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Abstract—In this paper, we present a novel low-complexity
scheme, which improves the performance of single-antenna multi-
carrier communication systems, suffering from in-phase and
quadrature (I/Q)-imbalance (IQI) at the receiver. We refer to the
proposed scheme asI/Q-imbalance self-interference coordination
(IQSC). IQSC does not only mitigate the detrimental effects of
IQI, but, through appropriate signal processing, also coordinates
the self-interference terms produced by IQI in order to achieve
second-order frequency diversity. However, these benefitscome at
the expense of a reduction in transmission rate. More specifically,
IQSC is a simple transmit diversity scheme that improves the
signal quality at the receiver by elementary signal processing op-
erations across symmetric (mirror) pairs of subcarriers. Thereby,
the proposed transmission protocol has a similar complexity
as Alamouti’s space-time block coding scheme and does not
require extra transmit power nor any feedback. To evaluate the
performance of IQSC, we derive closed-form expressions forthe
resulting outage probability and symbol error rate. Interestingly,
IQSC outperforms not only existing IQI compensation schemes
but also the ideal system without IQI for the same spectral
efficiency and practical target error rates, while it achieves almost
the same performance as ideal (i.e., IQI-free) equal-rate repetition
coding. Our findings reveal that IQSC is a promising low-
complexity technique for significantly increasing the reliability
of low-cost devices that suffer from high levels of IQI.

Index Terms—Direct-conversion architecture, hardware im-
perfection, I/Q imbalance, I/Q imbalance compensation, image
rejection ratio, mirror-frequency diversity, multi-carr ier com-
munication systems, radio frequency (RF) impairments, self-
interference coordination, transmit diversity.

I. I NTRODUCTION

The fast evolution of wireless communication systems is
driving the design and implementation of modern flexible and
software-configurable radio transceivers [1], [2]. By definition,
flexible radios are characterized by the ability to operate over
multiple-frequency bands, the support of different types of
waveforms, and the compatibility with current and future
air interface technologies. The terms multi-mode and multi-
band are commonly used in this context. Furthermore, next-
generation wireless networks are expected to support high
data-rate applications and services that require efficientand
low-cost wideband radio designs for the mobile terminal [3].
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In this context, the well-known direct-conversion architec-
ture (DCA) has become instrumental for realizing compact,
low-power, and low-cost transceiver designs for wideband
radio [4]. In direct-conversion receivers (DCRs), quadrature
mixing is used, which theoretically provides infinite atten-
uation of the image band and removes the need for ana-
log image-rejection filtering. However, in practice, the DCA
is sensitive to imperfections of the analog radio frequency
(RF) front-end sections of the transceiver due to fundamental
physical limitations [5]–[7]. An indicative example of such
limitations is the so-called in-phase and quadrature (I/Q)
imbalance (IQI), which stems from the unavoidable amplitude
and phase differences between the physical analog in-phase
(I) and quadrature (Q) signal paths. This problem arises
mainly because of the finite tolerances of the capacitors and
resistors used in the implementation of the analog RF front-end
components. Although a perfectly balanced quadrature down-
conversion corresponds to a pure frequency translation, IQI
introduces a frequency translation that results in a mixture
of image and desired signals. In more detail, I/Q mismatches
decrease the theoretically infinite image rejection ratio (IRR)
of the receiver down to20 − 40 dB, resulting in crosstalk
or interference between mirror frequencies [3], [8]. Conse-
quently, IQI degrades the effective signal-to-interference-plus-
noise ratio (SINR) and causes performance degradation. The
impact of IQI is more severe in systems employing high-order
modulations and high coding rates, such as Wireless Local
Area Networks (WLANs), Worldwide Interoperability for Mi-
crowave Access (WiMAX), Long-Term Evolution (LTE), and
Digital Video Broadcasting (DVB), among other standards [9].
Hence, effective IQI compensation is essential for the design
of high data-rate communication systems employing the DCA.

A. Related Work

The effects of RF imperfections in general were studied in
several works [10]–[18], while performance degradation due
to IQI in particular was investigated in [19]–[32]. For instance,
the authors in [20] derived an exact expression for the SINR in
orthogonal frequency division multiplexing (OFDM) systems
impaired by IQI, assuming that the channel of each subcarrier
and its image are uncorrelated. In [22], the performance
of OFDM systems employingM -ary quadrature amplitude
modulation (QAM) was studied in the presence of IQI in terms
of the error vector magnitude, which is a modulation quality
measure used to evaluate the effects of imperfections in digital
communication systems. In [23], the impact of IQI caused by a
low pass filter mismatch was illustrated and the importance of
IQI compensation was highlighted. Furthermore, the authors of
[27]–[30] analyzed the performance of relaying systems in the
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presence of IQI. The impact of IQI in cognitive radio systems
was analyzed in [15], [18], [32], where it was shown that,
in a multi-channel environment, IQI increases the false-alarm
probability significantly and considerably limits the spectrum
sensing capabilities of energy detectors compared to the ideal
RF receiver case.

Various approaches have been proposed so far to eliminate,
compensate, and mitigate the effects of IQI using baseband
signal processing techniques, see [2], [3], [6], [24], [33]–
[42], and references therein. For example, in [38], the authors
proposed a number of pilot designs for channel estimation in
OFDM systems in the presence of I/Q mismatches at both the
transmitter (TX) and the receiver (RX). Moreover, estimation-
based system-level algorithms, including least square equal-
ization, adaptive equalization, and post-fast Fourier transform
least square, were proposed in [42] to compensate the dis-
tortions caused by IQI. Furthermore, blind (non-data-aided)
digital signal processing-based compensation of IQI for wide-
band multi-carrier systems was studied in [2], [3], [6], [18],
[35]. Specifically, in [6] a digital compensation method was
proposed for multiple-input multiple-output (MIMO) systems
employing space-time block coding, which is based on the
algebraic properties of the received signal combined with a
suitable pilot structure, while interference cancellation-based
and blind source separation-based compensation methods were
presented in [35].

