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Abstract

Consider a transmission scheme with a single transmittdr ranltiple receivers over a faulty
broadcast channel. For each receiver, the transmitter bagjae infinite stream of packets, and its goal
is to deliver them at the highest throughput possible. W&ilehmultiple-unicastmodels are unsolved
in general, severaletwork coding based schemasre suggested. In such schemes, the transmitter can
either send an uncoded packet, or a coded packet which isctidnrof a few packets. The packets
sent can be received by the designated receiver (with sooteabpility) or heard and stored by other
receivers. Two functional modes are considered; the firssymes that the storage time is unlimited,
while in the second it is limited by a given Time to Expire (T)Tjgarameter.

We model the transmission process as an infinite-horizork®labecision Process (MDP). Since
the large state space renders exact solutions computyianaractical, we introduceolicy restricted
andinducedMDPs with significantly reduced state space, and prove tlitht proper reward function
they have equal optimal value function (hence equal optihralighput). We then derive a reinforcement
learning algorithm, which learns the optimal policy for tilmeluced MDP. This optimal strategy of the
induced MDP, once applied to the policy restricted one, iicantly improves over uncoded schemes.
Next, we enhance the algorithm by means of analysis of thetstral properties of the resulting reward
functional. We demonstrate that our method scales well e rthmber of users, and automatically
adapts to the packet loss rates, unknown in advance. Iniaadihe performance is compared to the
recent bound by Wang, which assumes much stronger codigg ifgra-session and buffering of coded

packets), yet is shown to be comparable.
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I. INTRODUCTION

Typical wireless access architectures constitute a ggtewan Access Point (AP), to which all
nearby clients are connected by means of a wireless mediomong the prominent examples for
such architecture is the prevailing IEEE 802.11 or LTE isfiracture mode setting. The downlink
traffic implied in such topology comprises an AP sending éliguindependent) traffic streams to
the corresponding users. Furthermore, common wirelesslatds incorporate reliability mech-
anisms in order to overcome the inherently poor qualitieshef radio channel. For example,
IEEE 802.11, like many other network protocols, attaingkelity through retransmission.

Network coding [[1] refers to the transmission of predefinedctions (usually a linear com-
bination) of packets in order to achieve higher throughptipr correction and better security.
Wireless communication, and in particular the transmissiver the wireless channel which is
broadcast in nature hence can potentially be heard by ndresskes of the dedicated stream
is a natural platform for network coding. Nonetheless, ideorfor such a mechanism to be
effective, the overhearing users need to store the relgamts of the traffic streams even when
they are not the intended addressee.

In this work, we address the aforementioned scenario of glesilP sending unicast streams
to K corresponding listeners. We assume that all streams dge Hatklogged, i.e., there is
a packet pending for each receiver at all times (infinite Zw1). We also assume a typical
stop-and-wait ARQ (automatic repeat-request) mecharssmijar to the one adopted by IEEE
802.11 standard. In such schemes, a sender sends one framienat where each frame is sent
repeatedly until the sender receives an acknowledgmenK)A@me from the receiver. That is,
the next packet to some user will be transmitted only afterpgtevious packet to that user was
received correctly. We adopt the decoding and data storaierp known in literature as instantly
decodable network codin@l[2], specifically, each user stgackets even if not destined to it,
yet only uncoded packets are stored at the receivers while cedeabinations are discarded
We assume that the data stored at the listeners is known té\Rhat all times; this can be
achieved by each receiver piggybacking a list of its curstated packets not destined to it, on
the user’s upstream traffic (each DATA or ACK sent by the usethe AP).

Using network coding at the AP, the challenge in each dowastrtransmission to is determine

whether to send an ordinary unicast packet to one of the detdmeceivers, or to send a linear



combinations of packets. Note that even under this seeynimglderate setup, in which users
store only uncoded packets, and the AP has at most a singletppending per user at a
time, since each user can potentially store a packet for etiwdr user (i.e.2X~! possibilities
per user, wherds{ stands for the number of users), the number of differentooptifor stored
packets before each transmission-opportunity (termedstée spaceis enormous 5 —1-K),
Consequently, no efficient solution optimal in the geneealecexists[[3].

In this paper, we design a computationally feasible, séalabd robust methodology which ef-
fectively addresses the aforementioned problem. Furthesnin addition to the generic problem
described above, we also consider a more complicated setupich the storage time of packets
at the receivers is limitety a Time to Expire (TTE) constraint, i.e., a packet thatitsage time
has expired, is invalidated and discarded. We present aetiesl framework and a model-based
learning implementation which allow us to acquire the aeliransmission and retransmission
policy under such channel conditions. In particular, weradsl three specific challenges. First, the
fundamental challenge of network coding - deciding whalérhost effective linear combination
of the data to be transmitted. This problem becomes furtbempticated, once TTE constraints
are introduced. Second, in contrast to most known works, nadel presumenfinite data
streamsfor all listeners, rather than limiting the amount of dataatdixed block. Finally, the
encoding decisions are made in an environment without pamwledge of the packet loss
probability. As we elaborate in the related work sectiorgvpus works in the area mainly
considered various optimization problems for multicastngmissions and/or finite horizons
(finite block length). However, this is the first work to adskeall these challenges in a unified
framework.

Our main contributions are as follows: we model the transiois process by a Markov
decision processes (MDP). Since the original state spac#ractable, we utilize state aggre-
gation. State aggregation (sometimes referred to as dtateaation) is a technique to partition
the state space such that all states belonging to the sarigBopasubset are aggregated into
one meta-state, such that the same policy applies to abssiatthe meta-state. In contrast
to a complex exhaustive search to find the optimal aggregati@ force a state aggregation,
based on proved coding concepts. We further introduce aypodistricted MDP and an induced

MDP which undergoes a dramatic state space reduction, aowd tat in case one chooses the



appropriate reward function for the induced MDP, the ovemkard of both processes will be
equal. Specifically, instead of keeping track of all possipackets (coded and uncoded), we
only keep track of two state variables: (i) The size of the ma group of users in which each
member of the group has a packet destined to each other usee igroup but its own (i.e.,
maximal clique; accordingly, in the sequel we will refer toyaset of users each having packets
of all other users as a clique, and the maximal such set thénmadklique). Note that for each
clique, a single coded packet which linearly combines al plackets destined to the users in
the clique can be sent, and each user receiving the codeeétpaark decode its own packet. (ii)
The number of users whose packets are not stored by any atBerNote that this abstraction
allows us to significantly reduce the state space fo(@ ") to O(k?2). Consequently, we also
restrict the action space, such that the only allowed astame transmitting a packet to one of
the users currently not having its packet backlogged at angrauser, or transmitting a coded
packet to the maximal clique. Hence, we name the MDP whicly albws restricted actions
based on the aggregationpalicy restrictedMDP, and the MDP which sees only aggregated
states annducedMDP.

Given the transition probabilities, the optimal policy che read off the Bellman equation
for the induced MDP, which has a relatively small state spacd thus can be efficiently
solved. However, since the transition probabilities aredha calculate, wdearn them using a
model-based learning algorithm. Namely, we derive a nomdiree explore and exploit learning
algorithm, which iterates between the learning phase aad#liman equation solution phase
in our problem. Hence, we achieve tlgtimal policy which, in turn, results in the optimal
throughput (under the constraints imposed by the aggmyatnd state reduction). Note that
this approach is independent of the channel conditions,vemts equally effectively for any
packet loss, including when the packet loss is not stableflaotuates around some value. We
also study thestructural propertiesof the value function, and use these properties to both gain
deep understanding on the behavior of optimal policies @acdlarate the reinforcement learning
(RL) procedure. Specifically, we prove that under mild ctinds, there exists a "threshold type
policy”, namely as a function of the maximal clique size,rthés only one transition from one
optimal action to the other, and once sending a clique igragdtiit continues to be optimal for

the larger cliques. We show that our algorithm is both comatomally tractable and scalable.



At the same time, its performance is comparable to the uppends in [4], which are given
for a much stronger coding schemacluding intra-session coding, much larger state space a
buffers, and no TTE.

We incorporate the TTE constraint within the aforementcbDP model and propose two
types of state aggregations. We compare our algorithms kmitlovn algorithms in the literature

via extensive simulations.

A. Related work

Network coding. While the problem of NC has been widely treated in the mudticsetting,
multiple unicast still provides a rich ground for ongoingearch. Coded retransmissions were
considered in[[5], where, after sending a finite set of packetall users and receiving ac-
knowledgements, coded retransmissions are calculatedearidn order to complete the missing
packets. Hence, this is fanite horizonproblem, where a block is sent only when the previous
one is completely decoded.|[2] continued the above workkisgeto maximize the coding
opportunities. Similar to our problem, in_1[2] users canntore coded packets. However, | [2]
fits a multicast scenariadather than multiple unicast. Moreover, the graph requiceddentify
cligues in [2] grows with the stream size, while it is fixed inrcscheme. Finite streams and
cligue structures were also addressed In [6]. Additionaltsgies for finite streams can be found
in [[7], [8] and [€].

In [10], the objective was taninimize the delaysing random linear NC. Random NC was
also applied for mesh networks in_J11]. The finite horizon kvfit2] minimized the delay by
linear programming. Network coding for multi-hop wirelasstwork was addressed in [13]. To
the best of our knowledge, no previous work analyticallateel the setting where the storage
time of the side information was limited by some paramet&@&)l Practical insights on storage
time constraints and imperfect acknowledge delivery axergiin [14]. We also mention the
MDP based approach for perfect feedback! [15] and partidiigeovable MDP for uncertain
feedback[[16]. Both works, however, are for finite horizon @o not include state aggregation.
Thus, the problem of scalability of the solutions with theesof the stream is raised.

Recently, the seminal work in[4] gave codes and bounds feretfasure broadcast channel.

