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A Tractable Analysis of the Improvement in

Unique Localizability Through Collaboration
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Abstract

In this paper, we mathematically characterize the improvement in device localizability achieved

by allowing collaboration among devices. Depending on the detection sensitivity of the receivers in

the devices, it is not unusual for a device to be localized to lack a sufficient number of detectable

positioning signals from localized devices to determine its location without ambiguity (i.e., to be

uniquely localizable). This occurrence is well-known to be a limiting factor in localization performance,

especially in communications systems. In cellular positioning, for example, cellular network designers

call this the hearability problem. We study the conditions required for unique localizability and use

tools from stochastic geometry to derive accurate analytic expressions for the probabilities of meeting

these conditions in the noncollaborative and collaborative cases. We consider the scenario without

shadowing, the scenario with shadowing and universal frequency reuse, and, finally, the shadowing

scenario with random frequency reuse. The results from the latter scenario, which apply particularly to

cellular networks, reveal that collaboration between two devices separated by only a short distance yields

drastic improvements in both devices’ abilities to uniquely determine their positions. The results from

this analysis are very promising and motivate delving further into techniques which enhance cellular

positioning with small-scale collaborative ranging observations among nearby devices.
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I. INTRODUCTION

Determining the locations of devices in mobile ad-hoc networks (MANETs), wireless sensor

networks (WSNs), and cellular networks has many important applications. In MANETs, which are

useful in disaster recovery, rescue operations, and military communications, location information

is used to enable location-aided routing and geodesic packet forwarding [2]–[7]. In WSNs, whose

applications include environmental monitoring (e.g., for precision agriculture) and asset tracking

in warehouses, not only is location information useful for the self-organization of the network,

but in addition, tying locations to the sensor observations is crucial for interpreting the sensed

data [8]–[10]. Lastly, in cellular networks, which provide nearly ubiquitous communication

capabilities, location information is used to provide subscribers with location-based services

in addition to providing public service answering points with potentially life-saving location

information during emergency calls [11]–[13].

A seemingly simple solution for providing universal location information in the aforementioned

networks is to take advantage of prevalent global navigation satellite systems (GNSS), e.g., GPS,

GLONASS, and Galileo; however, such systems are not always available or reliable. For example,

MANETs and WSNs often consist of large numbers of devices, meaning that it is often not

economically viable to equip all devices with GNSS receivers. Instead, it is likely that only

a portion of the devices are equipped with GNSS receivers, allowing those devices to locate

themselves and then serve as reference points with which the remaining devices communicate in

order to then calculate their own locations using some well-established localization technique.

On the other hand, GNSS receivers are standard equipment in all new cellular devices; however,

these devices are often used indoors where the satellite signals may be too weak to provide

reliable location estimates. With the advent of new indoor location requirements imposed by the

Federal Communications Commission (FCC) [14], it is becoming increasingly imperative for

cellular network operators to be able to fall back on accurate terrestrial localization techniques.

Classically, the localization procedure is performed separately at the mobile devices (MDs),

each communicating only with a set of already-localized reference devices, which the literature

commonly calls anchors or beacons. In cellular networks, base stations (BSs) serve as the

reference devices, and this is the term we will use since cellular positioning is a primary focus

of this work. Now, the first objective in any location system is to make sure that the device to

be located can receive positioning signals from a sufficient number of BSs in order to calculate
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a position fix. This is far from guaranteed, something to which cellular network designers, who

call this the hearability problem, will attest [15]. Lately, collaboration between MDs has received

more and more attention as a means to improve positioning performance, both for MANETs

and WSNs [9], [10], [16]–[18] as well as, more recently, for traditional cellular networks [19].

The primary benefits provided by collaboration are (i) an increased ability to calculate position

fixes [20] and (ii) more accurate location estimates [21]. The objective of this paper is to study

the former benefit; more specifically, we ask: how does enhancing the classical localization

procedure with a single collaborative link impact the availability of position fixes?

A. Prior art and motivation

There is a rich body of literature concerning the study of MANETs and WSNs, both for

connectivity as well as positioning. The former is important because without connectivity, there is

no communication, ultimately rendering the network ineffective. A significant portion of previous

work deals with percolation-based connectivity [22]–[25], which studies how system parameters

affect the ability to obtain an infinite connected component in a network of randomly-distributed

devices. It is standard practice to model device locations according to a homogeneous Poisson

point process (PPP) since MANETs and WSNs exhibit no concrete backbone structure and

deployments are typically not rigidly planned. From the localization perspective, a substantial

portion of work is focused on collaborative or cooperative localization, whereby MDs gather

position-related observations amongst themselves in addition to their observations from BSs and

simultaneously estimate their locations. While analysis is known to be hard and the majority of

papers eventually resort to simulation-based insights (e.g., see [26]–[29]), the results of [21] can

be used to show that enhancing a classical localization procedure with collaboration is beneficial

to positioning accuracy. Specifically, a device making just a single collaborative connection to a

secondary device meeting some minimum BS connectivity condition enjoys a strict reduction

in the Cramér-Rao lower bound (CRLB) of its positioning error. However, one thing a CRLB

analysis does not do is take into account errors due to ambiguities (such as the flip ambiguity [30])

since the Fisher information calculations consider only the peakedness of the log-likelihood

functions of the observations in the vicinity of the true device locations (even though the log-

likelihood may be the same for many other locations). Thus, as a complement to [21], the present

work explicitly considers the value of collaboration as a means for taking a device from not being

able to locate itself to where it’s able to locate itself without ambiguity, i.e., to localizability.
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Much the same as in MANETs and WSNs, the cellular network literature is very rich with

connectivity analyses (in the form of coverage probabilities), though in contrast, it is not quite

as rich in terms of localization studies. Primarily, this is due to the fact that location information

is nowhere near as crucial to cellular networks as it is to, say, WSNs, where location tagging

adds meaning to the collected data. With the proliferation of smart phones enabling location-

based services as well as increased pressure due to federal regulations such as the FCC E911

mandate [13], however, positioning of cellular devices has recently garnered increasing interest.