All previously mentioned works deal with IQI as a source
of impairment that should be compensated. In contrast to this
approach, IQI at the TX may also be seen as a source of
diversity, due to the TX-induced mirror-frequency interference.
This diversity can be fully exploited via joint maximum
likelihood (ML) detection of the signals received in the
mirror subcarriers, or partially exploited by other sub-optimal
nonlinear detection techniques such as successive interference
cancellation (SIC), as was demonstrated experimentally for
OFDM in [43], and later confirmed in [44]. Still, when
weighed against the implementation complexity of nonlinear
RXs, the small achievable signal-to-noise ratio (SNR) im-
provement may prove to be too expensive [45]. Moreover, as
pointed out in several prior works including [43], RX IQI is
detrimental for the outage and error performance of wireless
communication systems, regardless of the detector that is used.
The reason for this is that RX IQI affects both the received
signal and the noise; hence, it is commonly believed that RX
IQI should be compensated [2], [3], [6], [19], [29], [35], [41].
However, to the best of the authors’ knowledge, no solution
has been proposed so far that achieves a diversity gain in the
presence of RX IQI.

B. Motivation and Contribution

From an implementation point of view, DCA is a promising
approach to realize low-cost highly integrated wireless equip-
ment. Although DCRs avoid the main drawbacks of other RX
architectures, the insufficient image rejection due to IQI is a
major concern. For instance, in the case of using a non-zero
intermediate frequency (IF), the image signal can be up to
50− 100 dB stronger than the desired one [35]. Thus, in such

situations, the20−40 dB attenuation provided by the quadra-
ture down-conversion alone is clearly insufficient. Further-
more, with wideband modulated communication waveforms
and high-order symbol alphabets, IQI has a tremendous impact
on the demodulated signal quality and can severely degrade
the RX performance, if not taken properly into account. Notice
also that, although the distortion caused by IQI resembles to
some extent ordinary inter-symbol interference (ISI), it cannot
be properly mitigated using ordinary equalization techniques
due to its special structure [6].

In this paper, we propose a novel low-complexity technique,
which we refer to asI/Q-imbalance self-interference coordina-
tion (IQSC), which significantly increases the performance of
single-antenna multi-carrier communication systems suffering
from IQI at the RX, by coordinating the self-interference
caused by IQI. In contrast to the IQI compensation approach,
IQSC does not only eliminate the effects of IQI, but, through
signal processing, also coordinates the self-interference terms
produced by IQI to achieve frequency diversity, which we refer
to asmirror-frequency diversity (MFD). In other words, IQSC
is a low-complexity transmit diversity scheme, which improves
the signal quality at the RX by simple signal processing
operations across symmetric subcarrier pairs. IQSC achieves
a diversity order of two, i.e., the same diversity order as
maximal-ratio combining (MRC) with two RX antennas or
Alamouti’s space-time block code with two TX antennas [46].
Notably, by applying IQSC in DCA systems, the IQI is not
only compensated but is no longer harmful for the system’s
performance. Furthermore, the proposed transmission protocol
requires neither extra transmit power nor any feedback from
the RX to the TX, while its computational complexity is
similar to that of Alamouti’s space-time block coding scheme.
However, the exploitation of the extra degrees of freedom
(DoF) offered by IQI to achieve two-fold transmit diversity
comes at the expense of a reduction in transmission rate.
In particular, the encoding process at the TX requires two
consecutive time intervals (or time-slots) for transmission
of each data block. Finally, an alternative IQSC(A-IQSC)
technique is also presented, which achieves similar outage
and error performance as IQSC, with the same computational
complexity and rate.

To confirm the effectiveness of the proposed method, we
derive closed-form expressions for the outage probability
and the symbol error rate (SER) of IQSC, and compare its
performance (with respect to these two metrics) with two
baseline systems; namely an ideal system without IQI, called
ideal RF front-end, and a system with uncompensated IQI in
the RF front-end, calledIQI RF front-end, which correspond
to the best case and the conventional transmission scenarios,
respectively. Our results demonstrate the superior reliability
(which comes at the expense of sacrificing throughput) of
IQSC compared to the baseline systems. Surprisingly, in
medium-to-highSNRs, the proposed scheme outperforms both
baseline schemes in terms of error performance even for the
same spectral efficiency. As another means to assess its error
performance fairly, we also compare IQSC with repetition
coding (RC) and the frequency-time block code (FTBC)
proposed in [47], which both have the same rate as IQSC.
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Again, we observe that IQSC outperforms both RC and FTBC
with uncompensated IQI, referred to asIQI RF front-end with
RCandFTBC, respectively, while it has a similar performance
as theideal RF front-end with RCand FTBC, i.e., RC and
FTBC without IQI in the RF front-end.

C. Organization and Notations

The remainder of this paper is organized as follows. The
equivalent complex baseband signal representation of a multi-
carrier communication system with IQI at the RX is presented
in Section II. In Section III, the proposed IQSC encoding at
the TX and the associated combining at the RX, as well as
an alternative IQI coordination scheme, namely A-IQSC, are
presented in detail. A performance analysis of IQSC in terms
of outage probability and SER is provided in Section IV. A
point-to-point comparison of IQSC with a system employing
RC, under the same bandwidth and power constraints, is given
at the end of the same section. In Section V, we verify our
theoretical analysis by computer simulations, confirming that
IQSC is a robust technique for multi-carrier transmission under
IQI. In Section VI-A, the main merits and drawbacks of IQSC
are outlined, followed by some discussion regarding the new
concept of MFD. Finally, Section VI-B concludes the paper
by summarizing our main findings.

In this paper,z∗ and |z| denote the complex conjugate
and the absolute value of complex numberz, respectively,
while Re{z} andIm{z} represent its real and imaginary part,
respectively. Additionally,{ak}nk=1 is a shorthand notation for
set {a1, . . . , an}, while (a1, . . . , an) defines a sequence of
n terms.E{z} gives the expected value of random variable
(RV) z. Finally, erfc (x) = 2√

π

∫∞
x

exp
(

−t2
)

dt stands for
the complementary error function [48].