The coding strategy therein was proved optimal for up to 3gysend bounds were given for



generalK (two users were considered earlier(inl[17]). The coding s@héherein assumed more
than one packet per user can be coded and overheard (iss@seoding), while we only allow
transmitting the first packet per session. Furthermorentbeéel in [4] allows storing coded pack-
ets, at the price of larger buffers and state space, whilarmdel assumes instantly decodable
codes. Nevertheless, we use the theoretical upper bourd] o [evaluate the performance of
the schemes suggested herein, and find them comparabléeddspimuch simpler coding in
this work. Note also that calculating the regions(in [4] ipexentially complex ink, while the
algorithms suggested herein scale well with the number efsus

To conclude, none of the aforementioned works addresseqardidem of multiple unicast with
infinite horizon addressed in this paper. Referenhce [1&hatted to provide heuristic algorithms
for a small number of users, yet the algorithms therein shiderior performance compared to
the learning-based solutions suggested in this work. litiadd[18] did not consider the channel
condition, while our approach is adjustable to the packes lancertainty.

Random linear network coding (RLNC), (e.d., [19]) is usedyacross flows (only inter-flow
coding), then, regardless of the filed size used, such a gastheme will effectively require
all receivers to decode all the datavhich is highly inefficient. Increasing the field size will
only increase the probability that a sent packet is independf the previously sent ones, but
would still require each receiver to wait for a full rank or thle data in the system. Moreover,
RLNC requires receivers to cache coded packets as wellethdeis well known in the coding
literature that RLNC is optimal for multicast (all receigerequiring all the information), yet
highly inefficient for multiple unicast, which is the probteat hand.

Finally, note that the Wang’s bound discussed and depiatesection[ V], allows for the
most general coding schemes, including larger window $iaéfering of coded packets, intra-
flow coding and high field sizes. Thus, our results are contpaoethe most general (and
computationally expensive) coding scheme, and show goddrpgance.

Index Coding and ARQ. The relation between NC and Index Coding (IC)/[20] was forabed

in [21]. The most general formulation of the IC problem camgés a setting of K nodes, each
having a set of packets as side information and expectingpéinnally distinct set of packets.
At the beginning of the communication, all the data is at thsebstation, and the goal is to

find a transmission strategy to satisfy all demands. Thegethis is, in essence, a finite horizon



problem. Of course, similar to previous works, IC, in geheabows for complex coding over all
packets in the block and storing of coded packets at theuexsebefore decoding. In addition,
referencel[22] treated IC with side information which irddiscodedpackets as well. Note that
we do not use the classical formulation of these problemsesive do not address decoding of
finite blocks but view the infinite horizon view of the problem

Minimization of the overall transmission time was addrésse [23]. The policy described
in [23], if considered on a per-node basis, results in a gresdorithm, maximizing the in-
formation gained from a single transmission. In the MDPelagpproach herein, however, the
transmission policy accounts for thability to transit to more rewarding states in the future
hence generalizes the greedy approach.

Index coding in a scenario where each packet should be titiadnto all was compared
to an ARQ scheme i [24]. It was shown that as the number ofsusegrows, the number of
transmissions with NC is constant, while it is logarithrmd< in the case of ARQ. ARQ schemes
were also analyzed in [25] and implemented[in| [26], whereahthors considered a broadcast
network and the queue size at the sender side as the primdoyrpance metric. As for unicast
scenarios, the finite horizon schemel[21] optimized the ramab decoding operations, rather
than the number of transmissions.

It is important to note that there are a few critical differes between the state of the art in
index coding and the coding scheme suggested in the papst, iRdex coding considers only
finite horizon scenarios, i.e., each receiver is interestefixed, finite list of packets, and one
has to devise, before communication starts, the best caihgme in terms of minimizing the
number of packets required to satisfy all demands. In ounlpro, users haviafinite streamsthe
state of the system (in terms of the side information avélabhanges after each transmission,
and one have to make coding decisiafter each transmissiorsecond, the state of the art index
codes are not instantly decodable, namely, receivers miggd to wait for the end of the block
to decode their data. The scheme herein is instantly detmdBmally, index coding allows
the receivers’ demands to partially overlap, hence is mereel in this sense. Yet, it is well
known to be a hard problem (e.gl_[27]), with no efficient sioln$ in the general case. Thus,
it is beneficial to consider different settings, in which ihigains can be efficiently achieved.

State aggregation.As a road-map paper for the state aggregation methods skerfias work



defined5 abstraction methods, where the most relevant to our setsing-abstraction. We
partially adopt their definitions of aggregated and detiaflground) states and the corresponding
abstraction functionz*-abstraction can be suboptimal compared to the original MB#.
However, our approach is different from [28], since we doattémpt to perform a search to find
the aggregation which would preserve optimality, but rgtbased on key principles in coding
and re-transmission, define a robust MDP abstraction, iardadacquire the smallest states space
and action space. An adaptive aggregation for the averaggrdeMDP was presented in [30].
In this work, the aggregation is generic and partition injgr@gated states is being updated in
the process of the algorithm run. However, it is not clear howredict the number of states in
such an aggregation once the algorithm achieved the desptauality bound. Our aggregation
is fixed and predefined in order specifically suit for the given communication probléfience,
both the aggregation and the state-space size we employredefimed and result in a much
simpler RL algorithm, at expense of optimality guarante@sother survey work on abstraction,
in the context of reinforcement learning lis [31]. State agation for continuous MDP is brought
in [32]. The authors in[[33] proposed a near-optimal reioémnent learning algorithm aiming
to asymptotically achieve the optimality of the original MDHowever, running time demands

needed to achieve the desired optimality gap are not feasiblour purpose.

[I. MODEL DESCRIPTION

We consider a downlink wireless model, with one transmitaecess-point) an& receivers.
At the sender, we assume an infinite stream of packets for eseh(i.e., unicast traffic). We
assume a Stop-and-Wait based protocol, accordingly, éemgh the sender has an infinite set of
packets per receiver, we assume only one such packet i® attav given time per receiver, i.e.,
the sender does not transmit new packets for a receiverthetictive one is received correctly
and acknowledged. Note that this mechanism conforms to idelyvdeployed IEEE 802.11
protocol suite. Our channel model assumes the packet seachtslot is received at receiver
with probability p,, independently of the other receivers and of the previoustgived packets
(memoryless independent users). The packet loss protedbidire assumed to be fixed in time.
We assume that uncoded packets correctly received by aveeaehich is not the intended one,

are cached. Note that, on top of the coding scheme we sugijesie-shelve error correction



codes can be utilized in order to improyg at the expense of overhead.

We assume that packets overheard by undesignated users storéd for future use. Yet, we
assume that only uncoded packets can be stored at the msoeivide coded or corrupted packets
are discarded. We distinguish between two cases, unlimitgdge time and limited storage time.
We first treat the case where the stored packets are nevatedt(i.e. storage time is unlimited).
Denote byM the space ofK' x K binary matrices, where eache M represents a possible
state. In particular, each linec {1,--- , K'} constitutes a vector of indicators such thgt= 1
if and only if user; has a packet designated for use¥We assume the AP always aware of the
data kept by the receivers using status updates sent by eeelvar. We assume that when a
receiver overhears or decodes a packet destined to anivtiseable to store it. The state of the
system is updated after every transmission slot. At trassion slott the state is represented by
s(t) € M. In the case that usdr successfully decodes its packet, = 0, Vi is set. Setting the
entire rowk to zero is motivated by the simple reasoning that users tbe¢d the packet prior
to the successful transmission can now discard it. The seraenow send the next packet for
that user. In the case that the destination fails to recésvpacket, we sef;, ,» = 1 if the packet
is heard by uset’ and s, = 0, k # k', otherwise.

Next, we consider the limited storage time for which the tiampacket can be stored at each
receiver’s buffer; we denote the number of time slots a pacie be stored by Time to Expire
(TTE). Accordingly, a packet overheard by a non-intendeckireer and which is stored for
more than its maximal validation time is invalidated andcdisled. For simplicity, we assume a
system of identical users, i.e., all packets have a similE Timit which we denote by, i.e.,
the maximal time a packet can be stored’isime slots. Respectively, each transmitted packet
has a TTE associated with it. This value is updated every slog until the packet is correctly
decoded or outdated and dropped. We denote the TTE of a gpadet, at some given time
slot, asT € {1,---,T} and byt = 0 the case that no valid packet is stored. Every time slot,
for every packet stored by a userjs decremented by. Oncer becomed), the corresponding
packet is outdated and dropped.

We denote byM™T™F the space of x K matrices, where eache MTTF represents a matrix
of TTE values associated with undecoded packets held byetteivers. In particular, each line

ie{l,---, K} constitutes a vector of TTE parameters, such that 7, if and only if user;
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has a packet destined to userand there are time slots left till the packet expires. Similarly
to the scenario without TTE constraint, we assume that thesAdways aware of what data is
kept by which receivers. Whenever the intended receivés faireceive its packet, the AP sets
sk = 1" if the packet is either heard by uskf, or userk’ already has this packet stored, and
setssy iy = 0, k # k', otherwise. Hence, all users that overheard some packet draequal
value stored for its current TTE. This value is stored at theahd is used for the transmission
decisions.

Each packet is representedrassymbols over the field,.. Thus, its payload consists ok
bits. Now, each time a packet is sent, the sender has a feenspéis to which type of packet
to send. These "options” constitute its action space. $pally, it can either choose a single
packet from the stream intended to a specific user, and sexidoéttket to that user (termed
uncoded packet), or, alternatively, it can code togetheeva fpackets. In this work, we used
the standard linear network coding [], however, since natteaot store coded packets, and we
require instant decodability, coding is done over the hirfegld. Thus, at every transmission
slot, the AP encodes

z = aqdy b asdo®, - -+, Daygdy, (1)

and sends this packet, where for edchy, € {0,1}, d; denotes the packet currently expected
by useri and @ denotes bitwise XOR. Namely, the AP decides on coefficientss {0, 1},
where o, = 1 means a packet for useér participates in the current coded transmission slot.
Otherwise«;, = 0. Note that choosing,, = 1 for only one user is equivalent to transmitting an
uncoded dedicated packet to ugeHence, the action space is of si?e— 1, and it includes alll
possibilities of uncoded and coded packets (excluding ¢éne packet). Recall that as previously
explained, only such uncoded packets can be stored by wmdeed receivers. Note that packets
to be combined (coded) are assumed to have the same sizd, (theshorter ones are padded
with trailing 0s).

