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Abstract

Consider a transmission scheme with a single transmitter and multiple receivers over a faulty

broadcast channel. For each receiver, the transmitter has aunique infinite stream of packets, and its goal

is to deliver them at the highest throughput possible. Whilesuchmultiple-unicastmodels are unsolved

in general, severalnetwork coding based schemeswere suggested. In such schemes, the transmitter can

either send an uncoded packet, or a coded packet which is a function of a few packets. The packets

sent can be received by the designated receiver (with some probability) or heard and stored by other

receivers. Two functional modes are considered; the first presumes that the storage time is unlimited,

while in the second it is limited by a given Time to Expire (TTE) parameter.

We model the transmission process as an infinite-horizon Markov Decision Process (MDP). Since

the large state space renders exact solutions computationally impractical, we introducepolicy restricted

and inducedMDPs with significantly reduced state space, and prove that with proper reward function

they have equal optimal value function (hence equal optimalthroughput). We then derive a reinforcement

learning algorithm, which learns the optimal policy for theinduced MDP. This optimal strategy of the

induced MDP, once applied to the policy restricted one, significantly improves over uncoded schemes.

Next, we enhance the algorithm by means of analysis of the structural properties of the resulting reward

functional. We demonstrate that our method scales well in the number of users, and automatically

adapts to the packet loss rates, unknown in advance. In addition, the performance is compared to the

recent bound by Wang, which assumes much stronger coding (e.g., intra-session and buffering of coded

packets), yet is shown to be comparable.

Parts of this work will appear at the IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong.

http://arxiv.org/abs/1502.02893v3
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I. INTRODUCTION

Typical wireless access architectures constitute a gateway, or an Access Point (AP), to which all

nearby clients are connected by means of a wireless medium. Among the prominent examples for

such architecture is the prevailing IEEE 802.11 or LTE infrastructure mode setting. The downlink

traffic implied in such topology comprises an AP sending (usually independent) traffic streams to

the corresponding users. Furthermore, common wireless standards incorporate reliability mech-

anisms in order to overcome the inherently poor qualities ofthe radio channel. For example,

IEEE 802.11, like many other network protocols, attains reliability through retransmission.

Network coding [1] refers to the transmission of predefined functions (usually a linear com-

bination) of packets in order to achieve higher throughput,error correction and better security.

Wireless communication, and in particular the transmission over the wireless channel which is

broadcast in nature hence can potentially be heard by non-addressees of the dedicated stream

is a natural platform for network coding. Nonetheless, in order for such a mechanism to be

effective, the overhearing users need to store the relevantparts of the traffic streams even when

they are not the intended addressee.

In this work, we address the aforementioned scenario of a single AP sending unicast streams

to K corresponding listeners. We assume that all streams are fully backlogged, i.e., there is

a packet pending for each receiver at all times (infinite horizon). We also assume a typical

stop-and-wait ARQ (automatic repeat-request) mechanism,similar to the one adopted by IEEE

802.11 standard. In such schemes, a sender sends one frame ata time, where each frame is sent

repeatedly until the sender receives an acknowledgment (ACK) frame from the receiver. That is,

the next packet to some user will be transmitted only after the previous packet to that user was

received correctly. We adopt the decoding and data storage pattern known in literature as instantly

decodable network coding [2], specifically, each user stores packets even if not destined to it,

yet only uncoded packets are stored at the receivers while codedcombinations are discarded.

We assume that the data stored at the listeners is known to theAP at all times; this can be

achieved by each receiver piggybacking a list of its currentstored packets not destined to it, on

the user’s upstream traffic (each DATA or ACK sent by the user to the AP).

Using network coding at the AP, the challenge in each downstream transmission to is determine

whether to send an ordinary unicast packet to one of the intended receivers, or to send a linear
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combinations of packets. Note that even under this seemingly moderate setup, in which users

store only uncoded packets, and the AP has at most a single packet pending per user at a

time, since each user can potentially store a packet for eachother user (i.e.,2K−1 possibilities

per user, whereK stands for the number of users), the number of different options for stored

packets before each transmission-opportunity (termed thestate space) is enormous (2(K−1)·K).

Consequently, no efficient solution optimal in the general case exists [3].

In this paper, we design a computationally feasible, scalable and robust methodology which ef-

fectively addresses the aforementioned problem. Furthermore, in addition to the generic problem

described above, we also consider a more complicated setupin which the storage time of packets

at the receivers is limitedby a Time to Expire (TTE) constraint, i.e., a packet that its storage time

has expired, is invalidated and discarded. We present a theoretical framework and a model-based

learning implementation which allow us to acquire the on-line transmission and retransmission

policy under such channel conditions. In particular, we address three specific challenges. First, the

fundamental challenge of network coding - deciding what is the most effective linear combination

of the data to be transmitted. This problem becomes further complicated, once TTE constraints

are introduced. Second, in contrast to most known works, ourmodel presumesinfinite data

streamsfor all listeners, rather than limiting the amount of data toa fixed block. Finally, the

encoding decisions are made in an environment without priorknowledge of the packet loss

probability. As we elaborate in the related work section, previous works in the area mainly

considered various optimization problems for multicast transmissions and/or finite horizons

(finite block length). However, this is the first work to address all these challenges in a unified

framework.

Our main contributions are as follows: we model the transmission process by a Markov

decision processes (MDP). Since the original state space isintractable, we utilize state aggre-

gation. State aggregation (sometimes referred to as state abstraction) is a technique to partition

the state space such that all states belonging to the same partition subset are aggregated into

one meta-state, such that the same policy applies to all states in the meta-state. In contrast

to a complex exhaustive search to find the optimal aggregation, we force a state aggregation,

based on proved coding concepts. We further introduce a policy restricted MDP and an induced

MDP which undergoes a dramatic state space reduction, and show that in case one chooses the
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appropriate reward function for the induced MDP, the overall reward of both processes will be

equal. Specifically, instead of keeping track of all possible packets (coded and uncoded), we

only keep track of two state variables: (i) The size of the maximal group of users in which each

member of the group has a packet destined to each other user inthe group but its own (i.e.,

maximal clique; accordingly, in the sequel we will refer to any set of users each having packets

of all other users as a clique, and the maximal such set the maximal clique). Note that for each

clique, a single coded packet which linearly combines all the packets destined to the users in

the clique can be sent, and each user receiving the coded packet can decode its own packet. (ii)

The number of users whose packets are not stored by any other user. Note that this abstraction

allows us to significantly reduce the state space fromO(2K
2

) to O(K2). Consequently, we also

restrict the action space, such that the only allowed actions are transmitting a packet to one of

the users currently not having its packet backlogged at any other user, or transmitting a coded

packet to the maximal clique. Hence, we name the MDP which only allows restricted actions

based on the aggregation apolicy restrictedMDP, and the MDP which sees only aggregated

states aninducedMDP.

Given the transition probabilities, the optimal policy canbe read off the Bellman equation

for the induced MDP, which has a relatively small state spaceand thus can be efficiently

solved. However, since the transition probabilities are hard to calculate, welearn them using a

model-based learning algorithm. Namely, we derive a novel on-line explore and exploit learning

algorithm, which iterates between the learning phase and the Bellman equation solution phase

in our problem. Hence, we achieve theoptimal policy, which, in turn, results in the optimal

throughput (under the constraints imposed by the aggregation and state reduction). Note that

this approach is independent of the channel conditions, andworks equally effectively for any

packet loss, including when the packet loss is not stable andfluctuates around some value. We

also study thestructural propertiesof the value function, and use these properties to both gain

deep understanding on the behavior of optimal policies and accelerate the reinforcement learning

(RL) procedure. Specifically, we prove that under mild conditions, there exists a ”threshold type

policy”, namely as a function of the maximal clique size, there is only one transition from one

optimal action to the other, and once sending a clique is optimal, it continues to be optimal for

the larger cliques. We show that our algorithm is both computationally tractable and scalable.



5

At the same time, its performance is comparable to the upper bounds in [4], which are given

for a much stronger coding scheme, including intra-session coding, much larger state space and

buffers, and no TTE.

We incorporate the TTE constraint within the aforementioned MDP model and propose two

types of state aggregations. We compare our algorithms withknown algorithms in the literature

via extensive simulations.

A. Related work

Network coding. While the problem of NC has been widely treated in the multicast setting,

multiple unicast still provides a rich ground for ongoing research. Coded retransmissions were

considered in [5], where, after sending a finite set of packets to all users and receiving ac-

knowledgements, coded retransmissions are calculated andsent in order to complete the missing

packets. Hence, this is afinite horizonproblem, where a block is sent only when the previous

one is completely decoded. [2] continued the above work, seeking to maximize the coding

opportunities. Similar to our problem, in [2] users cannot store coded packets. However, [2]

fits a multicast scenariorather than multiple unicast. Moreover, the graph requiredto identify

cliques in [2] grows with the stream size, while it is fixed in our scheme. Finite streams and

clique structures were also addressed in [6]. Additional strategies for finite streams can be found

in [7], [8] and [9].

In [10], the objective was tominimize the delayusing random linear NC. Random NC was

also applied for mesh networks in [11]. The finite horizon work [12] minimized the delay by

linear programming. Network coding for multi-hop wirelessnetwork was addressed in [13]. To

the best of our knowledge, no previous work analytically treated the setting where the storage

time of the side information was limited by some parameter (TTE). Practical insights on storage

time constraints and imperfect acknowledge delivery are given in [14]. We also mention the

MDP based approach for perfect feedback [15] and partially observable MDP for uncertain

feedback [16]. Both works, however, are for finite horizon and do not include state aggregation.

Thus, the problem of scalability of the solutions with the size of the stream is raised.

Recently, the seminal work in [4] gave codes and bounds for the erasure broadcast channel.

The coding strategy therein was proved optimal for up to 3 users, and bounds were given for
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generalK (two users were considered earlier in [17]). The coding scheme therein assumed more

than one packet per user can be coded and overheard (intra-session coding), while we only allow

transmitting the first packet per session. Furthermore, themodel in [4] allows storing coded pack-

ets, at the price of larger buffers and state space, while ourmodel assumes instantly decodable

codes. Nevertheless, we use the theoretical upper bound in [4] to evaluate the performance of

the schemes suggested herein, and find them comparable despite the much simpler coding in

this work. Note also that calculating the regions in [4] is exponentially complex inK, while the

algorithms suggested herein scale well with the number of users.