II. SYSTEM AND SIGNAL MODEL

We start this section by considering the baseband signal
model of a system without IQI, which will be referred to as
the ideal RF front-end. Having this as a reference, we present
the practical IQI signal model of multi-carrier DCRs, assuming
a single antenna at both the TX and the RX, perfect channel
estimation at the RX, and no channel state information (CSI)
at the TX.

A. Ideal RF Front-End

We consider a multi-carrier system with2K RF subcarriers
and assume down-conversion to baseband using the wideband
direct-conversion principle. For notational convenience, we
denote the set of these subcarriers as

{−K, · · · ,−1, 1 · · · ,K} = {k}Kk=−K , (1)

and the set of data symbols loaded to them as

SK = {s(−K), . . . , s(−1), s(1), . . . , s(K)} = {s(k)}Kk=−K .
(2)

We further assume flat fading on each subcarrier, and that the
RF front-ends of both the TX and the RX are perfect, i.e., no
IQI is present in the system.

Analog Processing Digital Processing

PSfrag replacements

LPF

LPF

A/D

A/D

j

cos(ωLOt)

−ǫ sin(ωLOt+ φ)

r(t)

Fig. 1. IQI model. In the block diagram, LPF and A/D denote thelow pass
filter and the analog-to-digital converter, respectively.

The received signal is passed through various front-end
stages, including filtering, amplification, analog I/Q demodu-
lation (down-conversion), and sampling. The baseband equiv-
alent received signal in subcarrierk is

rid(k) = h(k)s(k) + n(k), (3)

where fading gainh(k) is modeled as a zero-mean complex
Gaussian process of unit variance, andn(k) represents circu-
larly symmetric additive white Gaussian noise (AWGN) with
power spectral densityN0.

B. I/Q Imbalance Model

In general, all analog components of the RX’sI and Q
branches contribute to the IQI effect. One obvious source of
imbalance is the I/Q mixer stage, which is typically modeled
in terms of the I/Q local oscillator (LO) signals, namely
cos(ωLOt) and −ǫ sin(ωLOt + φ), where ǫ and φ represent
the relative amplitude and phase imbalances, respectively, and
ωLO = 2πfLO is the center frequency, as shown in Fig. 1.
As a consequence, the total imbalance between theI andQ
branches in the analog parts of the RX can be modeled as a
quadrature mixer with an imbalanced LO signal given by [35]

cos(ωLOt)− jǫ sin(ωLOt+ φ) = K1e
−jωLOt +K2e

jωLOt, (4)

where the IQI coefficientsK1 andK2 are given by

K1 =
1

2

(

1 + ǫe−jφ
)

and K2 =
1

2

(

1− ǫejφ
)

. (5)

From (5) it is easy to see thatK1 andK2 are connected
through the relation

K1 = 1−K∗
2 , (6)

while they can be used to define theIRR as

IRR =
|K1|2
|K2|2

. (7)

It is noted that theIRR is a measure for the attenuation of
the image frequency band. For practical analog RF front-end
electronics, theIRR is typically in the range of20 − 40 dB
[3], [5], [49]–[51], while for perfect matching, i.e.,ǫ = 1 and
φ = 0, we haveK1 = 1 andK2 = 0 (i.e., IRR → ∞).
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Fig. 2. Spectra of the (noise-free) received signals: (a) before down-
conversion (passband RF signal), (b) after down-conversion, when ideal RF
front-end is considered, and (c) after down-conversion, when the RX RF front-
end suffers from IQI, where for the1st subcarrier, the intermixing of the image
signal (in black) and the desired signal (in grey) is clearlyvisible, while for
the −1st subcarrier, the image and desired signals are depicted ingrey and
black colors, respectively.

Assuming that the I/Q mixer is the only source of imbalance,
the resulting down-converted I/Q signal appears as

gIQI(t) = K1g(t) +K2g
∗(t), (8)

whereg(t) denotes the signal in the time domain under perfect
I/Q balance. The termK2g

∗(t) in (8), which is caused by the
imbalance, represents the self-interference effect and results
in crosstalk between the mirror frequencies in the down-
converted signal.1 This is illustrated in Fig. 2, where subcarrier
k experiences interference from the signal received on the
mirror subcarrier−k and vice versa. Since complex conjuga-
tion in the time domain corresponds to complex conjugation
and mirroring in the frequency domain, the spectrum of the
imbalanced signal on subcarrierk becomes

GIQI(k) = K1G(k) +K2G
∗(−k), (9)

whereG(k) andG(−k) denote the spectra of the signal with
perfect I/Q balance on subcarriersk and−k, respectively.

C. RX with IQI in the RF Front-end

In this section, we explore the effect of I/Q mismatch on
the overall link quality, assuming that the RF front-end of the

1In the context of this paper, we use the terms “mirror-interference” and
“self-interference” to refer to the effects of IQI in the frequency and time
domains, respectively.

TX is perfect, while the RX suffers from IQI.2 We also assume
that transmitted signalss(k) ands(−k), carried by subcarriers
k and−k, are associated with channel gainsh(k) andh(−k),
respectively, which are mutually independent RVs.

According to (9), the baseband equivalent received signal
on subcarrierk is given by

r(k) = K1rid(k) +K2r
∗
id(−k) (10)

with rid(−k) being the baseband equivalent received signal
for perfect I/Q balance on subcarrier−k. Substituting (3) into
(10), we obtain

r(k) = K1h(k)s(k) + i(k) + w(k), (11)

where the interference and composite noise terms, namelyi(k)
andw(k), are given by

i(k) = K2h
∗(−k)s∗(−k), (12)

w(k) = K1n(k) +K2n
∗(−k). (13)

Here, w(k) is a zero-mean complex Gaussian process with
variance

σ2
w =

(

|K1|2 + |K2|2
)

N0. (14)

III. T HE PROPOSEDIQSC TRANSCEIVERDESIGN

In this section, we present IQSC, a novel low-complexity
scheme for increasing the performance of single-antenna
multi-carrier communication systems suffering from IQI atthe
RX. The proposed architecture has two main components: a)
the IQSC encoding scheme at the TX, and b) the combining
scheme at the RX.

