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Abstract—We consider the problem of peak-to-average power data on multiple carrier frequencies, has been widely used
ratio (PAPR) reduction in orthogonal frequency-division multi-  to deal with frequency-selective fading. However, a major
plexing (OFDM) based massive multiple-input multiple-ouput o 5hjem associated with the OFDM s that it is subject to

(MIMO) downlink systems. Specifically, given a set of symbol X . .
vectors to be transmitted to K users, the problem is to find an & high peak-to-average power ratio (PAPR) owing to the

OFDM-modulated signal that has a low PAPR and meanwhile en- independent phases of the sub-carriers [2]. To avoid out-
ables multiuser interference (MUI) cancelation. Unlike previous of-band radiation and signal distortion, handling this hhig
works that tackled the problem using convex optimization, ve  PAPR requires a high-resolution digital-to-analog coterer
take a Bayesian appr_o_ach and develop an efficient PAPR reduc- (DAC) and a linear power amplifier (PA) at the transmitter,
tion method by exploiting the redundant degrees-of- freedm of o . . .

the transmit array. The sought-after signal is treated as a andom Wh'Ch_ Is not on_Iy expensive but also power-inefficient [3_’ﬂleT
vector with a hierarchical truncated Gaussian mixture prior, ~Situation deteriorates when the number of antennas is,large
which has the potential to encourage a low PAPR signal with leaving such systems impractical. Therefore, it is of alci
most of its samples concentrated on the boundaries. A vari@nal  jmportance to reduce the PAPR of massive MIMO-OFDM

expectation-maximization (EM) strategy is developed to dain  gygtemgs to facilitate low-cost and power-efficient hardwar
estimates of the hyperparameters associated with the prianodel, . .
implementations.

along with the signal. In addition, the generalized approximnate X .
message passing (GAMP) is embedded into the variational EM  Many techniques have been developed for PAPR reduction
framework, which results in a significant reduction in computa-  in single-input single-output (SISO) OFDM wireless system

tional complexity of the proposed algorithm. Simulation results The most prominent are clippin@l/[4], tone reservation (TR)
§how our proposed algqrithm achieve.s a substantial performnce [5], active constellation extension (ACE) [6], selectedapiag
'mgl;g;ﬁ?(;ﬂtdoggrrnel)j'tsatt'ig%aTﬁghn?d;;& terms of both the PAPR (SLM) [[7], partial transmission sequenée (PTS) [8] and the
¢ P . plexy: ) . For a detailed overview, we refer readersltb [3], [9]. Altghu
atil,?,g?xEIAerrgm’\?SSNe MIMO-OFDM, PAPR reduction, vari- e paAPR-reduction schemes can be extended to point-to-

' point MIMO systems easily_[9]=[11], extension to the multi-

l. INTRODUCTION user (MU) MIMO downlink is not straightforward, mainly be-

cause joint receiver-side signal processing is almost gsipte

K | | | MIMO. i .~ in practice as the users are distributed. Recently, a newRPAP
hown as farge-scaie or very-large , IS @ promising, 4 ction method [12] was developed for massive MIMO-

technology to meet the ever growing demands for hlghEj’FDM systems. The proposed scheme utilizes the redundant

th_ro?ghput and b_etttta_r qualltty-of—selrwc& of _nex&gljl\e;lr(l)erat degrees-of-freedom (DoFs) resulting from the large number
wireless communication system] [1]. Massive SYS5f antennas at the BS to achieve joint multiuser interfegenc

tems are those that are ngpped W'th a large numbgr MUI) cancelation and PAPR reduction. Specifically, thelpro
antennas at the base station (BS) simultaneously servin & was formulated as a linear constraired optimization

armoblem and a fast iterative truncation algorithm (FITRA)

Massive multiple-input multiple-output (MIMO), also

much smaller number of single-antenna users sharing the s

time'freqlﬁlrﬁé ban?width.lln idditiot?] to hi[ghf[a_r Itf:rogghpuwas developed ir_[12]. However, the FITRA algorithm shows
massive - Syslems also have Ine potential 10 IMProy 1,56 5 fairly low convergence rate. Also, the algorithm
the energy efficiency and enable the use of inexpensive, lo

o . nploys a regularization parameter to achieve balancedestw
power components. Hence, it is expected that massive Ml

il bri dical ch to fut el - cat e PAPR reduction and the MUI cancelation (i.e. data fit-
Wil bring radical changes 1o future wireless communica IOting error). The choice of the regularization parameter may
systems. bf

| tice. broadband wirel cati e tricky in practice. On the other hand, the regularization
fernfrgrrﬁcflrze' egoca-sggctwgef:jsn Cog:?#g'%ignfsremaynilf)érameter may be seen instead as an additional degree of
S quency v Ng. 9 ITEAUENC ¢ 0 o dom that allows to regulate the operation of the algorit

division multiplexing (OFDM), a scheme of encoding digita n [13], a peak signal clipping scheme was employed to reduce

Hengyao Bao, Jun Fang, Zhi Chen, and Shaogian Li are with tietal  the PAPR and some of the antennas at the BS are reserved to

Key Laboratory of Science and Technology on Communicafititsversity  compensate for peak-clipping signals. This method has arlow
of Electronic Science and Technology of China, Chengdu 811Thina,

Email: JunFang@uestc.edu.cn, chenzhi@uestc.edu. q@uksstc.edu.cn computational complexity. But it achieves only a mild PAPR
Hongbin Li is with the Department of Electrical and Compuagineering, reduction and those antennas reserved for compensation may
Stevens Institute of Technology, Hoboken, NJ 07030, USAndi: Hong-  jncur Iarge PAPRSs.
bin.Li@stevens.edu . .
This work was supported in part by the National Science Fatiod of In this paper, we develop a novel Bayesian approach to

China under Grant 61172114. address the joint PAPR reduction and MUI cancelation prob-


http://arxiv.org/abs/1511.09013v1

lem for downlink multi-user massive MIMO-OFDM systems.  Il. SYSTEM MODEL AND PROBLEM FORMULATION

Specifically, MUl cancelation can be formulated as an un-\ye first introduce the system model of OFDM based mas-
derdetermined linear inverse problem which admits numrogye MIMO systems. Then we discuss some recent research

solutions. To search for a low PAPR solution, a hierarchicgl, paAPR reduction for multi-user massive MIMO-OFDM
truncated Gaussian mixture prior model is proposed aggstems.