The setting described above can be seen as a framework imgladstate-space, an action-
space which comprises the possible packet combinationg\fhean send at any given time
slot (denoting the action at transmission stoby a(t)) and the transition probabilities. Due

to the Markov property, we deduce that the problem can be dtated as an MDP, with the
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objective to maximize the transmission throughput. Hemee define an appropriate stochastic
rewardr(s(t+ 1),a(t), s(t)), associated with transitioning from stat¢) to states(t + 1) after
taking the actiom(t), such that positive reward is accumulated for each suadbssfecoded
packet. For example, if a coded packetropackets is sent, ana < n of them are successfully
decoded by their intended receivers, we hasgt + 1), a(t), s(t)) = m. Failing to decode gives
no reward. Storing a packet at the receiver which is not tlieemsee gives no reward. However,
note that it may increase tipotentialnumber of packets decoded in the future (that is, transition
to a state with a higher potential value).

We assume that the same transmission effort is required &yA# whether it transmits
an uncoded packet, a coded one or does not transmit at allfixed transmission costs are
assumed. Consequently, abstention from sending a pacletyaransmission slot is the worst

option possible. Hence, at each time slot exactly one pasks¢nt. The objective is to find a

packets decod
time-slots

policy which maximizes the attained throughput, which isasweed in(

In the next section, we bring the technical definition of th®Rand state aggregation, in
order to utilize it for the described model. For general defins and theory of MDP the reader
is referred to[[34].

[1I. MDP WITH RESTRICTED ACTION SPACE AND INDUCEDMDP

In this section, we introduce the general notation whicls ldne ground for the state aggrega-
tion. We follow the concepts of abstract MDPs [in][28], yetusdjour notation and forthcoming
analysis to fit our model and results throughout the rest efptiper.

As previously mentioned the problem can be formulated asite fiMDP. Let us denote the
ground MDP byM,, characterized by the five tuplg, A, P, R, ~), where§ is the finite state-
space, in which we term every statec § as adetailedstate, since it includes a detailed account
of system;A is a finite set of actions called the action spa@ere transition probabilities with
p(s'|s, a) denoting the probability to proceed to statebeing in states and acting with actiom,

R is a bounded reward function with(s’, a, s) denoting the expected immediate reward gained
by taking actiona in states and proceeding to stat€. We consider both long run average
cost and discounted cost with< v < 1 being a discount factor. Aolicy is a mapping from

states to actionsS(— .A). In this paper we will focus only on policies that do not degen
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the time (stationary policies). We denote the set of all adible policies byU. We denote by
p(s|s,a) the probability to proceed to staté being in states and acting with actioru, and

by r(s', a, s) stochastic reward function attained from such instance. adtion in some state

is denoted byu(s). We further denote by (s,a) = > (s, a, s)p(s'|s, a) the average reward
of being in states and taking actioru. As previously mentioned we consider two performance
criteria: discounted infinite horizon cost and long run ager cost. Specifically, the discounted

infinite horizon cost associated with a given polieyand initial states, is given by

- E[Z 7t7(52+1a ar, 3t)|50}

t=0
wheres; anda] denote the state visited at time stoand action taken on time slotbased on
states; and according to policyr4c. The long run average cost associated with potigyis

N
J™¢ = lim —IE r(sy41, a7, St)] 2
t=0

Note that the initial state has no impact on the long run ayemost (Eq.[(2)) as its effect
is dissolved over time[([34]). In this section, we only referthe discounted case. We examine
the average case in Sectioh V and in the appendices. The fuadagon for the discounted case
IS given by V(sg) = sup,.cy J™(s0)-

We now define the restricted and induced MDPs, which allowousdrk with much simpler
MDPs in our communication problem, yet retain the notion efwork coding hence the near-
optimal performance.

The policy restricted MDP is stimulated by the state aggregave suggest. State aggregation
exploits properties present in the state space of the babie [the detailed states) for aggregation
of multiple detailed states into one aggregated state mbtaian MDP with smaller state space.
In particular, a partitior§ = {3, ...,5,} of the detail state space may serve as an aggregated
state space if each detailed state is mapped to one and oaelpggregated staté J{' | 5, =

8; 5:N5; =0). We now formally define the Policy Restricted MDP.

Definition 3.1. A policy restricted MDP denoted y(; = P(M,, ¢, A), is defined by
(I) A mapping¢ acting on8, such thaty : § — 8, where§ = |, 3, for disjoint 5;,

(1) A restricted action spaced € A, and
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(1) A restricted set of policiedl € U, such that for allz € U, it holds7(s) € A, Vs € § and

if ¢(81) = ¢(82) then dﬁ(sl) = aﬁ(SQ), Wheredﬁ(sl) = 77'(81), and aﬁ(Sg) = 77'(82).

In other words, we define a mapping rufg¢s) which associates each detailed state with
an aggregated state, partitioning the state sp&yento the aggregated state spad. (In
correspondence to the aggregated state space, only polla¢ enforce the same action for
all states belonging to the same aggregated state are #olmis®., the same action should
be taken for alls; € s;. We will use the notatiors € s if it holds ¢(s) = 5, and7(s) as the
equivalent tor((s)).

Note that the policy restricted MDP is still based on the iflmtiastate-space and thus is
difficult to calculate. Accordingly, we define the induced M@o which the detailed states are
transparent. The induced MDP is formed by the atomic statesiced by the aforementioned
aggregated states, hence, relies on significantly smalflex space, and has similar action rules.
By means of the aggregated state space and the correspgmaling restriction space, one
can define transition probabilities as follows: Given an &ible policys € U, the transition

probabilities between the aggregated states which we ddnoi(s'|s, a), are:

®3)

= S sl @ (s"]s) = 30 S p(s')s" )t (s])

s'es’ s s'es’ s

Where p™(s”|5) denotes the stationary probability of being in the detaidtate s” € 8,
conditioned on the aggregated stateObviously, these probabilities may depend on the policy
7 € U, hence the superscript yet, for simplicity in the sequel, when clear from the comteve
will omit the superscript. Clearlyy .. p™(s"|5) = 1. Define the cost of the policy restricted
MDP as follows: J7(so) = E[ Y12 v'r(si1,af, s¢)|so] . The corresponding value function is given
by Vi(so) = supzc J™(s0). Since policy restricted MDP sees the detailed states wedsine
J7(S0) = D soesy I (50)P™ (S0[50) @nd V(o) = supzey J™(S0)-

Next we formally define the induced MDP:

Definition 3.2. MDP M = (M, ¢,.A) is induced by policy restricted; on My, if

(I) Each states € S uniquely relates to somee S; Denote this relation as ~ 5.
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() For all s ~ s, the actionsa(s) available ins are equivalent tai(s). Denote the relation of
the action space as ~ A, and relation of the actions a& ~ a.
(Il The transition probabilities are defined on similar givability space and comply with

p(&'|s,a) = p(d|s,a), for all &, s, a, for which s ~ 3.

Note that an induced MDP sees no detailed states. That ik, state of the induced MDP
stands for distinct aggregation of detailed states in acpaléstricted MDP. Note that if one
takes a sequence of detailed stafeg, s, s2,--- } and appliesp to it, the resulting sequence
{b(s0), d(s1), d(s2), -+ } is not necessarily Markovian. This is becausés non-injective sur-
jective function. That is, it is not a bijection for the reasiie injective property does not hold.
However, as we show in the sequel, one can construct tramgitobabilities froms(s;) to ¢(s;),
i.e. the aggregated states, such that the resulting prasddarkovian. As far as the problem
of coded retransmission is concerned, the state spaceusegdroms$ = 25 -1 to §, where
the size of the latter is determined by the properties of fbeementioned mapping. Denote
U defined overA.

The discounted infinite horizon cost associated with sonlieypé € U is given by J7(5) =
E[ >0 7' #(5't41, af, 3,)|30] . The corresponding value function is givenBy(so) = sup, i /7 (30).

We aim to set the appropriate reward function for the inddd&P such that its value function
will be comparable to that of the policy restricted one. Thkation betweerd(M,, ¢, fl) and

P(My, ¢, A) is given by the following proposition:

Proposition 3.1. For an MDP M(8, A, P, R, ~), a policy restricted MDPM; (8, A, P, R, )
such thatM; = P(My, ¢,A), and an induced MDPV((S, A, P, R, v), whereM = J(My, ¢, A),

with given initial statess, ~ 5, there exists a reward functiaR, such thatV (50) = Vi(50).

See AppendiXx_A for the proof.

Intuitively, one sees that the reward of an induced MDP maynkerpreted as the suitably
weighted sum of the rewards of the corresponding policyicetl MDP, normalized by the sum
of the weights. Note that these weights are found by the ittangorobabilities to the detailed
states which compose the corresponding destination agfgetgtates’, for which the relation

s’ ~ & holds. The key point is that with the proper reward functithe induced MDP achieves
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the same value functioas the restricted one. Note that sinde C U, in general, we have
Vﬂ(go) = Vﬂ(So) S Vu(SQ).

V. STATE AGGREGATION AND REINFORCEMENT LEARNING BASED SOLUTI®

Having laid the ground, in this section we follow the notascand definitions described in
Section Il to provide the formal definition of the state aggmtion and restricted policy for the
communication problenconsidered. Specifically, we will base both the aggregatatés and
the action space on the clique size (which will be definedtgfjaand on the number of empty
lines in the state matrix; the rewards and transition praib@s of the induced MDP will be

determined accordingly.

A. State aggregation and the restricted action space

In order to define the state aggregation and the restrictednaspace, let us first define a
cliquestructure and associate it with clique transmission. Weaate a directed grap@(V,T),
with each state € S, such that a vertex; € V' is assigned to each usgrand a set of directed
edges are formed between each user and the users it holdket paci.e.,I'(s) = {e;; =
{vi,v;}|s(4,j) = 1}. As commonly defined in graph theory, a clique is a subset dfoces such
that each vertex is connected to each other vertex in the.eet) is a clique;if f {Vv;,v; €
Q:s(i,j) =1,V #14 i,5€{l,---,a}} . The size of a clique is determined by the number
of vertices it contains. Note that in the context of our pesblany set of users forming such
a clique fv; € Q) implies that each user in the set has all the messages edendall other
users in the set. Accordingly, a coded message, composelll thkanessages intended to all
users in the set, can be sent, such that each user in the sdécade its own. Denote the size
of the maximum clique induced by stateby L(s) and by E(s) the number of empty lines in
S.

