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Abstract—We consider the problem of peak-to-average power
ratio (PAPR) reduction in orthogonal frequency-division multi-
plexing (OFDM) based massive multiple-input multiple-output
(MIMO) downlink systems. Specifically, given a set of symbol
vectors to be transmitted toK users, the problem is to find an
OFDM-modulated signal that has a low PAPR and meanwhile en-
ables multiuser interference (MUI) cancelation. Unlike previous
works that tackled the problem using convex optimization, we
take a Bayesian approach and develop an efficient PAPR reduc-
tion method by exploiting the redundant degrees-of- freedom of
the transmit array. The sought-after signal is treated as a random
vector with a hierarchical truncated Gaussian mixture prior,
which has the potential to encourage a low PAPR signal with
most of its samples concentrated on the boundaries. A variational
expectation-maximization (EM) strategy is developed to obtain
estimates of the hyperparameters associated with the priormodel,
along with the signal. In addition, the generalized approximate
message passing (GAMP) is embedded into the variational EM
framework, which results in a significant reduction in computa-
tional complexity of the proposed algorithm. Simulation results
show our proposed algorithm achieves a substantial performance
improvement over existing methods in terms of both the PAPR
reduction and computational complexity.

Index Terms—Massive MIMO-OFDM, PAPR reduction, vari-
ational EM, GAMP.

I. I NTRODUCTION

Massive multiple-input multiple-output (MIMO), also
known as large-scale or very-large MIMO, is a promising
technology to meet the ever growing demands for higher
throughput and better quality-of-service of next-generation
wireless communication systems [1]. Massive MIMO sys-
tems are those that are equipped with a large number of
antennas at the base station (BS) simultaneously serving a
much smaller number of single-antenna users sharing the same
time-frequency bandwidth. In addition to higher throughput,
massive MIMO systems also have the potential to improve
the energy efficiency and enable the use of inexpensive, low-
power components. Hence, it is expected that massive MIMO
will bring radical changes to future wireless communication
systems.

In practice, broadband wireless communications may suf-
fer from frequency-selective fading. Orthogonal frequency-
division multiplexing (OFDM), a scheme of encoding digital
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data on multiple carrier frequencies, has been widely used
to deal with frequency-selective fading. However, a major
problem associated with the OFDM is that it is subject to
a high peak-to-average power ratio (PAPR) owing to the
independent phases of the sub-carriers [2]. To avoid out-
of-band radiation and signal distortion, handling this high
PAPR requires a high-resolution digital-to-analog converter
(DAC) and a linear power amplifier (PA) at the transmitter,
which is not only expensive but also power-inefficient [3]. The
situation deteriorates when the number of antennas is large,
leaving such systems impractical. Therefore, it is of crucial
importance to reduce the PAPR of massive MIMO-OFDM
systems to facilitate low-cost and power-efficient hardware
implementations.

Many techniques have been developed for PAPR reduction
in single-input single-output (SISO) OFDM wireless systems.
The most prominent are clipping [4], tone reservation (TR)
[5], active constellation extension (ACE) [6], selected mapping
(SLM) [7], partial transmission sequence (PTS) [8] and others.
For a detailed overview, we refer readers to [3], [9]. Although
these PAPR-reduction schemes can be extended to point-to-
point MIMO systems easily [9]–[11], extension to the multi-
user (MU) MIMO downlink is not straightforward, mainly be-
cause joint receiver-side signal processing is almost impossible
in practice as the users are distributed. Recently, a new PAPR
reduction method [12] was developed for massive MIMO-
OFDM systems. The proposed scheme utilizes the redundant
degrees-of-freedom (DoFs) resulting from the large number
of antennas at the BS to achieve joint multiuser interference
(MUI) cancelation and PAPR reduction. Specifically, the prob-
lem was formulated as a linear constrainedℓ∞ optimization
problem and a fast iterative truncation algorithm (FITRA)
was developed in [12]. However, the FITRA algorithm shows
to have a fairly low convergence rate. Also, the algorithm
employs a regularization parameter to achieve balance between
the PAPR reduction and the MUI cancelation (i.e. data fit-
ting error). The choice of the regularization parameter may
be tricky in practice. On the other hand, the regularization
parameter may be seen instead as an additional degree of
freedom that allows to regulate the operation of the algorithm.
In [13], a peak signal clipping scheme was employed to reduce
the PAPR and some of the antennas at the BS are reserved to
compensate for peak-clipping signals. This method has a lower
computational complexity. But it achieves only a mild PAPR
reduction and those antennas reserved for compensation may
incur large PAPRs.

In this paper, we develop a novel Bayesian approach to
address the joint PAPR reduction and MUI cancelation prob-
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lem for downlink multi-user massive MIMO-OFDM systems.
Specifically, MUI cancelation can be formulated as an un-
derdetermined linear inverse problem which admits numerous
solutions. To search for a low PAPR solution, a hierarchical
truncated Gaussian mixture prior model is proposed and
assigned to the unknown signal (i.e. solution). This hierar-
chical prior has the potential to encourage a quasi-constant
magnitude solution with as many entries as possible lying
on the truncated boundaries, thus resulting in a low PAPR.
A variational expectation-maximization (EM) algorithm isde-
veloped to obtain estimates of the hyperparameters associated
with the prior model, along with the signal. In addition, the
generalized approximate message passing (GAMP) technique
[14] is employed to facilitate the algorithm development
in the expectation step. This GAMP technique also helps
significantly reduce the computational complexity of the pro-
posed algorithm. Simulation results show that the proposed
method presents a substantial improvement over the FITRA
algorithm in terms of both PAPR reduction and computational
complexity.

During the review process of the current work, it was
brought to our attention that an efficient approximate message
passing (AMP)-based Bayesian method was recently proposed
[15] for PAPR reduction for massive MIMO systems, which
can be extended to the case with OFDM modulation. The
rationale behind our work and the above work are similar:
both methods cast the PAPR reduction problem as a Bayesian
inference problem and employ priors to promote solutions with
constant envelopes. The prior distributions employed by these
two works, however, are very different. The prior proposed in
[15] assigns each coefficient to a random point on a circle with
a certain radius on the complex plane. Unlike our work, this
prior only encourages entries of the obtained solution to be
close to the boundary but cannot guarantee that they exactly
lie on the boundary points.

The rest of this paper is organized as follows. In Section II,
we introduce the data model, basic assumptions, and the PAPR
reduction problem. A new hierarchical Bayesian prior model
is proposed in Section III, and an efficient Bayesian algorithm
is developed in Section IV. Simulation results are providedin
Section V, followed by concluding remarks in Section VI.