assigned to the unknown signal (i.e. solution). This hierar
chical prior has the potential to encourage a quasi—const%\n System Model
magnitude solution with as many entries as possible lying

on the truncated boundaries, thus resulting in a low PAPR.The system model of the OFDM-based massive MIMO
A variational expectation-maximization (EM) algorithmds- downlink scenario is depicted in Figl 1, where the BS is
veloped to obtain estimates of the hyperparameters assdci@SSumed to havé/ transmit antennas and sery indepen-

with the prior model, along with the signal. In addition, thélent single-antenna userk (< M), and the total number of
generalized approximate message passing (GAMP) techni@':eDM tones isN. In practice, the set of tones available are
[14] is employed to facilitate the algorithm developmerfiivided into two setsT and 7, where the tones in set are

in the expectation step. This GAMP technique also helb@ed for data transmission and the tones in its complementar
significantly reduce the computational complexity of the-pr Set7¢ are used for guard band (unused tones at both ends of
posed algorithm. Simulation results show that the proposkt¢ Spectrum). Hence, for each tome= 7, the corresponding
method presents a substantial improvement over the FITRAX 1 vectors, comprises the symbols fak™ users, which

algorithm in terms of both PAPR reduction and computational€ usually chosen from a complex-valued signal alph#bet
complexity. We normalize the data vector to satishyf||s, |3} = 1. For

each tonen € 7€, we sets,, = Ox 1 such that no signal is

During the review process of the current work, it wa§ansmitted in the guard band. _ _ _
brought to our attention that an efficient approximate mgssa Sinceé cooperative detection among users is often impossi-
passing (AMP)-based Bayesian method was recently propo?é% precodmg must be performed at t_he BS to remove multi-
[15] for PAPR reduction for massive MIMO systems, which!Ser interference (MUI). Usually, the signal vector on ik
can be extended to the case with OFDM modulation. TH@ne is linearly precoded as
rationale behind our work and the above work are similar: w, = P,s,, 1)
both methods cast the PAPR reduction problem as a Bayesian
inference problem and employ priors to promote solutiorts wiwhere w, € CM*! is the precoded vector that contains
constant envelopes. The prior distributions employed legeh Symbols to be transmitted on theth sub-carrier through
two works, however, are very different. The prior proposed the M antennas respectively, ant, € C*** represents
[15] assigns each coefficient to a random point on a circla withe precoding matrix for thesth OFDM tone. Zero-forcing
a certain radius on the complex plane. Unlike our work, thi&F) precoding and minimum-mean square-error (MMSE)
prior only encourages entries of the obtained solution to féecoding are two classical precoding schemes. The former

close to the boundary but cannot guarantee that they exa@ips at removing MUI completely, while the latter tries to
lie on the boundary points. achieve balance between the MUI cancellation and the noise

enhancement. In this paper, we consider the ZF procoding
The rest of this paper is organized as follows. In Sedfibn Bcheme. Note that sincE < M, the ZF precoding matrix
we introduce the data model, basic assumptions, and the PAFg3 an infinite number of forms, among which the most widely
reduction problem. A new hierarchical Bayesian prior modésed is
is proposed in Sectidn]Il, and an efficient Bayesian alfanit pr— HY(H,H")! @)
is developed in Sectidn V. Simulation results are provided " AT
Section[Y, followed by concluding remarks in Sectfori VI. where H,, € CX*M denotes the MIMO channel matrix
associated with the:ith tone. Here we assume the channel
Notations: Lowercase boldface is used for column vectomatrix H,,, ¥n to be known at the transmitter, which can be
x, and uppercase for matriceX. The superscripty-)” acquired by exploiting the channel reciprocity of time dion
and (-)f represent the transpose and conjugate transpodeplexing (TDD) systems (i.e., the downlink channel is the
respectively.| x|, is used to denote thé, norm of vector transpose of the uplink channel).
x, and ||z|| - stands for the/., norm, /s norm is define  After precoding, all precoded vectots,, are reordered to
as ||z)|r. = max{||R{z}|, |S{z}|w}, with R{z} and M antennas for OFDM modulation,
S{«x} denoting the real and imaginary part®f respectively. 3)
F'y denotes theV x N unitary discrete Fourier transform ’
(DFT) matrix. TheN x N identity matrix and thel/ x N all- wherea,,, € CV*! represents the frequency-domain signal to
zeros matrix are denoted by and0,,« n, respectively. We be transmitted from theath antenna. The time-domain signals
denote the pdf of Gaussian random variablgith meanu and are obtained through the inverse discrete Fourier tramsfor
variances? asN (z; i, o2), for the special case 0¥ (x;0,1), (IDFT), i.e., a,, = FXa,,, ¥m. Then, a cyclic prefix (CP) is
we write the cdf a®(x). The symbolz denotes the Kronecker added to the time-domain samples of each antenna to elimi-
product. nate intersymbol interference (ISl). Finally, these saapre

(@) - -ay]=|w; - wN]T
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Fig. 1. System model for the downlink of OFDM based massivéI@| with N OFDM tonesM transmit antennas anll independent single-antenna users.

converted to analog signals and transmitted via the freguenan infinite number of precoded signais £ [w?, ..., wk]T
selective channel. that achieve perfect MUI cancelation. Thus there may exist a
At the receivers, after removing the CPs of the receiverdndidatav whose associated time-domain signiis, } have
signals, the DFT is performed to obtain the frequency-domdow PAPRs. In this paper, instead of designing the procoding
signals. The receive vector consisting/gfusers’ signals can matrix, we directly search for the signal to achieve a joint
be described as PAPR reduction and MUI cancelation. Specifically, in order
o= How, +e,. Vn @) to remove the MUI, the precoded vectars, need to satisfy:
wherer,, € CK*1 denotes the receive vector associated with
the nth tone, ande,, € CX*1 s the receiver noise and has sn = Hpwn, neT, (62)
i.i.d. circularly symmetric complex Gaussian entries vagto- Opx1 =wn, n€TC. (6b)
mean and variancd,. If the ZF precoding scheme is used, b : . .
combining [), ) andC4), the received signal vector equ;The whole linear constraints dfl(6) can be further written as
to r, = s, + e, ¥n, which means the MUI is perfectly s=Huw (7

removed. .
wheres € CVEx1 denotes the concatenation of all vectors on

B. Peak-to-Average Power Ratio (PAPR) Reduction the left-hand side of {6)H is a block diagonal matrix with its
' diagonal blocks equal té#f,, for n € 7 andI,; for n € T€.