On the whole, the vast majority of both coverage and positioning studies have relied on simulation-

based results. This is largely due to the fact that cellular networks are often modeled using

widely-accepted grid-based models which do not lend themselves to tractable analyses. An

example which is related to the present work is [19], which used simulation results to show that

collaboration provides an increase in the availability of positioning fixes in LTE networks using

the OTDOA handset-based positioning method. Recently, several landmark coverage papers have

appeared which model cellular BS deployments according to a homogeneous PPP (e.g., [31],

[32]), essentially arguing that the popular grid-based models are themselves highly-idealized and

becoming more obsolete as cellular networks deviate from centrally-planned macro-cell networks

to networks which include an increasing number of more arbitrary small-cell deployments such

as picocells and femtocells. This same approach was taken in [33], which analytically studied the

hearability of far away BSs for the purposes of cellular positioning after showing that there is a

coupling between hearability and a cellular network operator’s ability to meet specific location

accuracy requirements (e.g., the FCC E911 requirements). Among other things, the results in [33]

can be used to determine the probability that a device will be unable to locate itself without

ambiguity when only using positioning observations from BSs, i.e., noncollaborative localization.

The present work expands on this and studies how much a collaborative link helps improve a

device’s ability to locate itself without ambiguity.

We consider a classical localization procedure extended with a single collaborative link,

resulting in an estimation problem which consists of two unknown device locations which are

then estimated simultaneously. While more complex than the original noncollaborative estimation

problem, the addition of a collaborative link may allow a MD which is otherwise not able to locate

itself using a classical procedure to be able to uniquely determine its location. Understanding

exactly how often collaboration helps in this regard is the purpose of this study. In accordance

with previous works, BSs are modeled according to a homogeneous PPP. The MDs are modeled
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similarly, using a second (independent) PPP, which agrees with the uniformly-random modeling

of MDs in MANETs, WSNs, 3GPP simulations, as well as the cellular literature [34].

B. Contributions

This paper makes several contributions to the study of collaborative localization. The main

contributions of this paper are as follows.

Derivation of unique localizability conditions for two-device collaborative localization: In

Section III, we employ a graph-theoretic approach to derive the conditions required for a

MD’s location to be determined without ambiguity for the small-scale (specifically, two device)

collaborative localization setup using ranging observations. Reasonable conditions required to

guarantee unique localizability using range-difference observations to BSs are also presented.

Analytic expressions for the probability of unique localizability with collaboration: For the

scenario without shadowing, we provide an exact analysis of the probability that a device hearing

a certain number of BSs and collaborating with a secondary device hearing a certain number of

BSs will go from not being uniquely localizable to being uniquely localizable. We then combine

these results with our previous work on hearability and provide accurate approximations for the

probability of unique localizability with and without collaboration when using range-based and

range-difference-based observations from BSs. The resulting expressions account for network self-

interference, something which is often omitted from MANET and WSN studies. Furthermore, we

also present accurate approximations of these same probabilities for the scenario with shadowing,

which is included in the vast majority of cellular propagation models.

Insights into the expected gains due to collaboration: Lastly, we present results which shed light

on the factors affecting the value of collaboration for improving unique localizability. We observe

that in the absence of shadowing, it is the separation between collaborators which dictates the

benefit received from collaboration. However, when shadowing is present, the dependence of the

benefit on the separation is significantly reduced, although the best case gains are very similar.

The value of collaboration is then considered with shadowing and frequency reuse, and the

results show that the gains due to collaboration are drastically improved. This demonstrates

that inter-device collaboration (e.g., using device-to-device (D2D) communication in LTE) is

potentially very powerful in cellular networks.
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TABLE I

SUMMARY OF KEY NOTATION

Notation Description

α Path loss exponent (α > 2)

‖z‖ `2-norm of vector z

o Origin (location of the typical user)

Φ/Ψ PPP of BS/MD locations (independent)

λ/ν Density of Φ/Ψ

β Target SINR

A\B The set (or area) A excluding B

|A| The Lebesgue measure of region A

G = (V,E) The graph G consisting of vertices V and edges E

S ′ ⊆ S S ′ is a subset of set S

S ′ ( S S ′ is a proper (or strict) subset of set S

Nz The number of hearable BSs at MD z

S [`]
z The set of ` BSs with highest received SINRs at MD z

|S| The cardinality of set S

1(·) Indicator function, 1/0 when its argument is true/false

II. SYSTEM MODEL

We now formally describe the system model. The key notation presented in this section and

used throughout this work is summarized in Table I.

A. Base station and mobile device locations

The locations of the BSs and MDs are modeled using two independent homogeneous PPPs

Φ, Ψ ∈ R2 with densities λ, ν [35], [36], respectively. If the interference is treated as noise at

the receiver, the most appropriate metric that captures link quality is the signal-to-interference-

plus-noise ratio (SINR). For the link from some BS x ∈ Φ to some MD z ∈ Ψ, the SINR can be

expressed as:

SINRx→z =
PFx→z‖x− z‖−α∑

y∈Φ
y 6=x

PFy→z‖y − z‖−α + σ2
, (1)

where P is the transmit power, Fg→h denotes the slow fading coefficient due to shadowing

affecting the signal from BS g to MD h, α > 2 is the pathloss exponent, and σ2 is the noise

variance at the receiver.
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In order to improve the hearability of far away BSs, positioning systems typically have to work

at lower SINRs than communications systems, thereby necessitating the need for some form

of processing gain, which will depend upon system parameters such as the signal integration

time. As a side effect, the processing gain techniques employed are assumed to average out the

effect of small-scale fading. Thus, the SINR expression in (1) does not contain a fast fading

term, which is consistent with common models for evaluating MANET, WSN, and even cellular

positioning performance [37].

B. Base station participation

For localization, it is well-known that including an increasing number of BSs in the localization

procedure results in a general improvement in positioning accuracy. Thus, we assume that for

purposes of localization, a device will take advantage of as many BSs as it can successfully

detect (or hear), i.e., all BSs whose signals arrive with some minimum link quality. Specifically,

a MD z includes a BS x in its localization procedure when

SINRx→z ≥ β, (2)

where β is the SINR threshold (prior to any processing gain) above which the signals from the

BSs must arrive in order for them to successfully contribute to the localization procedure (i.e.,

this is the hearability condition). Note that in the presence of shadowing, the set of included

BSs at z will not necessarily correspond to the set of BSs which are geographically closest to z.

C. The collaboration-extended localization procedure

In this paper, we consider the impact of extending a classical location estimation procedure with

a single collaborative ranging observation. Formally, we define a classical localization procedure

as one where an unlocalized device communicates only with BSs, gathers position-related

observations (e.g., RSS, TOA, or TDOA), and solves the resulting single-location estimation

problem to determine its location. For MANETs and WSNs, this type of setup corresponds to that

employed in [38]. For cellular networks, this corresponds to any downlink positioning method,

e.g., OTDOA [39].