Notations: Lowercase boldface is used for column vectors
x, and uppercase for matricesX. The superscripts(·)T
and (·)H represent the transpose and conjugate transpose,
respectively.‖x‖2 is used to denote theℓ2 norm of vector
x, and ‖x‖∞ stands for theℓ∞ norm, ℓ∞̃ norm is define
as ‖x‖ℓ

∞̃
= max{‖ℜ{x}‖∞, ‖ℑ{x}‖∞}, with ℜ{x} and

ℑ{x} denoting the real and imaginary part ofx, respectively.
FN denotes theN × N unitary discrete Fourier transform
(DFT) matrix. TheN×N identity matrix and theM ×N all-
zeros matrix are denoted byIN and0M×N , respectively. We
denote the pdf of Gaussian random variablex with meanµ and
varianceσ2 asN (x;µ, σ2), for the special case ofN (x; 0, 1),
we write the cdf asΦ(x). The symbol⊗ denotes the Kronecker
product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first introduce the system model of OFDM based mas-
sive MIMO systems. Then we discuss some recent research
on PAPR reduction for multi-user massive MIMO-OFDM
systems.

A. System Model

The system model of the OFDM-based massive MIMO
downlink scenario is depicted in Fig. 1, where the BS is
assumed to haveM transmit antennas and serveK indepen-
dent single-antenna users (K ≪M ), and the total number of
OFDM tones isN . In practice, the set of tones available are
divided into two setsT andT C , where the tones in setT are
used for data transmission and the tones in its complementary
setT C are used for guard band (unused tones at both ends of
the spectrum). Hence, for each tonen ∈ T , the corresponding
K × 1 vectorsn comprises the symbols forK users, which
are usually chosen from a complex-valued signal alphabetB.
We normalize the data vector to satisfyE{‖sn‖22} = 1. For
each tonen ∈ T C , we setsn = 0K×1 such that no signal is
transmitted in the guard band.

Since cooperative detection among users is often impossi-
ble, precoding must be performed at the BS to remove multi-
user interference (MUI). Usually, the signal vector on thenth
tone is linearly precoded as

wn = P nsn, (1)

where wn ∈ CM×1 is the precoded vector that contains
symbols to be transmitted on thenth sub-carrier through
the M antennas respectively, andP n ∈ CM×K represents
the precoding matrix for thenth OFDM tone. Zero-forcing
(ZF) precoding and minimum-mean square-error (MMSE)
precoding are two classical precoding schemes. The former
aims at removing MUI completely, while the latter tries to
achieve balance between the MUI cancellation and the noise
enhancement. In this paper, we consider the ZF procoding
scheme. Note that sinceK ≪ M , the ZF precoding matrix
has an infinite number of forms, among which the most widely
used is

P zf
n = HH

n (HnH
H
n )−1, (2)

where Hn ∈ CK×M denotes the MIMO channel matrix
associated with thenth tone. Here we assume the channel
matrix Hn, ∀n to be known at the transmitter, which can be
acquired by exploiting the channel reciprocity of time division
duplexing (TDD) systems (i.e., the downlink channel is the
transpose of the uplink channel).

After precoding, all precoded vectorswn are reordered to
M antennas for OFDM modulation,

[a1 · · · aM ] = [w1 · · ·wN ]T , (3)

wheream ∈ C
N×1 represents the frequency-domain signal to

be transmitted from themth antenna. The time-domain signals
are obtained through the inverse discrete Fourier transform
(IDFT), i.e., âm = FH

Nam, ∀m. Then, a cyclic prefix (CP) is
added to the time-domain samples of each antenna to elimi-
nate intersymbol interference (ISI). Finally, these samples are
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Fig. 1. System model for the downlink of OFDM based massive MIMO, with N OFDM tones,M transmit antennas andK independent single-antenna users.

converted to analog signals and transmitted via the frequency-
selective channel.

At the receivers, after removing the CPs of the received
signals, the DFT is performed to obtain the frequency-domain
signals. The receive vector consisting ofK users’ signals can
be described as

rn = Hnwn + en, ∀n (4)

wherern ∈ CK×1 denotes the receive vector associated with
the nth tone, anden ∈ C

K×1 is the receiver noise and has
i.i.d. circularly symmetric complex Gaussian entries withzero-
mean and varianceNo. If the ZF precoding scheme is used, by
combining (1), (2) and (4), the received signal vector equals
to rn = sn + en, ∀n, which means the MUI is perfectly
removed.

B. Peak-to-Average Power Ratio (PAPR) Reduction

OFDM modulation typically exhibits a large dynamic range
because the phases of the sub-carriers are independent of each
other, which may combine in a constructive or destructive
manner. To avoid out-of-band radiation and signal distortion,
high-solution DACs and linear power amplifiers are required
at the transmitter to accommodate the large peaks of OFDM
signals, which leads to expensive and power-inefficient RF
chains.

PAPR is defined as the ratio of the peak power of the signal
to its average power. Specifically, the PAPR at themth transmit
antenna is defined as

PAPRm ,
2N‖âm‖2∞̃
‖âm‖22

, (5)

where the operator‖ · ‖2∞̃ is used because RF-chains often
process and modulate the real and imaginary part of time-
domain samples independently. It should also be noted that,
we only consider the PAPR of discrete-time OFDM signals
in this paper, one can obtain its continuous-time counterpart
precisely by implementing anL-times oversampling in OFDM
modulation [16].1 Since many conventional MIMO-OFDM
systems, such as 3GPP LTE [17] and IEEE 802.11.n [18],
disallow such an oversampling operation, here we ignore the
difference as in [12] (i.e.,L = 1).

When the number of transmit antennas is larger than the
number of users, numerous ZF precoding matrices are avail-
able. In other words, for a set ofsn, n = 1, ..., N , we have

1Instead ofN -point IDFT, L-times oversampling can be implemented by
LN -point IDFT of the frequency-domain signals with(L−1)N zero-padding.

an infinite number of precoded signalsw , [wT
1 , ...,w

T
N ]T

that achieve perfect MUI cancelation. Thus there may exist a
candidatew whose associated time-domain signals{âm} have
low PAPRs. In this paper, instead of designing the procoding
matrix, we directly search for the signalw to achieve a joint
PAPR reduction and MUI cancelation. Specifically, in order
to remove the MUI, the precoded vectorswn need to satisfy:

sn = Hnwn, n ∈ T , (6a)

0M×1 = wn, n ∈ T c. (6b)

The whole linear constraints of (6) can be further written as

s = Hw (7)

wheres ∈ CNK×1 denotes the concatenation of all vectors on
the left-hand side of (6),H is a block diagonal matrix with its
diagonal blocks equal toHn for n ∈ T andIM for n ∈ T c.
According to (3), the reordering operation can be equivalently
written as a linear transformation, i.e.,

a = Tw, (8)

where a = [aT
1 , ...,a

T
M ]T , T is a permutation matrix that

assigns theM entries of each precoded vector to theM
antennas respectively. Recallinĝam = FH

