of queues is stable if all individual
queues of the network are stable.

Definition 2: (Stability Region and Throughput-Optimal
Policy): The stability regionC is the closure of the set of all the
arrival rate vectorsλ = {λi : i ∈ I} that can be stabilized in
a C-RAN. A throughput-optimal resource optimization policy is
a policy that stabilizes all the arrival rate vectors{λi : i ∈ I}
within the stability regionC.

The objective is to simultaneously maintain the network
queue stability and minimize the network power consumption,
by using joint RRH activation and beamforming. The problem
can be formulated as the following stochastic optimization
problem:

min . p̄ = lim
T→∞

1
T

T−1
∑

t=0
E[p(A(t),w(t))]

s.t. C1 :Queue Qi(t) is strongly stable, ∀i,
C2 :||w̃k||22 ≤ Pk,

(7)

where the expectationE is taken with respect to the distri-
bution of network power consumption, which depends on the
random RRH activation set and beamforming vectors. C1 is the
network stability constraint to guarantee a finite queue length
for each queue. C2 is the constraint on the instantaneous per-
RRH power consumption. In practical C-RANs, the random
traffic arrivals and the time-varying channel conditions are
generally unpredictable. The stochastic nature of the channel
conditions and traffic arrivals makes it impractical to calculate
the optimal solution in an offline manner. To address this
problem, we will resort to Lyapunov optimization, which
can transform the stochastic optimization problem (7) intoa
deterministic one at each slot.

Remark1: The queue stability constraint is used to depict
and control the average delay. According to Definition 1, the
queue stability is guaranteed if the average queue length is
finite. Note that average delay is proportional to average queue
length for a given traffic arrival rate from Little’s Theorem.
As suggested later in Section III, the average queue length
can be arbitrarily bounded by choosing an appropriate control
parameter.

III. PROBLEM TRANSFORMATION BASED ON LYAPUNOV

OPTIMIZATION

In this section, we will exploit the framework of Lyapunov
optimization to solve the stochastic optimization problemin
(7). Define the quadratic Lyapunov function asL(Q(t)) =
1
2

∑

i∈I
Qi(t)

2, which serves as a scalar metric of queue conges-

tion in the C-RAN. To keep the system stable by persistently
pushing the Lyapunov function towards a lower congestion
state, the one-step conditional Lyapunov drift is defined as

∆(Q(t)) = E[L(Q(t+ 1))− L(Q(t))|Q(t)], (8)

whereE is the conditional expectation taken with respect to
the distribution of Lyapunov drift given queue stateQ(t). The
Lyapunov drift-plus-penalty function is defined as

∆(Q(t)) + V E[p(A(t),w(t))|Q(t)], (9)

whereE is the conditional expectation taken with respect to the
distribution of network power consumption given queue state
Q(t), andV > 0 represents an arbitrary control parameter. The
parameterV can be used to control the power-delay tradeoff.
A larger V means more emphasis will be put on power
minimization during the optimization. On the other hand, when
V is small, queue stability carries more weight during the
optimization. Suppose that the expectation of the penalty pro-
cessp(A(t),w(t)) is deterministically bounded by some finite
constantpmin, pmax, i.e. pmin ≤ E[p(A(t),w(t))] ≤ pmax.
Let p∗ denote the theoretical optimal value of (7), then the
relationship between the Lyapunov drift-plus-penalty function
and queue stability is established in Theorem 1 [24].

Theorem1 (Lyapunov Optimization): Suppose there exist
positive constantsB, ǫ and V such that for all slotst ∈
{0, 1, 2, ...} and all possible values ofQ(t), the Lyapunov
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drift-plus-penalty function satisfies:

∆(Q(t))+V E[p(A(t),w(t))|Q(t)] ≤ B+V p∗−ǫ

I
∑

i=1

Qi(t),

(10)
then all queuesQi(t) are strongly stable. The average queue
length satisfies

lim sup
T→∞

1

T

T−1
∑

t=0

I
∑

i=1

E[Qi(t)] ≤
B + V (p∗ − pmin)

ǫ
, (11)

and the average penalty of power consumption satisfies

lim sup
T→∞

1

T

T−1
∑

t=0

E[p(A(t),w(t))] ≤ p∗ +
B

V
. (12)

Proof: The proof can follow that for Theorem 4.2 in [24].

The results in Theorem 1 motivate us to minimize the
Lyapunov drift-plus-penalty in (9) to achieve the maximum
queue stability region and obtain throughput-optimal policy.
Rather than directly minimize (9), our policy actually seeks
to minimize the upper bound of (9), which is given by the
following lemma [Lemma 4.6 of 23].

Lemma1 (Upper Bound of Lyapunov Drift-plus-penalty):
Under any control policy, the drift-plus-penalty has the
following upper bound for allt, all possible values ofQ(t)
and all parametersV > 0,

∆(Q(t))+V E[p(A(t),w(t))|Q(t)] ≤ B+
V E[p(A(t),w(t))|Q(t)] +

∑

i∈I
Qi(t)E[Ai(t)− µi(t)|Q(t)],

(13)
whereB is a positive constant and for all slott satisfiesB ≥
1
2

I
∑

i=1

E[A2
i (t) + µ2

i (t)|Q(t)].

Proof: The proof is in Appendix A.
By the principle ofopportunistically minimizing an expec-

tation [24], the policy that minimizesE[f(t)|Q(t)] is the one
that minimizesf(t) with the observation ofQ(t). Besides,
neither

∑

i∈I
Qi(t)Ai(t) nor B in (13) will be affected by the

policy at slot t. Therefore, the optimization problem can be
simplified to

max .
A(t),w(t)

∑

i∈I
Qi(t)µi(t)− V p(A(t),w(t)). (14)

The following theorem justifies the throughput optimality
by solving problem (14) optimally.

Theorem2: The RRH activationA(t) and beamforming
w(t) given by solving (14) optimally achieves the maximum
stability regionC in C-RANs.