III. UNIQUE LOCALIZABILITY

The first objective in any localization system is to make sure that the devices to be located are

uniquely localizable [30], [40], which is defined next.
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Definition 1 (Unique device localizability). A mobile device is uniquely localizable if an estimate

of the device’s location can be found without ambiguity. In the noiseless case, this means that

there can only be one solution to the set of non-linear equations that relate the observations to

the unknown position. In the noisy case, this means that there is a single global minimum to the

appropriate cost function.

For classical positioning techniques based on observations between the MD and the BSs, it is

widely-accepted that the unique localizability condition simplifies to whether or not a mobile

device is able to hear a sufficient number of BSs. Conventional minimum values on the number of

BSs required to guarantee the presence of an unambiguous solution to the localization problem in

the R2 plane are 2, 3, and 4 for triangulation (e.g., AOA), trilateration (e.g., TOA and RSS), and

multilateration (e.g., TDOA) techniques, respectively. The unique device localizability conditions

are much less straightforward for collaborative networks and require a topological analysis of

the network as a whole [41]. Naturally, researchers have also been interested in the conditions

required for an entire network to be uniquely localizable.

Definition 2 (Unique network localizability). A network is uniquely localizable when all of the

devices within the network are uniquely localizable.

Interestingly and perhaps counterintuitively, the necessary and sufficient conditions for all

devices in a network to be uniquely localizable using range-based observations were found prior

to the corresponding conditions for the individual devices. Consider a network consisting of

C collaborating MDs and B ≥ 3 unique noncollinear BSs to which the MDs are connected.

Let the grounded network graph1 G = (V,E) be the graph whose vertices V correspond to

the N = B + C network nodes and whose edges E represent all wirelessly-connected pairs

(BS→ MD and MD↔ MD) as well as all BS pairs. Now, the necessary and sufficient conditions

for unique network localizability with perfect ranging observations in R2 are as follows [40]:

C1 (Rigidity) The grounded graph G must contain a total of 2N − 3 independent edges.

Using Laman’s condition [42], we can restate this condition as follows: there must exist

some graph G′ = (V,E ′ ⊆ E) where |E ′| = 2N − 3 for which there are no subgraphs

G′′ = (V ′′ ⊆ V,E ′′ ⊆ E ′) where |E ′′| > 2|V ′′| − 3 edges.

1A grounded network graph differs from a traditional network graph in that additional edges are introduced between all pairs

of immovable vertices (i.e., BSs) in order to reflect the rigidity among these vertices.
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C2 (Triconnectedness) Every vertex V in G must be the endpoint of at least 3 edges in E.

C3 (Reduntant rigidity) If any edge of G is removed, the ensuing graph must remain rigid. In

other words, all subgraphs G′ = (V,E ′ ( E) where |E ′| = |E| − 1 must satisfy Condition

C1 above.

First, Condition C1 removes graph flexibility, which is defined as the ability to continuously vary

the node locations while still satisfying all edge length constraints from the ranging observations.

Next, Condition C2 removes the possibility of pairs of devices being reflected in such a way as

to still satisfy all edge length constraints (i.e., flip ambiguities). Lastly, Condition C3 removes the

possibility of flex ambiguities, i.e., that upon the removal of an edge, the graph loses its rigidity

and becomes flexible allowing nodes to be repositioned in such a way which again satisfies all

edge length constraints (including the removed edge constraint, which can then be reinserted).

Remark 1. As mentioned in [40], the above conditions provide (i) a generic characterization of

unique localizability and (ii) assume error-free ranging observations. Regarding (i), the conditions

hold for almost all configurations of network devices placed using our PPP models, since the

randomization causes degenerate configurations to appear with zero probability in a continuous

space [40]. Regarding (ii), we note that this is essentially required in order to derive these

graph-theoretic localizability conditions. While errors may introduce degenerate cases, we will

assume that they do not introduce additional global minima into the cost function.

For this specific study, focusing on how the collaboration of one MD with another MD impacts

unique localizability, we can use the above conditions for unique network localizability to obtain

the necessary and sufficient conditions for unique device localizability (which we will henceforth

also just call localizability) using ranging observations. These conditions are formally presented

in the following proposition.

Proposition 1 (Two-device collaborative localizability using ranging observations). Using ranging

observations, a device u capable of collaborating with a second device v is uniquely localizable

in R2 iff one of the following conditions is met:

L1 u is directly connected to at least three BSs

L2 u is directly connected to two BSs, v is directly connected to at least two BSs, and combined,

u and v are connected to at least three unique noncollinear BSs.

Proof. For Condition L1, consider the smallest scenario which satisfies the condition, i.e., where a
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 u

 v

(a) Three unique BS example.

 u

 v

(b) Four unique BS example.

Fig. 1. The grounded graphs for the smallest scenarios satisfying Condition L2, with both MDs (represented by the hollow

squares) connected to exactly two BSs (represented by the filled circles) and (a) three and (b) four unique BSs combined. The

solid lines represent the BS → MD links, the dashed line is the collaborative MD ↔ MD link, and the dotted lines are not

actual wireless links, but instead represent the BS to BS edges included in grounded graphs.

lone MD u is connected to exactly three BSs. It is a trivial exercise to show that this scenario meets

Conditions C1-C3 for network localizability, which is equivalent to unique device localizability

(Definition 1) since u is the only MD in the network. Adding connections from u to additional

BSs cannot violate any of these conditions. For Condition L2, consider the smallest scenarios

which satisfy the condition, i.e., where both MDs are connected to exactly two BSs. There are

two possible connectivity scenarios, one with three and one with four unique BSs, as illustrated

in Figure 1. First, note that the graphs are symmetric about the collaborative link, i.e., u and v

may be arbitrarily switched without a change in the labeled grounded graph. Thus, since the

two devices exhibit a symmetry in terms of graph connectivity, it is not possible to deem one

localizable without deeming the other so as well, which implies that device localizability is
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equivalent to network localizability. From here, it is not difficult to verify that both scenarios in

Figure 1 satisfy Conditions C1-C3 above. Adding additional BSs connected to v cannot violate

these conditions. Since Condition L2 leads to network localizability, it clearly also leads to

device u’s unique localizability. Now, if u is connected to fewer than two BSs, it will always

be subject to a flip ambiguity due to its lack of triconnectedness (Condition C2). Lastly, if u

is connected to two BSs and v is connected to fewer than two BSs, then u does not belong

to a redundantly rigid graph component that includes three vertex-disjoint paths to three BSs,2

meaning that it will again not be uniquely localizable. Thus, we have arrived at the necessary

and sufficient localizability conditions for device u in our problem setup when using range-based

observations. �

Remark 2 (Noncollaborative localizability using ranging observations). Note that Condition L1

above, which does not involve the secondary device v, is the only condition for (and is thus

the definition of) noncollaborative unique localizability when using ranging observations. This

is easily verified by applying Conditions C1-C3 to any network with C = 1 MD and B ≥ 3

noncollinear BSs.