Nam, ∀m, (7) and
(8), we have

s = HT TF â, (9)

where F , IM ⊗ FN , and â , [âT
1 , ..., â

T
M ]T . Given a

symbol vectors, our goal is to search for a signalâ satisfying
the above equation (9), and meanwhile its sub-vectorâm, i.e.
the signal to be transmitted at each antenna, having a low
PAPR. This problem can be formulated as a minimax problem
which minimizes the maximum PAPR among all antennas
subject to the linear constraint defined in (9). Nevertheless,
this problem, as indicated in [12], is complex to solve. To
circumvent the difficulty, the minimax problem is replaced by
a constrained optimization which minimizes theℓ∞̃ norm of
â, a vector formed by aggregating all time-domain vectors
{âm} [12]

min ‖â‖∞̃ subject tos = HT TF â. (10)

This problem can be further converted into a real-valued form
as follows [12]

min ‖x‖∞ subject toy = Ax, (11)
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where

y ,

[
ℜ{s}
ℑ{s}

]
, x ,

[
ℜ{â}
ℑ{â}

]
,

A ,

[
ℜ{HT TF } −ℑ{HT TF }
ℑ{HT TF } ℜ{HT TF }

]
,

and the dimension ofA is 2(|T |K + |T c|M) × 2NM . For
notational convenience, letJ , 2(|T |K + |T c|M) and I ,

2NM .
Intuitively, via minimizing the largest magnitude of entries

of x, the PAPR associated with each transmit antenna can be
reduced. This problem can be solved exactly by reformulating
(11) as a linear programming problem, but is computationally
prohibitive when the signal dimension is large. To develop an
efficient algorithm, the equality constraint is relaxed as‖y −
Ax‖2 ≤ δ in [12]. Hence the optimization (11) can eventually
be reformulated as

min λ‖x‖∞ + ‖y −Ax‖22, (12)

where λ > 0 is a regularization parameter. An efficient
numerical method, namely, the fast iterative truncation al-
gorithm (FITRA), was employed [12] to solve (12). The
FITRA algorithm requires to choose a suitable regularization
parameterλ to balance between the PAPR reduction and the
data fitting error, which may be tricky in practice. In the
following, we develop a Bayesian method which is free of
this issue, and also turns out to be more efficient and effective
than the FITRA algorithm.

III. B AYESIAN MODEL

To facilitate our algorithm development, we introduce a
noise term to model the mismatch betweeny andAx, i.e.

y = Ax+ ǫ, (13)

whereǫ denotes the noise vector and its entries are assumed
to be i.i.d. Gaussian random variables with zero-mean and
unknown varianceβ−1. Here we treatβ as an unknown pa-
rameter because the Bayesian framework allows an automatic
determination of its model parameters and usually provides
a reasonable balance between the data fitting error and the
desired characteristics of the solution. In case that thereis a
pre-specified tolerance value for the MUI, we can also set an
appropriate value forβ instead of treating it as unknown.

To reduce the PAPR associated with each transmit antenna,
we aim to find a quasi-constant magnitude solution to the
above underdetermined linear system. Note that a constant
magnitude signal achieves a minimum PAPR. Ideally we hope
to find a solution with all of its entries having a constant mag-
nitude. Nevertheless, it is highly unlikely that there exists such
a solution to satisfy (or approximately satisfy with a tolerable
error) the MUI cancelation equality, i.e. (13). Therefore we,
alternatively, seek a quasi-constant magnitude solution with
as many entries as possible located on the boundary points
of an interval[−v, v], whereas the rest entries bounded within
[−v, v] but not restricted to lie on the boundary points in order
to meet the MUI cancelation constraint.

To encourage a quasi-constant magnitude solution, we pro-
pose a hierarchical truncated Gaussian mixture prior for the
signal x. In the first layer, coefficients ofx are assumed
independent of each other and each entryxi is assigned a
truncated Gaussian mixture distribution:

p(xi) =





π
N (xi; v, α

−1
i1 )

ηi1
+ (1 − π)

N (xi;−v, α−1
i2 )

ηi2
if xi ∈ [−v, v],

0 otherwise,

(14)

where the first component of (14) is characterized by a
truncated Gaussian distribution with its mean and variance
given by v and α−1

i1 , respectively; the second component
is characterized by a truncated Gaussian distribution with
its mean and variance given by−v and α−1

i2 , respectively;
π ∈ [0, 1] is a mixing coefficient that denotes the probability
of generatingxi from the first component; the distribution lies
within the interval[−v, v], i.e. from the mean of the second
component to the mean of the first component; andηil is a
normalization constant of thelth component, given by

ηi1 =
1

2
− Φ(−2v

√
αi1), ηi2 = Φ(2v

√
αi2)−

1

2
. (15)

The second layer specifies Gamma distributions as hyperpriors
over the precision parametersα1 , {αi1}Ii=1 and α2 ,

{αi2}Ii=1:

p(α1,α2; a, b) =

2∏

l=1

I∏

i=1

Gamma(αli|a, b), (16)

where

Gamma(α|a, b) = Γ(a)−1baαa−1e−bα, (17)

in which Γ(a) =
∫∞

0 ta−1e−tdt is the gamma function. To
make the hyperpriors non-informative, small values ofa and
b, e.g. a = b = 10−6, should be used [19]. Note that the
choice of the Gamma hyperprior over the precision is inspired
by [19]. As indicated in [19], the Gamma hyperprior witha =
b = 10−6 corresponds to a broad hyperprior which allows the
precision (more precisely, the posterior mean of the precision)
to become arbitrarily large. For our case, we also place a broad
hyperprior on the precision parameters such that some of these
precision parameters are allowed to become arbitrarily large.
As a consequence, the corresponding entries will be driven
towards and eventually located on the boundary points.

The prior distributions with different model hyperparame-
tersαi1, αi2 are illustrated in Fig. 2, whereπ andv are both
set to0.5. We can see that the prior distribution defined in (14)
resembles the shape of a bowl. Thus the prior has the potential
to push the entries of the solution toward its boundaries. In
addition, the use of the Gamma hyperprior allows the posterior
mean of the precision to become arbitrarily large. As a result,
the associated entriesxi will eventually lie on one of the
two boundary points, leading to a quasi-constant magnitude
solution. The graphical model of the proposed hierarchicalis
presented in Fig. 3(a).