Proof: The proof is in Appendix B.
However, the weighted sum rate term in (14) is non-

convex and is shown to be NP-hard in wireless networks
with interference [26]. It is thus extremely difficult, if not
impossible, to get the globally optimal solution to (14) through
efficient algorithms in polynomial time. Rather than seeking
global optimality, we will focus on developing low-complexity
algorithms that produce suboptimal solutions to (14). The

following theorem characterizes the performance of (14) under
suboptimal solutions.

Theorem3: Let φ andC be constants such that0 < φ ≤ 1
andC ≥ 0. Suppose there is anǫ > 0, such that

λ+ ǫ1 ∈ φC. (15)

If the suboptimal solution makes (possibly randomized)
decisions every slot to satisfy

I
∑

i=1

Qi(t)E[µi(t)|Q(t)] ≥ φ

(

max

I
∑

i=1

Qi(t)µi

)

− C, (16)

then the network is strongly stable.
Proof: The proof can follow that for Theorem 6.3 in [24].

Theorem 3 suggests that the suboptimal solutions that
satisfy (16) can provide stability whenever the traffic arrival
rates are interior to aφ-scaled version of the stability region.
In this paper, we will develop suboptimal solutions by relaxing
and reformulating the optimization problem in (14), while it is
extremely difficult to quantify theφ andC that the algorithms
can achieve. The stability region analysis for our proposed
algorithms remains challenging and is left for future work.

Remark2: For the general case that the arrival rate vector
is outside the stability regionC or the possible reduced one
φC, congestion controls are need to constrain the arrival rate
vector into the stability region. In this case, the problem can
be decomposed into a congestion control subproblem and joint
RRH activation and beamforming subproblem by following
the framework in [25]. By doing so, we can have the separate
congestion control subproblem and joint RRH activation and
beamforming subproblem, and the deterministic worst-case
delay bound can be guaranteed for each traffic queue.

IV. GSB-BASED EQUIVALENT PENALIZED WMMSE
ALGORITHM

In this section, we will use the GSB approach to solve the
optimization problem in (14).

A. Group Sparse Beamforming Formulation

Since only a subset RRHs will be active, we can solve the
problem by exploiting the group sparse structure of the aggre-
gated beamforming vectorw(t) = [w̃T

1 (t), · · · , w̃T
K(t)]T ∈

CMIK×1, where the coefficients iñwT
k (t) form a group [27].

When the RRHk is switched off, all the coefficients in the
vector w̃k are 0, which results in the group sparse structure.
The mixed ℓ1/ℓp-norm is shown to be effective to induce
group sparsity and has attracted lots of attentions [28]. Inthis
subsection, we try to construct a convex relaxation of (4),
resulting in a weighted mixedℓ1/ℓ2-norm. Specifically, we
first calculate thetightest positively homogeneous lower bound
of p(w) with the definitionph(w) = inf

φ>0

p(φw)
φ , 0 < φ < ∞,

which is still nonconvex. We then calculate the Fenchel
conjugate to provide its convex envelopep̂(w), which is called
as thetightest convex positively homogeneous lower boundof
p(w) and is given by the following proposition.
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Proposition1: The tightest convex positively homogeneous
lower bound of (4) is given by

p̂(w(t)) = 2
∑

k∈K

√

P c
k

ηk
||w̃k(t)||2, (17)

which is a weighted mixedℓ1/ℓ2-norm.
Proof: The proof is in Appendix C.

The above proposition indicates that the mixedℓ1/ℓ2-norm
can provide a convex relaxation for the cost function (4), thus
it can further introduce group sparsity tow, that is, many sub-
vectors,w̃k will be 0, which corresponds to inactive RRHs.
While the active set of RRHs corresponds to the non-zero sub-
vectors inw. By minimizing the weighted mixedℓ1/ℓ2-norm
(17) of w, the zero entries ofw will be made to align to the
same group̃wk, such that the corresponding RRH is forced
to switch off. The weight for each group embraces additional
system parameters. Intuitively, the RRH with a higher static
power consumption and a lower RF power amplifier drain
efficiency will have a high priority being forced to switch off.

Using the weighted mixedℓ1/ℓ2-norm as a surrogate ob-
jective function in (14), we finally have the following queue-
aware group sparse beamforming problem:

max .
w

∑

i∈I
QiRi −

∑

k∈K

2V
√

P c

k
/ηk

Wτ ||w̃k||2,
s.t. ||w̃k||22 ≤ Pk.

(18)

In the above formulation, the slot indext is skipped to
simplify the notation.

Remark3: The objective function in (18) is a convex
relaxation to the original problem (14) using the group sparsity
inducing norm. It has been shown in Proposition 1 that (18)
is the tightest convex positively homogeneous lower bound
of (14), that is, among all convex positively homogeneous
functions, (18) has the smallest gap with (14). It is very
challenging to quantify the exact performance gap, which nor-
mally requires specific prior information, e.g., in compressive
sensing, the sparse signal is assumed to obey a power law
(see Eq. (1.8) in [29]). However, our problem fundamentally
differs from the existing compressive sensing problems in
that we do not have any prior information about the optimal
solution. The optimality analysis of the queue-aware group
sparse beamforming algorithm will be left to our future work.

Next we will design a computationally efficient algorithm
that produces a stationary solution to (18) by introducing an
equivalent formulation.

B. Equivalent Formulation and Penalized WMMSE algorithm

The equivalence between weighted sum rate maximization
problem and WMMSE problem is first established in [30] for
multiple-input and multiple-output (MIMO) broadcast channel
and generalized to MIMO interfering channel in [31]. By
extending the equivalence in [30] [31], the penalized weighted
sum rate maximization problem is equivalent to the following
penalized WMMSE problem,

min .
α,u,w

∑

i∈I
Qi(αiei − logαi) +

∑

k∈K
βk||w̃k||2,

s.t. ||w̃k||22 ≤ Pk,
(19)

whereα = {αi|i ∈ I} is the set of non-negative mean squared
error (MSE) weights,ei = uH

i (
∑

j∈I
Hiwjw

H
j HH

i + σ2I)ui−

2Re{uH
i Hiwi}+ 1 is the MSE for estimatingsi, u = {ui ∈

CN×1|i ∈ I} is the collection of the receiving vectors for all

UEs, andβk =
2V

√
P c

k
/ηk

loge

2
Wτ is the parameter that will affect the

number of active RRHs.
It is worth noting that problem (19) is not jointly convex

in α,u,w, while it is convex with respect to each of the
individual optimization variables when fixing the others. To
this end, the block coordinate descent (BCD) method is
utilized to obtain the stationary point of problem (19). As
proven in [30], once the iterative process converges to a fixed
point of problem (19), the fixed point is also a stationary point
of the problem (18). It should be noted that the stationary point
of problem (18) or (19) might not be globally optimal.