Until now, all of the previous discussion on localizability has been specific to range-based

observations. Since cellular positioning is often accomplished using range-difference observations

(e.g., OTDOA in LTE), we are also particularly interested in this setup. Since no localizability

conditions exist yet for this setup, we will use the following assumption.

Assumption 1 (Two-device collaborative localizability using range-difference observations).

Using range-difference observations from BS signals, a device u capable of obtaining a range

observation from a second device v is uniquely localizable in R2 iff one of the following

conditions is met:

D1 u is directly connected to at least four BSs [43]

D2 u is directly connected to three BSs, v is directly connected to at least three BSs, and

combined, u and v are connected to at least four unique noncollinear BSs.

Remark 3 (Noncollaborative localizability using range-difference observations). Paralleling

Remark 2, Condition D1 is the well-known condition required to guarantee noncollaborative

localizability when using range-difference observations [43].

2See the RR3P condition in [41].
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IV. IMPROVEMENT IN LOCALIZABILITY THROUGH COLLABORATION

Using the conditions presented in the previous section, we now move forward with our analysis

of the impact a single collaborative link has on a device’s ability to locate itself without ambiguity.

Let Nz =
∑

x∈Φ 1(SINRx→z ≥ β) represent the number of BSs hearable at some device z, where

we recall that β is the SINR threshold for successfully detecting BS signals. If Lnc represents

the event that device u is capable of localizing itself using only its BS connections, then

P(Lnc) = P(Nu ≥ `+ 1), (3)

where ` = 2 in the case of ranging observations to BSs (Condition L1) and ` = 3 in the case of

range-difference observations to BSs (Condition D1). Now, let S [`]
z represent the set of ` BSs

whose signals arrive with the highest SINRs at some device z. Then, the probability of Lc, the

event that device u is localizable when capable of collaborating with a second device v, is

P (Lc) = P (Lnc) +
∞∑
n=`

P
(
Nu = `,Nv = n,

∥∥S [`]
u ∪ S [n]

v

∥∥ ≥ `+ 1
)

(a)
= P (Lnc) +

∞∑
n=`

P
(
Nu = `,Nv = n,

∥∥S [`]
u ∪ S [n]

v

∥∥ ≥ `+ 1
∣∣S [`]

u 6= S [`]
v

)
P
(
S [`]
u 6= S [`]

v

)
+
∞∑
n=`

P
(
Nu = `,Nv = n,

∥∥S [`]
u ∪ S [n]

v

∥∥ ≥ `+ 1
∣∣S [`]

u = S [`]
v

)
P
(
S [`]
u = S [`]

v

)
(b)
= P (Lnc) +

∞∑
n=`

P
(
Nu = `,Nv = n

∣∣S [`]
u 6= S [`]

v

)
P
(
S [`]
u 6= S [`]

v

)
+

∞∑
n=`+1

P
(
Nu = `,Nv = n

∣∣S [`]
u = S [`]

v

)
P
(
S [`]
u = S [`]

v

)
(c)
= P (Lnc) +

∞∑
n=`

P
(
Nu = `,Nv = n

∣∣S [`]
u 6= S [`]

v

)
P
(
S [`]
u 6= S [`]

v

)
+
∞∑
k=1

P
(
Nu = `,Nv = `+ k

∣∣S [`]
u = S [`]

v

)
P
(
S [`]
u = S [`]

v

)
, (4)

where ` = 2, 3 for range and range-difference observations, respectively, (a) follows from the

law of total probability and Bayes’ rule, (b) follows from (i) the fact that Nu = `, Nv = n ≥ `,

and S [`]
u 6= S [`]

v imply that
∥∥∥S [`]

u ∪ S [n]
v

∥∥∥ ≥ ` + 1 and (ii) the fact that S [`]
u = S [`]

v implies that∥∥∥S [`]
u ∪ S [`]

v

∥∥∥ 6≥ `+ 1, and (c) follows from a simple rewriting of the lower limit in the second

summation.
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A. The no shadowing case

First, we consider the scenario without shadowing. When shadowing is absent, i.e., Fg→h = 1

in (1) for all g and h, ranking the BSs by decreasing SINRs is equivalent to ranking them by

increasing distances from the receiver. In other words, there is a strong correlation between the

hearable BSs at two nearby devices. Following this train of thought, we now note that in (4),

P
(
Nu = `,Nv = `+ k

∣∣S [`]
u = S [`]

v

)
→ 0

quickly as k increases. Intuitively, a hearability mismatch of k BSs is unlikely, even for small

values of k, when the closest ` BSs to u and v are conditioned to be the same. We now remove

this term by letting P
(
Nu = `,Nv = `+ k

∣∣∣S [`]
u = S [`]

v

)
= 0 since k ≥ 1 and approximate (4) as

P (Lc) ≈ P (Lnc) +
∞∑
n=`

P
(
Nu = `,Nv = n

∣∣S [`]
u 6= S [`]

v

)
P
(
S [`]
u 6= S [`]

v

)
. (5)

Lastly, we make the following assumption which will simplify the analysis of the conditional

joint hearability probability.

Assumption 2 (Independent base station hearability). When two devices have different sets of `

strongest base stations, their joint hearability probability may be calculated as the product of

their individual hearability probabilities. Mathematically, this means

P
(
Nu = m,Nv = n

∣∣S [`]
u 6= S [`]

v

)
= P (Nu = m)P (Nv = n) ,

where ` = 2, 3 is used for range-based and range-difference-based localization, respectively.