In general, Bayesian inference requires computing the log-
arithm of the prior. In this regard, (14) is a inconvenient form
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Fig. 3. Graphical models for low-PAPR signal priors, with circles denoting
hidden variables, double circles denoting observed variables and squares
representing model parameters. (a) Original prior, (b) Modified prior.

for inference. To address this issue, we turn the prior into an
exponential form by introducing a binary latent variableκi
indicating which component is selected forxi, i.e., κi = 1
indicates the first component is selected whileκi = 0
corresponds to the second component. The equivalent prior
can be written as

p(xi|αi1, αi2, κi; v)

=

(N (xi; v, α
−1
i1 )

ηi1

)κi(N (xi;−v, α−1
i2 )

ηi2

)1−κi

, xi ∈ [−v, v],
(18)

and the distribution forκi is

p(κi;π) = (π)κi(1 − π)1−κi . (19)

where the mixing coefficient is set toπ = 0.5 to make
the prior non-informative. Also, we defineκ , {κi}Ii=1.
The updated graphical model is shown in Fig. 3(b). Note
that, according to (18) and (19), we can compute the con-
ditional distributionp(xi|αi1, αi2; v) via p(xi|αi1, αi2; v) =∑

κi
p(xi|αi1, αi2, κi; v)p(κi;π), which results in the same

form of (14).

IV. BAYESIAN INFERENCE

We now proceed to perform Bayesian inference for
the proposed hierarchical model. A variational expectation-

maximization (EM) strategy is employed for the Bayesian
inference. In our model,z , {x,α1,α2,κ} are treated
as hidden variables. The noise varianceβ and the bound-
ary parameterv are unknown deterministic parameters, i.e.
θ , {β, v}. Before proceeding, we provide a brief review of
the variational EM algorithm.

A. Variational Bayesian Methodology

Consider a probabilistic model with observed datay, hidden
variablesz and unknown deterministic parametersθ. It is
straightforward to show that the marginal probability of the
observed data can be decomposed into two terms

ln p(y; θ) = F (q, θ) + KL(q‖p), (20)

where

F (q, θ) =

∫
q(z) ln

(
p(y, z; θ)

q(z)

)
dz (21)

and

KL(q‖p) = −
∫
q(z) ln

(
p(z|y; θ)
q(z)

)
dz, (22)

where q(z) is any probability density function,KL(q‖p) is
the Kullback-Leibler divergence betweenp(z|y; θ) andq(z).
SinceKL(q‖p) ≥ 0, it follows thatF (q, θ) is a lower bound of
ln p(y; θ), with the equality holds only whenKL(q‖p) = 0,
which impliesp(z|y; θ) = q(z). The EM algorithm can be
viewed as an iterative algorithm which iteratively maximizes
the lower boundF (q, θ) with respect to the distributionq(z)
and the parametersθ.

Assume that the current estimate of the parameters is
θOLD. The EM algorithm evaluatesqNEW(z) by maximizing
F (q, θOLD) with respect toq(z) in the E-step, and then finds
new parameter estimateθNEW by maximizing F (qNEW, θ)
with respect toθ in the M-step. It is easy to see that when
qNEW(z) = p(z|y; θOLD), the lower boundF (q, θOLD) is
maximized. Nevertheless, in practice, the posterior distribu-
tion p(z|y; θOLD) is usually computationally intractable. To
address this difficulty, we could assumeq(z) has some specific
parameterized functional form and conduct optimization over
the designated form. A particular form ofq(z) that has
been widely used with great success is the factorized form
over the component variable or the block component variable
{zi} in z [20], i.e. q(z) =

∏
i qi(zi). We therefore can

compute the approximate posterior by findingq(z) of the
factorized form that maximizes the lower boundF (q, θOLD).
The maximization can be conducted in an alternating fashion
for each hidden variable, which leads to [20]

qi(zi) ∝ exp
(
〈ln p(y, z; θ)〉k 6=i

)
. (23)

where 〈·〉k 6=i denotes an expectation with respect to the
distributionsqk(zk) for all k 6= i.

Then in the M-step, a new estimate ofθ is obtained by
maximizing the Q-function

Q(θ, θOLD) = 〈ln p(y, z; θ)〉q(z) . (24)
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B. Likelihood Function Approximation via GAMP

Let z , {x,α1,α2,κ} denote all hidden variables ap-
pearing in our hierarchical model, andθ , {β, v} denote
the unknown deterministic parameters. As discussed in the
previous subsection, the posterior ofz can be approximated
by a factorized form as follows

p(x,α1,α2,κ|y;β, v)
≈ q(x,α1,α2,κ) = q(x)q(α1)q(α2)q(κ). (25)

Following (23), the approximate posteriors can be obtainedas

ln q(x)=〈ln p(y,x,α1,α2,κ;β, v)〉q(α1)q(α2)q(κ)+const,

ln q(α1)=〈ln p(y,x,α1,α2,κ;β, v)〉q(x)q(α2)q(κ)+const,

ln q(α2)=〈ln p(y,x,α1,α2,κ;β, v)〉q(x)q(α1)q(κ)+const,

ln q(κ)=〈ln p(y,x,α1,α2,κ;β, v)〉q(x)q(α1)q(α2)+const.
(26)

We first consider the calculation ofq(x). Keeping those
terms that are dependent onx, we have

ln q(x)

= 〈ln p(y|x;β)p(x|α1,α2,κ; v)〉q(α1)q(α2)q(κ) + const

=
1

2

I∑

i=1

〈
−αi1κi(xi − v)2 − αi2(1− κi)(xi + v)2

〉

+ ln p(y|x;β) + const if xi ∈ [−v, v] ∀i, (27)

and ln q(x) = −∞ otherwise, where the subscripts of〈·〉q(·)
are omitted for simplicity. Since the variables{xi} in the joint
likelihood functionp(y|x;β) are non-factorizable, obtaining
the posteriorq(x) is rather difficult. To overcome this diffi-
culty, we employ the generalized approximate message passing
(GAMP) technique [14] to obtain an amiable approximation
of the joint likelihood functionp(y|x;β).

GAMP is a simplification of loopy BP, and can be used
to compute approximate marginal posteriors and likelihoods.
Here we approximate the joint likelihood functionp(y|x;β)
as a product of approximate marginal likelihoods computed
via the GAMP, i.e.

p(y|x;β) ≈ p̂(y|x;β) ∝
I∏

i=1

N (xi|r̂i, τri ), (28)

where N (xi|r̂i, τri ) is the approximate marginal likelihood
obtained by the GAMP algorithm. To calculatêri and τri ,
an estimate of the posteriorq(x) andβ is required as inputs
to the GAMP algorithm (see the details of the GAMP al-
gorithm provided below). Hence the GAMP algorithm can be
embedded in the variational EM framework: given an estimate
of q(x) and β, use the GAMP to obtain an approximation
of the likelihood functionp(y|x;β); with the approximation
p̂(y|x;β), the variational EM proceeds to yield a new estimate
of q(x) and β, along with estimates of other deterministic
parameters (e.g.v) and posterior distributions for the other
hidden variables (e.g.α1,α2,κ). This iterative procedure is
illustrated in Fig. 4.

j
p p uy x y

j

q x

Fig. 4. Proposed variational EM-GAMP framework, where the hatted
distribution p̂(·) represents an approximation ofp(·).