A. The IQSC Encoding Scheme

Transmission is organized in two time intervals. As shown
in Table I, given the data setSK , the following sequences
of symbols are transmitted during the first and second time
intervals, respectively,

T1 (SK) = (s∗(−K), . . . , s∗(−k), . . . , s∗(−1),

s(1), . . . , s(k), . . . , s(K)) , (15)

T2 (SK) = (s(K), . . . , s(k), . . . , s(1),

−s∗(−1), . . . ,−s∗(−k), . . . ,−s∗(−K)) . (16)

Assuming that the channels for subcarriersk and−k remain
constant over two consecutive time intervals,3 the received
signal in the first time interval on subcarrierk becomes

x1(k) = K1h(k)s(k) +K2 (h(−k)s∗(−k))
∗

+K1n1(k) +K2n
∗
1(−k)

= a1s(k) + a2s(−k) + w1(k), (17)

wherea1 anda2 are newly introduced channel-related param-
eters given by

a1 = K1h(k) and a2 = K2h
∗(−k), (18)

2This might correspond to a downlink scenario, where the low-cost DCA
user equipment (UE) suffers from IQI.

3Practical systems are usually designed such that this assumptions holds
in order to facilitate channel estimation and tracking. Forchannel estimation,
the technique proposed in [43] could be applied.
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TABLE I
THE IQSCENCODING AND TRANSMISSION PROTOCOL.

Subcarrier index −K · · · −k · · · −1 1 · · · k · · · K

Intended data set s (−K) · · · s (−k) · · · s (−1) s (1) · · · s (k) · · · s (K)

First time interval s∗ (−K) · · · s∗ (−k) · · · s∗ (−1) s (1) · · · s (k) · · · s (K)

Second time interval s (K) · · · s (k) · · · s (1) −s∗ (−1) · · · −s∗ (−k) · · · −s∗ (−K)

and the composite noise termw1(k) in the first time interval
on subcarrierk is given by

w1(k) = K1n1(k) +K2n
∗
1(−k). (19)

Similarly, the received signal in the second time interval on
subcarrierk is

x2(k) = K1h(k) (−s∗(−k)) +K2 (h(−k)s(k))
∗

+K1n2(k) +K2n
∗
2(−k)

= − a1s
∗(−k) + a2s

∗(k) + w2(k), (20)

with the composite noise termw2(k) in the second time
interval on subcarrierk being

w2(k) = K1n2(k) +K2n
∗
2(−k). (21)

The received signals in the first and second time intervals
on subcarrier−k are

x3(−k) = K1h(−k)s∗(−k) +K2 (h(k)s(k))
∗

+K1n1(−k) +K2n
∗
1(k)

= a3s
∗(−k) + a4s

∗(k) + w1(−k), (22)

and

x4(−k) = K1h(−k)s(k) +K2 (−h(k)s∗(−k))
∗

+K1n2(−k) +K2n
∗
2(k)

= a3s(k)− a4s(−k) + w2(−k), (23)

respectively, where the channel-related parametersa3 anda4
are given by

a3 = K1h(−k) and a4 = K2h
∗(k), (24)

andw1(−k) andw2(−k) are the composite noise terms in the
first and second time intervals on subcarrier−k, calculated
from (19) and (21), respectively.

From (17), (20), (22), and (23), we observe that the received
signals on subcarriersk and−k are interfered by the received
signals on subcarriers−k andk, respectively.

B. The IQSC Combining Scheme

The IQSC combiner uses the four received signals in the
first and second time interval on subcarriersk and−k to form
the following two signals

y(k) = a∗1x1(k) + a2x
∗
2(k) + a∗3x4(−k) + a4x

∗
3(−k),

(25)

y(−k) = −a1x
∗
2(k) + a∗2x1(k) + a3x

∗
3(−k)− a∗4x4(−k),

(26)

which are subsequently used for decoding. Substituting (17),
(20), (22), and (23) into (25) and (26), we obtain

y(k) =

4
∑

i=1

|ai|2s(k) + z(k), (27)

y(−k) =
4

∑

i=1

|ai|2s(−k) + z(−k), (28)

where

4
∑

i=1

|ai|2 =
(

|K1|2 + |K2|2
) (

|h(k)|2 + |h(−k)|2
)

(29)

is the gain achieved by IQSC, and

z(k) = a∗1w1(k) + a2w
∗
2(k) + a∗3w2(−k) + a4w

∗
1(−k),

(30)

z(−k) = −a1w
∗
2(k) + a∗2w1(k) + a3w

∗
1(−k)− a∗4w2(−k),

(31)

represent the noise components at the output of the combiner,
which both have variance

σ2
z =

(

|K1|2 + |K2|2
)2 (|h(k)|2 + |h(−k)|2

)

N0. (32)

The combined signals in (27) and (28) are not only IQI
free, but, at the same time, they reveal that the diversity order
achieved by IQSC is equal to those of MRC with two antennas
at the RX and Alamouti’s space-time block code with two
antennas at the TX [46].

C. An Alternative Mirror-Frequency Diversity Scheme

Next, we present an alternative low-complexity transmit
diversity scheme, i.e., A-IQSC, which is also applicable when
the fading channel is constant only over a single time interval.
Like IQSC, A-IQSC requires neither extra transmit power nor
feedback. In fact, A-IQSC has the same properties, complexity,
and rate as IQSC, since it uses two mirror subcarriers to
transmit the same signal.