Under Assumption 2, we arrive at the following final expression for P(Lc) in (5):

P (Lc) ≈ P (Lnc) +
∞∑
n=`

P (Nu = `)P (Nv = n)P
(
S [`]
u 6= S [`]

v

)
= P (Nu ≥ `+ 1) + P (Nu = `)P (Nv ≥ `)P

(
S [`]
u 6= S [`]

v

)
. (6)

Exact expressions for the hearability terms in (6) (i.e., all terms except P(S [`]
u 6= S [`]

v )) are

presented in [44]. The exact calculations, however, are extremely involved and time consuming,

leading us to employ the approximations presented in [33], which are nearly indistinguishable

from truth and can be calculated instantly. Specifically, P(Nz ≥ L) = PL(1, 1, α, β, 1, λ), where

the right-hand term is presented in Theorem 2 of [33]. In the following section, we will derive

an exact expression for the remaining term.
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u v
d

rv

A

ru

Fig. 2. A LUNE is formed by the region of one circle which is outside its intersection with another partially-overlapping circle.

The area of the lune, A, depends on ru, rv , and d as described in (7).

B. Probability that two devices share the same set of closest BSs

Recall that MD u is the device whose localizability is being directly considered and MD v is

a secondary device with whom u is able to collaborate. Due to the stationarity of homogeneous

PPPs and Slivnyak’s Theorem [36], the statistics of Φ and Ψ are unaffected by the arbitrary

placement of a finite number of MDs in R2. Thus, without loss of generality, let u be located

at the origin o and v be a random distance D away and located at v = [D 0]>, where > is the

matrix transpose operator. We begin our derivation of P(S [`]
u 6= S [`]

v ) without considering the

distribution of D, but rather by conditioning on D = d. In order to proceed, we first need to

understand the following shape.

Definition 3 (Lune). Consider two partially-overlapping circles with radii ru and rv whose centers

are separated by distance d, as shown in Figure 2. Region A is called a lune and its area is [45]

A$(ru, rv, d) =
1

2

√
(ru + rv + d)(rv + d− ru)(d+ ru − rv)(ru + rv − d)

+ r2
u sec−1

(
2dru

r2
v − r2

u − d2

)
− r2

v sec−1

(
2drv

r2
v + d2 − r2

u

)
. (7)

Next, we present a set of lemmas which are necessary to characterize the probability that two

devices u and v, separated by distance d, share the same set of ` closest BSs. Two lemmas are

necessary in order to capture the two key geometric conditions which arise: when the `th farthest

BSs to u and v are (i) the same and (ii) different.
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Lemma 1. The probability that u and v, separated by distance d, have the same set of ` closest

base stations, while also having the same `th closest BS, is

P(S [`]
u = S [`]

v ,S [`−1]
u = S [`−1]

v |D = d) =

2

π(`− 1)!

∫ ∞
0

∫ π

0

(
πr2 −A$(r,

√
r2 + d2 − 2rd cos θ, d)

πr2

)`−1

× e−λ(A$(
√
r2+d2−2rd cos θ,r,d)+πr2) (λπr2)`

r
dθ dr. (8)

Proof. See Appendix A. �

Lemma 2. The probability that u and v, separated by distance d, have the same set of ` closest

BSs, while differing in their `th closest BSs, is

P(S [`]
u = S [`]

v ,S [`−1]
u 6= S [`−1]

v |D = d) =

2(`− 1)

π(`− 1)!

∫ ∞
0

1

πr2

∫ π

0

∫ d+r

√
r2+d2−2rd cos θ

(
πr2 −A$(r, x, d)

πr2

)`−2

× e−λ(A$(x,r,d)+πr2)φrange(d, r, x)
x(λπr2)`

r
dx dθ dr, (9)

where

φrange(d, r, x) = 2 cos−1

(
d2 + x2 − r2

2 · d · x

)
.

Proof. See Appendix B. �

Combining the two lemmas, we arrive at the following theorem.

Theorem 1. The probability that two devices u and v, separated by distance d, share the same

set of ` closest BSs is

P(S [`]
u = S [`]

v |D = d) = P(S [`]
u = S [`]

v ,S [`−1]
u = S [`−1]

v |D = d)

+ P(S [`]
u = S [`]

v ,S [`−1]
u 6= S [`−1]

v |D = d). (10)

Proof. By the law of total probability, the probability that the two mobile devices have the same

set of ` closest BSs is simply the sum of the probabilities presented in Lemmas 1 and 2. �

Corollary 1.1. When devices u and v (separated by distance d) both successfully hear exactly `

base stations, the probability that collaboration between them will result in a combined hearability

of at least `+ 1 unique base stations is

P(‖S [`]
u ∪ S [`]

v ‖ ≥ `+ 1|D = d) = P(S [`]
u 6= S [`]

v |D = d) = 1− P(S [`]
u = S [`]

v |D = d). (11)
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In order to endow D with a distribution, let us now consider device v to be the K th closest

MD to u. Since the MDs are modeled according to a homogeneous PPP with density ν, it follows

from Slivnyak’s theorem [36] that the distribution of the distance from any device to its K th

neighbor, D = DK , is [46]

fDK
(d;K, ν) = e−νπd

2 2(νπd2)K

d(K − 1)!
. (12)

Clearly, K = 1 represents a case of particular interest, i.e., u collaborates with its closest neighbor.

Now, for the general K th neighbor setup, we arrive at the following theorem.

Theorem 2. The probability that device u and its K th closest neighboring device v share the

same set of ` closest base stations is

P(S [`]
u = S [`]

v ) =
2

(K − 1)!

∫ ∞
0

P(S [`]
u = S [`]

v |D = y)e−νπy
2 (νπy2)K

y
dy. (13)

Proof. The result is obtained by deconditioning (10) on D = DK , i.e.,

P(S [`]
u = S [`]

v ) = EDK

[
P(S [`]

u = S [`]
v |DK)

]
.

�

Corollary 2.1. Conditioned on device u and its K th closest neighbor v both successfully hearing

exactly ` base stations, the probability that collaboration among them will lead to a combined

hearability of at least `+ 1 unique base stations is

P
(
‖S [`]

u ∪ S [`]
v ‖ ≥ `+ 1

)
= P

(
S [`]
u 6= S [`]

v

)
= 1− P

(
S [`]
u = S [`]

v

)
. (14)

Finally, (14) in Corollary 2.1 is the exact expression for P(S [`]
u 6= S [`]

v ) in (6), which, when

combined with the hearability results in [33], yields P(Lc), the probability of unique localizability

in the collaborative scenario.

C. The shadowing case

Now, we consider the unique localizability problem in the presence of log-normal shadowing.