To conclude, none of the aforementioned works addressed theproblem of multiple unicast with

infinite horizon addressed in this paper. Reference [18] attempted to provide heuristic algorithms

for a small number of users, yet the algorithms therein show inferior performance compared to

the learning-based solutions suggested in this work. In addition, [18] did not consider the channel

condition, while our approach is adjustable to the packet loss uncertainty.

Random linear network coding (RLNC), (e.g., [19]) is used only across flows (only inter-flow

coding), then, regardless of the filed size used, such a coding scheme will effectively require

all receivers to decode all the data, which is highly inefficient. Increasing the field size will

only increase the probability that a sent packet is independent of the previously sent ones, but

would still require each receiver to wait for a full rank on all the data in the system. Moreover,

RLNC requires receivers to cache coded packets as well. Indeed, it is well known in the coding

literature that RLNC is optimal for multicast (all receivers requiring all the information), yet

highly inefficient for multiple unicast, which is the problem at hand.

Finally, note that the Wang’s bound discussed and depicted in section VI, allows for the

most general coding schemes, including larger window size,buffering of coded packets, intra-

flow coding and high field sizes. Thus, our results are compared to the most general (and

computationally expensive) coding scheme, and show good performance.

Index Coding and ARQ. The relation between NC and Index Coding (IC) [20] was formulated

in [21]. The most general formulation of the IC problem constitutes a setting of K nodes, each

having a set of packets as side information and expecting an optionally distinct set of packets.

At the beginning of the communication, all the data is at the base station, and the goal is to

find a transmission strategy to satisfy all demands. Therefore, this is, in essence, a finite horizon
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problem. Of course, similar to previous works, IC, in general, allows for complex coding over all

packets in the block and storing of coded packets at the receivers before decoding. In addition,

reference [22] treated IC with side information which includescodedpackets as well. Note that

we do not use the classical formulation of these problems since we do not address decoding of

finite blocks but view the infinite horizon view of the problem.

Minimization of the overall transmission time was addressed in [23]. The policy described

in [23], if considered on a per-node basis, results in a greedy algorithm, maximizing the in-

formation gained from a single transmission. In the MDP-based approach herein, however, the

transmission policy accounts for theability to transit to more rewarding states in the future,

hence generalizes the greedy approach.

Index coding in a scenario where each packet should be transmitted to all was compared

to an ARQ scheme in [24]. It was shown that as the number of users K grows, the number of

transmissions with NC is constant, while it is logarithmic in K in the case of ARQ. ARQ schemes

were also analyzed in [25] and implemented in [26], where theauthors considered a broadcast

network and the queue size at the sender side as the primary performance metric. As for unicast

scenarios, the finite horizon scheme [21] optimized the number of decoding operations, rather

than the number of transmissions.

It is important to note that there are a few critical differences between the state of the art in

index coding and the coding scheme suggested in the paper. First, index coding considers only

finite horizon scenarios, i.e., each receiver is interestedin a fixed, finite list of packets, and one

has to devise, before communication starts, the best codingscheme in terms of minimizing the

number of packets required to satisfy all demands. In our problem, users haveinfinite streams, the

state of the system (in terms of the side information available) changes after each transmission,

and one have to make coding decisionsafter each transmission. Second, the state of the art index

codes are not instantly decodable, namely, receivers mightneed to wait for the end of the block

to decode their data. The scheme herein is instantly decodable. Finally, index coding allows

the receivers’ demands to partially overlap, hence is more general in this sense. Yet, it is well

known to be a hard problem (e.g. [27]), with no efficient solutions in the general case. Thus,

it is beneficial to consider different settings, in which high gains can be efficiently achieved.

State aggregation.As a road-map paper for the state aggregation methods see [28]. This work
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defined 5 abstraction methods, where the most relevant to our settingis π∗-abstraction. We

partially adopt their definitions of aggregated and detailed (ground) states and the corresponding

abstraction function.π∗-abstraction can be suboptimal compared to the original MDP[29].

However, our approach is different from [28], since we do notattempt to perform a search to find

the aggregation which would preserve optimality, but rather, based on key principles in coding

and re-transmission, define a robust MDP abstraction, in order to acquire the smallest states space

and action space. An adaptive aggregation for the average reward MDP was presented in [30].

In this work, the aggregation is generic and partition into aggregated states is being updated in

the process of the algorithm run. However, it is not clear howto predict the number of states in

such an aggregation once the algorithm achieved the desiredoptimality bound. Our aggregation

is fixed and predefined in order tospecifically suit for the given communication problem. Hence,

both the aggregation and the state-space size we employ are predefined and result in a much

simpler RL algorithm, at expense of optimality guarantees.Another survey work on abstraction,

in the context of reinforcement learning is [31]. State aggregation for continuous MDP is brought

in [32]. The authors in [33] proposed a near-optimal reinforcement learning algorithm aiming

to asymptotically achieve the optimality of the original MDP. However, running time demands

needed to achieve the desired optimality gap are not feasible for our purpose.

II. M ODEL DESCRIPTION

We consider a downlink wireless model, with one transmitter(access-point) andK receivers.

At the sender, we assume an infinite stream of packets for eachuser (i.e., unicast traffic). We

assume a Stop-and-Wait based protocol, accordingly, even though the sender has an infinite set of

packets per receiver, we assume only one such packet is active at a given time per receiver, i.e.,

the sender does not transmit new packets for a receiver untilthe active one is received correctly

and acknowledged. Note that this mechanism conforms to the widely deployed IEEE 802.11

protocol suite. Our channel model assumes the packet sent ateach slot is received at receiverk

with probability pk, independently of the other receivers and of the previouslyreceived packets

(memoryless independent users). The packet loss probabilities are assumed to be fixed in time.

We assume that uncoded packets correctly received by a receiver which is not the intended one,

are cached. Note that, on top of the coding scheme we suggest,of-the-shelve error correction
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codes can be utilized in order to improvepk at the expense of overhead.

We assume that packets overheard by undesignated users can be stored for future use. Yet, we

assume that only uncoded packets can be stored at the receivers while coded or corrupted packets

are discarded. We distinguish between two cases, unlimitedstorage time and limited storage time.

We first treat the case where the stored packets are never outdated (i.e. storage time is unlimited).

Denote byM the space ofK × K binary matrices, where eachs ∈ M represents a possible

state. In particular, each linei ∈ {1, · · · , K} constitutes a vector of indicators such thatsij = 1

if and only if userj has a packet designated for useri. We assume the AP always aware of the

data kept by the receivers using status updates sent by each receiver. We assume that when a

receiver overhears or decodes a packet destined to another,it is able to store it. The state of the

system is updated after every transmission slot. At transmission slott the state is represented by

s(t) ∈ M . In the case that userk successfully decodes its packet,sk,i = 0, ∀i is set. Setting the

entire rowk to zero is motivated by the simple reasoning that users that stored the packet prior

to the successful transmission can now discard it. The sender can now send the next packet for

that user. In the case that the destination fails to receive its packet, we setsk,k′ = 1 if the packet

is heard by userk′ andsk,k′ = 0, k 6= k′, otherwise.

Next, we consider the limited storage time for which the timea packet can be stored at each

receiver’s buffer; we denote the number of time slots a packet can be stored by Time to Expire

(TTE). Accordingly, a packet overheard by a non-intended receiver and which is stored for

more than its maximal validation time is invalidated and discarded. For simplicity, we assume a

system of identical users, i.e., all packets have a similar TTE limit which we denote byT , i.e.,

the maximal time a packet can be stored isT time slots. Respectively, each transmitted packet

has a TTE associated with it. This value is updated every timeslot, until the packet is correctly

decoded or outdated and dropped. We denote the TTE of a storedpacket, at some given time

slot, asτ ∈ {1, · · · , T} and byτ = 0 the case that no valid packet is stored. Every time slot,

for every packet stored by a user,τ is decremented by1. Onceτ becomes0, the corresponding

packet is outdated and dropped.

We denote byMTTE the space ofK×K matrices, where eachs ∈ M
TTE represents a matrix

of TTE values associated with undecoded packets held by the receivers. In particular, each line

i ∈ {1, · · · , K} constitutes a vector of TTE parameters, such thatsij = τ , if and only if userj
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has a packet destined to useri, and there areτ time slots left till the packet expires. Similarly

to the scenario without TTE constraint, we assume that the APis always aware of what data is

kept by which receivers. Whenever the intended receiver fails to receive its packet, the AP sets

sk,k′ = T if the packet is either heard by userk′, or userk′ already has this packet stored, and

setssk,k′ = 0, k 6= k′, otherwise. Hence, all users that overheard some packet have an equal

value stored for its current TTE. This value is stored at the AP and is used for the transmission

decisions.

Each packet is represented asm symbols over the fieldF2k . Thus, its payload consists ofmk

bits. Now, each time a packet is sent, the sender has a few options as to which type of packet

to send. These ”options” constitute its action space. Specifically, it can either choose a single

packet from the stream intended to a specific user, and send that packet to that user (termed

uncoded packet), or, alternatively, it can code together a few packets. In this work, we used

the standard linear network coding [], however, since nodesdo not store coded packets, and we

require instant decodability, coding is done over the binary field. Thus, at every transmission

slot, the AP encodes

z = α1d1 ⊕ α2d2⊕, · · · ,⊕αkdk (1)

and sends this packet, where for eachk, αk ∈ {0, 1}, di denotes the packet currently expected

by useri and ⊕ denotes bitwise XOR. Namely, the AP decides on coefficientsαk ∈ {0, 1},

whereαk = 1 means a packet for userk participates in the current coded transmission slot.

Otherwise,αk = 0. Note that choosingαk = 1 for only one user is equivalent to transmitting an

uncoded dedicated packet to userk. Hence, the action space is of size2k−1, and it includes all

possibilities of uncoded and coded packets (excluding the zero packet). Recall that as previously

explained, only such uncoded packets can be stored by undesignated receivers. Note that packets

to be combined (coded) are assumed to have the same size (if not, the shorter ones are padded

with trailing 0s).