Under fixedw andα, minimizing the weighted sum-MSE
leads to the well-known MMSE receiver:

ui = (
∑

j∈I
Hiwjw

H
j HH

i + σ2I)−1Hiwi. (20)

With the MMSE receiver, the MSEei can be written as

ei = 1−wH
i HH

i





∑

j∈I
Hiwjw

H
j HH

i + σ2I





−1

Hiwi

(21)

Under fixedw andu, the closed-formα can be obtained
as follows according to the first-order optimality conditions:

αi = e−1
i . (22)

Under fixedu and α, the optimalw can be obtained by
solving the following convex problem:

min .
w

∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}+
∑

k∈K
βk||w̃k||2,

s.t. ||w̃k||2
2
≤ Pk,

(23)
whereC =

∑

j∈I
QjαjH

H
j uju

H
j Hj anddi = QiαiH

H
i ui.

The algorithm is summarized in Algorithm 1.

Algorithm 1 GSB-based Penalized WMMSE Algorithm

1: For each slott, observe the current QSIQ(t) and CSI
H(t), then make the queue-aware joint RRH activation
and beamforming according to the following steps:

2: Initialize w, u andα;
3: Repeat
4: Fix w, compute the MMSE receiveru according to (20)

and corresponding MSEei;
5: Update the MSE weightα according to (22);
6: Calculate the optimal beamformerw under fixedu and

α by solving (23);
7: Until certain stopping criteria is met;
8: Update the traffic queueQi(t) according to (5).

The objective function in (23) contains two parts: the
quadratic part

∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}, and theℓ2-

norm part
∑

k∈K
βk||w̃k||2. Unlike the objective ofstandard
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group least absolute shrinkage and selection operator (LASSO)
problem, the two parts are functions of different variables,
i.e., wi and w̃k, rather than the same variable. Therefore,
existing computationally efficient algorithms developed for
group LASSO in [32] cannot be readily applied to solve our
modifiedgroup LASSO problem (23). This fact motivates us
to find a new approach to solve the problem in (23). Our
approach is based on the famous ADMM algorithm, which
will be briefly reviewed below.

C. Review of ADMM algorithm

The ADMM algorithm, originally introduced in the 1970s,
is a simple but powerful algorithm that is well suited to
distributed convex optimization, and arbitrary-scale convex
optimization. Specifically, the ADMM is designed to solve
the following structured convex problem [33]

min .
x∈Cn,z∈Cm

f(x) + g(z),

s.t. Ax+Bz = c,
x ∈ C1, z ∈ C2,

(24)

whereA ∈ Ck×n, B ∈ Ck×m, c ∈ Ck, f(·) and g(·) are
convex functions, andC1 andC2 are non-empty convex sets.
Correspondingly, the partial augmented Lagrangian function
is given by

Lρ(x, z,y)=f(x)+g(z)+Re(yH(Ax +Bz− c))
+ ρ

2 ||Ax+Bz− c||22,
(25)

where y ∈ Ck is the vector of Lagrangian dual variables
associated with the linear equality constraint, andρ > 0 is
a constant. The ADMM algorithm consists of the following
iterations:

x(n+1) = argmin
x

Lρ(x, z
(n),y(n)), (26)

z(n+1) = argmin
z

Lρ(x
(n+1), z,y(n)), (27)

y(n+1) = y(n) + ρ(Ax(n+1) +Bz(n+1) − c). (28)

It can be easily seen that the ADMM algorithm takes the
form of a decomposition-coordination procedure, in which the
solutions to small local sub-problems are coordinated through
dual variable update (28) to find a solution to a large global
problem. Furthermore, the convergence is established in the
following theorem [33].

Theorem4: Assume thatATA and BTB are invertible,
and the optimal solution to (24) exists. Then the updated
sequence{x(n), z(n),y(n)} is bounded and the converged
{x(n), z(n)} is an optimal solution of (24).

D. ADMM Algorithm to (23)

In this subsection, based on splitting the variablesw, the
tightly coupled large-sized problem in (23) will be decom-
posed into several sub-problems and solved efficiently by the
ADMM algorithm with closed-form solutions.

To account for the difference betweenwi and w̃k in (23),
we introduce a copỹvk for the original beamformer̃wk,

and definev = [ṽT
1 , ..., ṽ

T
K ]T ∈ CMKI×1. The optimization

problem in (23) can be equivalently expressed as

min .
w,v

∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}+
∑

k∈K
βk||ṽk||2,

s.t. ||ṽk||2
2
≤ Pk,

ṽk = w̃k.
(29)

The partial augmented Lagrangian function of the above
problem is given by

L(w,v,y) = min .
w,v

∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}
+
∑

k∈K
βk||ṽk||2+

∑

k∈K
Re{ỹH

k (ṽk − w̃k)}
+ ρ

2

∑

k∈K
||ṽk − w̃k||22,

(30)

where y = [ỹT
1 , ..., ỹ

T
K ]T , with ỹk = [yT

k1, ...,y
T
kI ]

T ∈
CMI×1 being the vector of Lagrangian dual variables for the
equality constraints in (29), andρ > 0 is some constant.
The main steps of the ADMM algorithm are summarized in
Algorithm 2.

Algorithm 2 ADMM Algorithm for (23)

1: Initialize all primal variablesw(0), v(0) and all dual
variablesy(0).