The difficulty in analyzing this scenario lies in the fact that, unlike in the no shadowing case, the

set of ` strongest BSs at some device z, S [`]
z , is no longer directly tied to the ` geographically

closest BSs to z. Thus, we cannot use the geometric analysis of the previous section for comparing

the sets of strongest BSs at two MDs. Instead, we note that P
(
‖S [`]

u ∪ S [`]
v ‖ ≥ `+ 1

∣∣∣D = d
)

=
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Fig. 3. THE IMPACT OF SHADOWING on the probability that collaboration will increase the number of unique BSs involved in

the positioning procedure when two collaborators, separated by distance d, each hear exactly ` = 2 BSs. (α = 4.)

P
(
S [`]
u 6= S [`]

v

∣∣∣D = d
)
→ 1 for all d as the shadowing standard deviation σs increases. This

behavior is shown in Figure 3 for ` = 2, α = 4, and a shadowing correlation of 0.5 between the

received signals at u and v from the same BS. In order to get an initial tractable expression for

the shadowing case, we then use the simplifying assumption that P
(
S [`]
u 6= S [`]

v

)
= 1 and invoke

Assumption 2 to arrive at the following approximation of (4) for the shadowing case:

P (Lc) ≈ P (Lnc) +
∞∑
n=`

P (Nu = `)P (Nv = n)

= P (Nu ≥ `+ 1) + P (Nu = `)P (Nv ≥ `) . (15)

An exact expression for (4) in the shadowing case is significantly more challenging to derive

and is outside the scope of this paper. Nevertheless, it will be evident in the following section

that (15) is surprisingly accurate.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results and use them to draw insights into the value of

collaboration for improving unique localizability. We begin by focusing on the no shadowing

case and taking a look at the number of unique BSs among the closest BSs at two devices.
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Fig. 4. UNIQUENESS AMONG CLOSEST NODES: The probability that two devices, separated by distance d and each hearing

exactly ` = 2 BSs, will benefit in terms of their combined number of unique BSs (Corollary 1.1).

A. Sufficient unique base stations versus collaborator separation

First, let u and v be two devices separated by distance d as described in Section IV-B.

Furthermore, recall that ` in (4) equals 2 and 3 for range-based and range-difference-based

localization, respectively. When both devices successfully hear exactly ` BSs, neither is localizable

per the conditions presented in Proposition 1 and Assumption 1. The key differentiator in

determining whether collaboration between these devices will be beneficial to localizability is

whether or not the two devices hear a combined ` + 1 or more unique BSs. When d is fixed,

it is the density of the BSs which will affect the probability of obtaining a sufficient number

of unique BSs. This is illustrated in Figure 4 for ` = 2, where (11) in Corollary 1.1 is plotted

versus d for various BS densities λ. Note that the densities are multiples of the PPP density

which results in the same average number of BSs per unit area as an infinite hexagonal grid

with 500m intersite distances (ISD). For a fixed separation d, it is obvious that a higher BS

density leads to a greater likelihood that collaboration will be beneficial in this scenario. While

collaboration with farther devices also increases this likelihood, Figure 4 reveals that there is a

certain distance beyond which it is not necessary to collaborate.
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(b) Range difference observations from BSs, ` = 3.

Fig. 5. THE IMPACT OF NEIGHBOR SELECTION: The analysis of Corollary 2.1 reveals the benefit of selecting farther neighboring

devices for increasing their combined number of unique BSs.

B. Sufficient unique base stations versus collaborator selection

Next, let v be the K th neighbor of u in the PPP of MDs Ψ. Given that both devices successfully

hear exactly ` BSs, Figure 5 presents the probabilities that a collaborative link between u and v

will be beneficial to their unique localizabilities for (a) range and (b) range-difference observations

from the BSs for various MD densities (expressed as the average number of MDs per BS or

cell). The results show that selecting the closest neighbor, with whom it may likely be easiest to
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collaborate, is not necessarily a good idea, especially when a MD is in the neighborhood of a large

number of other MDs. The nearest neighbors are valuable when MD densities are low, but even

then, selecting a farther neighbor is typically more beneficial (up to a point). By revisiting (12),

it becomes clear that higher values of K and lower values of ν lead to greater probabilities of

longer distances separating u and v. Thus, we see that ultimately, it is the separation between

collaborators that is the driving force behind determining the value of collaboration, which leads

us to present all subsequent results in light of the distance d separating the collaborating devices.

C. Unique localizability with range and range-difference observations

Now, we consider the benefit of collaboration to localizability and how it is impacted by the

SINR threshold β. For α = 4, which we consider throughout as it is close to the 3.76 value used

in 3GPP positioning studies [37] and allows the use of simplified expressions from [33], and

various collaborator separations d, Figures 6 and 7 show (a) the probability of unique localizability

and (b) the absolute increase in these probabilities provided through device u’s collaborative link

with device v for range-based and range-difference-based localization, respectively. We note that

for both ` = 2 and ` = 3, the approximation in (6) is within an absolute error of 0.02 from the

truth, which is gathered via simulation. Furthermore, we see that the benefit from collaboration

is a non-monotonic function of β. For range-based positioning, β = −9 dB appears to be a

sweet spot which maximizes the collaborative benefit, providing an approximately 6% to 22%

absolute increase in the probabilities of unique localizability for the values of d considered.

For range-difference-based positioning, there appears to be a range of β values over which the

benefit from collaboration is maximized, while overall, the benefit is reduced compared to that

of range-based positioning. Interestingly, this range from approximately β = −10 to −14 dB

(highlighted in the figures with dotted lines) is right in line with the SINR thresholds discussed

in 3GPP for the hearability of farther away BSs [15], [39]. These results bode well for the use of

small-scale device-to-device collaborative ranging as a means to combat the hearability problem

and improve the localizability of MDs in cellular networks. For example, when β = −12 dB,

an MD collaborating with another MD d = 150m away observes an 8% absolute increase in

its unique localizability probability, a relative improvement of nearly 40% from the 21% in

the noncollaborative case. Despite this significant relative improvement, an overall localizability

probability of 29% is still not acceptable for cellular positioning. Randomization due to the
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Fig. 6. UNIQUE LOCALIZABILITY in range-based positioning (e.g., using RSS or TOA observations) for various collaborator

separations d. The separation plays a major role in how beneficial collaboration will be. Note that the dotted lines at β = −10

and −14 dB delineate the range of SINR threshold values considered in 3GPP for far away BSs, which is just below where the

peak collaborative benefits are obtained. (α = 4.)

presence of shadowing, which is a more applicable scenario for cellular positioning, may actually

help matters, as discussed next.
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Fig. 7. UNIQUE LOCALIZABILITY in range-difference-based positioning (e.g., using TDOA observations from BSs) for various

collaborator separations d. The separation plays a major role in how beneficial collaboration will be. Note that the dotted lines at

β = −10 and −14 dB delineate the range of SINR threshold values considered in 3GPP for far away BSs, which coincides with

the peak collaborative benefits. (α = 4.)