Particularly, given the intended data setS̃K ,

S̃K = {s(1), · · · , s(K)} = {s(k)}Kk=1, (33)

the following sequence of symbols is transmitted in one time
interval

T(S̃K) = (s∗(K), . . . , s∗(k), . . . , s∗(1),

s(1), . . . , s(k), . . . , s(K)) . (34)
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Fig. 3. Block diagram of the proposed IQSC scheme with RX IQI (P/S stands for the parallel-to-serial converter).
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Then, the received signal at subcarriersk and−k are

x(k) = K1h(k)s(k) +K2 (h(−k)s∗(k))∗

+K1n(k) +K2n
∗(−k)

= αs(k) + w(k), (35)

and

x(−k) = K1h(−k)s∗(k) +K2 (h(k)s(k))
∗

+K1n(−k) +K2n
∗(k)

= βs∗(k) + w(−k), (36)

respectively, where the new channel-related parameters are
now given by

α = a1 + a2 = K1h(k) +K2h
∗(−k) (37)

and

β = a3 + a4 = K1h(−k) +K2h
∗(k). (38)

The combiner, by using the received signals on subcarriersk
and−k, forms the following signal that is sent to the detector

y(k) = α∗x(k) + βx∗(−k). (39)

By substituting (35) and (36) into (39), we obtain

y(k) =
(

|α|2 + |β|2
)

s(k) + zc(k), (40)

where

zc(k) = α∗w(k) + βw∗(−k) (41)

is the noise component at the output of the combiner and has
variance

σ2
zc

=
(

|K1|2 + |K2|2
)2 (|h(k)|2 + |h(−k)|2

)

N0. (42)

Notice that the resulting combined signal in (40) is IQI free.
Furthermore, according to (37) and (38), and after some basic
algebraic manipulations, we obtain

|α|2 + |β|2 =
(

|K1|2 + |K2|2
) (

|h(k)|2 + |h(−k)|2
)

+ 4Re{K1K
∗
2h(k)h(−k)}. (43)

For practical values ofφ, i.e., φ < 5o [29], according to (5),
K1 andK2 can be approximated asK1 ≈ Re{K1} andK2 ≈
Re{K2}, which based on (6) are connected through

Re{K1}+Re{K∗
2} ≈ 1, (44)

or equivalently

Re{K∗
2}

Re{K1}
≈ 1

Re{K1}
− 1. (45)

Moreover, for practical values ofIRR, i.e., 20 dB ≤ IRR ≤
40 dB [3], [5], [49], [50], we have 1

10 ≤ |Re{K∗

2
}

Re{K1} | ≤
1

100 . By
substituting these values into (45), we obtain10

11 ≤ Re{K1} ≤
100
101 . Hence, asIRR increases,K1 → 1 and consequently

K1K
∗
2 = K1 −K2

1 → 0. (46)

Furthermore, except for few central subcarriers, the correlation
between subcarrierk and its image subcarrier−k is small due
to their large spectral separation, hence, they can be assumed
to be independent, i.e.,E {4Re{K1K

∗
2h(k)h(−k)}} = 0.

Therefore, the second term on the right-hand side of (43) can
be neglected, and (43) can be approximated as [29]

|α|2 + |β|2 ≈
(

|K1|2 + |K2|2
) (

|h(k)|2 + |h(−k)|2
)

, (47)

which is identical to the combined channel gain for IQSC in
(29). Since IQSC and A-IQSC also exhibit the same noise
variance (see (32) and (42)), we expect A-IQSC to achieve a
similar performance as IQSC.

IV. PERFORMANCE ANALYSIS

In this section, we investigate the effects of IQI on the
system performance considering the cases of 1) ideal RF front-
end, 2) uncompensated IQI at the RX (i.e., IQI RF front-
end), 3) compensated IQI using IQSC, and 4) compensated
IQI using A-IQSC. Thereby, perfect CSI and IQI parameter
knowledge is assumed at the RX.4 In Section IV-A, we give
the respective instantaneousSINR expressions, and then, in
Section IV-B, we use these expressions to evaluate the end-to-
end outage probability, i.e., the probability that the SINRfalls
below a given threshold. In Section IV-C, we derive closed-
form expressions for the SER.

A. Signal-to-Interference-plus-Noise Ratio

1) Ideal RF front-end:In case of an ideal RF front-end,
the instantaneous SINR is given by

γid(k) = |h(k)|2 Es

N0
, (48)

whereEs is the average energy of the transmitted symbol.
2) IQI RF front-end: When IQI impairs the RX, then,

based on (11) and (13), the instantaneous SINR per symbol
on subcarrierk is given by

γ(k) =
|K1|2|h(k)|2Es

|K2|2|h(−k)|2Es + (|K1|2 + |K2|2)N0

=
γid(k)

γid(−k)
IRR +

(

1 + 1
IRR

)
. (49)

We assume that the correlation between subcarrierk and
its image −k is small due to their large spectral separa-
tion. Hence,γid(k) and γid(−k) can be assumed statisti-
cally independent. In general,γid(k) and γid(−k) are cor-
related RVs with the correlation coefficient given byρ =
E{γid(k)γ

∗
id(−k)}. When subcarriersk and−k are close to

each other, then the correlation may be significant. To simplify
the analysis, we assume thatρ = 0, which is an accurate
assumption except for few central subcarriers [20], [28], [29].
Note that this assumption is valid for several practical wire-
less communication systems, such as LTE, high performance
radio local area network (HIPERLAN), and WLAN, since the
central subcarriers are not used in those systems [52]–[55].

4The case of imperfect CSI due to IQI and outdated estimation will not be
investigated in this paper due to space limitations. However, the performance
results presented here can be considered as upper bounds forthe case of
imperfect CSI.
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3) IQSC: Assuming equal transmit power for the IQSC
scheme and the IQI RF front-end scenario, then, based on
(27), (28), and (32), the instantaneousSNR is given by

γIQSC(k) =
(

|h(k)|2 + |h(−k)|2
) Es

2N0

=
1

2
(γid(k) + γid(−k)) . (50)

4) A-IQSC: Assuming that the total transmit power of both
subcarriers in A-IQSC is identical to that of the IQI RF front-
end scenario, then, based on (40), (42), and (47), for practi-
cal IQI levels, the instantaneousSNR can be approximated
by (50).