2: Repeat
3: Solve the following problem and obtainv(n+1),

min .
v

L(w(n),v,y(n)),

s.t. ||ṽk||22 ≤ Pk;

4: Solve the following problem and obtainw(n+1),

min .
w

L(w,v(n+1),y(n));

5: Update the multipliersy(n+1) by

ỹ
(n+1)
k = ỹ

(n)
k + ρ(ṽ

(n+1)
k − w̃

(n+1)
k );

6: Until certain stopping criteria is met.

Before obtaining the closed-form expressions for each iter-
ation in the above algorithm, the convergence of Algorithm 2
is first discussed.

Theorem5: Every limit pointw(n) andv(n) generated by
Algorithm 2 is an optimal solution of problem (23).

Proof: The proof is in Appendix D.
In Algorithm 2, givenw andy, the step to obtainv can

be further decomposed intoK sub-problems, each of which
is associated with a RRH and can be solved in a parallel
manner. By completing the squares in (30), thek-th convex
sub-problem for RRHk can be simplified to

min .
ṽk

βk||ṽk||2 + ρ
2 ||ṽk − w̃k + ỹk/ρ||22,

s.t. ||ṽk||2
2
≤ Pk.

(31)

The corresponding Karush-Kuhn-Tucker (KKT) conditions
are given by

ρbk − (ρ+ 2γ∗
k)ṽ

∗
k ∈ βk∂(||ṽ∗

k||2), (32)
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||ṽ∗
k||22 ≤ Pk, γ

∗
k ≥ 0, (||ṽ∗

k||22 − Pk)γ
∗
k = 0, (33)

where bk = w̃k − ỹk/ρ, γ∗
k is the optimal Lagrangian

multiplier associated with the power constraint, and∂(||ṽ∗
k||2)

represents the subdifferential ofℓ2-norm || · ||2 at the point̃v∗
k,

which can be expressed as follows [34]

∂(||ṽ∗
k||2) =

{

ṽ
∗
k

||ṽ∗
k
||2 , ṽ∗

k 6= 0

{x, ||x||2 ≤ 1}, ṽ∗
k = 0

. (34)

Therefore, we havẽv∗
k = 0 whenever||ρbk||2 ≤ βk. When

||ρbk||2 > βk, we have

ṽ∗
k =

(ρ||bk||2 − βk)bk

(ρ+ 2γ∗
k)||bk||2

. (35)

Furthermore, according to the complementary conditions,
γ∗
k = 0 if || (ρ||bk||2−βk)bk

ρ||bk||2 ||22 < Pk. Otherwise, we should

have || (ρ||bk||2−βk)bk

(ρ+2γ∗
k
)||bk||2 ||22 = Pk, which indicates thatγ∗

k =
ρ||bk||2−βk−ρ

√
Pk

2
√
Pk

. In a summary, the closed-form solution for
updatingv is given by

ṽ∗
k =











0, ||bk||2 ≤ βk

ρ ,
(ρ||bk||2−βk)bk

ρ||bk||2 , βk

ρ < ||bk||2 < βk

ρ +
√
Pk,

bk

√
Pk

||bk||2 , otherwise.

(36)

As for the step to obtainw, it can be further decomposed
into I sub-problems, each of which is associated with a UE
and can be solved in a parallel manner. By completing the
squares in (30), thei-th unconstrained convex sub-problem
for UE i can be simplified as

min .
wi

wH
i Cwi − 2Re{dH

i wi}+
ρ

2

∑

k∈K
||w̃k − ṽk − ỹk/ρ||22.

(37)
Since the summation term in (37) is the summation

of squaredℓ2-norms, it can be alternatively expressed as
∑

k∈K
||w̃k − ṽk − ỹk/ρ||22 =

∑

i∈I
||wi − vi − yi/ρ||22. Differ-

entiating the objective with respect towi and setting the result
equal to zero, the optimalwi is given by the following closed-
form expression:

w∗
i = (2C+ ρI)−1(2di + ρvi + yi), (38)

whereyi = [yT
1i, ...,y

T
Ki]

T ∈ CMK×1, with yki ∈ CM×1

being thei-th block of ỹk.

E. Discussions on Implementation and Complexity

1) Further Reduction of the Number of Active RRHs:To
further decrease the number of active RRHs by enhancing the
group-sparsity for the beamformer, the reweighting procedure
that adaptively reweights the coefficientβk in (23) can be
utilized. Specifically, this can be done in step 6 of Algorithm
1 by solving problem (23) and updating the coefficientβk

iteratively, see Section V-C in [13] for details. By doing so,the
number of active RRHs is expected to be smaller than that
obtained by solving problem (23) only once. However, the
enhanced Algorithm 1 with the reweighting procedure will
involve two loops, which results in a high computational
complexity. As a result, the tradeoff between complexity and
accuracy should be carefully considered in the implementation.

2) Parallelized Implementation:Each step of Algorithm 1
and Algorithm 2 can be carried out in a parallel manner. Ex-
cept for the MSE weightsα and the Lagrangian dual variables
y, the computation for beamformerṽk and beamformerwi can
be performed in the parallel computing units of BBU pool for
each RRH and each UE, respectively, without any information
exchange. After that, bothα andy are updated with outputted
ṽk and wi. Once the update is done,̃vk and wi can be
calculated simultaneously again in the parallel computingunits
of BBU pool.

3) Computational Complexity:The proposed solution is
highly efficient as each step of Algorithm 1 and Algorithm 2 is
in closed-form. Specifically, the main computational complex-
ity is related to the matrix inversion in (20) and (38), which
have computational complexity in the order ofO(N3) and
O((MK)3), respectively. Compared with the standard interior
point method, which has a computational complexity in the
order ofO((MKI)3.5), the proposed GSB-based solution has
a lower computational complexity, especially for large-scale
C-RANs.

V. RIP-BASED EQUIVALENT PENALIZED WMMSE
ALGORITHM

In this section, we will use the RIP approach to solve the
optimization problem in (14).