Algorithm 1 Likelihood Approximation via GAMP
Input: means and variances of posteriorsq(xi): x̂i = 〈xi〉q(xi),
τx
i = 〈xi〉

V

q(xi)
, i = 1, ..., I , where〈·〉Vq(·) denotes the variance

with respect toq(·), and inverse noise varianceβ. Initialize ŝj as
0, j = 1, ..., J .
Output: approximate likelihoodsN (xi|r̂i, τ

r
i ), i = 1, ..., I , and

posteriors ofuj : N (uj |ûj , τ
u
j ), j = 1, ..., J .

Step1. For eachj:
τp

j =
∑

i

A2
jiτ

x
i

p̂j =
∑

i

Ajix̂i − τp

j ŝj

Step2. For eachj:
ûj =〈uj〉p(uj |yj ,p̂j ,τ

p
j )

τu
j =〈uj〉

V

p(uj |yj ,p̂j ,τ
p
j )

ŝj =
ûj − p̂j

τp

j

τ s
j =

1

τp

j

(
1−

τu
j

τp

j

)

Step3. For eachi:

τ r
i =

(
∑

j

A2
jiτ

s
j

)−1

r̂i =x̂i + τ r
i

∑

j

Ajiŝj

Note that besides the approximationp̂(y|xi;β), GAMP also
produces approximations for the marginal posteriors of the
noiseless outputu = [u1, ..., uJ ]

T , Ax, which are given by

p(uj|y, β) ≈ p̂(uj|y, β)
∝ p(yj |uj;β)N (uj |p̂j , τpj ), (29)

where p̂j and τpj are quantities obtained from the GAMP
algorithm. Since the noise is assumed to be white Gaussian
noise, we havêp(uj |y, β) = N (uj |ûj, τzj ), where

τuj =
τpj

τpj β + 1
ûj = τuj

(
yjβ +

p̂j
τpj

)
. (30)

As will be shown later, this approximation can be used to learn
the inverse of the noise variance,β, in the M-step.

Remarks: Generalized approximate message passing
(GAMP) is a very-low-complexity Bayesian iterative
technique recently developed in [14] for obtaining approximate
marginal posteriors and likelihoods. It therefore can be
naturally embedded within the EM framework to provide
an approximate posterior distribution ofx and reduce the
computational complexity, as shown in [21], [22]. Specifically,
the EM-GAMP framework of [21], [22] proceeds in a double-
loop manner: the outer loop (EM) computes the Q-function
using the approximate posterior distribution ofx, and
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maximizes the Q-function to update the model parameters
(e.g. α1,α2,κ); the inner loop (GAMP) utilizes the newly
estimated parameters to obtain a new approximation of the
posterior distribution ofx. However, this procedure is not
suitable for our variational EM framework, because from the
GAMP’s point of view, the hyperparameters{α1,α2,κ} need
to be known and fixed in order to compute an approximate
posterior distribution ofx, while the variational EM treats
the model parameters (e.g.α1,α2,κ) as latent variables.
Therefore, instead of computing the approximate posterior
distribution of x, in our variational EM framework, the
GAMP is simply used to obtain an amiable approximation
of the likelihood functionp(y|x;β), and this approximation
involves no latent variables{α1,α2,κ}. Besides, unlike the
EM-GAMP framework where the inner loop (GAMP) is
implemented in an iterative way, in our proposed variational
EM-GAMP framework, as detailed in Algorithm 1, the
GAMP only needs to go through one iteration to obtain an
approximation of the likelihood function. In fact, the GAMP
algorithm described here is a simplified version of the original
GAMP algorithm by retaining only its first three steps and
skipping its iterative procedure. Note that the original GAMP
algorithm involves a four-step iterative process, in which
the fourth step computes the posterior ofx by using the
approximate likelihood function obtained from the first three
steps.

Note that we can also treat{α1,α2,κ} as deterministic pa-
rameters and resort to the EM-GAMP framework for Bayesian
inference. Nevertheless, in this case, we need to estimate aset
of binary parameters{κi} in the M-step. This is essentially a
combinatorial search problem and the binary estimation may
cause the algorithm to get stuck in undesirable local minima.

GAMP is known to work well forA with i.i.d zero-mean
sub-Gaussian entries, but may fail for a rank-deficientA. One
may refer to the method [23] to improve the stability of the
GAMP against the ill-condition of the matrixA. Nevertheless,
GAMP is expected to perform well in wireless communication
scenarios since indoor and urban outdoor environments are
typically rich in scattering and entries of MIMO channel
matrices are usually assumed to be i.i.d Gaussian [15], [24].

C. E-Step: Update of Hidden Variables

Update of q(x): As discussed above,p(y|x;β) is approxi-
mated as a factorized form ofI independent scalar likelihoods,
which enables the computation ofq(x) (27). Specifically,

using (28), (27) can be simplified as

ln q(x)

=
1

2

I∑

i=1

〈
−αi1κi(xi − v)2 − αi2(1− κi)(xi + v)2

〉

− 1

2

I∑

i=1

(xi − r̂i)
2
/
τri + const

= −
I∑

i=1

(
1

2
(〈κi〉〈αi1〉 − 〈κi〉〈αi2〉+ 〈αi2〉+ 1/τri )x

2
i

+
(
(〈κi〉〈αi1〉+ 〈κi〉〈αi2〉 − 〈αi2〉) v + r̂i/τ

r
i

)
xi

)
+const

if xi ∈ [−v, v] ∀i, (31)

and ln q(x) = −∞ otherwise. It can be seen thatln q(x) has
a factorized form, which implies that hidden variables{xi}
have independent posterior distributions. Also, it can be readily
verified that the posteriorq(xi) follows a truncated Gaussian
distribution

q(xi) =





N (xi|µi, σ
2
i )

φi
if xi ∈ [−v, v],

0 otherwise,
(32)

where the varianceσ2
i , meanµi and the normalization constant

φi are given respectively as

σ2
i = (〈κi〉〈αi1〉 − 〈κi〉〈αi2〉+ 〈αi2〉+ 1/τri )

−1
, (33)

µi =
(
(〈κi〉〈αi1〉+ 〈κi〉〈αi2〉 − 〈αi2〉) v + r̂i/τ

r
i

)
σ2
i , (34)

φi = Φ((v − µi)/σi)− Φ ((−v − µi)/σi) . (35)

Update of q(α1): Keeping only the terms that depend on
α1, the variational optimization ofq(α1) yields

ln q(α1)