B. Outage Probability Analysis

1) Ideal RF front-end:Assuming that the channel ampli-
tude |h(k)| follows a Rayleigh distribution, the instantaneous
SNR γid(k) given by (48) is an exponential distributed RV.
Hence, the end-to-end outage probability is given by

Pout (γth) = 1− e
− γth

γ id , (51)

whereγ id = Es/N0, andγth = 2R − 1 is the SNR threshold
with R being the transmission rate.

2) IQI RF front-end: Taking into account (49), usingx =
γid(k) and y = γid(−k), and exploiting the independence
between the exponentially distributed RVsx andy, we obtain
for the outage probability [29], [56]

Pout (γth) =

∫ ∞

0

F

(

x <
γth

IRR
y + γth

(

1 +
1

IRR

))

f(y)dy,

(52)

whereF (x < X) and f(y) are the cumulative distribution
function (CDF) ofx and the probability density function (PDF)
of y, respectively. Evaluating the integral in (52), we get

Pout (γth) = 1− e
− γth

γ id
(1+ 1

IRR )

1 + γth

IRR

, (53)

which depends in the IQI via theIRR. Note that, in the high-
SNR regime (γ id → ∞), the outage probability approaches

Pout (γth) ⊜ 1− 1

1 + γth

IRR

. (54)

Furthermore, notice that in case of an ideal RF front-end, i.e.,
IRR → ∞, (53) simplifies to (51).

3) IQSC: In the proposed scheme, the effectiveSNR,
γIQSC, is the sum of the instantaneousSNRs on subcarriers
k and−k, which follow exponential distributions. Therefore,
γIQSC is a chi-square distributed RV with meanγIQSC and the
PDF is given by

fγIQSC(γ) =
γ

γ2
IQSC

e
− γ

γIQSC . (55)

Hence, the outage probability is obtained as

Pout (γ̃th) = 1−
γ IQSC+ γ̃th

γ IQSC
e
− γ̃th

γIQSC , (56)

whereγIQSC = γ id, andγ̃th is theSNR threshold. Since, IQSC
requires two time slots to transmit one data setSK , γ̃th andR

are connected viãγth = 22R − 1. Interestingly, when IQSC is
employed, the outage performance is independent of the levels
of IQI at the RX, i.e., it is not a function ofIRR.

4) A-IQSC: In A-IQSC and for practical IQI levels, accord-
ing to (47), the effectiveSNR is approximately equal toγIQSC.
Hence, the outage probability of A-IQSC is approximately
equal to that of IQSC.

C. Symbol Error Rate Analysis

For slow flat fading, the SER can be derived by averaging
the conditional error probability in AWGN,Ps(e|γ), over the
fading distribution. Mathematically, the SER can be evalu-
ated as

Ps(e) =

∫ ∞

0

Ps(e|γ)fγ(γ)dγ, (57)

wherefγ(γ) is the PDF of the end-to-end SNR. For several
Gray bit-mapped constellations employed in practical systems,
Ps(e|γ) is of the form

Ps(e|γ) = A erfc
(

√

Bγ
)

, (58)

where A and B are modulation dependent constants. For
example, for binary phase-shift keying (BPSK)A = 0.5 and
B = 1, while for quadrature phase-shift keying (QPSK)A = 1
andB = 0.5. In the case of square/rectangularM -quadrature
amplitude modulation (QAM),Ps(e|γ) can be written as a
finite weighted sum oferfc

(√
Bγ

)

[57].
1) Ideal RF front-end:The instantaneousSNR follows an

exponential distribution with PDF

fγid(γ) =
1

γ id
e
− γ

γ id . (59)

Substituting (58) and (59) into (57), and carrying out the
integration, we get

Ps(e) =
A

1 +Bγ id +
√

Bγ id + (Bγ id)
2
. (60)

2) IQI RF front-end: In case of uncompensated IQI, the
SER is given by [58]

Ps(e) =
1

M

M
∑

m=1

Ps(em), (61)

whereM is the modulation order and

Ps(em) =
M − 1

M
− 2(

√
M − 1)

M
√

1 + φ2
m

− 4(M − 1)2

πM
√

1 + φ2
m

arctan

(

1

1 + φ2
m

)

(62)

with

φ2
m =

2(M − 1)

3EsIRR

(

|im|2 + (IRR + 1)N0

)

. (63)

In (63), im denotes them-th complex-valued symbol of the
modulation alphabet. From (62) and (63), we observe that for
uncompensated IQI, theSER depends on the levels of the IQI
via IRR.
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3) IQSC: By substituting (55) and (58) into (57) and
carrying out the integration, we get after some basic algebraic
manipulations

Ps(e) = A
−3

√
B − 2γIQSC

√
B3 + 2(B + 1)

√

B + 1/γIQSC

2γIQSC

√

(

B + 1/γIQSC

)3
.

(64)

From (64), we observe that by employing IQSC, the error
performance of a receiver with IQI becomes independent of
the IQI level.

4) A-IQSC: For practical values ofIRR, based on (47), the
SER can be straightforwardly approximated by (64).

D. Comparison with Equal-Rate Repetition Coding (RC)

In this section, we compare the performance of the proposed
IQSC with RC across subcarriers, where the same signal is
sent from the TX to the RX twice using subcarriersk and
−k. We make this comparison in order to demonstrate the
efficiency of IQSC compared to a scheme having the same
rate. Besides, since IQSC and RC assume the same form in the
absence of IQI, we expect then to achieve similar performance
in this case.

Assuming a system with RX IQI, the received signals on
subcarriersk and−k are

x(k) = K1h(k)s(k) +K2h
∗(−k)s∗(k) + w(k), (65)

and

x(−k) = K1h(−k)s(k) +K2h
∗(k)s∗(k) + w(−k), (66)

respectively, where we sets(k) = s(−k) due to the RC. In
(65) and (66),w (k) andw (−k) are given by (13).