A. Mixed Integer Programming Formulation

A set of binary variabless = {sk : sk ∈ {0, 1}, k ∈ K}
is first introduced to indicate the active/sleeping states of
each RRH, wheresk = 1 when RRH k is activated, and
sk = 0 when RRHk is asleep. Withs(t), the network power
consumption model (4) can be rewritten as

p(s(t),w(t)) =
∑

k∈K
sk(t)(||w̃k(t)||22 + P c

k ). (39)

Replacing the penalty term of (14) with the power consump-
tion model defined in (39), we have the following penalized
weighted sum rate maximization problem:

max .
s,w

∑

i∈I
QiRi − ϕ

∑

k∈K
sk(||w̃k||22 + P c

k ),

s.t. ||w̃k||22 ≤ Pk,
sk = {0, 1},

(40)

whereϕ = V/(Wτ loge2). As can be seen, the nonlinear cross-
multiplication terms (NCMTs) in the cost function impose a
great challenge on algorithm design. Inspired by the fact that
w̃k is equal to0 if RRH k is turned off, we can cancel all the
NCMTs in the objective function and constraint as follows:

max .
w,s

∑

i∈I
QiRi − ϕ

∑

k∈K
(||w̃k||22 + skP

c
k ),

s.t. ||w̃k||22 ≤ skPk,
sk = {0, 1},

(41)

The above problem is a mixed integer nonlinear program-
ming, and some standard algorithms have been developed to
solve it, e.g., the branch-and-bound (BnB) algorithm [35].
However, the computational complexity of BnB is prohibitive
for a large-scale C-RAN. For the worst case,2K iterations is
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required, thus their computational complexity is approximated
as O(2K(KMI)3.5), which grows exponentially with the
number of RRHs and cannot be applied in practice. Efficient
algorithm will be studied in the following subsection.

B. Equivalent Formulation with Relaxed Integer Programming

Utilizing the established equivalence between penalized
weighted sum rate maximization and penalized WMMSE
in section IV, and relaxing the binary variablesk to take
continuous value in[0, 1], the problem can be transformed
as:

min .
α,u,s,w

∑

i∈I
Qi(αiei − logαi) + ϕ

∑

k∈K
(||w̃k||22 + skP

c
k ),

s.t. ||w̃k||22 ≤ skPk,
sk ∈ [0, 1].

(42)
The above problem is strongly convex for individual vari-

able α and u when fixing the rest. Correspondingly, the
unique optimal solutionsα∗ and u∗ are given by (20) and
(22), respectively. Furthermore, when fixingα and u, the
optimization problem fors andw is convex and is given by

min .
w,s

∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}+ ϕ
∑

k∈K
(skP

c
k+||w̃k||22),

s.t. ||w̃k||2
2
≤ skPk,

sk ∈ [0, 1].
(43)

Therefore, a stationary solution can be obtained with the
BCD method by iteratively optimizing over three block vari-
ables α, u and {s,w}. The algorithm is summarized in
Algorithm 3.

Algorithm 3 RIP-based Penalized WMMSE Algorithm

1: For each slott, observe the current QSIQ(t) and CSI
H(t), then make the queue-aware joint RRH activation
and beamforming according to the following steps:

2: Initialize s, w, u andα;
3: Repeat
4: Fix s andw, compute the MMSE receiveru according

to (20) and the corresponding MSE.
5: Update the MSE weightα according to (22);
6: Obtain the RRH activation decisions and the beam-

formerw under fixedu andα by solving (43);
7: Until certain stopping criteria is met;
8: Update the traffic queueQi(t) according to (5).

C. RRH Activation and Beamforming based on Lagrangian
Dual Decomposition

The Lagrangian function of problem (43) is given by [36]

L(w, s, θ) =
∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}
+
∑

k∈K
(ϕP c

k − θkPk)sk +
∑

k∈K
(ϕ+ θk)||w̃k||22.

(44)

whereθ = [θ1, θ2, ..., θK ] � 0 is the vector of dual variables
associated with the network power consumption constraints.
Correspondingly, the Lagrange dual function is given by

D(θ) = min .
s,w

L(s,w, θ),

s.t. sk ∈ [0, 1],
(45)

and the dual optimization problem is formulated as

max .
θ

D(θ),

s.t. θ � 0.
(46)

The Lagrangian functionL(w, s, θ) is linear withθ for any
fixed s andw, while the dual functionD(θ) is the maximum
of these linear functions. Therefore, the dual optimization
problem is always concave.

Given Lagrangian dual variables, the problem of RRH
activation and beamforming can be decomposed and solved
separately. For the problem of RRH activation, it can be further
decomposed intoK independent problems and solved in a
parallel manner. The activation problem for RRHk is given
by

min .
sk

(ϕP c
k − θkPk)sk,

s.t. 0 ≤ sk ≤ 1.
(47)

It can be easily seen that the optimal solution ofs is given
by

s∗k =

{

0, θk ≤ ϕP c
k/Pk,

1, θk > ϕP c
k/Pk.

(48)

It is worth noting that after the integer relaxation onsk(t),
we can still obtain optimal solution that is binary. Therefore,
the integer relaxation does not introduce performance lossand
there is no gap with integer relaxation.

Given Lagrangian dual variables, the problem to derive
beamforming vectors is given by

min .
w

∑

i∈I
wH

i Cwi−2
∑

i∈I
Re{dH

i wi}+
∑

k∈K
(ϕ+ θk)||w̃k||22,

(49)
which can be further rewritten as

min .
w

∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi}+
∑

i∈I
wH

i Ωwi, (50)

whereΩ = diag([ϕ + θ1, ..., ϕ + θK ] ⊗ 1M ) is a diagonal
matrix,⊗ denotes the Kronecker product of two vectors, and
1M denotes a lengthM all-one vector. The problem (50)
is an unconstrained convex problem, and it can be further
decomposed intoI independent problems, each corresponding
to an UE and solved in a parallel manner. Thus, according to
the first-order optimality condition, the optimal beamforming
vector for UEi is given by

w∗
i = (C+Ω)−1di. (51)

D. Lagrangian Dual Variables Update

As the dual problem is always concave w.r.t.θ, we can
adopt the subgradient projection method to solve it [36]. In
particular, it is easy to prove that the subgradient of the dual
function is obtained by

∆θ
(n+1)
k = ||w̃(n)

k ||22 − s
(n)
k Pk, (52)

wheres(n)k is the optimal RRH activation according to (48) in
the n-th iteration givenθ(n), andw̃(n)

k can be obtained from
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the optimal beamformer for each UE in then-th iteration given
θ
(n).
Hence, with the subgradient projection method, the update

equation for the dual variableθk in the (n+ 1)-th iteration is
given by

θ
(n+1)
k = θ

(n)
k + ξ(n+1)∆θ

(n+1)
k , (53)

where ξ(n+1) is a sufficiently small positive step size. The
whole procedure to solve (43) is summarized in Algorithm 4.