We construct the aggregation such that each aggregatedsstifined by the tupleL(s), E(s)},
i.e., ¢(s) ={L(s), E(s)}. For clarification let us examine the following example:

Example 4.1.Consider a communication network consistinghafisers. Observe the following
states:

0
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Note thats; contains a clique of siz8 associated with userg, 3,4 and a clique of size
associated with users$, 2. The states, contains the2 cliques of size3 associated with users
1,2,3 and usersl, 2, 5. There are no empty lines in either state. Since the sugdesigregation
considers only the maximum clique size and the number ofydinps, both states above pertain
to the same aggregated state denoted(By0), i.e., ¢(s1) = {L(s1),E(s1)} = {3,0} and
¢(s2) = {L(s2), E(s2)} = {3,0}, .., ¢(s1) = ¢(s2) = {3,0}.

The additional detailed example can be found in Appendix N@te that the number of
possible states (i.e., number of unique pdifgs), F(s)}) is dramatically reduced and is upper
bounded by/ = (K +1) K. Further note that while finding a maximum clique is hard ineal,
graphs resulting from the state matrix in our setting areloam and have cliques of logarithmic
size [18], hence.(s) can be found efficiently.

Having defined the state aggregation, we define the restretéon space. In particular, in
accordance with the aggregated states we allow only tworatsending a coded packet to the
maximum cliqgue which we denote by = 1, or sending an uncoded packet corresponding to
a randomly chosen empty line denoted dy= 2 (A € {1,2}). Note that the restricted action
space complies with the constraint that the same policy ldho& applied to all states in the
same aggregated state. It is important to note that once teonas decided (according to the
aggregated state), the actual combination depends on thiéedestate, (i.e., to which user (users)
to send an uncoded (coded) packet. In Examplé 4.1, since #rerno empty lines, the only
permissible action is to send a coded packet to the maximigueslthat is, sending, & ps & py
for s; or one ofp; @ ps & p3, p1 B p2 B ps for s,. Note that in the case that there are no empty
lines and the maximum clique size is one, the AP should senddadcpacket to one of the
maximum cliques, yet since the size of the maximum cliquegsak to 1, the coded packet
comprises a single packet hence it is practically uncoded.

Obviously, the action space defined here is not the only fiusption. For example, one may
define sending the empty line which has the greatest potdatiacrease the maximal clique.
Moreover, in some cases sending an uncoded packet to a noty-éime might be a more
valuable option. However, our approach is to choose a simagigegation that even though not

optimal, is clearly motivated by the original communicatjoroblem, hence is expected to attain
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good results. In addition, we aspire that the number of dera (e.g., determining the maximal
clique or random selection of an empty line) which is reqiif®m the AP to perform (on the
detailed states) will be minimal. The evaluation part (8ed¥/I) confirms that even though our

approach is not optimal it attains very good results.

B. Finding the policy utilizing reinforcement learning

In the previous subsection we have defined the state aggregatd the restricted action
space. In order to complete the setup in this subsection warothe appropriate rewarl and
the transition probabilitieg(s|s’, a), for the induced MDP.

There are three major obstacles in computing the trangitiobabilities and constructing the
associated rewards according to Propositioh 3.1. Firstpttket loss probabilities typically are
not known to the AP. Second, in order to compute the tramsipimbabilities one needs to go
over each detailed state and compute the probability ofggtaneach state for each possible
action (it implies order of I5(K—1) x 2K(K=1)) action). Third, the transition probabilities are
policy dependent, i.e., the transition probability of gpiinom aggregated stateto aggregated
states’ relies on the steady state probability of being in detailadies; given that the system is
in states (see equatior {3)). These probabilities are policy dependecall that our objective
is to determine the policy. Even though the first obstacleelatively easy to resolve as the
AP can keep a history record and if necessary send dedicatdx packets to estimate the
packet loss on each outgoing link, the other difficultiesramge challenging as obviously trying
to compute the transition probabilities and the reward eslis impractical. Accordingly, we
utilize reinforcement learning (RL), an effective leamitechnique which has the capability
of finding the reward maximizing policy, in discrete stodi@m&nvironments, without explicit
specification of the transition probabilities. SpecifigaRL is based on a feedback loop in which
the reinforcement agent (learner or AP in our case) selececton based on its current state,
gets feedback in the form of the next state and an associetgtd, and updates the estimated
records. The selection of the action is based on the curtatd sand the temporary (current)
policy, and balances exploration and exploitation, i.e.tlee one hand the agent has to exploit
what is already known, but on the other hand it has to exploder to examine other options

for making better action selections in the future. Accogtinthe agent must try a variety of
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actions and progressively favor those that appear to be(bgst [35]). One of the difficulties of
our learning problem is expressed in highly differentiadedess frequencieamong the various
states. Accordingly, since the algorithm is expected td esch state multiple times, we need to
direct it and to force it to visit less visited states. Sel&kh algorithms that can be utilized to
solve our problem exist, e.g., MBIE [B6l? [37] and R-Max [38]; each one has its own merits.
Nonetheless, since our main concern is in the applicatemifjtrather than trying to adopt one
of the known algorithms, we derived a modified simple aldnitwhich suits best our problem.
The proposed algorithm iterates between two steps; thaiteastep and the policy improve-
ment step. Specifically, we utilize a random policy (e.g.page at random if to transmit a
randomly chosen empty line, or to transmit to the maximumud) for the learning. In each
step, we apply théemporary policywhich was found in the previous step. We utilize greedy
approach with the temporary policy (that is, choose theoadiiccording to the temporary policy
with probability 1 — ¢, and choose a random action otherwise), #gr consecutive iterations
(transmissions), recording the visited aggregated stmtelsthe attained rewards (the number
of consecutive transmission can vary between steps, héecsubscriptc). It is important to
note that even though the system traverses the detailezs statly the aggregated states, the
actions taken and the rewards attained are recorded. ThteisAP does not hold any record
of the visited detailed states. Next, wedate the temporary policytilizing the newly learned
reward functions and transition probabilities obtainedirty the learning phase, by applying

value iteration on the correspondilBgliman equationthat is,
V(§) = max {ES (8 a=1,8)+~V ()], Es[r(§,a =2,5) + 7V(§/)]}. 4)

This reinforcement learning procedure continues untifisieht convergence iV (s) or until
the policy is unchanged. The outcome of the proposed algoris the optimal policy for the
induced MDP and the nearly-optimal corresponding).

A pseudo code of the algorithm is given Adgorithm A The algorithm starts with picking a
random initial policy, denoted by (Initialization step inAlgorithm A. The random policyrz
we implemented chooses between the possible actions withl @gobability, namelyg = 1 or
a = 2 with probability 1 /2 each, when the choice is feasible, wheémnd2 stand for transmitting

the maximal clique and the random empty line, correspongifter the Initialization step,
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Algorithm A

Initialization

1) Initialize policy 7 = 7. Setn(8',a,3) =0, R(§',a,8) =0

2) Setr® = np.
At stepk >0

1) Updates;, from predefined decreasing sequenceaf}. SetNy.
mr With probability e,
7% with probability 1 — e.
3) Run)M; with 7¥ for N transmissions.

a) Each visit tos actinga with rewardr’ and going tos’,
setn(§',a,8) =n(s,a,8) + 1, R(§,a,8) = R(§,a,8) + 1.

4) Calculatep(§'|a, §) andr(§',a,s), fromn(s',a,$), R(,a,s) and Ni.
5) Find V;, by value iteration oveM,. Retrieve the optimal policy’;"*.

~ ~ B
6) If |J, — Ji—1] < e, for some predefined, then finish. Otherwise perform stép+ 1.

2) Set policyr’ =

the algorithm runs between two steps; the learning step lagalicy improvement step which
are repeated iteratively. At each step the algorithm staitis a least visited aggregated state
(the detailed state within can be arbitrary), and startgetsang the states folN, consecutive
transmissions, based on the- greedy policy (line 2). Obviously, only the restricted actions,
i.e., transmitting an empty line or transmitting the maximalique, are allowed. The parameter
e is updated at the beginning of each step (line 1). After eaxtiora the agent records the
previous and the next aggregated states, the action takktharreward attained (line 4). After
N, consecutive transmissions, the policy for the next stepgdated by solving the Bellman
equation. The algorithm terminates when the policy or theim¢d value converges.

Note that the algorithm does not rely on knowing the packss Iprobabilities. That is, the
algorithm learns transition probabilities of the induce@®R®lat any fixed channel condition re-
gardless of the exact packet loss values. Obviously, thaithgn relies on that these probabilities
are fixed in time.

For the average cost long run case, the algorithm should teeedl by correspondingly
adjusting the learning step and the update step (see,[89j), We discuss the implementation

details and results in Sectién]VI.

C. State aggregation with a TTE constraint

In this subsection we utilize a similar aggregated MDP fdaton to encompass TTE-

constraints. Since both TTE constrained and unconstrairaztkls are never considered simulta-
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neously, with slight abuse of notation, we will denote thatest for the constrained case similarly
to the unconstrained one. The connotation will be clear fthencontext. Since under a TTE-
constraint stored packets are getting obsolete, the steghetate aggregation will incorporate
the age of the "oldest” line. In particular, we propose twatstaggregations, both of which
maintain the number of empty lines and the age of the oldest ivhereAggregation/ also
preserves the size of the largest cligue encompassingintieiswhile Aggregation// keeps the
size of the largest clique regardless of whether this cligneompasses the oldest line. Next,
we formally describe the two state aggregation functionsckwvimap the detailed state to the
corresponding aggregated state; we also design a moded-beerning similarly to the case with
no TTE constraint.