After combining the received signal using MRC, the overall
signal can be written as

yRC(k) = h∗(k)x(k) + h∗(−k)x(−k)

= K1

(

|h(k)|2 + |h(−k)|2
)

s(k) + iRC(k) + zRC(k),
(67)

where iRC(k) and zRC(k) are the self-interference and noise
terms, respectively, given by

iRC(k) = 2K2h
∗(k)h∗(−k)s∗(k), (68)

zRC(k) = K1h
∗(k)n(k) +K2h

∗(k)n∗(−k)

+K1h
∗(−k)n(−k) +K2h

∗(k)n∗(k). (69)

Under perfect I/Q matching, i.e.,K1 = 1 andK2 = 0, the
model in (67) reduces to

yRC(k) =
(

|h1(k)|2 + |h2(k)|2
)

s(k) + w(k). (70)

In this case, since (70) is similar to (27), the outage probability
can be written as in (56), and the SER is given by (64),
i.e., in the absence of IQI, IQSC and RC achieve indeed the
same performance.

Based on (67)-(69), the instantaneousSINR can be ex-
pressed as

γRC(k) =
SRC

IRC +NRC
, (71)

whereSRC, IRC, andNRC are the signal, interference, and noise
power components, respectively, and are given by

SRC = |K1|2
(

|h(k)|2 + |h(−k)|2
)2

Es, (72)

IRC = 4|K2|2|h(k)|2|h(−k)|2Es, (73)

NRC =
(

|K1|2 + |K2|2
) (

|h(k)|2 + |h(−k)|2
)

N0. (74)

Note that, in the highSNR regime, i.e.,N0 → 0, the
instantaneousSINR can be obtained as

γRC(k) ⊜

(

|h(k)|2 + |h(−k)|2
)2

|h(k)|2|h(−k)|2
IRR

4

=

( |h(k)|2
|h(−k)|2 +

|h(−k)|2
|h(k)|2 + 2

)

IRR

4
. (75)

Considering (71) and (75), the effect of IQI on RC is funda-
mentally different from the effect of IQI on ordinary single
time-slot (i.e., full-rate) systems. The interference term is
not only affected byh(−k) but also byh(k). Unlike IQSC,
although RC has the same rate, itsSINR is upper bounded
due to the IQI even forN0 → 0, as described by (75). Hence,
in the presence of IQI, IQSC achieves a better performance
than RC.

V. NUMERICAL AND SIMULATION RESULTS

In this section, the performance of the schemes proposed
in Section III is illustrated in terms of outage and error
probabilities for linearly modulated signals. In all cases, we
validate the theoretical results (indicated with lines in the
plots) with Monte-Carlo simulations (indicated with markers
in the plots) so as to verify the accuracy of the closed-
form expressions derived in Section IV. Exceptions to the
rule are the A-IQSC, RC, and FTBC [47] schemes, where
we (abusively) use lines with markers to plot simulation
results. We compare the performance of the two proposed
IQI coordination schemes (i.e., IQSC and A-IQSC) to that
of the IQI RF front-end and the ideal RF front-end systems.
The following assumptions are made for all schemes: a) equal
total transmit power, b) uncorrelated channel gains for a
subcarrier and its image, c) equal average signal power on each
subcarrier, and d) perfect CSI and IQI parameter knowledge.

The outage probability versus theSNR for the IQSC, IQI
RF front-end, and ideal RF front-end systems is shown in
Figs. 4 and 5 for transmission rates of1 bit/sec/Hz and2
bit/sec/Hz, respectively, andIRR values of20, 25, 30, and35
dB. We observe that the simulation results confirm the analyt-
ical expressions over the entireSNR range for all IQI levels.
Interestingly, IQSC achieves a lower outage probability than
the ideal RF front-end for practical availability requirements,
and the corresponding gain increases for increasingSNR
because of the achieved diversity. Indicatively, for transmission
rates equal toR = 1 bit/sec/Hz andR = 2 bit/sec/Hz,
IQSC outperforms the ideal RF front-end forSNR values
greater than4 dB and outage probabilities lower than0.08,
respectively.

In Fig. 6, the outage probability is plotted as a function
of transmission rate,R, for the IQSC, IQI RF front-end, and
ideal RF front-end systems for anSNR of 35 dB and IRR
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Fig. 4. Outage probability versus SNR for transmission rate1 bit/s/Hz and
different IQI levels.
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Fig. 5. Outage probability versus SNR for transmission rate2 bit/s/Hz and
different IQI levels.

values of20, 25, 30, and35 dB. It can be observed that, for
practical values ofR, IQSC significantly outperforms the ideal
RF front-end. For example, forR = 2 bit/s/Hz andIRR =
20 dB, the outage probability of IQSC is99% and 98.8%
lower than those of the IQI RF front-end and the ideal RF
front-end systems, respectively, while forR = 4 bit/s/Hz the
corresponding values are97.7% and34.9%.

To further illustrate the effect of IQI on the error perfor-
mance, in Fig. 7, the average SER is plotted for QPSK and
different values ofIRR. It can be observed that, without IQI
compensation, the lower theIRR, the larger the average SER
becomes. Furthermore, as expected, the performance of IQSC
is not affected by the values of the IQI parameters. This
finding indicates that, for low-cost devices, IQSC can achieve
a significant diversity gain without the use of additional
antennas by coordinating the IQI effect through appropriate
block coding and signal processing.