The setting described above can be seen as a framework including a state-space, an action-

space which comprises the possible packet combinations theAP can send at any given time

slot (denoting the action at transmission slott by a(t)) and the transition probabilities. Due

to the Markov property, we deduce that the problem can be formulated as an MDP, with the
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objective to maximize the transmission throughput. Hence,we define an appropriate stochastic

rewardr(s(t+ 1), a(t), s(t)), associated with transitioning from states(t) to states(t+ 1) after

taking the actiona(t), such that positive reward is accumulated for each successfully decoded

packet. For example, if a coded packet ofn packets is sent, andm ≤ n of them are successfully

decoded by their intended receivers, we haver(s(t+1), a(t), s(t)) = m. Failing to decode gives

no reward. Storing a packet at the receiver which is not the addressee gives no reward. However,

note that it may increase thepotentialnumber of packets decoded in the future (that is, transition

to a state with a higher potential value).

We assume that the same transmission effort is required by the AP whether it transmits

an uncoded packet, a coded one or does not transmit at all, i.e., fixed transmission costs are

assumed. Consequently, abstention from sending a packet atany transmission slot is the worst

option possible. Hence, at each time slot exactly one packetis sent. The objective is to find a

policy which maximizes the attained throughput, which is measured in
(packets decoded

time-slots

)

.

In the next section, we bring the technical definition of the MDP and state aggregation, in

order to utilize it for the described model. For general definitions and theory of MDP the reader

is referred to [34].

III. MDP WITH RESTRICTED ACTION SPACE AND INDUCEDMDP

In this section, we introduce the general notation which lays the ground for the state aggrega-

tion. We follow the concepts of abstract MDPs in [28], yet adjust our notation and forthcoming

analysis to fit our model and results throughout the rest of the paper.

As previously mentioned the problem can be formulated as a finite MDP. Let us denote the

ground MDP byM0, characterized by the five tuple〈S,A,P,R, γ〉, whereS is the finite state-

space, in which we term every states ∈ S as adetailedstate, since it includes a detailed account

of system;A is a finite set of actions called the action space,P are transition probabilities with

p(s′|s, a) denoting the probability to proceed to states′, being in states and acting with actiona,

R is a bounded reward function withr(s′, a, s) denoting the expected immediate reward gained

by taking actiona in states and proceeding to states′. We consider both long run average

cost and discounted cost with0 ≤ γ < 1 being a discount factor. Apolicy is a mapping from

states to actions (S 7→ A). In this paper we will focus only on policies that do not depend on
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the time (stationary policies). We denote the set of all admissible policies byU. We denote by

p(s′|s, a) the probability to proceed to states′, being in states and acting with actiona, and

by r(s′, a, s) stochastic reward function attained from such instance. The action in some states

is denoted bya(s). We further denote byr(s, a) =
∑

s′ r(s
′, a, s)p(s′|s, a) the average reward

of being in states and taking actiona. As previously mentioned we consider two performance

criteria: discounted infinite horizon cost and long run average cost. Specifically, the discounted

infinite horizon cost associated with a given policyπ and initial states0 is given by

Jπ(s0) = E
[

∞
∑

t=0

γtr(s′t+1, a
π
t , st)|s0

]

wherest andaπt denote the state visited at time slott and action taken on time slott based on

statest and according to policyπAC . The long run average cost associated with policyπa is

JπAC = lim
N→∞

1

N
E
[

N
∑

t=0

r(s′t+1, a
π
t , st)

]

. (2)

Note that the initial state has no impact on the long run average cost (Eq. (2)) as its effect

is dissolved over time ([34]). In this section, we only referto the discounted case. We examine

the average case in Section V and in the appendices. The valuefunction for the discounted case

is given byV (s0) = supπ∈U
Jπ(s0).

We now define the restricted and induced MDPs, which allow us to work with much simpler

MDPs in our communication problem, yet retain the notion of network coding hence the near-

optimal performance.

The policy restricted MDP is stimulated by the state aggregation we suggest. State aggregation

exploits properties present in the state space of the basic MDP (the detailed states) for aggregation

of multiple detailed states into one aggregated state obtaining an MDP with smaller state space.

In particular, a partition̄S = {s̄1, ..., s̄n} of the detail state space may serve as an aggregated

state space if each detailed state is mapped to one and only one aggregated state (
⋃n

i=1 s̄i =

S ; s̄i
⋂

s̄j = ∅). We now formally define the Policy Restricted MDP.

Definition 3.1. A policy restricted MDP denoted byM1 = P(M0, φ, Ā), is defined by

(I) A mappingφ acting onS, such thatφ : S 7→ S̄, whereS̄ =
⋃

i s̄i for disjoint s̄i,

(II) A restricted action spacēA ∈ A, and
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(III) A restricted set of policies̄U ∈ U, such that for allπ̄ ∈ Ū, it holds π̄(s) ∈ Ā, ∀s ∈ S and

if φ(s1) = φ(s2) then āπ̄(s1) = āπ̄(s2), whereāπ̄(s1) = π̄(s1), and āπ̄(s2) = π̄(s2).

In other words, we define a mapping ruleφ(s) which associates each detailed state with

an aggregated state, partitioning the state space (S) into the aggregated state space (S̄). In

correspondence to the aggregated state space, only policies that enforce the same action for

all states belonging to the same aggregated state are admissible, i.e., the same action should

be taken for allsi ∈ s̄i. We will use the notations ∈ s̄ if it holds φ(s) = s̄, and π̄(s̄) as the

equivalent toπ̄(φ(s)).

Note that the policy restricted MDP is still based on the detailed state-space and thus is

difficult to calculate. Accordingly, we define the induced MDP to which the detailed states are

transparent. The induced MDP is formed by the atomic states,induced by the aforementioned

aggregated states, hence, relies on significantly smaller state space, and has similar action rules.

By means of the aggregated state space and the correspondingpolicy restriction space, one

can define transition probabilities as follows: Given an admissible policyπ̄ ∈ Ū, the transition

probabilities between the aggregated states which we denote by p(s̄′|s̄, ā), are:

p(s̄′|s̄, ā) =
∑

s′∈s̄′

∑

s′′

p(s′|s′′, s̄, ā)pπ̄(s′′|s̄, ā) =

=
∑

s′∈s̄′

∑

s′′

p(s′|s′′, ā)pπ̄(s′′|s̄) =
∑

s′∈s̄′

∑

s′′

p(s′|s′′, ā)pπ̄(s′′|s̄)
(3)

Where pπ̄(s′′|s̄) denotes the stationary probability of being in the detailedstate s′′ ∈ S,

conditioned on the aggregated states̄. Obviously, these probabilities may depend on the policy

π̄ ∈ Ū, hence the superscriptπ̄; yet, for simplicity in the sequel, when clear from the context, we

will omit the superscript. Clearly,
∑

s′′∈s̄ p
π̄(s′′|s̄) = 1. Define the cost of the policy restricted

MDP as follows: J π̄(s0) = E
[
∑

∞

t=0
γtr(s′t+1, ā

π̄
t , st)|s0

]

. The corresponding value function is given

by VŪ(s0) = supπ̄∈Ū J
π̄(s0). Since policy restricted MDP sees the detailed states we also define

J π̄(s̄0) =
∑

s0∈s̄0
J π̄(s0)p

π̄(s0|s̄0) andVŪ(s̄0) = supπ̄∈Ū J
π̄(s̄0).

Next we formally define the induced MDP:

Definition 3.2. MDP M̂ = I(M0, φ, Â) is induced by policy restrictedM1 on M0, if

(I) Each stateŝ ∈ Ŝ uniquely relates to somēs ∈ S̄; Denote this relation aŝs ∼ s̄.
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(II) For all ŝ ∼ s̄, the actionŝa(ŝ) available in ŝ are equivalent tōa(s̄). Denote the relation of

the action space aŝA ∼ Ā, and relation of the actions aŝa ∼ ā.

(III) The transition probabilities are defined on similar probability space and comply with

p(ŝ′|ŝ, â) = p(s̄′|s̄, ā), for all ŝ′, ŝ, â, for which ŝ ∼ s̄.

Note that an induced MDP sees no detailed states. That is, each state of the induced MDP

stands for distinct aggregation of detailed states in a policy restricted MDP. Note that if one

takes a sequence of detailed states{s0, s1, s2, · · · } and appliesφ to it, the resulting sequence

{φ(s0), φ(s1), φ(s2), · · · } is not necessarily Markovian. This is becauseφ is non-injective sur-

jective function. That is, it is not a bijection for the reason the injective property does not hold.

However, as we show in the sequel, one can construct transition probabilities fromφ(si) to φ(sj),

i.e. the aggregated states, such that the resulting processis Markovian. As far as the problem

of coded retransmission is concerned, the state space is reduced fromS = 2K(K−1) to S̄, where

the size of the latter is determined by the properties of the aforementioned mappingφ. Denote

Û defined overÂ.

The discounted infinite horizon cost associated with some policy π̂ ∈ Û is given byJ π̂(ŝ0) =

E
[
∑∞

t=0 γ
tr̂(ŝ′t+1, a

π̂
t , ŝt)|ŝ0

]

. The corresponding value function is given byV
Û
(ŝ0) = supπ̂∈Û J

π̂(ŝ0).

We aim to set the appropriate reward function for the inducedMDP such that its value function

will be comparable to that of the policy restricted one. The relation betweenI(M0, φ, Â) and

P(M0, φ, Ā) is given by the following proposition:

Proposition 3.1. For an MDP M0(S,A,P,R, γ), a policy restricted MDPM1(S, Ā,P, R̄, γ)

such thatM1 = P(M0, φ, Ā), and an induced MDPM̂(Ŝ, Â, P̂, R̂, γ), whereM̂ = I(M0, φ, Â),

with given initial stateŝs0 ∼ s̄0, there exists a reward function̂R, such thatV
Û
(ŝ0) = VŪ(s̄0).

See Appendix A for the proof.