OFDM modulation typically exhibits a large dynamic rang‘fﬁ\ccording to [B), the reordering operation can be equiijen
because the phases of the sub-carriers are independermthof itten as a linear transformation. i.e

other, which may combine in a constructive or destructive
manner. To avoid out-of-band radiation and signal distorti a=Tw, (8)
high-solution DACs and linear power amplifiers are required

at the transmitter to accommodate the large peaks of OF

signals, which leads to expensive and power-inefficient FEESIgNS theM entries of each preCOdgd vector to thé
chains. antennas respectively. Recallidg, = Fya.n,, Ym, (@) and

PAPR is defined as the ratio of the peak power of the sigrf@: e have
to its average power. Specifically, the PAPR atstith transmit s— HT Fa, ©)
antenna is defined as

erea = [al,..;a%,]T, T is a permutation matrix that

= A ~ A (AT ~T 1T i
N || % where F' = Iy, ® Fy, anda = [a;,...,4),] . Given a

[aml2 (5) symbol vectors, our goal is to search for a signalsatisfying

iz the above equation](9), and meanwhile its sub-vedétgri.e.
where the operatof - [|%; is used because RF-chains oftefhe signal to be transmitted at each antenna, having a low
process and modulate the real and imaginary part of imeAPR. This problem can be formulated as a minimax problem
domain samples independently. It should also be noted thghich minimizes the maximum PAPR among all antennas
we only consider the PAPR of discrete-time OFDM signalgbject to the linear constraint defined [d (9). Nevertreles
in this paper, one can obtain its continuous-time countérpghis problem, as indicated in [12], is complex to solve. To
precisely by implementing ah-times oversampling in OFDM circumvent the difficulty, the minimax problem is replaced b
modulation [16f] Since many conventional MIMO-OFDM g constrained optimization which minimizes the norm of

systems, such as 3GPP LTE [17] and IEEE 802.11.n [18], a vector formed by aggregating all time-domain vectors
disallow such an oversampling operation, here we ignore tl{lgm} [12]

difference as in[[12] (i.e.L = 1). o
When the number of transmit antennas is larger than the min |[@lls subject tos = HT' Fa. (10)

number of users, numerous ZF precoding matrices are av.

able. In other words, for a set &f,, n = 1, ..., N, we have

PAPR,, £

tEW‘iis problem can be further converted into a real-valuechfor
as follows [12]

linstead of N-point IDFT, L-times oversampling can be implemented by

LN-point IDFT of the frequency-domain signals with—1) N zero-padding. min ||z[lo. - subject toy = Aw, (11)



where To encourage a quasi-constant magnitude solution, we pro-
- ~ pose a hierarchical truncated Gaussian mixture prior fer th
~ | R{s} ~ |R{a} ) ‘ e
y= 3{3}| T = s{a}| signal . In the first layer, coefficients ok are assumed
— T T independent of each other and each entryis assigned a
A %{ET E} _\’{_HT _F} truncated Gaussian mixture distribution:
S{HT'F} R{HT'F} |’

ﬂ_./\/(a:i;v,ozi_ll) n ./\/'(xi;—v,ozi}l)

and the dimension ofA is 2(|7|K + [T¢|M) x 2N M. For M1 (1—m) Nio
notational convenience, let £ 2(|T|K + [T¢|M) and] £  P(zi) = it 2 € [—v,0, Y
2N M. .

0 otherwise

Intuitively, via minimizing the largest magnitude of emsi
of z, the PAPR associated with each transmit antenna canvideere the first component of {14) is characterized by a
reduced. This problem can be solved exactly by reformuatitruncated Gaussian distribution with its mean and variance
(1) as a linear programming problem, but is computatignajiven by v and a;,', respectively; the second component
prohibitive when the signal dimension is large. To develop ds characterized by a truncated Gaussian distribution with
efficient algorithm, the equality constraint is relaxed|jas— its mean and variance given byv and aj,', respectively;
Azl|; <4 in [12]. Hence the optimizatiof (11) can eventuallyr € [0, 1] is a mixing coefficient that denotes the probability

be reformulated as of generatinge; from the first component; the distribution lies
. ) within the interval[—v, v], i.e. from the mean of the second
min Azl + |y — Azl]3, (12) component to the mean of the first component; apdis a

where A\ > 0 is a regularization parameter. An efficienpormal'Z"’ltlon constant of théh component, given by

numerical method, namely, the fast iterative truncaton a 1 _ o — 1

gorithm (FITRA), was employed [12] to solvd {12). The "~ 3 P(=2vvan), m2 = ®2vyai) 2 (15)
FITRA algorithm requires to choose a suitable regulararati The second layer specifies Gamma distributions as hypesprio
parameter) to balance between the PAPR reduction and thger the precision parametets, 2 {a;1}., and ap 2
data fitting error, which may be tricky in practice. In thian}ﬂl: i=

following, we develop a Bayesian method which is free o =

this issue, and also turns out to be more efficient and effecti 2L
than the FITRA algorithm. plar, az;a,b) = [ T[] Gammaas;a,b), (16)

l=1i=1

where
IIl. BAYESIAN MODEL

—1za,a—1_—ba
To facilitate our algorithm development, we introduce a Gammédala,b) = T'(a)” 0% e, 17)

noise term to model the mismatch betwagand Az, i.e. in which I'(a) = fOOO to=le~tdt is the gamma function. To

y= Az + €, (13) make the hyperpriors non-informative, small valueszadnd
b, e.g.a = b = 1079, should be used [19]. Note that the

wheree denotes the noise vector and its entries are assunauice of the Gamma hyperprior over the precision is inspire
to be i.i.d. Gaussian random variables with zero-mean ahy [19]. As indicated in[[18], the Gamma hyperprior with=
unknown variance3—!. Here we treat3 as an unknown pa- b = 10~% corresponds to a broad hyperprior which allows the
rameter because the Bayesian framework allows an automatiecision (more precisely, the posterior mean of the pi@tjs
determination of its model parameters and usually providesbecome arbitrarily large. For our case, we also place adro
a reasonable balance between the data fitting error and liyperprior on the precision parameters such that some séthe
desired characteristics of the solution. In case that tieeee precision parameters are allowed to become arbitrarilyelar
pre-specified tolerance value for the MUI, we can also set &3 a consequence, the corresponding entries will be driven
appropriate value fof instead of treating it as unknown.  towards and eventually located on the boundary points.