1) Aggregation I: Define ¢; : MTTE — N x N x N}, ¢;(s) = {F,C, E}, where F(s) is
the lowest strictly positive TTE i, C(s) is the size of the maximal clique, which contains the
row with 7 = F', and E(s) is the number of empty lines i, wherer was defined in sectidnl .
Note thatC'(s) is not necessarily equal to(s), the maximal clique irs. Denote the action space
by A’ = {1,2} wherea € A’ = 1 stands for sending a coded cliqu&s), which contains a
line with - = F, anda € A’ = 2 stands for sending an uncoded packet corresponding to a
randomly chosen empty line from(s).

Following the formalization presented in Sectionl Il we defithe policy restricted MDP
denoted byM! = P(My, ¢;, A) and the corresponding induced MDP denoted My =
I(Mo, ¢1, A7) (see Definitio 3]l and Definitidn 3.2, respectively).

The basic approach for finding an approximately optimalqgyolinder Aggregatiord, is by
harnessinghlgorithm A The corresponding Bellman equation is written similadywhat appears
in @), where the solution is found by substituting the ral#vaggregated states.

2) Aggregation II: Similar to Aggregation | we define a second mapping : MTTE —
{N x N x N}, ¢77(s) = {F, L, E}, where E denotes the number of empty linesdnF’ is the
lowest strictly positive TTE ins, and L = L(s) denotes the size of the maximal clique dn
Note that there is no knowledge about the size of the maxitiglie containing the line with
T = F, as in Aggregation/. Denote the action spacé’’ = {1,2,3}, wherea = 1 stands for
sending a coded maximal cliqu&(s), which contains a line withr = F'; a = 2 stands for

sending an uncoded packet corresponding to a randomly cresety line, andi = 3 stands
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for sending aL(s), maximal coded clique . Note that the actiom = 1 presumes no prior
knowledge about the size @f(s). Thus, the decision in this case is myopic as far as the size
of clique being sent is concerned. The learning in the cas&ggiregation Il is performed by
utilizing algorithm A. We compare by simulations both aggrgon types, with an alternative

heuristic policy in Sectiofi V.

V. STUDY OF THE PROPERTIES OR/

In this section, we present an in-depth study of the sugdesdistract MDP-based approach by
exploring the properties of the value function found throtige reinforcement learning procedure.
Our primary objective is to understand the structure of thkier function. Namely, we aim to
isolate properties of/(s) related to each one of the aggregation parameters. Thisyrin will
allow us to incorporate these properties in the main legrailyorithm, resulting in improved
speed and precision of convergence. Moreover, it will gisebatter understanding of how each
of the parameters (e.g., clique size) affects the resuitd, lrow the overall coding process
should behave as a function of these parameters. In patidal some cases, we will observe
a threshold type policyn one of the parameters. That is, a policy in which theratisnost
one switching statérom one optimal action to the second. Such a property igalgsi as once
the switching point is found, we may set the actions to thetinsal valueswithout the need
to iterate until the ultimate convergencBurthermore, in most cases, such a threshold policy
will give a fundamental and rigorous reasoning to very itigiresults, e.g., if sending a coded
clique is beneficial for somé(s), it is definitely beneficial for any > L(s).

For simplicity, we demonstrate the proof of the existence ahreshold-type policy for the
1-dimensional aggregation defined below.

3) One-dimensional aggregatiorAs an alternative to the multi-dimensional aggregation pat
terns, we introduced an even more coarse abstraction. Nadedlne¢ : M — {N}, such that
¢(s) = L(s), that is, the size of the largest clique. Denote a line whihat in the maximal
cligue ase-line Define astate aggregatiorby the sets = {s : L(s) = [}, for some given
[, 1 € {1,---,K}. The action space consists of two actions= 1 stands for for sending
the maximal clique, whilez = 2 stands for sending an e-line. While oversimplified, and as

such resulting in maybe inferior performance, this aggiegaand the induced MDP serve as
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a good example for which we can investigate the value functind gain important insights.
Propositiof 5.2 below proves the existence of a thresholidypander an average cost. Let

be a maximizer over ab in @). That is:m, = arg max, limy_,e ~E[ 31, 7(shy1, a7, 50)]

Proposition 5.2. There exists an optimal policy which is threshold policy I tsize of the
maximal clique. Namely, there exists a constant: € {2, ..., K} such that for0 < L(s) < k

ands € s it holdsa(s) = 2, yet fork < L(s) < K ands € 5, we havea(s) = 1.

That is, send the maximal clique (a coded packet) if and dntyg size is at least. Otherwise,
send an e-line (an uncoded packet).

We will need the following notation for the proof of Propasit[5.2. We say that a stateis
recurrent under the policy: if when starting at state and acting according tp, the probability
to return tos is 1. A state which is not recurrent undgris transient underu.

Consider a policyr*, which is optimal for the average long run cost,= arg max_ J,, where
J7 is given in [2). Denote a set of stat&s C S such thats® ¢ S, if a,, (s?)) = 1. Denote
a states™), such thats™ € S, and L(s™) < L(s®), Vi, s® € S;. Namely, S; is the set of
states for which sending a clique is optimal, agit) is the state with the minimal maximal

cligue in S; - for which it is optimal to send the maximal clique. We have thllowing claim.
Claim 1. Any states®” such thatL(s®) > L(s(™) is transient underr*.

Proof. We use the fact that nodes do not us®ledpackets in order to decode packetst
intended to themNamely, nodes store only uncoded packets intended for athers. Hence,
clique transmissions cannot increase the clique size, rmndgover, decrease it with some non-
zero probability (note that transmission of an e-line cairease the clique size, yet by at most
1). Consider some® < S;. By definition L(s") > L(s™). Sincep(s"|s™ 1) > 0, where

j < m, the states™ will be reached in finite number of transmissions. Furtheenthe states
with clique size more tham will not be attended afterwards. That is, oncesift), the future
state can not be increased. Consequently, forséhguch thatL(s®) > L(s™), s® is transient
underz*. O [ |

Note that the claim holds even if* is not the optimal policy.

Proof. [Propositio 5.R] Consider a policy*, which is optimal for the average long run cost, a
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set of statess; € S ands'™ as above. Denote the st such thats®) € S, if L(s*) < L(s™)),
and denoteS, = S\ S,. Now see that by the claim abov€!™ is the only recurrent state ifi;.

Definen,,, the first time underr* to be ins™. We have

Ny —1 N
7I'AC T - . 1
14 =J" = ]\}I_I}loo N[ Z:O TW*(Sna a’n) + Z Trx (Sna a’n)]

Observe that all states encountered at times n,,, are recurrent. That stems from the fact that
after the transmission at time,,, the process stays ifi.. Sincen,, is finite a.s., the first sum
(once normalized byV) goes to zero. Next, define poliey™ which acts similarly tor* for all
4 such thatZL(s")) < L(s™) (that is, all recurrent states) yet sets")) = 2 otherwise. That
is, a threshold policy. Denote hy, the first time to hits(™ underz™. Observe that

1 & 1 & ac
lim N Z Trs(Sp, an) = lim N Z Tum (Spy @) = V7

N—o00
nN=nm n=mni

Thus 7™ is also an optimal policy. Note that the relation betwegrand n,, is not essential,
since both are finite.

It is left to show that the policy which always sends e-lindst is, sends no cliques at all is
suboptimal. Denote such a policy as. However, in such a policy the expected reward at each
step is given byl — p, and any other policy which sends a clique at any step owpadr® by
somee > 0. This accomplishes the proof of the proposition. O [ |

The proposition above is intuitive, since the clique size caly be increased by. This
renders all states with the maximal clique larger than theestiold to be, in the long term,
unreachable.

Note that Puterman [40] gives general guidelines how to destnate the monotonicity of the
optimal policy, both for the average cost and the discoust tdinite horizon criteria. Here, we
merely presented the short proof which specifically suiis simple case.

The connection between average and discounted costs, likwostn and is described by the
Blackwell optimality condition[[34]. In particular, Blagkell optimal policy is optimal for the
average cost as well. Yet, as seen from the proof of PropagHi2, the optimal policy for the
average cost, in this case, is not unique. Hence, the opgesibt necessarily true. Nevertheless,

we address this in the simulations.
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The technique demonstrated in the 1-D case can be extragataimore complex aggregations.
However, the proofs in these cases will involve treatmerdigrificantly more complex Bellman
equations. Alternatively, one may merely assume the existeof a threshold policy, based
on observations from simulations. The main advantage ofngathe threshold-type policy
proof/observation is the possibility to enhance algoritAmas we explain next. Assume there
exists a threshold policy ifv, as was presented in AggregatibrNamely, once for somé& = i,
there is aswitchfrom optimal actior2 (transmission of an empty line) to actian(transmission
of a clique), then we deduce thatis optimal for all E < i , while 2 is optimal for all £ > 1.
Hence, if existence of a threshold policy in one of the patanse(e.g.F',C,E) is known, at
step4 of the algorithm, in case the policy in some (possibly ranggited) state is not yet clear
at some point of the algorithm run, correct it according te #iready known (or conjectured)
threshold rule. This method will accelerate the overallvesgence. Another useful property of
V', which gives good understanding of its behavior, is its sld®ee Appendix B for both upper
and lower bounds on this slope.) Similarly, the bounds candsful for the manual calibration

of the value function in order to speed up the convergence.

VI. SIMULATION RESULTS

In this section, we evaluate the suggested transmissiategyr through extensive MATLAB
simulations. Our simulation results provide insight on thmpact of each of the mechanisms
described throughout the paper. Specifically, we thorougidamine the effect of different
parameters such as TTE and packet loss probabilities onahue yunction or on the policy
structure. In addition we evaluate our algorithm and complae different aggregations suggested.

In our simulations we consider a single cell comprising an & K receivers. Since our
results relate to the traffic from the AP to the users, our &atmans only consider the downstream
traffic. We assume that alk’ users have pending traffic waiting to be transmitted. iAml
Bernoulli channel error is assumed, where each packetnige®n is received or dropped
by each user with probability — p and p, respectively, and is independent between different
transmission attempts. The AP works according to Algorithnwith corresponding aggregation.
In all cases compared, the AP activates the learning roatmsidering the discounted infinite

horizon cost. Thus, it computes the values attained by vhlanetions for all possible initial
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states. We later use the same policy for calculating the tomgaverage cost. Note that based
on the Blackwell optimality argument (e.gL, [34]), 4f — 1, under mild conditions the policy

which is optimal for the discounted problem is optimal foe thverage cost problem as well.
The number of iterations for each phase (learning and ingmant) is set in accordance with

the specific configuration.