Intuitively, one sees that the reward of an induced MDP may beinterpreted as the suitably

weighted sum of the rewards of the corresponding policy restricted MDP, normalized by the sum

of the weights. Note that these weights are found by the transition probabilities to the detailed

states which compose the corresponding destination aggregated state,̄s′, for which the relation

s̄′ ∼ ŝ′ holds. The key point is that with the proper reward function,the induced MDP achieves
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the same value functionas the restricted one. Note that sinceU1 ⊂ U , in general, we have

V
Û
(ŝ0) = VŪ(s0) ≤ VU(s0).

IV. STATE AGGREGATION AND REINFORCEMENT LEARNING BASED SOLUTION

Having laid the ground, in this section we follow the notations and definitions described in

Section III to provide the formal definition of the state aggregation and restricted policy for the

communication problemconsidered. Specifically, we will base both the aggregated states and

the action space on the clique size (which will be defined shortly) and on the number of empty

lines in the state matrix; the rewards and transition probabilities of the induced MDP will be

determined accordingly.

A. State aggregation and the restricted action space

In order to define the state aggregation and the restricted action space, let us first define a

cliquestructure and associate it with clique transmission. We associate a directed graphG(V,Γ),

with each states ∈ S, such that a vertexvj ∈ V is assigned to each userj and a set of directed

edges are formed between each user and the users it holds a packet to, i.e.,Γ(s) = {eij =

{vi, vj}|s(i, j) = 1}. As commonly defined in graph theory, a clique is a subset of vertices such

that each vertex is connected to each other vertex in the set,i.e., Q is a clique; iff {∀vi, vj ∈

Q : s(i, j) = 1, ∀j 6= i; i, j ∈ {1, · · · , a}} . The size of a clique is determined by the number

of vertices it contains. Note that in the context of our problem any set of users forming such

a clique (∀vi ∈ Q) implies that each user in the set has all the messages intended to all other

users in the set. Accordingly, a coded message, composed of all the messages intended to all

users in the set, can be sent, such that each user in the set candecode its own. Denote the size

of the maximum clique induced by states by L(s) and byE(s) the number of empty lines in

s.

We construct the aggregation such that each aggregated state is defined by the tuple{L(s), E(s)},

i.e., φ(s) = {L(s), E(s)}. For clarification let us examine the following example:

Example 4.1.Consider a communication network consisting of5 users. Observe the following
states:

s1 =























0 1 0 0 1

1 0 1 1 0

0 1 0 1 0

0 1 1 0 0

0 1 0 0 0























s2 =























0 1 1 0 1

1 0 1 0 1

1 1 0 0 0

0 0 0 0 1

1 1 0 0 0






















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Note thats1 contains a clique of size3 associated with users2, 3, 4 and a clique of size2

associated with users1, 2. The states2 contains the2 cliques of size3 associated with users

1, 2, 3 and users1, 2, 5. There are no empty lines in either state. Since the suggested aggregation

considers only the maximum clique size and the number of empty lines, both states above pertain

to the same aggregated state denoted by(3, 0), i.e., φ(s1) = {L(s1), E(s1)} = {3, 0} and

φ(s2) = {L(s2), E(s2)} = {3, 0}, i.e., φ(s1) = φ(s2) = {3, 0}.

The additional detailed example can be found in Appendix 1.2. Note that the number of

possible states (i.e., number of unique pairs{L(s), E(s)}) is dramatically reduced and is upper

bounded byJ = (K+1)K. Further note that while finding a maximum clique is hard in general,

graphs resulting from the state matrix in our setting are random and have cliques of logarithmic

size [18], henceL(s) can be found efficiently.

Having defined the state aggregation, we define the restricted action space. In particular, in

accordance with the aggregated states we allow only two actions, sending a coded packet to the

maximum clique which we denote bȳa = 1, or sending an uncoded packet corresponding to

a randomly chosen empty line denoted byā = 2 (Ā ∈ {1, 2}). Note that the restricted action

space complies with the constraint that the same policy should be applied to all states in the

same aggregated state. It is important to note that once an action is decided (according to the

aggregated state), the actual combination depends on the detailed state, (i.e., to which user (users)

to send an uncoded (coded) packet. In Example 4.1, since there are no empty lines, the only

permissible action is to send a coded packet to the maximum clique, that is, sendingp2⊕p3⊕p4

for s1 or one ofp1 ⊕ p2 ⊕ p3, p1 ⊕ p2 ⊕ p5 for s2. Note that in the case that there are no empty

lines and the maximum clique size is one, the AP should send a coded packet to one of the

maximum cliques, yet since the size of the maximum clique is equal to 1, the coded packet

comprises a single packet hence it is practically uncoded.

Obviously, the action space defined here is not the only plausible option. For example, one may

define sending the empty line which has the greatest potential to increase the maximal clique.

Moreover, in some cases sending an uncoded packet to a non-empty line might be a more

valuable option. However, our approach is to choose a simpleaggregation that even though not

optimal, is clearly motivated by the original communication problem, hence is expected to attain
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good results. In addition, we aspire that the number of operations (e.g., determining the maximal

clique or random selection of an empty line) which is required from the AP to perform (on the

detailed states) will be minimal. The evaluation part (Section VI) confirms that even though our

approach is not optimal it attains very good results.

B. Finding the policy utilizing reinforcement learning

In the previous subsection we have defined the state aggregation and the restricted action

space. In order to complete the setup in this subsection we obtain the appropriate reward̂R and

the transition probabilitiesp(ŝ|ŝ′, â), for the induced MDP.

There are three major obstacles in computing the transitionprobabilities and constructing the

associated rewards according to Proposition 3.1. First, the packet loss probabilities typically are

not known to the AP. Second, in order to compute the transition probabilities one needs to go

over each detailed state and compute the probability of going to each state for each possible

action (it implies order of (2K(K−1) × 2K(K−1)) action). Third, the transition probabilities are

policy dependent, i.e., the transition probability of going from aggregated statēs to aggregated

states̄′ relies on the steady state probability of being in detailed states given that the system is

in states̄ (see equation (3)). These probabilities are policy dependent. Recall that our objective

is to determine the policy. Even though the first obstacle is relatively easy to resolve as the

AP can keep a history record and if necessary send dedicated probe packets to estimate the

packet loss on each outgoing link, the other difficulties aremore challenging as obviously trying

to compute the transition probabilities and the reward values is impractical. Accordingly, we

utilize reinforcement learning (RL), an effective learning technique which has the capability

of finding the reward maximizing policy, in discrete stochastic environments, without explicit

specification of the transition probabilities. Specifically, RL is based on a feedback loop in which

the reinforcement agent (learner or AP in our case) selects an action based on its current state,

gets feedback in the form of the next state and an associated reward, and updates the estimated

records. The selection of the action is based on the current states and the temporary (current)

policy, and balances exploration and exploitation, i.e., on the one hand the agent has to exploit

what is already known, but on the other hand it has to explore in order to examine other options

for making better action selections in the future. Accordingly, the agent must try a variety of
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actions and progressively favor those that appear to be best(e.g., [35]). One of the difficulties of

our learning problem is expressed in highly differentiatedaccess frequenciesamong the various

states. Accordingly, since the algorithm is expected to visit each state multiple times, we need to

direct it and to force it to visit less visited states. Several RL algorithms that can be utilized to

solve our problem exist, e.g., MBIE [36],E3 [37] and R-Max [38]; each one has its own merits.

Nonetheless, since our main concern is in the application itself, rather than trying to adopt one

of the known algorithms, we derived a modified simple algorithm which suits best our problem.

The proposed algorithm iterates between two steps; the learning step and the policy improve-

ment step. Specifically, we utilize a random policy (e.g., choose at random if to transmit a

randomly chosen empty line, or to transmit to the maximum clique) for the learning. In each

step, we apply thetemporary policywhich was found in the previous step. We utilizeǫ−greedy

approach with the temporary policy (that is, choose the action according to the temporary policy

with probability 1 − ǫ, and choose a random action otherwise), forNk consecutive iterations

(transmissions), recording the visited aggregated statesand the attained rewards (the number

of consecutive transmission can vary between steps, hence the subscriptk). It is important to

note that even though the system traverses the detailed states, only the aggregated states, the

actions taken and the rewards attained are recorded. That is, the AP does not hold any record

of the visited detailed states. Next, weupdate the temporary policy, utilizing the newly learned

reward functions and transition probabilities obtained during the learning phase, by applying

value iteration on the correspondingBellman equation, that is,

V (ŝ) = max
{

Eŝ′[r(ŝ
′, â = 1, ŝ) + γV (ŝ′)], Eŝ′ [r(ŝ

′, â = 2, ŝ) + γV (ŝ′)]
}

. (4)

This reinforcement learning procedure continues until sufficient convergence inV (ŝ) or until

the policy is unchanged. The outcome of the proposed algorithm is the optimal policy for the

induced MDP and the nearly-optimal correspondingV (ŝ).

A pseudo code of the algorithm is given inAlgorithm A. The algorithm starts with picking a

random initial policy, denoted byπR (Initialization step inAlgorithm A). The random policyπR

we implemented chooses between the possible actions with equal probability, namely,̂a = 1 or

â = 2 with probability1/2 each, when the choice is feasible, where1 and2 stand for transmitting

the maximal clique and the random empty line, correspondingly. After the Initialization step,
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Algorithm A
Initialization

1) Initialize policyπ0
1 = πR. Setn(ŝ′, â, ŝ) = 0, R(ŝ′, â, ŝ) = 0

2) Setπ0
B = πR.

At stepk ≥ 0

1) Updateεk from predefined decreasing sequence of{εk}. SetNk.

2) Set policyπk
1 =

{

πR with probability εk
πk
B with probability 1− εk.

3) RunM1 with πk
1 for Nk transmissions.

a) Each visit toŝ acting â with rewardr′ and going toŝ′,
setn(ŝ′, â, ŝ) = n(ŝ′, â, ŝ) + 1, R(ŝ′, â, ŝ) = R(ŝ′, â, ŝ) + r′.