Algorithm 4 Lagrangian Dual Decomposition Algorithm for
(43)

1: Initialize s, w, θ, n = 0;
2: Repeat
3: Make the RRH activation decisions according to (48);

4: Calculate the beamforming vectorwi for each UE
according to (51);

5: Update the dual variablesθ according to (52);
6: Setn = n+ 1;
7: Until ||θ(n)k − θ

(n−1)
k || < δ or n > nmax.

E. Discussions on Implementation and Complexity

1) Parallelized Implementation:Similarly, each step of
Algorithm 3 and Algorithm 4 can be carried out in a parallel
manner. Except for the MSE weightsα and the Lagrangian
dual variablesθ, the computation for RRH activationsk and
beamformerwi can be performed in the parallel computing
units of BBU pool for each RRH and each UE, respectively,
without any information exchange. After that, bothα andθ

are updated with outputtedsk and wi. Once the update is
done,sk and wi can be calculated simultaneously again in
the parallel computing units of BBU pool.

2) Computational Complexity:The proposed solution is
highly efficient as each step of Algorithm 3 and Algorithm
4 is in closed-form. Specifically, the most computationally
intensive operation is the matrix inversion in (20) and (51),
which have computational complexity in the order ofO(N3)
and O((MK)3), respectively. Compared with the standard
interior point method, which has a computational complexity
in the order ofO((MKI)3.5) in our setting, the proposed
RIP-based solution has a lower computational complexity,
especially for large-scale C-RANs.

VI. N UMERICAL RESULTS

In this section, we use simulation and numerical results
to evaluate and compare the performance of the proposed
algorithms.

A. Scenarios and Parameters Setting

The pathloss model is127 + 25 log10(d) with d (km)
being the propagation distance. The fast fading is modeled
as independent complex Gaussian random variable distributed
according toCN (0, 1) and the noise power is -112 dBm. We
assumed that the RRHs are configured with 2 antennas, the

UEs are configured with 1 antennas, and they are uniformly
and independently distributed in the square region [-500 500]
× [-500 500] meters. Besides, we assume that the mean
arrival rate is the same for all the UEs, i.e.,λi = λ. We
fix the power budget of each RRH asPk = 2 W. Each
point of the the simulation results is averaged over 4000
slots in the simulations. Our simulations mainly compare the
proposed algorithms with the full joint processing algorithm
(FJP). In FJP algorithm, all the RRHs are active, and only
the transmission power of RRHs is minimized by solving
a penalized weighted sum rate maximization beamforming
design problem based on the Lyapunov optimization. The FJP
algorithm can achieve the highest cooperative beamforming
gain with all the RRHs active, and the results from the FJP
algorithm can serve as a delay performance lower bound of
the proposed algorithms.

B. System Performance versus Control ParameterV

We first consider a C-RAN withK = 9 RRHs andI = 6
UEs. To indicate the heterogeneous power consumption of
different RRHs and the fronthaul links, we set the static
power consumption asP c

k = (2 + k/2) W and set the drain
efficiency of each RRH asηk = 0.4. In Fig. 2 and 3, we
evaluate the average queue delay and the average network
power consumption against the control parameterV when the
mean arrival rateλ is 1.25 Mbits/slot and 1.75 Mbits/slot,
respectively. For all the algorithms, a larger traffic mean
arrival rate always results in a longer average delay and
higher network power consumptions. This can be explained
by the fact that more power is needed in order to timely
transmit larger amount of traffic arrivals. Under a given mean
arrival rate, the average network power consumption is a
monotonically decreasing function inV . The rate of power
decreasing starts to diminish with excessive increase ofV .
On the other hand, a largerV can adversely affect the delay
performance because the average queue length grows linearly
with V . This is due to the fact that the system with a larger
V will emphasize less on delay performance but more on
the network power consumption performance. Therefore the
parameterV features the tradeoff between power consumption
and delay performance. From both figures, it is observed
that GSB-based WMMSE algorithm always outperforms RIP-
based WMMSE algorithm, but only by a small margin. Both
algorithms achieve significant power saving compared to the
FJP algorithm.

Fig. 4 shows the average number of sleeping RRHs for
the two proposed algorithms against different values of the
control parameterV . The average number of sleeping RRHs
demonstrates a similar trend as the average network power
consumption performance. To reduce network power con-
sumption for a largeV , it is necessary to turn off as many
RRHs and the corresponding fronthaul links as possible, at
the cost of longer average queue length.

C. Quantitative Control of the Power-Delay Tradeoff

The power-delay tradeoffs of various algorithms are com-
pared in Fig. 5. The different tradeoff points are obtained
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by varying the control parameterV . The average network
power consumption is decreasing and convex in the average
delay. When the delay is small, slightly increasing the delay
requirement can achieve a significant amount of power saving.
When the delay is excessively large, increasing the delay
further results in only a very small power saving. Fig. 5 shows
that GSB- and RIP-based algorithm provide significantly better
power-delay tradeoff than the FJP algorithm. In addition,
when the average delay decreases, the power consumption
gap between the proposed algorithms and the FJP algorithm
becomes smaller. This means that more RRHs need to be
turned on with a stricter delay requirement. In the extreme case
when all the RRHs are active, all the algorithms will perform

2 4 6 8 10 12 14

x 10
4

2

3

4

5

6

7

8

9

V

A
ve

ra
ge

 N
um

be
r 

of
 A

ct
iv

e 
R

R
H

s

 