To reduce the PAPR associated with each transmit antennalhe prior distributions with different model hyperparame-
we aim to find a guasi-constant magnitude solution to tHersa;;, o, are illustrated in Figl1l2, where andv are both
above underdetermined linear system. Note that a constaetto0.5. We can see that the prior distribution definedinl (14)
magnitude signal achieves a minimum PAPR. Ideally we hopesembles the shape of a bowl. Thus the prior has the pdtentia
to find a solution with all of its entries having a constant mado push the entries of the solution toward its boundaries. In
nitude. Nevertheless, it is highly unlikely that there éxmsuch addition, the use of the Gamma hyperprior allows the pasteri
a solution to satisfy (or approximately satisfy with a talele mean of the precision to become arbitrarily large. As a tesul
error) the MUI cancelation equality, i.€._{13). Therefore,w the associated entries; will eventually lie on one of the
alternatively, seek a quasi-constant magnitude solutidth wtwo boundary points, leading to a quasi-constant magnitude
as many entries as possible located on the boundary poistdution. The graphical model of the proposed hierarchial
of an interval[—wv, v], whereas the rest entries bounded withipresented in Fid.]3(a).

[—v, v] but not restricted to lie on the boundary points in order In general, Bayesian inference requires computing the log-
to meet the MUI cancelation constraint. arithm of the prior. In this regard, (IL4) is a inconvenientfio



maximization (EM) strategy is employed for the Bayesian
inference. In our modelz £ {x,a;,a,k} are treated
as hidden variables. The noise variangeand the bound-
ary parameten are unknown deterministic parameters, i.e.
0 = {3,v}. Before proceeding, we provide a brief review of
the variational EM algorithm.

—— 120 20]
5i~ - - -[201] _

A. Variational Bayesian Methodology

Consider a probabilistic model with observed dgtdidden
variablesz and unknown deterministic parametdis It is
straightforward to show that the marginal probability o€ th
observed data can be decomposed into two terms

Fig. 2. Prior distribution function with differenfo;1  «;2], in which = and

v are both set (@5, Inp(y; 8) = F(g,8) + KL(qp), (20)
F(q,0) = /q(z)ln (M) dz (21)

@ @7 where
q(2)

L Q : 1 e p(zly; 0)
@ @ KLl =~ [am ("EED )z 2)
=i i

where ¢(z) is any probability density functionKL(q/||p) is

b

2l the Kullback-Leibler divergence betwee(z|y; ) andg(z).

é m @ b SinceKL(g||p) > 0, it follows thatF'(q, ) is a lower bound of
In p(y; @), with the equality holds only wheKL(q||p) = 0,

(a) (b) which impliesp(z|y; 0) = ¢(z). The EM algorithm can be

Fig. 3. Graphical models for low-PAPR signal priors, withcteés denoting viewed as an iterative algorlthm which Iteratlvely MaxIgsz

hidden variables, double circles denoting observed Vsatand squares the lower boundF(q, ) with respect to the distribution(z)
representing model parameters. (a) Original prior, (b) led prior. and the parametei&.

Assume that the current estimate of the parameters is
, . . oLD i NEW i
for inference. To address this issue, we turn the prior imo & - g[g)e EM algorithm evaluateg™"(z) by maximizing
exponential form by introducing a binary latent variable £'(¢,0~"") with respect tay(z) in the E-step, and tﬂg\/g finds
indicating which component is selected foy, i.e., x; = 1 N€W parameter estimat@™" by maximizing /(¢"~", )
indicates the first component is selected white = 0 with respect tof in the M-step. It is easy to see that when

OoLD OLD,
corresponds to the second component. The equivalent pdor (2) = p(zly;6°=), the lower boundF(q,6°7) is

can be written as maximized. Nevertheless, in practice, the posterior iistr
tion p(z|y; 8°°) is usually computationally intractable. To
p(wilovin, cug, kisv) address this difficulty, we could assumier) has some specific

N(zi;0,071) "N (2 —v,a5) 1=ri parameterized functional form and conduct optimizatiorrov
< ) ( ) @i € [—0,0], the designated form. A particular form af(z) that has
(18) been widely used with great success is the factorized form
o : over the component variable or the block component variable
and the distribution fot:; is {z:;} In z [20], i.e. q(2) = I, qi(z). We therefore can
p(kg;m) = (m)F (1 —m)t=r, (19) compute the approximate posterior by findindz) of the
factorized form that maximizes the lower bouftdg, 8°-°).

Where_the mixing coe_ff|C|ent IS set t@_: Of) to rr}ake The maximization can be conducted in an alternating fashion
the prior non-informative. Also, we define = {x;};_;. for each hidden variable, which leads [0 ][20]

The updated graphical model is shown in Hig. 3(b). Note
that, according to[{18) and{1L9), we can compute the con- qi(zi) oc exp ((Inp(y, z;0))rzi)- (23)
ditional dIStrlbUtlonp($i|ai1,0éig;U) via p(wi|ai1,ai2;v) = . .
Znip(mail,amﬁi;v)p(ﬁi;w), which results in the samewhere (-);»; denotes an expectation with respect to the
form of (14). distributionsgy, (zx) for all k # 1.

Then in the M-step, a new estimate 6fis obtained by

IV. BAYESIAN INFERENCE maximizing the Q-function
We now proceed to perform Bayesian inference for oLD _

the proposed hierarchical model. A variational expectatio Q60,67") = <lnp(y’z’0)>q(z)'

i1 12

(24)



B. Likelihood Function Approximation via GAMP GAMD Pyl @8), b, |50
Let z 2 {z,a;,as,k} denote all hidden variables ap- Likelihood "| Variational EM
pearing in our hierarchical model, arl £ {3,v} denote Approximation € o(@), B

the unknown deterministic parameters. As discussed in the
previous subsection, the posterior ofcan be approximated Fig. 4. Proposed variational EM-GAMP framework, where thattéd
by a factorized form as follows distribution p(-) represents an approximation pf-).