4) Calculatep̂(ŝ′|â, ŝ) andr(ŝ′, â, ŝ), from n(ŝ′, â, ŝ), R(ŝ′, â, ŝ) andNk.
5) Find V̂k by value iteration over̂M2. Retrieve the optimal policyπk+1

B .
6) If |Ĵk − Ĵk−1| < ε, for some predefinedε, then finish. Otherwise perform stepk + 1.

the algorithm runs between two steps; the learning step and the policy improvement step which

are repeated iteratively. At each step the algorithm startswith a least visited aggregated state

(the detailed state within can be arbitrary), and starts traversing the states forNk consecutive

transmissions, based on theǫ − greedy policy (line 2). Obviously, only the restricted actions,

i.e., transmitting an empty line or transmitting the maximum clique, are allowed. The parameter

ǫ is updated at the beginning of each step (line 1). After each action the agent records the

previous and the next aggregated states, the action taken and the reward attained (line 4). After

Nk consecutive transmissions, the policy for the next steps isupdated by solving the Bellman

equation. The algorithm terminates when the policy or the attained value converges.

Note that the algorithm does not rely on knowing the packet loss probabilities. That is, the

algorithm learns transition probabilities of the induced MDP at any fixed channel condition re-

gardless of the exact packet loss values. Obviously, the algorithm relies on that these probabilities

are fixed in time.

For the average cost long run case, the algorithm should be altered by correspondingly

adjusting the learning step and the update step (see, e.g., [39]). We discuss the implementation

details and results in Section VI.

C. State aggregation with a TTE constraint

In this subsection we utilize a similar aggregated MDP formulation to encompass TTE-

constraints. Since both TTE constrained and unconstrainedmodels are never considered simulta-
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neously, with slight abuse of notation, we will denote the states for the constrained case similarly

to the unconstrained one. The connotation will be clear fromthe context. Since under a TTE-

constraint stored packets are getting obsolete, the suggested state aggregation will incorporate

the age of the ”oldest” line. In particular, we propose two state aggregations, both of which

maintain the number of empty lines and the age of the oldest line, whereAggregationI also

preserves the size of the largest clique encompassing this line, while AggregationII keeps the

size of the largest clique regardless of whether this cliqueencompasses the oldest line. Next,

we formally describe the two state aggregation functions which map the detailed state to the

corresponding aggregated state; we also design a model-based learning similarly to the case with

no TTE constraint.

1) Aggregation I: DefineφI : MTTE → {N ×N ×N}, φI(s) = {F,C,E}, whereF (s) is

the lowest strictly positive TTE ins, C(s) is the size of the maximal clique, which contains the

row with τ = F , andE(s) is the number of empty lines ins, whereτ was defined in section II.

Note thatC(s) is not necessarily equal toL(s), the maximal clique ins. Denote the action space

by ĀI = {1, 2} where ā ∈ ĀI = 1 stands for sending a coded cliqueC(s), which contains a

line with τ = F , and ā ∈ ĀI = 2 stands for sending an uncoded packet corresponding to a

randomly chosen empty line fromE(s).

Following the formalization presented in Section III we define the policy restricted MDP

denoted byMI
1 = P(M0, φI , Ā

I) and the corresponding induced MDP denoted byMI
2 =

I(M0, φI , Â
I) (see Definition 3.1 and Definition 3.2, respectively).

The basic approach for finding an approximately optimal policy under AggregationI, is by

harnessingAlgorithm A. The corresponding Bellman equation is written similarly to what appears

in (4), where the solution is found by substituting the relevant aggregated states.

2) Aggregation II: Similar to Aggregation I we define a second mappingφII : MTTE →

{N×N×N}, φII(s) = {F, L,E}, whereE denotes the number of empty lines ins, F is the

lowest strictly positive TTE ins, andL = L(s) denotes the size of the maximal clique ins.

Note that there is no knowledge about the size of the maximal clique containing the line with

τ = F , as in AggregationI. Denote the action spacēAII = {1, 2, 3}, whereā = 1 stands for

sending a coded maximal cliqueC(s), which contains a line withτ = F ; ā = 2 stands for

sending an uncoded packet corresponding to a randomly chosen empty line, and̄a = 3 stands
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for sending aL(s), maximal coded clique ins. Note that the action̄a = 1 presumes no prior

knowledge about the size ofC(s). Thus, the decision in this case is myopic as far as the size

of clique being sent is concerned. The learning in the case ofAggregation II is performed by

utilizing algorithm A. We compare by simulations both aggregation types, with an alternative

heuristic policy in Section VI.

V. STUDY OF THE PROPERTIES OFV

In this section, we present an in-depth study of the suggested abstract MDP-based approach by

exploring the properties of the value function found through the reinforcement learning procedure.

Our primary objective is to understand the structure of the value function. Namely, we aim to

isolate properties ofV (s̄) related to each one of the aggregation parameters. This, in turn, will

allow us to incorporate these properties in the main learning algorithm, resulting in improved

speed and precision of convergence. Moreover, it will give us better understanding of how each

of the parameters (e.g., clique size) affects the results, and how the overall coding process

should behave as a function of these parameters. In particular, in some cases, we will observe

a threshold type policyin one of the parameters. That is, a policy in which there isat most

one switching statefrom one optimal action to the second. Such a property is desirable as once

the switching point is found, we may set the actions to their optimal valueswithout the need

to iterate until the ultimate convergence.Furthermore, in most cases, such a threshold policy

will give a fundamental and rigorous reasoning to very intuitive results, e.g., if sending a coded

clique is beneficial for someL(s), it is definitely beneficial for anyl > L(s).

For simplicity, we demonstrate the proof of the existence ofa threshold-type policy for the

1-dimensional aggregation defined below.

3) One-dimensional aggregation:As an alternative to the multi-dimensional aggregation pat-

terns, we introduced an even more coarse abstraction. Namely, defineφ : M → {N}, such that

φ(s) = L(s), that is, the size of the largest clique. Denote a line which is not in the maximal

clique ase-line. Define astate aggregationby the sets̄ = {s : L(s) = l}, for some given

l, l ∈ {1, · · · , K}. The action space consists of two actions,ā = 1 stands for for sending

the maximal clique, whilēa = 2 stands for sending an e-line. While oversimplified, and as

such resulting in maybe inferior performance, this aggregation and the induced MDP serve as
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a good example for which we can investigate the value function and gain important insights.

Proposition 5.2 below proves the existence of a threshold policy under an average cost. Letπa

be a maximizer over allπ in (2). That is:πa = argmaxπ limN→∞
1
N
E
[
∑N

t=0 r(s
′
t+1, a

π
t , st)

]

Proposition 5.2. There exists an optimal policy which is threshold policy in the size of the

maximal clique. Namely, there exists a constantk, k ∈ {2, . . . , K} such that for0 ≤ L(s) < k

and s ∈ s̄ it holds ā(s̄) = 2, yet fork ≤ L(s) ≤ K and s ∈ s̄, we havēa(s̄) = 1.

That is, send the maximal clique (a coded packet) if and only if its size is at leastk. Otherwise,

send an e-line (an uncoded packet).

We will need the following notation for the proof of Proposition 5.2. We say that a states is

recurrent under the policyµ if when starting at states and acting according toµ, the probability

to return tos is 1. A state which is not recurrent underµ is transient underµ.

Consider a policyπ∗, which is optimal for the average long run cost,π∗ = argmaxπ Jπ, where

Jπ is given in (2). Denote a set of statesS1 ⊂ S such thats(i) ∈ S1 if aπ∗
(s(i)) = 1. Denote

a states(m), such thats(m) ∈ S1 andL(s(m)) < L(s(i)), ∀i, s(i) ∈ S1. Namely,S1 is the set of

states for which sending a clique is optimal, ands(m) is the state with the minimal maximal

clique inS1 - for which it is optimal to send the maximal clique. We have the following claim.

Claim 1. Any states(i) such thatL(s(i)) > L(s(m)) is transient underπ∗.

Proof. We use the fact that nodes do not usecodedpackets in order to decode packetsnot

intended to them. Namely, nodes store only uncoded packets intended for other users. Hence,

clique transmissions cannot increase the clique size, and,moreover, decrease it with some non-

zero probability (note that transmission of an e-line can increase the clique size, yet by at most

1). Consider somes(i) ∈ S1. By definition L(s(i)) > L(s(m)). Sincep(s(j)|s(i), 1) > 0, where

j ≤ m, the states(m) will be reached in finite number of transmissions. Furthermore, the states

with clique size more thanm will not be attended afterwards. That is, once ins(m), the future

state can not be increased. Consequently, for anys(i) such thatL(s(i)) > L(sm), s(i) is transient

underπ∗.

Note that the claim holds even ifπ∗ is not the optimal policy.

Proof. [Proposition 5.2] Consider a policyπ∗, which is optimal for the average long run cost, a
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set of statesS1 ⊂ S ands(m) as above. Denote the setSr such thats(i) ∈ Sr if L(si) ≤ L(s(m)),

and denoteSt = S\Sr. Now see that by the claim above,s(m) is the only recurrent state inS1.

Definenm, the first time underπ∗ to be insm. We have

V πAC

= Jπ∗

= lim
N→∞

1

N
[

nm−1
∑

n=0

rπ∗(sn, an) +

N
∑

n=nm

rπ∗(sn, an)].

Observe that all states encountered at timesn > nm are recurrent. That stems from the fact that

after the transmission at timenm, the process stays inSr. Sincenm is finite a.s., the first sum

(once normalized byN) goes to zero. Next, define policyπm which acts similarly toπ∗ for all

j such thatL(s(j)) ≤ L(s(m)) (that is, all recurrent states) yet setsa(s(j)) = 2 otherwise. That

is, a threshold policy. Denote bynl the first time to hits(m) underπm. Observe that

lim
N→∞

1

N

N
∑

n=nm

rπ∗(sn, an) = lim
N→∞

1

N

N
∑

n=nl

rπm(sn, an) = V πAC

Thus πm is also an optimal policy. Note that the relation betweennl and nm is not essential,

since both are finite.

It is left to show that the policy which always sends e-lines,that is, sends no cliques at all is

suboptimal. Denote such a policy asπe. However, in such a policy the expected reward at each

step is given by1− p, and any other policy which sends a clique at any step outperformsπe by

someǫ > 0. This accomplishes the proof of the proposition.

The proposition above is intuitive, since the clique size can only be increased by1. This

renders all states with the maximal clique larger than the threshold to be, in the long term,

unreachable.