= 〈ln p(x|α1,α2,κ; v)p(α1)〉q(x)q(α2)q(κ) + const

=

I∑

i=1

〈ln p(xi|αi1, αi2, κi; v)p(αi1)〉q(x)q(α2)q(κ) + const

= −
I∑

i=1

〈κi〉 ln ηi1 +
I∑

i=1

((
a+

1

2
〈κi〉 − 1

)
lnαi1

−
(
b+

1

2
〈κi〉

〈
(xi − v)2

〉)
αi1

)
+ const. (36)

We see thatln q(α1) also has a factorized formln q(α1) =∑
i ln q(αi1). Note thatηi1 (defined in (15)) is a function of

αi1, which makes the inference ofq(αi1) difficult. To address
this difficulty, we use the latest computed value to replace
ηi1 i.e. let ln ηi1 ≈ ln η

(t)
i1 . Note that similar approximations

were also adopted in [22] to facilitate the inference. With this
approximation, we obtain

ln q(αi1)

=

(
a+

1

2
〈κi〉 − 1

)
lnαi1 −

(
b+

1

2
〈κi〉

〈
(xi − v)2

〉)
αi1

+ const. (37)
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Thereforeq(αi1) follows a Gamma distribution

q(αi1) = Gamma(αi1|ãi1, b̃i1) (38)

with

ãi1 = a+
1

2
〈κi〉 (39)

b̃i1 = b+
1

2
〈κi〉

〈
(xi − v)2

〉
. (40)

Update of q(α2): Following a procedure similar to the
derivation ofq(α1), we have

q(αi2) = Gamma(αi2|ãi2, b̃i2) (41)

with

ãi2 = a+
1

2
(1− 〈κi〉) (42)

b̃i2 = b+
1

2
(1− 〈κi〉)

〈
(xi + v)2

〉
. (43)

Update of q(κ): The approximate posterior distribution
qκ(κ) can be computed as

ln q(κ)

= 〈ln p(x|α1,α2,κ; v)p(κ)〉q(x)q(α1)q(α2) + const

=

I∑

i=1

〈ln p(xi|αi1, αi2, κi; v)p(κi)〉q(xi)q(αi1)q(αi2) + const

=

I∑

i=1

(
1

2

(
〈lnαi1〉 − 〈lnαi2〉 −

〈
(xi − v)2

〉
+
〈
(xi + v)2

〉)

+ 〈ln ηi2〉 − 〈ln ηi1〉+ ln
π

1− π

)
κi + const. (44)

We see thatln q(κ) =
∑

i ln q(κi) and, moreover, the posterior
q(κi) obeys a Bernoulli distribution, i.e.κi takes values zero or
one, and the corresponding probability can be computed from
(44). To simplify computation, we can use the approximation
〈ln ηil〉 ≈ ln η

(t)
il , l = 1, 2.

In summary, the variational Bayesian inference involves
updates of the approximate posterior distributions for hidden
variablesx, α1, α2 and κ in an alternating fashion. Some
of the expectations and moments used during the update are
summarized as

〈xi〉 = µi −
σ2
i

φi

(
N (v|µi, σ

2
i )−N (−v|µi, σ

2
i )
)
, (45)

〈x2i 〉 = ui〈xi〉+σ2
i −

σ2
i

φi

(
N (v|µi, σ

2
i )+N (−v|µi, σ

2
i )
)
, (46)

〈αil〉 = ãil/b̃il, l = 1, 2, (47)

〈lnαil〉 = ψ(ãil)− ln b̃il, l = 1, 2, (48)

〈κi〉 = q(κi = 1), (49)

where

ψ(a) ,
∂ ln Γ(a)

∂a
(50)

is known as thedigamma function [25].

Discussions: We can gain some insight into our proposed
algorithm by examining the update rules for precision param-
eters{αi1, αi2}. Sincea andb are set very small, the update
rules (47) for{αi1, αi2} are approximately given by

〈αi1〉 =
1

〈(xi − v)2〉 (51)

〈αi2〉 =
1

〈(xi + v)2〉 (52)

We see that the posterior mean of the precision, say〈αi1〉, is
inversely proportional to the distance between the entry and the
boundary pointv. Whenxi is close to the boundary pointv,
the posterior mean of the precisionαi1 will become large. As a
consequence, the prior distribution becomes sharp around the
boundary pointv. Hence the prior has the potential to push the
entryxi closer to the boundary pointv, which in turn results
in a larger〈αi1〉 according to (47). This feedback mechanism
keeps pushing most of the entries towards the boundary until
they are eventually located on one of the boundary points. Our
simulation results further corroborate our above discussions:
the proposed algorithm yields a solution with a substantial
percentage of entries lying exactly on the boundary points.

D. M-Step: Update of Deterministic Parameters

As indicated earlier, in the variational EM framework,
the deterministic parametersθ = {β, v} are estimated by
maximizing the Q-function, i.e.

θNEW = max
θ

Q(θ, θOLD) = 〈ln p(y, z; θ)〉q(z) . (53)

Update ofβ: We fist discuss the update of the parameterβ,
the inverse of the noise variance. Since the GAMP algorithm
provides an approximate posterior distribution for the noiseless
outputu , Ax, we can simply treatu as hidden variables
when computing the Q-function, i.e.

Q(β, β(t)) =

J∑

j=1

〈ln p(yj |uj;β)〉p̂(uj |y,β) + const

=
J

2
lnβ − 1

2
β

J∑

j=1

〈
(yj − uj)

2
〉
+ const. (54)

The new estimate ofβ is obtained by maximizing the Q-
function, which can be solved by setting the derivative of
Q(β, β(t)) with respect toβ to zero. The derivative is given
as

∂Q(β, β(t))

∂β
=

J

2β
− 1

2

J∑

j=1

〈
(yj − uj)

2
〉
. (55)

Setting it to zero, we obtain

β(t+1) =
J

∑J

j=1 〈(yj − uj)2〉
. (56)

Update of v: We now discuss how to update the boundary
parameterv. The boundary parameterv can be updated by
maximizing the Q-function with respect tov. Nevertheless,
the optimization is complex since the Q-function involves
computing the expectation of the normalization termsηil,
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i = 1, ..., I, l = 1, 2, with respect to the posterior distributions
p(αil). Here we propose a heuristic approach to updatev.
The basic idea is to find an appropriate value ofv such that
the mismatch‖y−Ax̂‖22 is minimized, wherêx denotes the
estimated signal which is chosen as the mean of the posterior
distribution q(x). Note that when the boundary parameterv
is small, the mismatch could be large since there may not
exist a solution to satisfy the constrainty = Ax given that
‖x‖∞ ≤ v. Therefore we can firstly set a small value ofv,
then gradually increasev by a step-size such that the mismatch
keeps decreasing and eventually becomes negligible. Define
δ(x̂) , ‖y − Ax̂‖22. Specifically, the step-size∆v can be
obtained by solving the following optimization problem:

∆v = min
∆v

δ(x̂(t) + γ∆v), (57)

wherex̂(t) denotes the estimate (i.e. posterior mean ofq(x))
of the signal at iterationt, andγ , [γ1, ..., γI ]

T is defined as

γi =

{
1, if x̂(t)i ≥ 0

−1, if x̂(t)i < 0
. (58)

The rationale behind the optimization (57) can be explained
as follows. Since our proposed algorithm yields a solution
with most of its entries located on the boundary points, if we
increase the boundaryv by a sufficiently small step-size∆v,
we can expect that the signalx will expand accordingly. We
wish to find a step-size∆v such that the expanded signal will
result in a reduced mismatch. The problem (57) is a scalar
least-square problem, and its solution is given by

∆v =
(y −Ax̂(t))TAγ

‖Aγ‖22
. (59)

Thenv can be updated as

v(t+1) = v(t) +∆v. (60)

E. Summary

In summary, our algorithm is developed by resorting to the
variational EM strategy. The GAMP technique is embedded in
the variational EM framework to obtain an approximation of
the joint likelihood functionp(y|x, β) which has a factorized
form in terms of the variables{xi}. Specifically, the algorithm
involves an iterative process as follows: given an estimateof
q(x) and β, we use the GAMP to obtain an approximation
of the likelihood functionp(y|x;β); with the approximation
p̂(y|x;β), the variational EM proceeds to yield a new estimate
of q(x) and β, along with the approximate posteriors of
the other hidden variables and an estimate of the boundary
parameterv. For clarity, we summarize our proposed algorithm
as follows.

Note that the dominating operations of the proposed al-
gorithm in each iteration only involve simple matrix-vector
multiplications, which scales asO(JI) (J < I). Thus the pro-
posed algorithm has a computational complexity comparable
to the FITRA algorithm [12] which also has a computational
complexity ofO(JI) per iteration. Besides, as will be shown
in our experiments, the proposed algorithm has a much faster
convergence rate than the FITRA algorithm, which is more

Algorithm 2 EM-TGM-GAMP
Initialization : β(0) = 103, v(0) = ‖y‖∞/‖A‖∞, initialize the
means ofq(x), q(α1), q(α2), q(κ) as0, 1, 1, 1

2
1 respectively,

set the variance ofq(x) as1, and set iteration numbert = 0.
Repeat the following steps untilt ≥ tMAX

1. Based on the mean and variance ofq(x) andβ(t),
calculate the approximate distributionsp̂(y|x; β(t))

and p̂(uj |y, β
(t)), j = 1, ..., J , via Algorithm 1.

2. Using the approximate likelihood̂p(y|x;β(t)), update
the posteriors of hidden variables:q(x), q(α1), q(α2)
andq(κ) via (32)-(49).

3. Compute the new estimateβ(t+1) using (56), and
obtain thev(t+1) via (58)-(60).

4. Increaset = t+ 1 and return to step1.

favorable for real-time implementation needed for practical
systems.

V. SIMULATION RESULTS

We now carry out experiments to illustrate the effectiveness
of the proposed truncated Gaussian mixture (TGM) model-
based variational EM-GAMP algorithm2 (referred to as the
EM-TGM-GAMP). We compare our approach with the FITRA
algorithm [12], the zero-forcing (ZF) precoding scheme, and
the amplitude clipping scheme [4] in which the ZF is first
employed and then the peaks of the resulting signal are clipped
with a specified threshold.

In our simulations, we consider a MIMO system which has
M = 100 antennas at the BS and servesK = 10 single-
antenna users. A16-QAM constellation is considered, and
the number of OFDM tones is set toN = 128, in which
only |T | = 114 tones are used for data transmission [18]. We
assume that the channel is frequency-selective and modeledas
a tap-delay line withD = 8 taps. The time-domain channel
response matriceŝHd, d = 1, ..., D, have i.i.d. circularly
symmetric Gaussian distributed entries with zero mean and
unit variance. The frequency-domain response matrixHn can
be obtained as

Hn =

D∑

d=1

Ĥd exp

(−j2πdn
N

)
. (61)

For the FITRA algorithm, the regularization parameter is set
to beλ = 0.25 as suggested by [12]. Also, unless explicitly
stated otherwise, the maximum number of iterations of the
FITRA and the EM-TGM-GAMP are set to be 2000 and 200,
respectively.

The complementary cumulative distribution function
(CCDF) is used to evaluate the PAPR reduction performance.
The CCDF denotes the probability that the PAPR of the
estimated signal exceeds a given thresholdPAPR0, i.e.

CCDF(PAPR0) = Pr(PAPR > PAPR0). (62)

Also, to evaluate the multiuser interference of the transmit
signals, we define theMUI as

MUI =

∑
n∈T ‖sn −Hnwn‖22∑

n∈T ‖sn‖22
. (63)

2Codes are available at http://www.junfang-uestc.net/codes/EM-TGM-GAMP.rar

http://www.junfang-uestc.net/codes/EM-TGM-GAMP.rar
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Fig. 5. Time/Frequency representation for different schemes. (a), (c), (e) and (g) are time-domain signals for ZF, clipping, FITRA and EM-TGM-GAMP,
respectively (PAPR: ZF = 10.6 dB, Clipping = 4.3 dB, FITRA = 2.4 dB, and EM-TGM-GAMP= 0.8 dB). (b), (d), (f) and (h) are frequency-domain
signals for respective schemes (MUI: ZF = −∞ dB, Clipping= −15.3 dB, FITRA = −64.1 dB, and EM-TGM-GAMP= 73.6 dB; OBR: ZF = −∞ dB,
Clipping = −13.8 dB, FITRA = −60 dB, and EM-TGM-GAMP= −70.5 dB)

Besides, the out-of-band (power) ratio (OBR) is introduced
to measure the out-of-band radiation of the solution, whichis
define as

OBR =
|T |∑n∈T c ‖wn‖22
|T c|∑n∈T ‖wn‖22

. (64)

Note that, for the ZF procoding scheme, we haveOBR = 0
and MUI = 0, while for the other three schemes, we always
haveOBR > 0 andMUI > 0.

It is interesting to examine the signals estimated by respec-
tive schemes. In the (a), (c), (e) and (g) of Fig. 5, we depict
the real-part of the first transmit antenna’s time-domain signal
(i.e. â1) estimated by respective schemes (the imaginary part
behaves similarly). We observe that our proposed algorithm
yields a solution with most of its entries (about84.4%) located
on the boundary points, which corroborates our previous claim
that the proposed truncated hierarchical Gaussian mixture
model encourages a quasi-constant magnitude solution. Such
a solution, clearly, has a low PAPR as it looks like a constant-
modulus signal. The solution of the FITRA algorithm has
fewer entries (about49.2%) located on the boundary points.