. Algorithm 1 Likelihood Approximation via GAMP
p(@, a0, kly; B,v) Input: means and variances of posterlqr(& ): B = (Ti)q(ay)»
~ q(m, o, o2, K) = q(z)g(ar)g(az)q(k).  (25) T = <xi>§<zi)’ i=1,..,1, where(-)Y q( denotes the variance
with respect tog(+), and |nverse noise varlanqie Initialize 5; as
Following (23), the approximate posteriors can be obtaa®ed 0, j =1, ..., J.
Output: approximate Iikelihoodsi\/(xz|rz, ), i=1,..,1, and

Ing(x) =(Inp(y, T, a1, az, K; B,)) g(a1)q(s)q(r) +CONSE, posteriors ofu;: N (u;|d;, 7)., 5 =1,..., J.
Step1l. For eachj:
Ing(e)=(Inp(y, ¢, a1, az, K; B,0)) g(@)q(cz)q(x) T CONSE, > _ZAZ-T-Z
j gila
hlq(a?) <1np(y T, a, e, K5 B, )>q(w)q(a1)q R)—l-COnbt ’
Ing(k)=(Inp(y,x, a1, az, K; B,9)) g(x)q(ar)q(az) +cONSL. Py =Y AuZi — 175,
(26) Lo
Step2. For eachj:
We first consider the calculation ef(x). Keeping those U =) 19 5;.77)
terms that are dependent an we have T :(uj>V ~
J ( w;ly;.Bjs j)
Ing(x) 5 _u ppJ
= (Inp(y|z; B)p(z|as, a2, K;0)) (0 ) g(om)a(w) T CODSE 1 g
1 ¢ A (1 - L”)
=3 D (—anki(wi —v)* — (1 — ki) (@i +0)°) Step3. For eachi: K
i=1 -1
+ Inp(y|x; B) + const if ©; € [—v,v] Vi, (27) T = <ZAJ7« JS>
andIng(x) = —oo otherwise, where the subscripts @f,.) T =%+ 1, ZAjisj

are omitted for simplicity. Since the variablés; } in the joint
likelihood functionp(y|x; 8) are non-factorizable, obtaining
the posteriorg(x) is rather difficult. To overcome this diffi-
culty, we employ the generalized approximate messagemmassi Note that besides the approximatipfy|z;; 3), GAMP also
(GAMP) technique[[14] to obtain an amiable approxmatloHrOduceS approximations for the marginal posteriors of the
of the joint likelihood functionp(y|z; 3). noiseless outputt = [u1, ...,u;]T £ Az, which are given by
GAMP is a simplification of loopy BP, and can be used _ Al
to compute approximate marginal posteriors and likelitsood Pluly, 5) ~ plusly. ) .
Here we approximate the joint likelihood functigity|x; 3) o p(y;lug; BN (uj|ps, 77), (29)

as a product of approximate marginal likelihoods comput%erep and 77 are quantities obtained from the GAMP

via the GAMP, i.e. algorithm. Since the noise is assumed to be white Gaussian
noise, we have(u,y, 8) = N (u;lu;, 77), where

I
p(yl@; B) ~ plyla; B) o [[ N (@il 7)), (28) » (

i=1 (T 7j

5 i
i yJ5+Tp>. (30)

where NV (z;|7;,77) is the approximate marginal likelihood ’
obtained by the GAMP algorithm. To calculate and 7/, As will be shown later, this approximation can be used toriear
an estimate of the posterigfx) and s is required as inputs the inverse of the noise variangg, in the M-step.

to the GAMP algorithm (see the details of the GAMP al- Remarks. Generalized approximate message passing
gorithm provided below). Hence the GAMP algorithm can bGAMP) is a very-low-complexity Bayesian iterative
embedded in the variational EM framework: given an estimatechnique recently developed in[14] for obtaining appnoeie

of ¢(x) and 8, use the GAMP to obtain an approximatiormarginal posteriors and likelihoods. It therefore can be
of the likelihood functionp(y|x; 3); with the approximation naturally embedded within the EM framework to provide
p(y|x; 3), the variational EM proceeds to yield a new estimaten approximate posterior distribution af and reduce the

of ¢(x) and g, along with estimates of other deterministicomputational complexity, as shown In[21], [22]. Specifica
parameters (e.gv) and posterior distributions for the otherthe EM-GAMP framework of[[21],[[22] proceeds in a double-
hidden variables (e.gx1, a2, k). This iterative procedure is loop manner: the outer loop (EM) computes the Q-function

illustrated in Fig[4. using the approximate posterior distribution aof, and



maximizes the Q-function to update the model parametarsing [28), [[2F) can be simplified as

(e.g9. a1, s, K); the inner loop (GAMP) utilizes the newly

estimated parameters to obtain a new approximation of thea(z)

posterior distribution ofz. However, this procedure is not 1 . ) )
suitable for our variational EM framework, because from the= 5 Z (—anki(zi —v)? — (1 — ki) (zi +v)?)
GAMP’s point of view, the hyperparametefa;, ao, k} need '
to be known and fixed in order to compute an approximate 1
posterior distribution ofx, while the variational EM treats ~— 9
the model parameters (e.gv1, a2, k) as latent variables.

Therefore, instead of computing the approximate posterior _Z

<

1
I

Z (x; — E)Q/TZ-T + const

i=1

distribution of «, in our variational EM framework, the
GAMP is simply used to obtain an amiable approximation
of the likelihood functionp(y|z; 3), and this approximation — + ( ((r;){cvi1) + (ki) (cu2) — (au2)) v + 7/"\1'/7{):171'> +const
involves no latent variable$§a, as, k}. Besides, unlike the ] ,
EM-GAMP framework where the inner loop (GAMP) is if z; € [-v,0] Vi,  (31)

implemented in an iterative way, in our proposed variaﬁongndlnq(m) — _ oo otherwise. It can be seen thatg(z) has

EM-GAMP  framework, as detailed in Algorithm 1, thea factorized form, which implies that hidden variables; }

GAMP only needs to go through one iteration to obtain &gy, e independent posterior distributions. Also, it candaelily

approximation of the likelihood function. In fact, the GAMP o ifieq that the posteriag(z;) follows a truncated Gaussian
algorithm described here is a simplified version of the oiadji

; o o distribution
GAMP algorithm by retaining only its first three steps and

(ko) (eir) — (ki) (auiz) + (oua) + 1/7]) @7

N =

=1

skipp.ing it; iterative procedure. Note t_hat the originglm_ N(@i|pi, 07) if 2; € [~v,0],
algorithm involves a four-step iterative process, in which q(z;) = i (32)
the fourth step computes the posterior @fby using the 0 otherwise
approximate likelihood function obtained from the firstetar

where the variance?, meanyu,; and the normalization constant
¢; are given respectively as

Note that we can also treétv;, o, k} as deterministic pa- 2 =1
) X2, 07 = ((Ri) () — (ke){a; i 1/7; ; 33
rameters and resort to the EM-GAMP framework for Bayesian * ({Ra){atia) = {ra) evz) + {eviz) + /TZA) N 2 (33)
inference. Nevertheless, in this case, we need to estingge a Hi = (((ri){ain) + (ki) {ouia) — (@iz)) v + T3 /7] )0, (34)
of binary parameter$x;} in the M-step. This is essentially a ¢; = ® ((v — ps)/05) — @ ((—v — pi)/04) . (35)
combinatorial search problem and the binary estimation may

cause the algorithm to get stuck in undesirable local minima Update Qf q,(al): K?el?ing, only the terms that depend on
a1, the variational optimization of(a;) yields

steps.