Note that Puterman [40] gives general guidelines how to demonstrate the monotonicity of the

optimal policy, both for the average cost and the discount cost infinite horizon criteria. Here, we

merely presented the short proof which specifically suits this simple case.

The connection between average and discounted costs, is well-known and is described by the

Blackwell optimality condition [34]. In particular, Blackwell optimal policy is optimal for the

average cost as well. Yet, as seen from the proof of Proposition 5.2, the optimal policy for the

average cost, in this case, is not unique. Hence, the opposite is not necessarily true. Nevertheless,

we address this in the simulations.
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The technique demonstrated in the 1-D case can be extrapolated to more complex aggregations.

However, the proofs in these cases will involve treatment ofsignificantly more complex Bellman

equations. Alternatively, one may merely assume the existence of a threshold policy, based

on observations from simulations. The main advantage of having the threshold-type policy

proof/observation is the possibility to enhance algorithmA, as we explain next. Assume there

exists a threshold policy inE, as was presented in AggregationI. Namely, once for someE = i,

there is aswitchfrom optimal action2 (transmission of an empty line) to action1 (transmission

of a clique), then we deduce that1 is optimal for allE < i , while 2 is optimal for allE ≥ i.

Hence, if existence of a threshold policy in one of the parameters (e.g.F ,C,E) is known, at

step4 of the algorithm, in case the policy in some (possibly rarelyvisited) state is not yet clear

at some point of the algorithm run, correct it according to the already known (or conjectured)

threshold rule. This method will accelerate the overall convergence. Another useful property of

V , which gives good understanding of its behavior, is its slope. (See Appendix B for both upper

and lower bounds on this slope.) Similarly, the bounds can beuseful for the manual calibration

of the value function in order to speed up the convergence.

VI. SIMULATION RESULTS

In this section, we evaluate the suggested transmission strategy through extensive MATLAB

simulations. Our simulation results provide insight on theimpact of each of the mechanisms

described throughout the paper. Specifically, we thoroughly examine the effect of different

parameters such as TTE and packet loss probabilities on the value function or on the policy

structure. In addition we evaluate our algorithm and compare the different aggregations suggested.

In our simulations we consider a single cell comprising an APandK receivers. Since our

results relate to the traffic from the AP to the users, our simulations only consider the downstream

traffic. We assume that allK users have pending traffic waiting to be transmitted. Ani.i.d

Bernoulli channel error is assumed, where each packet transmission is received or dropped

by each user with probability1 − p and p, respectively, and is independent between different

transmission attempts. The AP works according to AlgorithmA with corresponding aggregation.

In all cases compared, the AP activates the learning routineconsidering the discounted infinite

horizon cost. Thus, it computes the values attained by valuefunctions for all possible initial
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states. We later use the same policy for calculating the longrun average cost. Note that based

on the Blackwell optimality argument (e.g., [34]), ifγ → 1, under mild conditions the policy

which is optimal for the discounted problem is optimal for the average cost problem as well.

The number of iterations for each phase (learning and improvement) is set in accordance with

the specific configuration.

A. Results without a TTE constraint

We start by evaluating the policy resulted from our learningalgorithm, for the proposed ag-

gregation in the case of no TTE constraint (Section IV). We compare our results with the bounds

obtained in [4]. The aggregation for the TTE-unconstrainedcase constitutes a 2-dimensional state

space, namely, the size of the maximal cliqueC and the number of empty linesE (Section IV).

The action space comprises two possible actions, transmitting to a user that its packet was not

received by any user (empty line in the state matrix) and transmitting to the maximal group of

users in which each member of the group has a packet destined to every other user in the group

(maximal clique in the state matrix). The performance results (i.e the percentage of successfully

decoded packets, using the retransmissions) are seen in Figure 1(top) along with comparison to

the bound from [4]. The bound is derived for systems withmuch stronger coding capabilities,

hence any potential scheme, theoretical or practical as canbe, cannot attain better performance.

Denote it as theWang upper bound. Note that in order to calculate the bound one needs to solve

120 inequalities, hence the graph has small discrepancies. Forlarger systems, such calculations

may be too complex. As for the optimal policy, the simulationresults show that is the same

regardless of the packet loss probability. In particular, the optimal policy is defined by transmitting

a random empty line whenever there are empty lines (E > 0) and transmitting to the maximal

clique otherwise. Accordingly, the obtained policy is a threshold-based policy. The intuition

behind this strategy is clear: the reward associated with both possible actions, transmitting a

random empty line or transmitting the maximal clique, is time independent, i.e., the expected

reward is the same if the transmission occurs now or in one of the following transmission

opportunities. Moreover, since any empty line is not included in any clique all the more so in

the maximal clique, yet transmitting an empty line can potentially increase the size of a clique

without incurring any penalty for delaying the current maximal clique transmission, it is worthy
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to fill in the state matrix such that no empty lines are left, and only then to transmit the maximal

clique. Note that this policycoincides with the one heuristically suggestedin [18] denoted as the

semi-greedy algorithm(SG). Accordingly, the simulation results imply that underthe restricted

action space described above, the semi-greedy algorithm [18] is optimal, as long as no TTE

constraints are applied. Moreover, for the simple case of 2-users system, these resultsachieve

the sum-capacitywhich is found according to [17] and [4]. Figure 1(down) shows results (value

functions at all states) for differentiated packet loss. One sees that the case with equal packet

loss for all users achieves the lowest value function vector. The highest values are obtained for

the case where two of the five users have relatively low packetloss (0.1), while the other three

users have relatively high packet loss (more than0.4). This is explained by that the lossy users

tend quickly to have a pending packet stored at reliable users. Hence, the lines corresponding

to these users are most probably not empty while reliable users keep successfully receiving

uncoded packets. A clique will be sent when some of the reliable users will not receive their

packet forming a large enough clique for transmission. In overall, the performance is tangibly

increased, but the throughput improvement comes at expenseof hampered fairness.

B. Results for TTE constrained aggregations

Next we evaluate the performance of the suggested transmission strategy under TTE con-

straints.

We simulatedAggregation I(Section IV), aiming to examine the structure of the value function

for all feasible states. Namely, we try to to understand the effect of different parameters onV (ŝ).

Our objective was to identify simple properties such as monotonicity, convexity and threshold-

type structure. Such properties can be potentially utilized for the RL convergence speed-up. This

will allow to successfully operate larger systems. We examined a system withK = 5 receivers.

We setγ = 0.99. The results are depicted in Figure 2. TheY − axis depicts the value attained

by each state,V (F ;C;E), (denoted by asterisks). Each value corresponds to the given initial

state.X − axis relates to an enumeration of the states,{1, 2, · · · }. Note that the asterisks form

groups of monotoneous patterns of values. In particular, the states are assigned numbers which

grow first in TTE (F ), next with maximal clique size (C) and finally they grow with the number

of empty lines (E). For example, state 1 refers to the state in which there are no empty lines,



27

maximal clique size 1 andTTE = 9, State 2 relates to the values of the state in which there are

no empty lines, the maximal clique size contains the line with the greatest TTE is 8, state 96

which is the last state refers to the state in which there are 5empty lines (i.e. the empty matrix)
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Fig. 1. System of 5 users results with no TTE

constraint

Note that for the widespread (e.g., 802.11) policy that

only allows uncoded transmissions the value is fixed

1−p

1−γ
= 1−0.25

1−0.99
= 75, which is below the scale of the

graph, i.e., the value for all states is higher than the

one for the uncoded ARQ retransmissions.

We emphasized the structure of the value function

when only a single parameter varies while holding the

other two are fixed. Specifically, in order to understand

the effect of empty line on the obtained policy, we

emphasize by the dotted (red) line the states in which

the TTE and the size of its corresponding clique are

constant, specificallyF = 2, C = 2, and the number of

empty lines varies (0 ≤ E ≤ 3). This can be intuitively

explained by the property that lines which are non-

empty contain some information that potentially can be

exploited in future transmissions, while the empty lines contain no information whatsoever. In

addition, in order to demonstrate the value function dependence on the clique size, we emphasize

the states in which TTE is fixed and equals 2 (F = 2), number of empty lines is fixed (we show

two different values), and the clique size varies. ObserveV (2;C; 0) andV (2;C; 1) which are

represented by the solid cyan and the solid magenta lines, for E = 0 andE = 1, respectively. As

expected, both lines have an increasing pattern withC, i.e., the greater the maximal clique which

corresponds to the line with lowest TTE, the greater the value function. By observation, one can

also assume that the value function has a convex increasing form in C (cyan and magenta lines)

and convex decreasing inE (the red line).

The effect of the differentiated packet loss is demonstrated in Figure 2(down). We compared

four different packet loss distributions, with average value equal to0.3. Similarly to the case with

no TTE constraint, the best throughput is achieved where packet loss was with highest variance.
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However the difference was significantly less visible, which is clearly understood from the TTE

constraint, since with TTE will limit the number of packet sent by the AP before sending a

clique incorporating the lossy users pending packets. Notethat for the same reasoning, also the

fairness issue is less acute. For example, in the case where most reliable user had packet loss

equal to0.12 while the most lossy one had packet loss equal to0.48, the ratio of the number

of sent packets by the AP was7 : 4 in favor of the reliable user.
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Fig. 2. Aggregation I. Each group of asterics represents

the number of empty lines. The group withE = 0,

that is V (F,C, 0), is near10, V (F,C, 1) is near30,

V (F,C, 2) is near60, V (F,C, 3) is near80, V (F,C, 4)

is near90 and the lowest isolated state stands for the

empty matrix(top). Effect of differentiated packet loss

(down)

We explore next the dependence of the policy

found for Aggregation I on various parameters, at

equal packet loss which ranged from5% to 35%. The

results are shown in Figure 4. For reference conve-

nience, the first column denotes the state enumera-

tion. Recall, that1 stands for sending the maximal

clique containing the oldest line, while2 stands for

transmitting a random empty line.

These results clearly demonstrate that the algo-

rithm converges to the optimal policy in accordance

with the channel condition. As for the threshold-

type policy, the proof of this property is hard to

accomplish, as it relies on the transition probabilities,

which are hard to attain. However, the threshold-

type property, can be observed by simulations, as it

is seen from the table (see states (20-22), (27-29).)