 

GSB
RIP

λ = 1.50 Mbits/slot

λ = 1.25 Mbits/slot

λ = 1.75 Mbits/slot

Fig. 4. Average number of active RRHs vs. parameterV

0.5 1 1.5 2 2.5
20

30

40

50

60

70

80

Average Delay (slots)

A
ve

ra
ge

 N
et

w
or

k 
P

ow
er

 C
on

su
m

pt
io

n 
(W

)

 

 

GSB
RIP
FJP

λ =1.25 Mbits/slot

λ = 1.75 Mbits/slot

Fig. 5. Quantitative delay-power tradeoff under differentλ
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FJP algorithm, yielding the same network power consumption.
In the small delay regime, the proposed algorithms provide
a flexible and efficient means to balance the power-delay
tradeoff, given that a slight loosening of the delay require-
ment contributes to significant energy savings. To achieve a
certain power-delay tradeoff, all we need to do is choosing an
appropriate control parameterV .

D. System Performance versus Static Power Consumption

To compare the average network power consumption with
different static power consumption, we set the static power
consumption to be the same for all RRHs. Fig. 6 shows the
average power consumption as a function of the static power
consumption when the control parameter isV = 5 × 104.
As expected, the average network power consumptions for all
algorithms are increasing functions of the static power con-
sumption. In addition, the proposed algorithms significantly
outperform the FJP algorithm, especially in the high static
power consumption regime. WhenP c

k = 4 W, the GSB-based
algorithm achieves a power saving of 24.6% and 43.5%, at
λ = 1.75 Mbits/slot and 1.25 Mbits/slot, respectively. On
the other hand, the performance gap between the proposed
algorithms and the FJP algorithm decreases asP c

k decreases.
WhenP c

k = 0, all algorithms require almost the same network
power consumption. When the static power consumption is
smaller, more RRHs will be activated to achieve a higher
beamforming gain.
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E. System Performance versus Mean Arrival Rate

Fig. 7 compares the average delay with different mean traffic
arrival rates for the two proposed algorithms and the backward
greedy selection (BGS)-based algorithm, which iteratively
switches off one RRH at each step, while re-optimizing the
FJP beamformer for the remaining active RRH set. The BGS-
based algorithm has been shown to often yield optimal or near-
optimal solutions for RRH activation [13]. We set the control
parameter asV = 8× 104. It is observed that, when the mean
traffic arrival rate is relatively low, the average delays ofthe
two proposed algorithms are slightly larger than that of the
BGS-based algorithm . Furthermore, the average delays for all
algorithms increase sharply and tend to infinity as the mean
arrival rates are beyond certain thresholds (i.e., the stability
regions). Specifically, the BGS-based algorithm achieves the
biggest stability region, followed by the GSB-based algorithm
and the RIP-based algorithm. Therefore, congestion controls
should be adopted to guarantee the queue stability when the
network is with traffic load exceeding current stability regions.

F. Convergence of the Algorithms

Fig. 8 shows the average number of outer BCD iterations
and the average number of inner iterations required by the
GSB-based WMMSE algorithm and RIP-based WMMSE al-
gorithm, respectively, with respect to the network scale factor
Θ. Here the network scale factor indicates that the considered
C-RAN is with K = 9Θ RRHs andI = 6Θ UEs dis-
tributed uniformly in the squared region[−500

√
Θ, 500

√
Θ]×

[−500
√
Θ, 500

√
Θ] meters. We can observe that both GSB-

based algorithm and RIP-based algorithm can converge fairly
fast under different network scale, thus both algorithms are
highly scalable to large-scale C-RANs. It is observed that more
iterations are required by the RIP-based solutions compared to
that of GSB-based solutions. Meanwhile, as can be seen in Fig.
5, the GSB-based solution slightly outperforms the RIP-based
solution. Thus, the GSB-based solution is more preferable in
practice.

VII. C ONCLUSION

We have developed a joint RRH activation and beamforming
algorithm for a downlink slotted C-RAN, by considering
random traffic arrivals and time-varying channel fadings. The
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Fig. 8. Average number of iterations to reach convergence

algorithm can achieve flexible and efficient tradeoff between
network power consumption and delay by adjusting a single
parameter. The stochastic optimization problem of joint RRH
activation and beamforming has been transformed into a
penalized weighted sum rate maximization problem based
on the Lyapunov optimization technique. Both GSB and
RIP approaches have been used to reformulate the penalized
weighted sum rate maximization problem. The corresponding
algorithms for both approaches have been proposed, and they
were derived based on the equivalence between the weighted
sum rate maximization problem and the WMMSE problem.
The algorithms are guaranteed to converge to a stationary
solution. The solutions do not require any prior-knowledge
of stochastic traffic arrivals and channel statistics, and can be
implemented in a parallel manner. Finally, the efficiency and
the efficacy of the proposed algorithms have been confirmed
by the numerical simulations. For future works, it would be
interesting to consider the queue-aware energy-efficient joint
RRH activation and beamforming algorithms for C-RANs with
imperfect channel state information (CSI) or capacity-limited
fronthaul links.

APPENDIX A
PROOF OFLEMMA 1

By leveraging on the fact that(max[a− b, 0] + c)2 ≤ a2 +
b2+ c2−2a(b− c), ∀a, b, c ≥ 0 and squaring Eq. (5), we have

Q2
i (t+ 1)−Q2

i (t) ≤ µ2
i (t) +A2

i (t)− 2Qi(t)(µi(t)−Ai(t)),
(54)

According to the definition of the Lyapunov drift function,
we then have the following expression by summing over allI
inequalities in (54) and taking expectation over both sides,

∆(Q(t)) ≤ 1
2E

[

∑

i∈I
µ2
i (t) +A2

i (t)|Q(t)

]

− ∑

i∈I
Qi(t)E[µi(t)−Ai(t)|Q(t)].