GAMP is known to work well forA with i.i.d zero-mean In g(cu1)
sub-Gaussian entries, but may fail for a rank-deficidnOne
may refer to the method [23] to improve the stability of the = (Inp(z|on, az, £;v)p(n)) g@)g(az)q(s) + const
GAMP against the ill-condition of the matriA. Nevertheless, i
GAMP is expected to perform well in wireless communication = Z<1np(:vi|ai1, iz, K53 V)P(Qi1)) g (@) g(az)g(r) + CONS

scenarios since indoor and urban outdoor environments are izl}

typically rich in scattering and entries of MIMO channel ! 1
matrices are usually assumed to be i.i.d Gaussian [15], [24] ~— — ;<“i> iy + Z; @+ §<”i> —1)nax

_ (b + %<ni> ((z; — v)2>) aﬂ) + const. (36)

We see thain ¢(a;) also has a factorized forim g(aq) =

> Ing(a1). Note thatn;; (defined in [I5)) is a function of

a1, which makes the inference @f«;;) difficult. To address

this difficulty, we use the latest computed value to replace

;1 1.e. letlnn; ~ lnng). Note that similar approximations
C. E-Step: Update of Hidden Variables were also adopted in_[22] to facilitate the inference. Whils t

approximation, we obtain

In Q(Cm)

1 1
Update of ¢(x): As discussed above(y|z; 3) is approxi- = (a + 5(/@-} - 1) Inay — (b + 5(/@-} ((zi — v)2>> Qi
mated as a factorized form éfindependent scalar likelihoods,

which enables the computation gfxz) (Z7). Specifically, + const. (37)



Thereforeg(«;;) follows a Gamma distribution Discussions: We can gain some insight into our proposed
algorithm by examining the update rules for precision param

q(ain) = Gammaa [di, bi1) (38) eters{a;1, a;2}. Sincea andb are set very small, the update
with rules [4T) for{«;1, a;2} are approximately given by
1
~ 1 N = =
aj = a+ 5(1‘%) (39) () (i —v)?) G
1
~ 1 N -
bin = b+ 5 (i) {(z;i —v)?). (40) (aiz) (s + 0)2) (52)
Update of g(aw): Following a procedure similar to the We see that the posterior mean of the precision, say), is
derivation ofg(c; ), we have inversely proportional to the distance between the entdytha
_ boundary pointy. Whenz; is close to the boundary poimt
q(ain) = Gammdaa|aiz, bio) (41) the posterior mean of the precisiog will become large. As a
. consequence, the prior distribution becomes sharp archend t
with boundary point. Hence the prior has the potential to push the
_ 1 entry z; closer to the boundary point, which in turn results
@iz =a+ 5(1 — (ki) (42) ina larger{a;1) according to[(4l7). This feedback mechanism

~ 1 5 keeps pushing most of the entries towards the boundary until
biz = b+ 5(1 = (5a) {(@: +0)%). (43) they are eventually located on one of the boundary points. Ou
simulation results further corroborate our above disoumssi

the proposed algorithm yields a solution with a substantial
percentage of entries lying exactly on the boundary points.

Update of ¢(k): The approximate posterior distribution
g (k) can be computed as

Ing(k)
— (Inp(@|a, oz, £ 0)P(K)) g(a)g(es a(ers) + CONSE D. M-Sep: Update of Deterministic Parameters
I As indicated earlier, in the variational EM framework,
= Z(lnp(maﬂ,aﬂ,ni;v)p(ni»q(wi)q(a“)q((m) + const the deterministic paramete® = {3,v} are estimated by
i=1 maximizing the Q-function, i.e.

(2

1
1 NEW __ OLDy __ .
= (5 (i) — (nap) = (@i —v)?) + (@ +v)?) & —mgx QO.077) = (nply,z0))). (53
=1 Update of 3: We fist discuss the update of the parameter
+ (ln7) — (nna) + o s & const. (44 the inverse of the noise variance. Since the GAMP algorithm
’ ’ 1—-7 )" provides an approximate posterior distribution for thesetgss

~ outputu = Ax, we can simply treat: as hidden variables
We see thaln ¢(x) = >, Ing(x;) and, moreover, the posterioryynen computing the Q-function, i.e.
q(k;) obeys a Bernoulli distribution, i.e.; takes values zero or

one, and the corresponding probability can be computed from
@4). To simplify conaputati%r?, we canyuse the appr%ximation Q(B,8) = Zanp(yj'uj;ﬁ»ﬁ(“j'y’ﬂ) + const
(Inny) ~ lnng),l =1,2. =t

In summary, the variational Bayesian inference involves _ ilnﬂ—
updates of the approximate posterior distributions fodbid 2

variablesz, a1, a2 and k in an alternating fashion. Some ) _ . o
of the expectations and moments used during the update 4R¢ Néw estimate off is obtained by maximizing the Q-

J

J
B> {(y; —u;)?) + const. (54)

j=1

N =

summarized as function, which can be solved by setting the derivative of
, Q(B, M) with respect tos to zero. The derivative is given
05
(i) = pi — == (N (v]pi, 07) = N(=v|ps, 07)), (45) @S
o 9QBBY) T 1S 2
o; — L= — — = F— )Y, 55
(@) = uilai) 407 = T (N (0lpis o)+ N Colps, o)), (46) o5~ “p 3 lwowr) G
() = au/ba, 1=1,2, (47) Setting it to zero, we obtain
<1n0<il> = w(&’ll) — lnbil, = 1, 2, (48) ﬁ(tJrl) _ . J . (56)
(ki) = q(ki = 1), (49) >j=1 (W5 — uy)?)
where Update of v: We now discuss how to update the boundary
9T parameterv. The boundary parameter can be updated by
Y(a) 2 r;i(a) (50) maximizing the Q-function with respect to. Nevertheless,
a

the optimization is complex since the Q-function involves
is known as thaligamma function [25]. computing the expectation of the normalization terms