For the ZF scheme, its solution exhibits a large variation with
a few high peaks. The solution of the clipping scheme is only a
slightly alleviated version of the ZF solution. Numerical results
also verify our observations: our proposed algorithm has the
lowest PAPR (PAPR associated with the first transmit antenna)
of 0.8 dB, the FITRA algorithm and the clipping scheme have
higher PAPRs of2.4 dB and 4.3 dB, repectively, while the
ZF scheme has the highest PAPR of10.6 dB. We see that
our proposed algorithm renders a much lower PAPR than the
other three schemes. The (b), (d), (f) and (h) of Fig. 5 depict
the magnitudes of the frequency-domain signala1 vs. the
OFDM tone index. Both the EM-TGM-GAMP and the FITRA
have small MUIs and out-of-band radiations: their MUIs are
given by−73.6 dB and−64.1 dB, respectively, and OBRs are
given by−70.5 dB and−60 dB, respectively. In contrast, the
clipping scheme incurs a much higher MUI and out-of-band
distortion, with its MUI and OBR given by−15.3 dB and
−13.8 dB, respectively.

To better evaluate the PAPR reduction performance, we plot
the CCDF of the PAPR for respective schemes in Fig. 6(a).
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Fig. 6. PAPR and symbol error rate (SER) performance for various schemes. (a) CCDF of the PAPR, (b) SER performance.

The number of trials is chosen to be 1000 in our experiments.
Note that PAPRs associated with allM antennas are taken in
account in calculating the empirical CCDF. We also include
the results of our proposed algorithm obtained at the20th
iteration. We can see that our proposed algorithm with 200
iterations achieves a substantial PAPR reduction: it reduces
the PAPR by more than11 dB compared to the ZF scheme (at
CCDF(PAPR) = 1%), by about2 dB compared to the FITRA
algorithm with2000 iterations, and by about3.2 dB compared
to the clipping scheme. Also note that the proposed algorithm
with only 20 iterations can obtain a PAPR that even is lower
than the FITRA, meanwhile exhibiting a decent MUI and OBR
(here MUI and OBR are averaged over 1000 independent runs)
given by−41.8 dB and−21.7 dB, respectively.

The SER performance of respective schemes is shown in
Fig. 6(b), where the signal-to-noise ratio (SNR) is defined as
SNR = ‖x‖22/MNo, No denotes the variance of the receiver
noise (c.f. (4)). We observe that the proposed algorithm incurs
an SNR-performance loss of2.5 dB and1.7 dB (at SER =
10−3) compared to the ZF and FITRA schemes, respectively.
This performance loss, as discussed in [12], is primarily due to
an increase in the norm of the obtained solutionx, i.e.‖x‖22. It
is not difficult to see that the solution obtained by our proposed
method has a larger norm than the solution of the FITRA since
our solution has more entries located on the boundary points.
Also note that the ZF scheme renders the least-norm solution.
In order to maintain the same SNR, our solution requires a
stronger normalization, which causes the SER performance
loss compared to the ZF and FITRA schemes. It can also be
observed that the SER performance gap can be reduced if we
only perform20 iterations for our proposed method, in which
case the resulting solution has fewer entries located on the
boundary points and hence the increase of the norm of the
solution is not that significant. Note that the performance loss
of the clipping scheme is mainly caused by the residual MUI.

We now examine the convergence rates of our proposed
method and the FITRA algorithm. The (a), (b) and (c) of
Fig. 7 show the PAPR, MUI and OBR vs. the number of
iterations, respectively. Results are averaged over 1000 inde-
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Fig. 7. Convergence rates of different metrics for EM-TGM-GAMP and
FITRA. (a) PAPR, (b) MUI, (c) OBR

pendent runs and the PAPR results are averaged over PAPRs
associated with all transmit antennas. Our numerical results
show that the average MUI and OBR of our proposed method
at the200th iteration are−72.5 dB and−69.1 dB respectively,
while the average MUI and OBR of the FITRA algorithm at
the 2000th iteration are−63.3 dB and−60.3 dB. With less
than 200 iterations, our proposed algorithm achieves better
MUI cancelation than the FITRA algorithm with even2000th
iterations. From Fig. 7(a), we also notice that our proposed
algorithm has a fast convergence rate and is able to obtain
a low-PAPR solution within only 200 iterations, whereas it



12

20 40 60 80 100 120
0

2

4

Number of transmit antennas M
(a)

P
A

P
R

[d
B

]

 

 
FITRA
EM−TGM−GAMP

20 40 60 80 100 120
−70

−65

−60

−55

Number of transmit antennas M
(c)

O
B

R
[d

B
]

 

 
FITRA
EM−TGM−GAMP

20 40 60 80 100 120
−80

−70

−60

−50

Number of transmit antennas M
(b)

M
U

I[d
B

]

 

 
FITRA
EM−TGM−GAMP

Fig. 8. (a) PAPR vs. number of transmit antennas, (b) MUI vs. number of
transmit antennas, (c) OBR vs. number of transmit antennas.

takes the FITRA algorithm about 2000 iterations to achieve a
reasonably low PAPR.

Lastly, we investigate the PAPR-reduction performance un-
der different number of transmit antennas, where the number
of users is fixed to beK = 10, and the number of transmit
antennas at the BS varies from20 to 120. Fig. 8 plots the
PAPR, MUI and OBR as the number of transmit antennas
varies, where results are averaged over 1000 independent runs
and the PAPR results are averaged over PAPRs associated
with all transmit antennas. We observe that both algorithms
achieve a low PAPR when sufficient DoFs at the base station
are available. Nevertheless, the proposed method is capable of
exploiting the available DoFs more efficiently as the number
of of transmit antennas increases.

VI. CONCLUSIONS

We considered the problem of joint PAPR reduction and
multiuser interference (MUI) cancelation in OFDM based
massive MIMO downlink systems. A hierarchical truncated
Gaussian mixture prior model was proposed to encourage
a low PAPR solution/signal. A variational EM algorithm
was developed to obtain estimates of the hyperparameters
associated with the prior model, as well as the signal.
Specifically, the GAMP technique was embedded into the
variational EM framework to facilitate the algorithm devel-
opment. The proposed algorithm only involves simple matrix-
vector multiplications at each iteration, and thus has a low
computational complexity. Simulation results show that the
proposed algorithm achieves notable improvement in PAPR
reduction as compared with the FITRA algorithm [12], and

meanwhile renders better MUI cancelation and lower out-of-
band radiation. The proposed algorithm also demonstrates a
fast convergence rate, which makes it attractive for practical
real-time systems.
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