Note that the property can highly accelerate the RL

procedure. As explained in Section IV the transi-

tion probabilities are approximated by RL. Hence,

simulation-based exploration is imminent in order to identify structural properties. Alternatively,

one can attempt to prove the threshold property for the average long run case, as we proved for

the 1-D case in Section V. Note that as long as all three dimensions of V (ŝ) are viewed, the

thresholds are expected to form three-dimensional surfaces.

We conclude the observations above by proposing an effective speedup for AlgorithmA. The
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proposed enhancement stems from simulation results and by the previously discussed properties

of value function in section V. First, in order to successfully operate a larger system, one can

solve a (trial) system with small number of users with the same aggregation and the same channel

conditions. Next, the resulting optimal policy can be extrapolated in order to get the policy for

the desired system, for example, threshold and monotonicity patterns, as we examined above.

In particular, define an approximating policyπ0
X using an assessment based on the policy found

from a smaller system and the observed properties. Heuristically, this policy should allow a

randomization aroundconjecturedthreshold states. Next, an adjustment ofV̂i and that ofπk+1
X

is heuristically performed. Again, this improvement can bedone using the estimated properties

of the value function, or can be combined within the regular run of the reinforcement learning

as it appears in AlgorithmA. See also monotone policy iteration algorithm in [40].

In order to evaluate the effect of TTE on the policy, we compare both Aggregation I and

Aggregation II with the greedy and semi-greedy algorithms proposed in [16]. Specifically, the

greedy algorithm aims at maximizing the instantaneous reward received for each transmission

opportunity. Hence, the policy according to the greedy algorithm is to transmit the maximal

clique for each transmission opportunity. Whenever there is no clique (i.e.,C ≤ 1) transmit a

random empty line. The semigreedy (SG) policy is defined in the subsection above. Figure 3

(left and middle) compares the value function of the discounted infinite horizon cost with a zero

matrix as the initial state for the various policies.

Figure 3 (left) clearly depicts that as expected under the TTE constraints the semi-greedy

algorithm performs almost as poorly as the uncoded policy. This is explained by that it does not

take into account lines which can be discarded, hence missesclique transmission opportunities

just for trying to fill the matrix with non-empty lines. Moreover, in system where the number of

users is greater than TTE, the AP will never be able to fill the state matrix with non-empty lines

and the aforementioned semi-greedy algorithm coincides with the uncoded algorithm which sends

only uncoded packets. Hence, we devised an alternative heuristic algorithm, termed modified

semi-greedy (MSG). MSG differs from SG in that whenever there is a line in which the TTE is

going to expire on the next slot (i.e., TTE = 1) the AP transmits the maximal clique containing

the oldest line. The results of the MSG heuristic are also depicted in Figure 3. Note that MSG

is indifferent to the channel conditions and acts identically for any packet loss (Figure 3 left).
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Further note that even though both policies rely on the same parameters to make a decision, i.e.,

both perform based on the triplet{oldest line, maximal clique size, number of empty lines},

Aggregation II outperforms the MSG algorithm at all packet loss values. This can be explained by

that MSG, while being effective as a simple heuristic algorithm, neglects the channel condition,

i.e., MSG provides only a single retransmission opportunity for a packet before it gets obsolete,

regardless the loss probability. This is opposed to Aggregation II which effectivelyadjusts the

policy to the channel packet losswith no prior knowledge on the packet loss (p), based on the

on-line learning. Indeed, the advantage of Aggregation II becomes more prominent at higher

packet loss values, as can be seen in Figure 3.
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Fig. 3. Value function comparison. The left and the middle figures show the discounted case. The right figure shows the average cost long run.

Next, observe that when the number of users is greater than TTE, the effect of the surplus

of the number of users is negligible. This stems from the factthat at mostE = TTE lines can

have non-zero entries at all times. Indeed, we see thatK = 10 leads to almost no improvement

in performance compared to theTTE = 5 case (the corresponding lines in the middle graph are

almost coincide). Hence, we conjecture that for the case where K > TTE, further state-space

minimization could be done. However, once one increases theTTE parameter the performance

improvement is tangible. These results are seen on the middle graph as well. Finally we compare

the average cost long run simulation results (Figure 3, right). Relying on Blackwell optimality,

we used the same policies we found for the discounted case. One sees the same performance

gradation as for the discounted cost.
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Fig. 4. Approximately optimal policy, for a system withK = 5 users andTTE = 5. 1 stands for sending the clique containing the oldest line,
while 2 stands for sending a random empty line. Observe the dependence of the policy on the packet loss, e.g. in states7,9,11,21,28, 29 (These
states are marked in red). The impact of the parameterF can be seen from states{F, 3, 2},(states20, 21, 22), for example. Note that the clique is
always sent in the cases whereF = 1, i.e., the oldest line in this clique is about to expire. In the cases whereF > 1, the policy depends on the
packet loss, and generally tends to change to2 oncep is greater and/orF is higher.

APPENDIX

A. Proof of Proposition 3.1

Proof. We prove by constructing a reward function̂R = {r̂(ŝ′, â, ŝ)}. Let the rewards as-

sociated with policy restriction and aggregated originating state ber̄(s′, ā, s̄). Observe that
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∑

s′′∈s̄ P
(

r̄(s′, ā, s̄) = r(s′, ā, s′′)
)

= 1. Hence,

Er̄(s′, ā, s̄) =
∑

r(s′, ā, s′′)P
(

r̄(s′, ā, s̄) = r(s′, ā, s′′)
)

=
∑

s′′∈s̄

[r(s′, ā, s′′)]pπ̄(s′′|s̄), (5)

Partitioning all states inS to the aggregated states, we have:

r̄(s̄, ā) =
∑

s̄′

r̄(s′, ā, s̄)p(s′|s̄, ā) =
∑

s̄′

∑

s′∈s̄′

r̄(s′, ā, s̄)p(s′|s̄, ā). (6)

r̄(s̄, ā) =
∑

s̄′

r̄(s′, ā, s̄)p(s′|s̄, ā) =
∑

s̄′

(

∑

s′′∈s̄

[r(s′, ā, s′′)]pā(s
′′|s̄)

)

p(s′|s̄, ā) =
∑

s̄′

∑

s′∈s̄′

r̄(s′, ā, s̄)p(s′|s̄, ā). (7)

Similarly to r̄(s̄, ā) in M1, definer̂(ŝ, â) in M̂:

r̂(ŝ, â) =
∑

ŝ′

r̂(ŝ′, â, ŝ)p(ŝ′|ŝ, â) (8)

Thus, we wish to find̂r(ŝ′, â, ŝ) such that

r̄(s̄′, ā, s̄) = r̂(ŝ′, â, ŝ). (9)

Since both the summation in (8) and the outer summation in (7)are over all aggregated states, (9)

will be achieved by taking:

r̂(ŝ′, â, ŝ)p(ŝ′|ŝ, â) =
∑

s′∈s̄′

r̄(s′, ā, s̄)p(s′|s̄, ā).

That is,

r̂(ŝ′, â, ŝ) =

∑

s′∈s̄′

(

r̄(s′, ā, s̄)
)

p(s′|s̄, ā)

p(s̄′|s̄, ā)
(10)

with the mappinĝs ∼ s̄ and â ∼ ā. Note that one should use (5) in (10). Hence, we have the

desired result:

V
Û
(ŝ0) =

∞
∑

n=0

γnr̂n(ŝn+1, â, ŝn) =
∞
∑

n=0

γnr̄n(s̄n+1, ā, s̄n) = V
Ū
(s̄0)

Example 1.2. The following demonstrates state aggregation (as it was defined by Aggregation

I in Section IV) and results of Proposition 3.1. Consider thecase of4 users. Each line holds

the packets of useri. We exemplify the detailed states whereL = 3, E = 1. These states are
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aggregated into the state denoted bys̄3,1. Possible cliques are demonstrated in the detailed states

denoteds1, s2, s3, s4 below. Observe that these states contain only minimal number of 1-s.

s1 =

















0 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0

















s2 =

















0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

















s3 =

















0 0 1 1

0 0 0 0

1 0 0 1

1 0 1 0

















s4 =

















0 1 0 1

1 0 0 1

0 0 0 0

1 1 0 0

















See that ins1, there are8 additional options for the last column. In particular, observe the

following four states with the same empty line and the same clique as ins1.

s5 =

















0 1 1 0

1 0 1 1

1 1 0 0

0 0 0 0

















s6 =

















0 1 1 1

1 0 1 0

1 1 0 0

0 0 0 0

















s7 =

















0 1 1 0

1 0 1 0

1 1 0 1

0 0 0 0

















s8 =

















0 1 1 1

1 0 1 0

1 1 0 1

0 0 0 0

















The same holds fors2, s3 and s4. Concluding, the statēs3,1 aggregates32 detailed states.

There are two possible actions, denote themā = 1 and ā = 2, which stand respectively for

transmitting the clique and transmitting (the only) empty line. Note that the encoded message

for s1 contains the bits1, 2, 3, for s2 it contains packets2, 3, 4, for s3 it contains packets1, 3, 4

and for s4 it contains packets1, 2, 4. The probabilityp(si|s̄3,1) stand for the probability to be

in a specific detailed state which belongs to the aggregated state s̄3,1, (we omit the superscript

of the policy in this example). The rest of the example concentrates on the states5 ∈ s̄3,1 and

action ā = 1, i.e., transmission of the clique. Assume the action results in the detailed statesa.

sa =

















0 0 0 0

1 0 1 1

0 0 0 0

0 0 0 0

















s9 =

















0 0 0 0

1 0 1 1

0 1 0 1

0 1 1 0

















Clearly, sa ∈ s̄1,3. Further, assume equal packet loss probability denoted byq. The afore-

mentioned transition occurs with probabilityp(sa|ā = 1, s5) = q(1 − q)2. That is, two of the

users in the clique (1 and 3) successfully decoded the encoded bit, while user2 failed to do so.