D. The impact of shadowing on localizability

At this time, we consider the impact of shadowing using log-normal shadowing with σs = 8 dB

and a correlation of 0.5 between the signals received at two devices originating from the same

BS. Recall that (15) was derived using some very simplifying assumptions, including that two

devices each hearing ` BSs certainly hear at least `+ 1 unique BSs, independent of the separation
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Fig. 8. THE IMPACT OF SHADOWING on the probability of unique localizability for various collaborator separations d. Due to

the approximation in (15), the collaborative analysis lines overlap completely. Comparing with Figures 6 and 7, it is clear that

shadowing significantly increases the benefit of collaboration, especially for smaller values of d. (α = 4.)

distance. Figure 8 reveals that this was, in fact, not a bad assumption. For both range-based and

range-difference-based positioning, the separation between the devices plays a highly-reduced

role in the localizability probability compared to its role in the no shadowing case. Moreover,

it is observed that the presence of shadowing is quite beneficial, primarily for increasing the

probability that collaboration will improve localizability for shorter device separations d. This is

more clearly observed in Figure 9, which plots exactly this improvement in localizability using
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Fig. 9. THE IMPROVEMENT DUE TO SHADOWING on the probability of unique localizability for range-difference-based positioning.

Here, the benefit from collaboration peaks at exactly the SINR thresholds which have been considered in 3GPP for far away

BSs, between β = −10 to −14 dB as highlighted by the dotted lines. (α = 4.)

range-difference observations from BSs for various different separations. For all values of d,

the benefit from collaboration is very similar, which is quite different from the no shadowing

case considered before, where the benefit clearly grew along with the collaborators’ separation.

Note that the peak localizability benefits, in the vicinity of 10% to 11.5%, are once again

obtained between β = −10 and −14 dB, the range of values commonly considered for β in

3GPP. Revisiting the example from the previous section (β = −12 dB, d = 150m), we see that

shadowing has further improved the probability of unique localizability in the collaborative case

from 29% to 32%. While these results are promising and any improvement is welcome, it is

clear that the additional collaborative link is not sufficient to provide truly-reliable localizability

performance, at least not without frequency reuse, which we consider next.

E. The impact of frequency reuse on cellular localizability

To conclude our analysis, we lastly consider how frequency reuse, commonly included in

wireless standards [47], affects the value of collaboration for improving the probability of unique

localizability. If a total of K frequency bands are available and we independently assign one of

the bands to each x ∈ Φ with equal probability, we can easily incorporate frequency reuse into

our model by considering the transmission activity on each band separately using independent BS
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Fig. 10. UNIQUE LOCALIZABILITY in range-difference-based positioning (e.g., using TDOA observations from BSs) for various

collaborator separations d. The separation plays a major role in how beneficial collaboration will be. Note that the dotted lines at

β = −10 and −14 dB delineate the range of SINR threshold values considered in 3GPP for far away BSs, which coincides with

the peak collaborative benefits. (α = 4.)

PPPs whose densities are that of the original BS PPP thinned by the frequency reuse factor K.

We consider a cellular positioning setup in which devices measure range-difference observations

to BSs (e.g., OTDOA in LTE) and include correlated log-normal shadowing using the same

parameter values as in Section V-D. If the number of hearable BSs in the kth band at some device

z is nkz, then the total number of BSs hearable at device z is NK
z =

∑K
k=1 n

k
z. Following the
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same logic as was employed in Section IV-C and letting ` = 3, we obtain P(Lnc) = P(NK
u ≥ 4)

and P (Lc) ≈ P (NK
u ≥ 4) + P (NK

u = 3)P (NK
v ≥ 3) as the revised expressions of (3) and (6)

for this frequency reuse setup.3 For a frequency reuse factor of K = 3, which pertains to

OTDOA positioning using cell-specific reference signals (CRS) in LTE, the probabilities of

unique localizability are plotted in Figure 10. While it is immediately clear that localizability

has already improved drastically across the entire SINR range for noncollaborative positioning

compared to its universal frequency reuse K = 1 counterpart in Figure 8b, collaboration adds an

additional drastic improvement to the probability of unique localizability in this cellular scenario.

In fact, collaboration appears to have a type of processing gain effect allowing for β values

between 2 to 5 dB higher than in noncollaborative positioning in order to achieve the same

probability of unique localizability. Remarkably, this is true even when the collaborating devices

are separated by only d = 10m. Although the peak benefits are not in the β = −10 to −14 dB

range anymore, we make a final remark here that the benefit from collaboration is sufficient

to remove location ambiguities completely within this range. This could be very significant to

cellular network operators, potentially making it possible to meet FCC E911 requirements using

the CRS and fewer frequency bands than the current K = 6 with positioning reference signals

(PRS), which was deemed impossible for noncollaborative cellular positioning [15].

VI. CONCLUSION

In this paper, we presented a tractable analysis of the impact of a single collaborative link on the

probability of a mobile device being able to locate itself without ambiguity (i.e., being uniquely

localizable). This is in contrast to previous works, which have primarily relied on simulations

to study collaborative positioning in similar setups that include network self-interference. In

the absence of shadowing and all other things being equal, the results show that collaboration

is more beneficial to range-based than range-difference-based positioning systems. This makes

logical sense since for two devices separated by some fixed distance, the sets of the two closest

BSs to each device are less likely to be identical than the sets of the three closest BSs to each

device, thus providing a greater likelihood of increasing the number of unique combined BSs.