Algorithm 2 EM-TGM-GAMP
Initialization : B = 10%, v = |ly[« /|| A, initialize the

1=1,...,1,1 =1,2, with respect to the posterior distributions
pla). I-_Ier_e We propose a heuristic_ approach to update means ofy(x), ¢(c1), g(a2), q(x) aso0, 1, 1, 21 respectively,
The basic idea is to find an appropriate valuevaduch that ¢t the variance of(z) as1, and set iteration humber— 0.
the mismatch|y — A#||3 is minimized, wheret denotes the Repeatthe following steps untit > twax

estimated signal which is chosen as the mean of the posterior1. Based on the mean and varianceg6k) and 3%,

distribution ¢(z). Note that when the boundary parameter calculate the approximate distributiopgy|a:; )

is small, the mismatch could be large since there may not  andp(u;ly, 3%), j = 1,..., J, via Algorithm 1.
exist a solution to satisfy the constraipt= Az given that 2. Using the approximate likelihoogl(y|z; 5*)), update
|||« < v. Therefore we can firstly set a small value wof the posteriors of hidden variablegiz), q(cu), g(c2)

then gradually increaseby a step-size such that the mismatch andg(x) via @)'@)Z D)
) . . 3. Compute the new estima*") using [56), and
keeps decreasing and eventually becomes negligible. Define . (t41) i ;
A NI - . obtain thev via (58)-[60).
5(&) £ ||y — Az|3. Specifically, the step-siz&v can be 4. Increaset =  + 1 and retum to step.
obtained by solving the following optimization problem:

Av = min 5@ + ~yAv), (57)

favorable for real-time implementation needed for pradtic

wherez (") denotes the estimate (i.e. posterior mean(af)) SYSteMs:

of the signal at iteration, and~ £ T is defined as
g v = bl V. SIMULATION RESULTS

e A (2
o L if & >0 (58) We now carry out experiments to illustrate the effectivenes
i 1, if :%f-t) <0 of the proposed truncated Gaussian mixture (TGM) model-
. ) o . based variational EM-GAMP algoritlﬁ'r(referred to as the
The rationale behind the optimization {57) can be eXpla'n‘ﬁA-TGM-GAMP). We compare our approach with the FITRA

as follows. Since our proposed algorithm yields a SOI_UtiOé]gorithm [12], the zero-forcing (ZF) precoding schemed an
with most of its entries located on the boundary points, if WE e amplithde clipping schemél[4] in which the ZF is first

increase the boundary by_ a suffi_ciently small step-sizAv, employed and then the peaks of the resulting signal areeglipp
we can expect that the signalwill expand accordingly. We with a specified threshold.

wish to find a step-sizé&v such that the expanded signal will In our simulations, we consider a MIMO system which has
result in a reduced mismatch. The probldml (57) is a scalﬁ — 100 antennas at the BS and servis — 10 single-

least-square problem, and its solution is given by antenna users. A6-QAM constellation is considered, and
—_ AxNT 4 the number of OFDM tones is set v = 128, in which
Ap— ¥ )" Ay 59 > I
v= A2 : (59) only |7| = 114 tones are used for data transmission [18]. We
1 A~(3 : .
assume that the channel is frequency-selective and modsled
a tap-delay line withD = 8 taps. The time-domain channel
D — @ 1 Ag. (60) response matriceddy, d = 1,...,D, have iid. circularly
symmetric Gaussian distributed entries with zero mean and
unit variance. The frequency-domain response mdifix can

) _ _ be obtained as
In summary, our algorithm is developed by resorting to the

D .
variational EM strategy. The GAMP technique is embedded in _ =5 —j2mdn
the variational EM framework to obtain an approximation of Hn= ZHd P ( N ) ' (61)
the joint likelihood functionp(y|x, 8) which has a factorized
form in terms of the variable&z; }. Specifically, the algorithm
involves an iterative process as follows: given an estinséte

Thenv can be updated as

E. Summary

d=1
For the FITRA algorithm, the regularization parameter is se
to be A = 0.25 as suggested by [12]. Also, unless explicitly

. ... stated otherwise, the maximum number of iterations of the
q(x) and 8, we use the GAMP to obtain an approxmatloﬁ '
of the likelihood functionp(y|x; 3); with the approximation FITRA and the EM-TGM-GAMP are set to be 2000 and 200,

p(y|x; B), the variational EM proceeds to yield a new estimatréESpeCt'Vely' . L .
of q(z) and 3, along with the approximate posteriors of The f:omplementary cumulative dlstrlb_unon function
the other hidden variables and an estimate of the bound& DF) is used to evaluate the PAPR reduction performance.

parametep. For clarity, we summarize our proposed algorithra— € CCDF.denotes the propablllty that the P.APR of the
as follows. estimated signal exceeds a given thresHA®PR, i.e.

Note that the dominating operations of the proposed al- CCDF(PAPRy) = Pr(PAPR > PAPRy). (62)
gorithm in each iteration only involve simple matrix-vecto
multiplications, which scales &(JI) (J < I). Thus the pro-
posed algorithm has a computational complexity comparab
to the FITRA algorithm([12] which also has a computational Y oner 180 — H,w,|?3
complexity of O(JI) per iteration. Besides, as will be shown MUl = S PN
in our experiments, the proposed algorithm has a much faster et i

convergence rate than the FITRA algorithm, which is more2Codes are available [at http://www.junfang-uestc.netsffEiM-TGM-GAMP.rar

Also, to evaluate the multiuser interference of the tramsmi
lgnals, we define th#UI as

(63)


http://www.junfang-uestc.net/codes/EM-TGM-GAMP.rar
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Fig. 5. Time/Frequency representation for different sobenfa), (c), (e) and (g) are time-domain signals for ZF,pitig, FITRA and EM-TGM-GAMP,
respectively PAPR: ZF = 10.6 dB, Clipping = 4.3dB, FITRA = 2.4dB, and EM-TGM-GAMP = 0.8 dB). (b), (d), (f) and (h) are frequency-domain
signals for respective schemddl: ZF = —oo dB, Clipping= —15.3dB, FITRA = —64.1dB, and EM-TGM-GAMP= 73.6 dB; OBR: ZF = —oco0 dB,
Clipping = —13.8dB, FITRA = —60dB, and EM-TGM-GAMP= —70.5dB)