A. Results without a TTE constraint

We start by evaluating the policy resulted from our learnatgporithm, for the proposed ag-
gregation in the case of no TTE constraint (Secfioh V). Weagare our results with the bounds
obtained in{[4]. The aggregation for the TTE-unconstraicase constitutes a 2-dimensional state
space, namely, the size of the maximal cliguend the number of empty lings (Sectiol1V).
The action space comprises two possible actions, transgiiid a user that its packet was not
received by any user (empty line in the state matrix) andstratiing to the maximal group of
users in which each member of the group has a packet destiregkty other user in the group
(maximal clique in the state matrix). The performance itssfile the percentage of successfully
decoded packets, using the retransmissions) are seenureB¢top) along with comparison to
the bound from[[4]. The bound is derived for systems withch stronger coding capabilities
hence any potential scheme, theoretical or practical a®eanannot attain better performance.
Denote it as th&Vang upper bound\ote that in order to calculate the bound one needs to solve
120 inequalities, hence the graph has small discrepancieslaiger systems, such calculations
may be too complex. As for the optimal policy, the simulati@sults show that is the same
regardless of the packet loss probability. In particulas,aptimal policy is defined by transmitting
a random empty line whenever there are empty linés>(0) and transmitting to the maximal
clique otherwise. Accordingly, the obtained policy is ae$tiold-based policy. The intuition
behind this strategy is clear: the reward associated with possible actions, transmitting a
random empty line or transmitting the maximal clique, isdimdependent, i.e., the expected
reward is the same if the transmission occurs now or in oneheffollowing transmission
opportunities. Moreover, since any empty line is not ineldidn any clique all the more so in
the maximal clique, yet transmitting an empty line can ptédly increase the size of a clique

without incurring any penalty for delaying the current nmaal clique transmission, it is worthy
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to fill in the state matrix such that no empty lines are left] anly then to transmit the maximal
clique. Note that this policgoincides with the one heuristically suggested18] denoted as the
semi-greedy algorithnSG). Accordingly, the simulation results imply that undlee restricted
action space described above, the semi-greedy algor(ti@i$loptimal, as long as no TTE
constraints are applied. Moreover, for the simple case o$érs system, these resudtshieve
the sum-capacityhich is found according ta [17] andl[4]. Figuré 1(down) slsowsults (value
functions at all states) for differentiated packet losse@ees that the case with equal packet
loss for all users achieves the lowest value function vedtbe highest values are obtained for
the case where two of the five users have relatively low padesst (.1), while the other three
users have relatively high packet loss (more tha). This is explained by that the lossy users
tend quickly to have a pending packet stored at reliablesus¢ence, the lines corresponding
to these users are most probably not empty while reliablesulseep successfully receiving
uncoded packets. A clique will be sent when some of the relialkers will not receive their
packet forming a large enough clique for transmission. laraN, the performance is tangibly

increased, but the throughput improvement comes at expeEnsampered fairness.

B. Results for TTE constrained aggregations

Next we evaluate the performance of the suggested transmissrategy under TTE con-
straints.

We simulatedAggregation I(Sectior . 1V), aiming to examine the structure of the valugction
for all feasible states. Namely, we try to to understand ffexeof different parameters ovi($).
Our objective was to identify simple properties such as namoity, convexity and threshold-
type structure. Such properties can be potentially utllitce the RL convergence speed-up. This
will allow to successfully operate larger systems. We exeuia system with' = 5 receivers.
We sety = 0.99. The results are depicted in Figure 2. THe- axis depicts the value attained
by each state}/ (F'; C; F), (denoted by asterisks). Each value corresponds to the giveal
state. X — azis relates to an enumeration of the statgk,2, - - - }. Note that the asterisks form
groups of monotoneous patterns of values. In particular states are assigned numbers which
grow first in TTE (), next with maximal clique size({) and finally they grow with the number

of empty lines f). For example, state 1 refers to the state in which there arenmpty lines,
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maximal clique size 1 andT E = 9, State 2 relates to the values of the state in which there are

no empty lines, the maximal clique size contains the linenwiite greatest TTE is 8, state 96

which is the last state refers to the state in which there ampty lines (i.e. the empty matrix)

Performance in 5 users system

Note that for the widespread (e.g., 802.11) policy that -

0.95

only allows uncoded transmissions the value is fixed os
0.851

2 = 12025 — 75, which is below the scale of the
~ 0.99

0.8

e Rate

3
& 0.751

graph, i.e., the value for all states is higher than the " |

one for the uncoded ARQ retransmissions.
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the effect of empty line on the obtained policy, we
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explained by the property that lines which are noRy, 1

2 4 6 8 10 12 14 16

System of 5 users results with no TTE

empty contain some information that potentially can enstraint

exploited in future transmissions, while the empty lineatatn no information whatsoever. In

addition, in order to demonstrate the value function depend on the clique size, we emphasize

the states in which TTE is fixed and equalsi2-€ 2), number of empty lines is fixed (we show

two different values), and the clique size varies. Obséryg; C;0) and V(2; C; 1) which are

represented by the solid cyan and the solid magenta line; fo 0 and £ = 1, respectively. As

expected, both lines have an increasing pattern @withe., the greater the maximal clique which

corresponds to the line with lowest TTE, the greater theeséilmction. By observation, one can

also assume that the value function has a convex increasingih C' (cyan and magenta lines)

and convex decreasing il (the red line).

The effect of the differentiated packet loss is demonatrateFigure[2(down). We compared

four different packet loss distributions, with averageuea¢qual td).3. Similarly to the case with

no TTE constraint, the best throughput is achieved wherkgtdoss was with highest variance.
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However the difference was significantly less visible, whig clearly understood from the TTE
constraint, since with TTE will limit the number of packetnsdy the AP before sending a
clique incorporating the lossy users pending packets. Watefor the same reasoning, also the
fairness issue is less acute. For example, in the case whesereliable user had packet loss
equal t00.12 while the most lossy one had packet loss equal.t3, the ratio of the number

of sent packets by the AP wds: 4 in favor of the reliable user.

Value function for 5 users, with TTE=9, p=0.25

We explore next the dependence of the policy ss— ——

-e- V(2,2E)
-6-V(2,C,0)
-e-v(2,C.1)

found for Aggregation | on various parameters, at
equal packet loss which ranged frai% to 35%. The ol
results are shown in Figuté 4. For reference conve-’

v

nience, the first column denotes the state enumera- ’ ﬁ ------ f,ﬁ

tion. Recall, thatl stands for sending the maximal . e e wag, e

with inter-session coding and no TTE is 92

clique containing the oldest line, while stands for 825146 20 a0 40 S0 6 70 8 0 9

State enumeration

V (value function vs. packet loss differentiation)

transmitting a random empty line. 20

@ all0.3
=== 0.43,0.10,0.10,0.43,0.44 |
=€-0.12,0.21,0.30,0.39,0.48
a =©=0.35,0.35,0.35,0.35,0.10 ||

These results clearly demonstrate that the algo- 7s

rithm converges to the optimal policy in accordance 77
with the channel condition. As for the threshold- v}

type policy, the proof of this property is hard to { e & :
74} o 0 oeed,
accomplish, as it relies on the transition probabilities, ,

0 16 26 3‘0 40
which are hard to attain. However, the threshold- state enumeration

. . Fig. 2. Aggregation I. Each group of asterics represents
type property, can be observed by simulations, as it
the number of empty lines. The group with = 0,

is seen from the table (see states (20-22), (27-2%; isv (r,c,0), is near10, V(F,C, 1) is near3o,
Note that the property can highly accelerate the RL(F,C,?2) isnear60, V(F,C,3) is nea0, V (F, C, 4)
procedue. 4 oxline in Sei@I th wanst ™1 o
tion probabilities are approximated by RL. Hencey,,

simulation-based exploration is imminent in order to idigrétructural properties. Alternatively,
one can attempt to prove the threshold property for the geel@ng run case, as we proved for
the 1-D case in SectidnlV. Note that as long as all three diropaf V' (S) are viewed, the
thresholds are expected to form three-dimensional swgface

We conclude the observations above by proposing an eféespeedup for Algorithmd. The
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proposed enhancement stems from simulation results anklebgreviously discussed properties
of value function in sectiof V. First, in order to succedsfulperate a larger system, one can
solve a (trial) system with small number of users with the saggregation and the same channel
conditions. Next, the resulting optimal policy can be eptlated in order to get the policy for
the desired system, for example, threshold and monotgnpeitterns, as we examined above.
In particular, define an approximating poliey, using an assessment based on the policy found
from a smaller system and the observed properties. Heaailsti this policy should allow a
randomization aroundonjecturedthreshold states. Next, an adjustmentigfand that ofr%t

is heuristically performed. Again, this improvement candome using the estimated properties
of the value function, or can be combined within the regutlar of the reinforcement learning
as it appears in Algorithml. See also monotone policy iteration algorithm[in/[40].

In order to evaluate the effect of TTE on the policy, we cormephoth Aggregation | and
Aggregation Il with the greedy and semi-greedy algorithmgppsed in [16]. Specifically, the
greedy algorithm aims at maximizing the instantaneous mweceived for each transmission
opportunity. Hence, the policy according to the greedy lgm is to transmit the maximal
cligue for each transmission opportunity. Whenever theraa clique (i.e.C < 1) transmit a
random empty line. The semigreedy (SG) policy is defined & ghbsection above. Figuré 3
(left and middle) compares the value function of the dis¢edrnnfinite horizon cost with a zero
matrix as the initial state for the various policies.