For both types of systems, it quickly becomes apparent that the key element affecting the value

of collaboration is the separation between the devices; however, this is promptly deemphasized in

3Using random frequency reuse, P(NK
z ≥ L) = PKL(1, 1, α, β, 1, λ) in Theorem 3 of [33].
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Fig. 11. THE SETUP OF LEMMA 1. This figure illustrates the setup used in the proof of Lemma 1 and highlights its key variables.

the presence of shadowing. Although shadowing helps, the results make it clear that collaboration

will not be sufficient to notably mitigate the hearability problem in cellular positioning systems

employing universal frequency reuse. The localizability benefit from collaboration is greatly

enhanced with frequency reuse, and it is seen that for a positioning system similar to that of

OTDOA in LTE using CRS, a single collaborative link is sufficient to ensure unique localizability

at the SINR detection thresholds commonly considered in 3GPP for cellular positioning (around

-10 dB and below). These results are significant and demonstrate that short-distance small-scale

collaboration, which is the most reasonable scenario for cellular networks, is a very worthwhile

pursuit and likely to be a significant aid in the fight against the hearability problem. In order to

understand this further, we suggest that future work consider the exact localizability analysis in

the shadowing case as well as present techniques for accurate device-to-device ranging.

APPENDIX

A. Proof of Lemma 1

First, we define the variables used in the derivation, which are also highlighted in Figure 11.

As usual, let u and v represent two MDs separated by distance d. The location of the `th closest

BS to u is x` and its distances to u and v are the random variables R` and R̄`, respectively. Next,

U is the region covered by the circle centered at u with radius R` and V is the region covered



28

by the circle centered at v with radius R̄`. Lastly, θ is a random variable which represents the

angle of x` relative to the baseline connecting u and v, i.e., x` = R` · [cos θ sin θ]>. Now,

P
(
S [`]
u = S [`]

v ,S [`−1]
u = S [`−1]

v

∣∣D = d
)

(a)
= ER`

[
Eθ
[
P
(
S [`]
u = S [`]

v ,S [`−1]
u = S [`−1]

v

∣∣d,R`, θ
)]]

(b)
= ER`

[
Eθ
[
P
(
NU∩V = `,NV\(U∩V) = 0

∣∣d,R`, θ
)]]

(c)
= ER`

[
Eθ
[
P (NU∩V = `|d,R`, θ)P

(
NV\(U∩V) = 0

∣∣d,R`, θ
)]]

(d)
= ER`

[
Eθ

[(
|U ∩ V|
|U|

)`−1

e−λ|V\(U∩V)|

]]

=

∫ ∞
0

∫ 2π

0

(
|U ∩ V|
|U|

)`−1

e−λ|V\(U∩V)|fθ(θ|r) fR`
(r; `, λ) dθ dr

(e)
=

1

π

∫ ∞
0

∫ 2π

0

(
|U ∩ V|
|U|

)`−1

e−λ(|V\(U∩V)|+πr2) (λπr2)`

r(`− 1)!
dθ dr

(f)
=

1

π

∫ ∞
0

∫ 2π

0

(
πr2 −A$(r,

√
r2 + d2 − 2rd cos θ, d)

πr2

)`−1

× e−λ(A$(
√
r2+d2−2rd cos θ,r,d)+πr2) (λπr2)`

r(`− 1)!
dθ dr

(g)
=

2

π(`− 1)!

∫ ∞
0

∫ π

0

(
πr2 −A$(r,

√
r2 + d2 − 2rd cos θ, d)

πr2

)`−1

× e−λ(A$(
√
r2+d2−2rd cos θ,r,d)+πr2) (λπr2)`

r
dθ dr,

where (a) follows from fixing the location of x`, i.e., fixing both R` and θ and taking the

expectation over their distributions, (b) follows from the fact that, conditioned on x`, for S [`]
u = S [`]

v

and S [`−1]
u = S [`−1]

v , there must be total of ` BSs in both U ∩ V and U ∪ V , (c) follows from

the independence of regions U ∩ V and V\(U ∩ V), (d) follows from calculating the probability

that the `− 1 BSs known to be inside U are all in U ∩ V and calculating the void probability of

V\(U ∩ V), (e) follows from fθ (θ|r) = fθ (θ) = 1/2π and, just like (12),

fR`
(r; `, λ) = e−λπr

2 2(λπr2)`

r(`− 1)!
, (16)

(f) follows from

|U| = πR2
` , (17)

|U ∩ V| = πR2
` −A$(R`, R̄`, d), (18)

|V\(U ∩ V)| = A$(R̄`, R`, d), (19)
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Fig. 12. THE SETUP OF LEMMA 2. This figure illustrates the setup used in the proof of Lemma 2 and highlights its key variables.

where R` = r and R̄` =
√
r2 + d2 − 2rd cos θ here, and (g) follows from multiplying by 2 and

halving the integration limits of θ due to symmetry.

B. Proof of Lemma 2

Again, we first define the variables used in the derivation, which are also highlighted in

Figure 12. As before, let u and v represent two MDs separated by distance d. The location of

the `th closest BS to u is x` and its distance to u is R`. Let X = {x1, . . . , x`−1} represent the

unordered set of `− 1 closest BSs to u and X̄ = {X̄1, . . . , X̄`−1} their corresponding distances

to v. Let x ∈ X be the location of the `th closest BS to v and R̄` ∈ X̄ the corresponding distance

between the two. Next, U is the region covered by the circle centered at u with radius R` and V

is the region covered by the circle centered at v with radius R̄`. The random variable θ represents

the angle of x` relative to the baseline connecting u and v. Now,
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where (a) follows from fixing the location of x`, i.e., fixing both R` and θ and taking the

expectation over their distributions, (b) follows from the law of total probability by summing

over the probabilities that each of the `− 1 points in the interior of U is the furthest point from v

and that there are exactly ` points in the resulting region V , (c) follows from fixing the location

of xi = v+ X̄i · [sinφi cosφi]
> (similarly to (a)) and taking the expectation over its distribution,

(d) follows from rewriting the two inner expectations as integrals and adjusting the integration

bounds to remove values which lead to trivial zero-valued integrands, (e) follows from the fact

that the integration over φ is nothing less than a complete integration of its density over its entire

support, (f) follows from the fact that the summand is independent of the index i and from

substituting in the conditional density of x, where

φrange(d,R`, x) = 2 cos−1

(
d2 + x2 −R2

`

2 · d · x

)
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is the arc length of the perimeter of circle V inside circle U , (g) follows from rewriting the two

outer expectations as integrals, (h) follows from multiplying by 2 and halving the integration

limits of θ due to symmetry, (i) follows from (17)-(19) where R` = r and R̄` = x here, and (j)

follows from substituting in the expression of fR`
(r; `, λ) provided in (16).
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