(55)

Let B ≥ 1
2

I
∑

i=1

E[A2
i (t) + µ2

i (t)|Q(t)]. Finally, the

upper bound in (13) can be obtained by adding
V E[p(A(t),w(t))|Q(t)] to both sides of (55).
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APPENDIX B
PROOF OFTHEOREM 2

Suppose that the traffic arrivals with mean arrival rate
λ = (λ1, ..., λI) is strictly interior to the stability regionC
(Definition 2) such thatλ + ǫ1 ∈ C, ∀ǫ > 0. Since channel
conditions are i.i.d. over slots, according to Theorem 4.5 in
[24], there exists a stationary randomized control policy that
is independent ofQ(t) and yields

E[µi(t)|Q(t)] = E[µi(t)] ≥ λi + ǫ, ∀i,
E[p(A(t),w(t))|Q(t)] = E[p(A(t),w(t))] = p̄(ǫ).

(56)

As the stationary randomized control policy is simply a par-
ticular control policy, it certainly satisfies (13) in Lemma1. In
addition, since (14) is obtained by minimizing the right-hand-
side (R.H.S.) of (13) among all feasible policies (including
the stationary randomized control policy), by combining (56)
with (13), we have

∆(Q(t))+V E[p(A(t),w(t))|Q(t)] ≤ B+
V E[p(A(t),w(t))|Q(t)] +

∑

i∈I
Qi(t)E[Ai(t)− µi(t)|Q(t)]

≤ B + V p̄(ǫ)− ε
∑

i∈I
Qi(t).

(57)
Using the results in the proof of Theorem 1, it follows

that
∑

i∈I
Qi(t) ≤ B+V p̄(ǫ)

ǫ , which proves that solving (14)

optimally stabiles all the queues.

APPENDIX C
PROOF OFPROPOSITION1

Let L = KMI and define the index setV = {1, 2, ..., L},
then we havew = [wl : l ∈ V ]. Define the setIk =
{(k − 1)MI + 1, ..., kMI} as a partion ofV , then we have
w̃k = wIk

= [wl : l ∈ Ik]. Furthermore, define the support
of beamformerw as T (w) = {l|wl 6= 0}, then the power
consumption model can be rewritten as

p(w) =
∑

k∈K
(
1

ηk
||wIk

||22 + P c
k I(T (w) ∩ Ik 6= ∅)), (58)

whereI(E) is an indicator function with value 1 if the event
E is true and 0 otherwise. To simplify notation, letT (w) =
∑

k∈K
1
ηk

||wIk
||22, and letF (T (w)) = P c

k I(T (w) ∩ Ik 6= ∅).
It can been seen thatF (·) is combinatorial inw and is non-
convex. We will obtain a convex relaxation of the combinato-
rial objective function.

We first construct the tightest positively homogeneous lower
bound ofp(w), which is given by [37]

ph(w) = inf
φ>0

p(φw)
φ = inf

φ>0
φT (w) + 1

φF (T (w))

= 2
√

F (T (w))T (w).
(59)

The last equality in (59) is obtained by solving∂ p(φw)
φ /∂φ =

0. However,ph(w) is still non-convex inw.
We next calculate the convex envelope ofph(w). Define

diagonal matricesΛ ∈ RL×L, Ξ ∈ RL×L with the k-th

diagonal block beingηkIMI and 1
ηk

IMI , respectively. The
Fenchel conjugate ofph(w) is given by

p∗h(z)= sup
w∈CL

(zTΛTΞw−2
√

F (T (w))T (w))

= sup
X∈V

sup
wX∈C|X|

(zTXΛT
XΞXwX − 2

√

F (X )T (wX ))

=







0, if p̂∗(z) = sup
X⊆V,X 6=∅

||zXΛX ||2
2
√

F (X )
≤ 1,

∞, otherwise.

(60)

where zX is the |X |-dimensional vector formed with the
entries ofz indexed byX (similarly for w), andΛX is the
|X | × |X |-dimensional matrix formed with both the rows and
the columns ofΛ indexed byX (similarly for Ξ). Consider
the normp̂(w) whose dual norm is defined aŝp∗(z) in Eq.
(60). According to Proposition 2 in [37],̂p(w) is the convex
envelope ofp(w).

Therefore, the tightest convex positively homogenous lower
bound ofp(w) has the following inequality:

p̂(w) = sup
p̂∗(z)≤1

wT z ≤ sup
p̂∗(z)≤1

∑

k∈K
||wIk

||2||zIk
||2

≤ sup
p̂∗(z)≤1

(

∑

k∈K

√

P c

k

ηk

||wIk
||2
)(

max
k∈K

√

ηk

P c

k

||zIk
||2
)

= 2
∑

k∈K

√

P c

k

ηk

||wIk
||2,

(61)
which is obtained using the norm properties. Actually, the
above inequality always holds with equality. Specifically,let

z̄Ik
= 2
√

P c

k

ηk

w
H

I
k

||wH

I
k
||2 such thatp̂∗(z̄) = 1, then we have

p̂(w) = sup
p̂∗(z)≤1

wT z ≥
∑

k∈K
wT

Ik
z̄Ik

= 2
∑

k∈K

√

P c
k

ηk
||wIk

||2,

(62)
which is obtained using the definition of convex envelope.

Therefore, we finally have2
∑

k∈K

√

P c

k

ηk

||wIk
||2 ≤ p̂(w) ≤

2
∑

k∈K

√

P c

k

ηk

||wIk
||2, i.e., (17).

APPENDIX D
PROOF OFTHEOREM 6

By comparing problem (24) and problem (29), whenx = v

andz = w, we can observe that

f(x) =
∑

k∈K
βk||ṽk||2,

g(z) =
∑

i∈I
wH

i Cwi − 2
∑

i∈I
Re{dH

i wi},
A = I,B = I, c = 0,
C1 =

(

x| ||ṽk||2
2
≤ Pk, ∀k ∈ K

)

, C2 = z.

(63)

SinceATA = I andBTB = I are invertible, and bothC1
andC2 are convex sets, then according to Theorem 3, we can
conclude that every limit pointw(n) and v(n) generated by
Algorithm 2 is an optimal solution of problem (23).
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