Figure[3 (left) clearly depicts that as expected under th& Ebnstraints the semi-greedy
algorithm performs almost as poorly as the uncoded polibys T explained by that it does not
take into account lines which can be discarded, hence msgse transmission opportunities
just for trying to fill the matrix with non-empty lines. Moreer, in system where the number of
users is greater than TTE, the AP will never be able to fill tta¢esmatrix with non-empty lines
and the aforementioned semi-greedy algorithm coincidésthe uncoded algorithm which sends
only uncoded packets. Hence, we devised an alternativastieualgorithm, termed modified
semi-greedy (MSG). MSG differs from SG in that whenever ghisra line in which the TTE is
going to expire on the next slot (i.e., TTE = 1) the AP transniite maximal clique containing
the oldest line. The results of the MSG heuristic are alsaatiegh in Figure B. Note that MSG

is indifferent to the channel conditions and acts identycidr any packet loss (Figurg 3 left).
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Further note that even though both policies rely on the saananpeters to make a decision, i.e.,
both perform based on the triplébldest line, maximal cliqgue size, number of empty lihes
Aggregation Il outperforms the MSG algorithm at all packestd values. This can be explained by
that MSG, while being effective as a simple heuristic aldon, neglects the channel condition,
i.e., MSG provides only a single retransmission opporjuftit a packet before it gets obsolete,
regardless the loss probability. This is opposed to Agdregdl which effectively adjusts the
policy to the channel packet losgth no prior knowledge on the packet logg,(based on the
on-line learning Indeed, the advantage of Aggregation Il becomes more m@miat higher

packet loss values, as can be seen in Figure 3.

v (0) V(0)
85 90 - v
1 = MSG —-Aggregation |, TTE=5 0. —MSC
——Aggregation Il, TTE=5 85 -e-Aggregation Il, TTE=5| —— Aggregation |, TTE=5

== Aggregation Il, TTE=7|
——Uncoded
—~Agg. Il, TTE=5,K=10

——Aggregation Il, TTE=5|
~+=Aggregation Il, TTE=7|
——Uncoded

Greedy, TTE=5
-~ Semi-Greedy, TTE=5
——Agg. Il, TTE=5,K=10

==Uncoded
© Semi-Greedy, TTE=5 80}
< Greedy, TTE=5

~
=]

Value
Function
Value
Function
~
o
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60| 0.6| < 1
55 55 055 \
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Packet Loss

0.35 0.35
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Fig. 3. \Value function comparison. The left and the middle figuresusthe discounted case. The right figure shows the averagéoogsrun.

Next, observe that when the number of users is greater th&h e effect of the surplus
of the number of users is negligible. This stems from the flaat at mostt’ = TTE lines can
have non-zero entries at all times. Indeed, we seekhat 10 leads to almost no improvement
in performance compared to th& F = 5 case (the corresponding lines in the middle graph are
almost coincide). Hence, we conjecture that for the caseevRe> TTFE, further state-space
minimization could be done. However, once one increase§ e parameter the performance
improvement is tangible. These results are seen on the engtdph as well. Finally we compare
the average cost long run simulation results (Fidgure 3 tyidRelying on Blackwell optimality,
we used the same policies we found for the discounted case.s@&s the same performance

gradation as for the discounted cost.
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Fig. 4. Approximately optimal policy, for a system witi = 5 users and"TE = 5. 1 stands for sending the clique containing the oldest line,
while 2 stands for sending a random empty line. Observe the depeadérthe policy on the packet loss, e.g. in stat@s11,21,28, 29 (These
states are marked in red). The impact of the parantétean be seen from staté$", 3, 2},(state20, 21, 22), for example. Note that the clique is
always sent in the cases whdre= 1, i.e., the oldest line in this clique is about to expire. Ip ttases wher&' > 1, the policy depends on the
packet loss, and generally tends to change eacep is greater and/oF’ is higher.

APPENDIX

A. Proof of Proposition_3]1

A A

Proof. We prove by constructing a reward functioh = {#(§,a,8)}. Let the rewards as-
sociated with policy restriction and aggregated origimgitstate ber(s’,a,s). Observe that
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Er(s’,a,5) = Y r(s,a, s”)P(F(s', a,3) = (s, a, s”)) = 3 Ir(s @, s (5" 5), (5)

s €s

Partitioning all states ii§ to the aggregated states, we have:

r(s,a) = (s’ a,5)p(s']s,a) = _ Y 7(s',a,5)p(s|s,a). (6)

5 5 s'es’

P(8,a) =Y (&, a,8)p(s']3,a) (8)

7(8',a,5) = 7(%,a,3). 9)

Since both the summation inl(8) and the outer summatidd iar@pver all aggregated statés, (9)

will be achieved by taking:

That is,

#(8,a,8) = (10)

with the mappings ~ s anda ~ a. Note that one should usgl (5) in_{10). Hence, we have the
desired result:

oo oo

Vi(80) = D " P (8nt1,8,80) = " Tn(Snt1,@,5) = Vi (50)

n=0 n=0

L |

Example 1.2. The following demonstrates state aggregation (as it wasddfby Aggregation
| in Section[1V) and results of Proposition B.1. Consider ttase of4 users. Each line holds

the packets of user. We exemplify the detailed states whére= 3, £ = 1. These states are
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aggregated into the state denoteddy. Possible cliques are demonstrated in the detailed states

denotedsy, s, s3, s4 below. Observe that these states contain only minimal nuwibé-s.

-

1 1 0 0

[

0 1
1 0

0
1 ’ 1

= O O =
o © © O
[=}

0
0
Sg =
0
0

o = = O
o © © O
= o= O O
= © = O
»
@
Il
o © © O
@
IS
Il
= © = O

0o 0 0 1

See that ins;, there are8 additional options for the last column. In particular, olbbge the

following four states with the same empty line and the samgeelas ins;.

1 0 1 0 0
1 1
0 0
0 0

1 0 0 1
0o 0

(O]

o = = O
o = O =
o = = O
o = O =
o
3
|
o = =
o = O =
=
@
®
|
o = O =
o O = =
o = O =

(O] 0

The same holds fof,, s; and s,. Concluding, the states; ; aggregates32 detailed states.
There are two possible actions, denote them 1 and a = 2, which stand respectively for
transmitting the clique and transmitting (the only) emptel Note that the encoded message

for s; contains the bitd, 2, 3, for s, it contains packetg, 3, 4, for s3 it contains packets, 3, 4
and for s, it contains packetd, 2,4. The probabilityp(s;|ss 1) stand for the probability to be
in a specific detailed state which belongs to the aggregatat S; ;, (we omit the superscript
of the policy in this example). The rest of the example cdnats on the state; € s;; and

actiona = 1, i.e., transmission of the clique. Assume the action resnlthe detailed state,,.

0o 0
1 1
0 1
1 0

o o = o

o o o o
o

o o = o

© o = o

= = o o

Clearly, s, € 5 3. Further, assume equal packet loss probability denoted;.b¥he afore-
mentioned transition occurs with probabilifys,|a = 1,s5) = q(1 — ¢)?. That is, two of the
users in the cliquel(and 3) successfully decoded the encoded bit, while @skiled to do so.
See that the same transition can happen from statélhat is, the clique containing encoding
of 2,3,4 was transmitted, and useX failed to decode. This transition occurs with probability
p(sqa = 1,s9) = q(1 — ¢)* as well. We sum up over all such detailed states (according to
AppendixXA):

p(sala=1,5=3531) = Z p(sala = 1,si)p(si]83,1),

Si€83,1



34

This summation counts over &t detailed states i35 ;. Clearly, some of the probabilities, e.g.,
p(sqla =1, s2) are zero, hence do not contribute to the summation. For ¢aficin convenience,
we assume convention that in these cases,a = 1, s;) = 0. We calculate the average reward
associated with the transition fromy ; to s,, according to(5):

EF(SQ,ZL = 1,53,1) = Z T‘(Sa,d = 1,Si)p(8i|§3,1)

S$i€83,1

Note that transition to state,, actinga = 1 from 334, is only possible wheg of 3 encoded
packets were successfully decoded. Thus, the reward fee tteses is equal ®, while for the
other cases it is zero. Let the subs$éte 8§ to contain the possible next (aggregated) states,
assuming the clique size in the previous state dvddamely S’ = {531, 52,2, 51.3, S04}, Where the
components refer to the events of successfully decodifglo? and 3 packets correspondingly.
In order to calculater(ss;,a), we first summarize over all possible outcomes .a = 1) =
>, 7(si,a=1,551)p(s:la = 1,551). Substituting the expected values and the probabilitiesonad
above, and arranging according to the aggregated stateshawes:

7(s31,a=1)=

Z EF(Si,1,5371)p(5i|1,§3_’1)+ Z EF(SZ',1,5371)p(81‘|1,§371)+

8$;€83,1 ;€822

> Er(si,1,850)p(sill,850) + Y EF(si, 1,551)p(sil1,831) =

Si€81,3 S$i€80,4

Z ZET siy1,83,1)p(sil1,83,1) Z Z ( Z 7(si, 1, 85)p (5i|§3,1))p(5i|17§3,1)
=i /1 8;€8 8;E€83,1

We now turn to the induced MDF(. Denotes = s31 anda = 1. We find the reward associated
with transition tos; 3, #(S03,a@ = 1, 53 ;). EqQuate component-wisgs, a) and 7(5;;,a = 1) as
follows:

r(813,4=1,831)p(31,3/831,6=1) = Y  Er(s;,a=1,531)p(sila =1,551)

S$i€81,3

It is left to calculate the probability(s; 3|$51,a = 1).

p(513l831,a =1) = p(51,383,1,a = 1) Z Z )p(s]33,1)

s'€81,3 S€53,1
Finally, the solutions for all possiblé(s’,a =1, 55,) are found from

281651,3 EF(Si,a: 1,53 1) (Sz|1 83 1) 281650,4 EF(SZ',(_I: 1,53 1) (Sz|1 83 1)

T3y 3,6=1,831 — — T50,4,6=1,331 = ~
e s 25’651,3 25653,1 p(5/|a:1 ) ( |S3,1) S0 s 25’650,4 23653,1 p(s’|a_ 1 ) ( |S3-,1)
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Dsicsss EF(si;a=1,531)p(sill, 83,1) Dsicses EF(si,a=1,531)p(sill, 83,1)

T82,2,a=1,55,1 = a 5 M8a1,8=183.1 = a s
20T Dosesan 2usess, P(S'la=1,5)p(s|55,1) ST Dosresss Dusess, P(8'la=1,8)p(s|85,1)

Note thatp(s|s; ) are policy dependent and in order to be found, the Markov rclaisociated
with the MDP should be entirely solved. As it is explainedtighout the paper, we circumvent

this difficulty by reinforcement learning. This finishes tx@ample.