Besides, the out-of-band (power) ratio (OBR) is introducegbr the ZF scheme, its solution exhibits a large variatiothwi
to measure the out-of-band radiation of the solution, wiiéch a few high peaks. The solution of the clipping scheme is only a

define as slightly alleviated version of the ZF solution. Numericasults
OBR — [T nere lwall3 " also verify our observations: our proposed algorithm has th
TS ey l[wa3 (64) lowest PAPR (PAPR associated with the first transmit antenna

N hat. for the ZF di h hEBR — of 0.8 dB, the FITRA algorithm and the clipping scheme have
ote that, for t € procoding scheme, we h@#@R = 0 higher PAPRs 0f2.4dB and 4.3dB, repectively, while the
and MUl = 0, while for the other three schemes, we aIwayEF scheme has the highest PAPR 1if.6dB. We see that
have_O_BR - O. andMUI > _O' . . our proposed algorithm renders a much lower PAPR than the
_ It is interesting to examine the signals estimated by réSP&Sher three schemes. The (), (d), (f) and (h) of Elg. 5 depict
tive schemes. In th? @), (©), (g) and (g), Of. Fiy. 5, we dep'fﬁe magnitudes of the frequency-domain signal vs. the
the real-part of the first transmit antenna’s time-domagmal -\ 1100« index. Both the EM-TGM-GAMP and the FITRA
(€. a) es_tinjated by respective schemes {the imaginary_pﬂgve small MUIs and out-of-band radiations: their MUIs are
behaves similarly). We observe that our proposed algor'thé'ﬂ/en by —73.6 dB and—64.1dB, respectively, and OBRs are
yields a solution with most of its entries (ab@dt4%) located given by —70.5dB and—60 dB ’respectively ,In contrast. the
on the boundary points, which corroborates our previOijcIaC“ ping scheme incurs a much higher MUI and out-of-band

that the proposed truncated hierarchical Gaussian miXtLH‘I tortion, with its MUI and OBR given by-15.3dB and

model encourages a quasi-constant magnitude solutior Sucl .

: . _ —13.8 dB, respectively.
a solution, clearly, has a low PAPR as it looks like a constant P y
modulus signal. The solution of the FITRA algorithm has To better evaluate the PAPR reduction performance, we plot

fewer entries (about9.2%) located on the boundary points.the CCDF of the PAPR for respective schemes in FElg. 6(a).
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Fig. 6. PAPR and symbol error rate (SER) performance forouarischemes. (a) CCDF of the PAPR, (b) SER performance.
The number of trials is chosen to be 1000 in our experiments 10— , , ,
Note that PAPRs associated with all antennas are taken in @ S - - Ell\ll-ilf“GM—GAMP
account in calculating the empirical CCDF. We also include E 5 T~ e o ]
the results of our proposed algorithm obtained at 20éh S
iteration. We can see that our proposed algorithm with 200 0 — : : :
iterations achieves a substantial PAPR reduction: it reguc 0 500 1000 1500 2000
the PAPR by more thahl dB compared to the ZF scheme (at 'terat'?ag'”dex
CCDF(PAPR) = 1%), by about2 dB compared to the FITRA

algorithm with2000 iterations, and by about2 dB compared , ,
to the clipping scheme. Also note that the proposed algurith — = — FITRA

with only 20 iterations can obtain a PAPR that even is lower - EM-TGM-GAMP |
than the FITRA, meanwhile exhibiting a decent MUland OBR 2 | N\~~~ "~~~ === --1
(here MUI and OBR are averaged over 1000 independent runs

given by —41.8 dB and—21.7 dB, respectively. 0 500 1000 1500 2000
The SER performance of respective schemes is shown i 'tefaﬁol;‘ index
Fig.[B(b), where the signal-to-noise ratio (SNR) is defined a (®)

SNR = ||z||3/M N,, N, denotes the variance of the receiver : :
noise (c.f.[(4)). We observe that the proposed algorithrarisic — — — FITRA

an SNR-performance loss @f5dB and1.7dB (atSER = = g\« - - _ _ _ _ _ _ EM-TGM-GAMP]|
1073) compared to the ZF and FITRA schemes, respectively. & | ~_ =~~~ ~7===-
This performance loss, as discussed.in [12], is primariky ttu

an increase in the norm of the obtained solutign.e. ||z||3. It ~100, 500 1000 1500 2000
is not difficult to see that the solution obtained by our pregmb Iteration index
method has a larger norm than the solution of the FITRA since ©

our solution has more entries located on the boundary poirftig. 7. Convergence rates of different metrics for EM-TGMMP and

Also note that the ZF scheme renders the least-norm solutiGH RA- @) PAPR, (b) MU, (c) OBR

In order to maintain the same SNR, our solution requires a

stronger normalization, which causes the SER performance

loss compared to the ZF and FITRA schemes. It can also pendent runs and the PAPR results are averaged over PAPRs

observed that the SER performance gap can be reduced ifassociated with all transmit antennas. Our numerical t®sul

only perform20 iterations for our proposed method, in whictshow that the average MUl and OBR of our proposed method

case the resulting solution has fewer entries located on #iethe200th iteration are-72.5dB and—69.1 dB respectively,

boundary points and hence the increase of the norm of twaile the average MUI and OBR of the FITRA algorithm at

solution is not that significant. Note that the performarass| the 2000th iteration are—63.3dB and —60.3dB. With less

of the clipping scheme is mainly caused by the residual MUthan 200 iterations, our proposed algorithm achieves better
We now examine the convergence rates of our proposEidl cancelation than the FITRA algorithm with ev@000th

method and the FITRA algorithm. The (a), (b) and (c) oterations. From Fig[J7(a), we also notice that our proposed

Fig. [4 show the PAPR, MUI and OBR vs. the number ddigorithm has a fast convergence rate and is able to obtain

iterations, respectively. Results are averaged over 1088-i a low-PAPR solution within only 200 iterations, whereas it
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= % = FITRA

meanwhile renders better MUI cancelation and lower out-of-
band radiation. The proposed algorithm also demonstrates a

o —8— EM-TGM-GAMP ! ) . :
T v fast convergence rate, which makes it attractive for peacti
< real-time systems.
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