To demonstrate the efficiency of IQSC for different modu-
lations schemes [59]–[63], the SER versus theSNR per bit
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Fig. 6. Outage probability versus transmission rate for SNRequal to35 dB
and different IQI levels.
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Fig. 7. SER versus SNR for different values ofIRR and QPSK.

is plotted in Fig. 8 for BPSK, QPSK, and16-QAM, and
IRR = 20 dB assuming the following five systems: i) ideal
RF front-end, ii) IQI RF front-end, iii) compensated IQI with
zero forcing (ZF) [59], [64], [65], iv) IQSC, and v) A-IQSC.
As expected, the error performance of ZF is very close to the
case of the ideal RF front-end. This indicates that the latter
scheme can be used as a benchmark for the evaluation of
the IQSC performance. Besides, as expected, IQSC and A-
IQSC achieve almost the same SER. Interestingly, at a SER
of 10−3, which is a practical requirement in several wireless
communication standards [66]–[68], the gain achieved by the
proposed schemes with QPSK is about5 dB compared to the
ideal RF front-end with BPSK5. For the IQI RF front-end with
BPSK, an error floor is observed at an SER of2.5×10−3, and
the degradation caused by IQI on the average SER increases as
the average SNR per bit gets larger. In the highSNR regime, a
SER lower bound is observed. For example, for16-QAM, the
SER floor is5×10−2, which may not be acceptable in practice.
Similarly, at a SER of10−4, the SNR gain of IQSC with16-

5Notice that, for both schemes, the transmission rate is the same.
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Fig. 8. SER versus SNR per bit forIRR = 20 dB, φ = 5o, and BPSK
(solid), QPSK (dashed), and16-QAM (dash-dotted).

QAM is more than15 dB compared to the ideal RF front-
end with QPSK. Clearly, due to the MFD gain in (50), IQSC
achieves a better performance when compared to the ideal RF
front-end. For the sameSNR and transmission rate, systems
employing IQSC can be far more reliable than single-input
single-output (SISO) systems with ideal RF front-end, while
they need less transmission energy to meet the same (practical)
SER target. In other words, IQSC systems can overcome the
rate reduction by utilizing higher order modulation schemes.

In Fig. 9, we illustrate the effect of IQI on the average
SER of 16−QAM, when RC and FTBC [47] are used. We
compare IQSC and A-IQSC with RC and FTBC for the cases
of an ideal RF front-end and an IQI RF front-end. Both RC
and FTBC have the same rate as IQSC and A-IQSC. The IQI
RF front-end with RC, as expected from (75), suffers from an
error floor in the high-SNR regime. For the considered case,
the SER floor is5 × 10−3, which might not be acceptable in
practice. Furthermore,the IQI RF front-end with FTBC, also
exhibits an error floor in the high-SNR regime. For example,
for 16−QAM, the SER floor is5.9 × 10−2, which again
might not be acceptable in practice. On the other hand, due
to the achieved MFD, IQSC and A-IQSC achieve a better
performance than the IQI RF front-end with RC and FTBC,
while they have a similar performance as the ideal RF front-
end with RC and FTBC.

VI. D ISCUSSION ANDCONCLUSION

In this section, we summarize the advantages and disadvan-
tages of the two proposed IQSC schemes and discuss the new
concept of MFD, highlighting our main findings.

A. Merits and Drawbacks of IQSC

The proposed IQSC schemes are low-complexity coun-
termeasures against any level of IQI, enabling their use in
practical low-cost communication devices with unavoidable
RF imperfections. IQSC and A-IQSC require neither extra
transmit power nor any feedback from the RX, and their
computational complexity is similar to Alamouti’s space-time
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Fig. 9. Comparison of IQSC with RC and FTBC forIRR = 20 dB, φ = 5o,
and16-QAM.

block coding scheme [46]. Moreover, the proposed IQSC
schemes (original and alternative) achieve second-order diver-
sity without the use of extra antennas, which renders them
far more reliable and power efficient than conventional SISO
systems (with or without IQI compensation). Therefore, IQSC
may find application in wireless systems, where low-cost,
energy efficiency, low-complexity, and compactness of the
communication devices are key design requirements. Notable
examples are relaying systems and wireless sensors networks,
where single-antenna nodes are physically limited in size,and
have to operate without battery replacement for a long period
of time [69], [70].

In summary, both IQSC schemes have the following merits:

• They coordinate IQI in order to achieve two-fold diversity
with a single antenna at TX and RX;

• They are energy and/or bandwidth efficient compared to
conventional SISO;

• They do not require any type of feedback from the RX;
• They are low-complexity schemes (their complexity is

similar to that of Alamouti’s space block coding scheme);
• They provide interoperability and compatibility with ex-

isting wireless standards;
• They support high-order modulation schemes avoiding an

error floor in the SER due to IQI;
• Their outage and SER performances are independent of

the severity of the IQI.

The above reasons —and especially the last one— may allow
the relaxation of hardware requirements and design specifica-
tions for future low-cost DCA communication devices.

The main drawback of the IQSC schemes is that they reduce
the transmission rate by50%. However, our results clearly
demonstrate that uncompensated IQI severely degrades the
error rate of conventional wireless communication systemses-
pecially for high constellation orders. Therefore, for high-order
modulation schemes, performance may become unacceptable.
On the other hand, when (A-)IQSC is employed, there is no
such constraint. Hence, systems using (A-)IQSC can overcome
the half-rate limitation by employing higher-order modulation
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schemes. As mentioned above, an obvious application of (A-)
IQSC is the provision of diversity for low-cost remote units,
which unavoidably suffer from RF imperfections, and have to
operate without battery replacement for a long time.

B. Conclusions

Two novel low-complexity techniques, namely IQSC and A-
IQSC, were presented for significantly increasing the perfor-
mance of single-antenna multi-carrier communication systems
suffering from IQI. It was shown that the proposed schemes
cannot only compensate the effects of IQI but they can even
be beneficial for the system’s performance due to the achieved
MFD. In particular, IQSC (both original and alternative) out-
performs the systems with uncompensated IQI at the RX, and
the ideal RF front-end without IQI, when the same modulation
order is employed. Moreover, it shows better performance
compared to equal-rate repetition coding with uncompensated
IQI, and the same performance as equal-rate RC with ideal RF
front-end. Our results indicate that IQSC can be a promising
technique for use in a variety of applications involving DCA
low-cost devices.
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