B. Proof of Bounds

We prove low and upper bounds on the slopeldfs), discounted infinite horizon cost.
Denoting p§, the probability to increasd.(s) from k£ to k£ + 1 when transmitting an empty
line, see thap{ < p, that is, incrementing the clique is conditioned on the draission being
unsuccessful. Denote by; ;, 0 < < k, the transition probability from state from to state,
when acting by the transmission of the clique (ze= 1). Note thatp? is formally given by
P = p(8' = i|s = k,a = 1) Define operatofl’, corresponding to the Bellman equation, acting

onV
TV (k) = max{[pinV(k +1) + (1 = pp)yV (k) + (1 = p)], [zk% PraiyV (i) + (1 = p)kl}, (11)
with boundary conditions
TV(0) = {7V (1) + A =ppV(0) + (1 = p)]}, TV(K) = ép%ﬂ‘/(i) +(1-pK.

The immediate rewards are explained as follows. The rewarttrdnsmission of an empty line
is given by the probability of a successful transmissioat te1 — p. In the case a clique of size
k is transmitted, we havke potential i.i.d rewards, which givegs —p)k. To simplify the notation,
denoteS (k) =y Y1 pi,V (k—i)+(1—p)k and E(k) = piAV (k+1)+(1—pp)yV (k) +(1—p).

Let S be the set of functions fror0, 1,..., K} to R that are nondecreasing, and have slope

bounded from above by,, that is
V(k+1)-V(k)<d,  ke{0,1,...,K—1}, (12)

and bounded from below as follows:

V(k)—V(k—1i)>i—c, wherei € {1,..., K =1}, ke {i,i+1,...,K}. (13)
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Lemmall.l below asserts thdt preservesS, and acts on it as a strict contraction. The
combination of these two assertion implies thdts) is in S (see the discussion below), that is,

it possesses the corresponding properfies (13) [add (12).

Lemma 1.1. There exist constantsand d, such that one ha%'S C S. Moreover, there exists

a constanty € (0,1) such that
| TU —TW|| < o||lU — W|| for every U, W € S.

Discussion.The main difficulty of the proof below stems from the ambiguiegarding the
transition probabilities. That is, the precise calculatad these probabilities is computationally
infeasible, especially for large number of useks, We solved this by reinforcement learning on
the practical side. On the analytical side, we make sevealmptions and estimations, which
we justify throughout the proof. To this end, the proof isnpeairily built on the assumption that
V € S and possesses all the corresponding properties. We expisiassumption in order to
prove that operatdf’, acting onS, preserveshese properties, that 8V € S. Now note that the
map defined by operatdf in (1), acting on a complete metric spasewith 7" : R/l — RIS
of value functions, is a strict contraction,. _[41, Theoreni8]. Therefore,I" has a unique
fixed point which solves’'U = U. On the other handy is the unique solution to the same
(Bellman) equation in the space all functions. As a resulty’ = U. Whence, in case we start
the converging procedure with initial function which press [12) and[(13) , by iteratively
activating the operatdr’, we end up with solution which preserves the aforementigmegerty.

1) Proof of Lemmd_1]1:Denote bypy, ; the probabilitypj ;, conditionedthat the largest
fully disjoint clique with the clique of sizé:, prior the transmission, was of size Note that
Jj < k. Denote the probability of having such a disjoint clique jas (by total probability
Pi =22 i)

By Equation[(18) and Lemnia 1.2 (see the end of this sectidwlds eithen;, ; = p; ; o +a1 =
p'(1— p)k_i(];) + a1, for some nonnegative,, or pj,; = 0. (Note, thata; = 0 in the case there

were no other cliques of size— i prior to the encoded transmission.)
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See that by multiple application df (12) arid13)

k
S <AWVo+7 Y ixphd+(1-pk
(14)

=0

k
=V —i—wZi * Piod + (1 —=p)k + az(k) =yVo + ypkd + (1 — p)k + a2(k)

=0

and

k
Sk =WV =y > (k—i)xpf,d+ (1—p)k
1=0
k
= Vi =Y (k=) #p§, od + (1 = p)k — ba(k) = 7V — y(1 — p)kd + (1 — p)k — by(k) (15)

=0
whereaz (k) andbs (k) stand for summations of all compensation constanté, i), in both cases above.

We use the contraction property in the remaining part of theofp Since, by assumptiori satisfies [(IR)

and [13), we only have to show that
(16)

max{S(k 4 1), E(k + 1)} — max{S(k), E(k)} < d
(17)

max{S(k — i), E(k — i)} — max{S(k), E(k)} < —i+¢

We analyze all the possible options within the curly braskes follows.

1.
S(k)

TV(k+1)—TV(k) =Sk +1) -
TV(k—1i) —TV(k) = S(k —1i) — S(k)

Applying Lemme[LB it immediately follows th&V (k +1) — TV (k) <d andTV(k —i) =TV (k) > —i+¢

in this case.

2.
TV(k+1)=TV(k) = E(k+1) — E(k)

TV(k—i)—TV(k) = E(k —1i) — E(k)

In order to prove the second case we should comply with theesgjpns forl andc found in the first case. Note

thatpy, < pg. Thatis, the probability to increase the size of the maxiatigue then acting by sending an empty
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line decreases with the state size. Hence,

E(k+1) — E(k) = py 7V (k+2) + (1 — prp)WV (k+1) = piaV(k + 1) = (1 — pp)yV (k)

= e YV (k+2)+ (1 = plyy —pp)YV(kE+1) = (1 —pp)yV (k)
<ydpjq + (L =p)yVi(k+1) — (1= pp)yV(k) < vdpiyq +d(1 —pp)y <dy <d

and
E(k —i) = E(k) = pf_yV(k —i+ 1) + (1 = pf_)yV (k — i) — piyV(k + 1) — (1 — pp)yV (k)

<ProYV(k =i+ 1) = pi_)yV(k =) + 4V (k —i) + [(1 = pi)yV(k+1) = (1 = pp)yV (k)] =V (k+1)

< ydpy—; + YV (k —i) = (1 = pf)dy =V (k+1) < vydpi_; + (1 —pi)dy —vi—v+ye< —i+c

See that fory close enough td the last assertion is true.

3.
TV(k+1) =TV (k) = S(k+1) — E(k)

TV(k—i)—TV(k) =Sk —1) — E(k)

Using the proof of casé:
Sk+1)—E(k) <S(k+1)—S(k)<d

S(k—i)— E(k) <S(k—i)—S(k) < —i+ec

TV(k+1)—TV(k) = E(k +1) — S(k)

TV(k—i)—TV(k) = E(k —1) — S(k)

Using the proof of case:
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There are additional combinations, such A& + 1) — S(k) and S(k — i) — S(k), however their proof is

straightforward using same considerations as above. liviglty seen that all the cases hold for the boundary

conditions as well.
To see thafV (k) is non-decreasing i we use the following argumentation. Denote the aggregéated of

having a maximal clique of sizé as sy, 5, € S. Define functiongy, : s, — sx_1, k > 1, such that for each
sk, gr acts by deleting a random line from the maximal cliqgue of gizé.e. updating all entries of the chosen
line to 0. We aim to comparéd/(s(k)) = V(k) andV(gx(s(k))). By simple coupling argumentation one defines
two processes and sees thats(k)) > V(gr(s(k))). We skip the trivial details. Finally the contraction projyeof

operatorT follows from the well known results on MDP. See [40], for exalen This accomplishes the proof of

the lemma. O

Lemma 1.2. For j > 2, that is disjoint clique exists,

pg,i,j = 01 j >

k . .
pi,i,o < Pij J <1

Proof. Trivially, in case the disjoint clique is larger thgn the probability to have clique smaller thans zero.

Therefore, the first assertion trivially holds; , ; =0 j > 4.

Next, see that for all,

7

c 7 —1 k
Prio =D (1- P)k () (18)
The sum of all transition probabilities from stateactinga = 1, for all j is 1:
k
Y P =1
1=0
Hence, the second assertion holds.
Lemma 1.3. One has constant$ and ¢ such that

S(k4+1)—S(k) <d

oot

(k—i)—S(k)>—i+c

For all £ andi < k.

Proof. We prove by finding such constants. Substit{iig (12) (Is3hg inequalities (14) an@ (115), and perform
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algebraic simplifications. Write

k k—1
Sth)y=S(k=1)=~> pi,Vi+ (1 =p)(k) =7 > _pi 1, Vi+ (1 -p)(k—1)
0 0

<AVo +kdp + (1 — p)(k) + az2(k) = yVi—1 + (1 = yd)(1 —p)(k — 1) + b2(k — 1)

<dyvk+dyp—dy—p+1+as(k)+ba(k—1)+(1—k)y+cy<d

and

S(k —i) — S(k) < AVo + ypd(k — i) + (1 — p)(k — i) + az(k — i) — YVi + (1 — vd)(1 — p)k + ba(k)

< —dyip+d+kyk+pi+yc—vi—k+a(k—1i)+ba(k) < —i+c

Next, for simplicity, assume equalities for both inequesitabove and write

dyk+dyp—dy—p+1+(1—-k)vy+cy=d
—dyip+d+kyk+pi+ye—vi —k+ az(k — i) — ba(k)
= —1+c

Solving ford and ¢ we have the following expressions

c=A(vk+yp—7—1Dba(k) = Alvk+vp—~ — 1)az(k — 1)
+ A(p(v*ik — % + 7k — vik — vk + 1)) (19)

d = Ayaz(k — i) — Avby(k) + A(yip— > —vk+yp—p+1) (20)

Where1/A = 72%ip + v?p — 42 — vk — vp + 1. Observe that /A = ip — k asy — 1. The rightmost part of
d in (20) is essentially independent ofand &, and is less than for all k,i. Consequently, the assumptidnis
independent of: is plausible. One the other handhas very low positive values, comparatively to that.dflence,

the constantg andc above satisfy the lemma. |
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