See that the same transition can happen from states9. That is, the clique containing encoding

of 2, 3, 4 was transmitted, and user2 failed to decode. This transition occurs with probability

p(sa|ā = 1, s9) = q(1 − q)2 as well. We sum up over all such detailed states (according to

Appendix A):

p(sa|ā = 1, s̄ = s̄3,1) =
∑

si∈s̄3,1

p(sa|ā = 1, si)p(si|s̄3,1),
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This summation counts over all32 detailed states in̄s3,1. Clearly, some of the probabilities, e.g.,

p(sa|ā = 1, s2) are zero, hence do not contribute to the summation. For calculation convenience,

we assume convention that in these casesr(sa, ā = 1, si) = 0. We calculate the average reward

associated with the transition froms3,1 to sa, according to(5):

Er̄(sa, ā = 1, s̄3,1) =
∑

si∈s̄3,1

r(sa, ā = 1, si)p(si|s̄3,1)

Note that transition to statesa, acting ā = 1 from s̄3,1, is only possible when2 of 3 encoded

packets were successfully decoded. Thus, the reward for these cases is equal to2, while for the

other cases it is zero. Let the subsetS̄
′ ∈ S̄ to contain the possible next (aggregated) states,

assuming the clique size in the previous state was2. Namely,̄S′ = {s̄3,1, s̄2,2, s̄1,3, s̄0,4}, where the

components refer to the events of successfully decoding of0, 1, 2 and3 packets correspondingly.

In order to calculater̄(s̄3,1, ā), we first summarize over all possible outcomesr̄(s̄3,1, ā = 1) =
∑

si
r̄(si, ā = 1, s̄3,1)p(si|ā = 1, s̄3,1). Substituting the expected values and the probabilities we found

above, and arranging according to the aggregated states, wehave:

r̄(s̄3,1, ā = 1) =

∑

si∈s̄3,1

Er̄(si, 1, s̄3,1)p(si|1, s̄3,1) +
∑

si∈s̄2,2

Er̄(si, 1, s̄3,1)p(si|1, s̄3,1)+

∑

si∈s̄1,3

Er̄(si, 1, s̄3,1)p(si|1, s̄3,1) +
∑

si∈s̄0,4

Er̄(si, 1, s̄3,1)p(si|1, s̄3,1) =

∑

s̄∈S̄′

∑

si∈s̄

Er̄(si, 1, s̄3,1)p(si|1, s̄3,1) =
∑

s̄∈S̄′

∑

si∈s̄

(

∑

sj∈s̄3,1

r̄(si, 1, sj)p(si|s̄3,1)
)

p(si|1, s̄3,1)

We now turn to the induced MDP̄M. Denoteŝ = ŝ3,1 and â = 1. We find the reward associated

with transition to ŝ1,3, r̂(ŝ0,3, â = 1, ŝ3,1). Equate component-wisêr(ŝ, â) and r̄(s̄3,1, ā = 1) as

follows:

r(ŝ1,3, â = 1, ŝ3,1)p(ŝ1,3|ŝ3,1, â = 1) =
∑

si∈s̄1,3

Er̄(si, ā = 1, s̄3,1)p(si|ā = 1, s̄3,1)

It is left to calculate the probabilityp(ŝ1,3|ŝ3,1, â = 1).

p(ŝ1,3|ŝ3,1, â = 1) = p(s̄1,3|s̄3,1, ā = 1) =
∑

s′∈s̄1,3

∑

s∈s̄3,1

p(s′|ā = 1, s))p(s|s̄3,1)

Finally, the solutions for all possiblêr(ŝ′, â = 1, ŝ3,1) are found from

rŝ1,3,â=1,ŝ3,1 =

∑

si∈s̄1,3
Er̄(si, ā = 1, s̄3,1)p(si|1, s̄3,1)

∑

s′∈s̄1,3

∑

s∈s̄3,1
p(s′|ā = 1, s)p(s|s̄3,1)

rŝ0,4,â=1,ŝ3,1 =

∑

si∈s̄0,4
Er̄(si, ā = 1, s̄3,1)p(si|1, s̄3,1)

∑

s′∈s̄0,4

∑

s∈s̄3,1
p(s′|ā = 1, s)p(s|s̄3,1)
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rŝ2,2,â=1,ŝ3,1 =

∑

si∈s̄2,2
Er̄(si, ā = 1, s̄3,1)p(si|1, s̄3,1)

∑

s′∈s̄2,2

∑

s∈s̄3,1
p(s′|ā = 1, s)p(s|s̄3,1)

rŝ3,1,â=1,ŝ3,1 =

∑

si∈s̄3,1
Er̄(si, ā = 1, s̄3,1)p(si|1, s̄3,1)

∑

s′∈s̄3,1

∑

s∈s̄3,1
p(s′|ā = 1, s)p(s|s̄3,1)

Note thatp(s|s̄3,1) are policy dependent and in order to be found, the Markov chain associated

with the MDP should be entirely solved. As it is explained throughout the paper, we circumvent

this difficulty by reinforcement learning. This finishes theexample.

B. Proof of Bounds

We prove low and upper bounds on the slope ofV (s), discounted infinite horizon cost.

Denoting pek, the probability to increaseL(s) from k to k + 1 when transmitting an empty

line, see thatpek < p, that is, incrementing the clique is conditioned on the transmission being

unsuccessful. Denote bypck,i, 0 ≤ i ≤ k, the transition probability from statek from to statei,

when acting by the transmission of the clique (i.e.a = 1). Note thatpki is formally given by

pck,i = p(s̄′ = i|s̄ = k, a = 1) Define operatorT , corresponding to the Bellman equation, acting

on V

TV (k) = max{[pekγV (k + 1) + (1 − pek)γV (k) + (1− p)], [

k
∑

i=0

pck,iγV (i) + (1− p)k]}, (11)

with boundary conditions

TV (0) = {[pe0γV (1) + (1− pe0)γV (0) + (1 − p)]}, TV (K) =

K
∑

i=0

pcK,iγV (i) + (1− p)K.

The immediate rewards are explained as follows. The reward for transmission of an empty line

is given by the probability of a successful transmission, that is1−p. In the case a clique of size

k is transmitted, we havek potential i.i.d rewards, which gives(1−p)k. To simplify the notation,

denoteS̃(k) = γ
∑k

i=0 p
c
k,iV (k−i)+(1−p)k andẼ(k) = pekγV (k+1)+(1−pek)γV (k)+(1−p).

Let S be the set of functions from{0, 1, . . . , K} to R that are nondecreasing, and have slope

bounded from above bydk, that is

V (k + 1)− V (k) ≤ d, k ∈ {0, 1, . . . ,K − 1}, (12)

and bounded from below as follows:

V (k)− V (k − i) ≥ i− c, wherei ∈ {1, . . . ,K − 1}, k ∈ {i, i+ 1, . . . ,K}. (13)
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Lemma 1.1 below asserts thatT preservesS, and acts on it as a strict contraction. The

combination of these two assertion implies thatV (s) is in S (see the discussion below), that is,

it possesses the corresponding properties (13) and (12).

Lemma 1.1. There exist constantsc and d, such that one hasTS ⊂ S. Moreover, there exists

a constantα ∈ (0, 1) such that

‖TU − TW‖ ≤ α‖U −W‖ for every U,W ∈ S.

Discussion.The main difficulty of the proof below stems from the ambiguity regarding the

transition probabilities. That is, the precise calculation of these probabilities is computationally

infeasible, especially for large number of users,K. We solved this by reinforcement learning on

the practical side. On the analytical side, we make several assumptions and estimations, which

we justify throughout the proof. To this end, the proof is primarily built on the assumption that

V ∈ S and possesses all the corresponding properties. We exploitthis assumption in order to

prove that operatorT , acting onS, preservesthese properties, that isTV ∈ S. Now note that the

map defined by operatorT in (11), acting on a complete metric spaceS, with T : R|S| → R
|S|

of value functions, is a strict contraction, [41, Theorem V.18]. Therefore,T has a unique

fixed point which solvesTU = U . On the other hand,V is the unique solution to the same

(Bellman) equation in the space ofall functions. As a result,V = U . Whence, in case we start

the converging procedure with initial function which preserves (12) and (13) , by iteratively

activating the operatorT , we end up with solution which preserves the aforementionedproperty.

1) Proof of Lemma 1.1:Denote bypck,i,j the probabilitypck,i, conditionedthat the largest

fully disjoint clique with the clique of sizek, prior the transmission, was of sizej. Note that

j ≤ k. Denote the probability of having such a disjoint clique aspk,j (by total probability

pki =
∑

j p
k
i,jpk,j. )

By Equation (18) and Lemma 1.2 (see the end of this section) itholds eitherpck,i = pck,i,0+a1 =

pi(1− p)k−i
(

k

i

)

+ a1, for some nonnegativea1, or pck,i = 0. (Note, thata1 = 0 in the case there

were no other cliques of sizek − i prior to the encoded transmission.)
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See that by multiple application of (12) and (13)

S̃k ≤ γV0 + γ

k
∑

i=0

i ∗ pck,id+ (1− p)k

= γV0 + γ

k
∑

i=0

i ∗ pck,i,0d+ (1− p)k + a2(k) = γV0 + γpkd+ (1− p)k + a2(k) (14)

and

S̃k ≥ γVk − γ

k
∑

i=0

(k − i) ∗ pck,id+ (1− p)k

= γVk − γ

k
∑

i=0

(k − i) ∗ pck,i,0d+ (1− p)k − b2(k) = γVk − γ(1− p)kd+ (1− p)k − b2(k) (15)

wherea2(k) andb2(k) stand for summations of all compensation constantsa1(k, i), in both cases above.

We use the contraction property in the remaining part of the proof. Since, by assumption,V satisfies (12)

and (13), we only have to show that

max{S̃(k + 1), Ẽ(k + 1)} −max{S̃(k), Ẽ(k)} ≤ d (16)

max{S̃(k − i), Ẽ(k − i)} −max{S̃(k), Ẽ(k)} ≤ −i+ c (17)

We analyze all the possible options within the curly brackets, as follows.

1.

TV (k + 1)− TV (k) = S̃(k + 1)− S̃(k)

TV (k − i)− TV (k) = S̃(k − i)− S̃(k)

Applying Lemma 1.3 it immediately follows thatTV (k + 1)− TV (k) < d andTV (k − i)− TV (k) ≥ −i+ c

in this case.

2.

TV (k + 1)− TV (k) = Ẽ(k + 1)− Ẽ(k)

TV (k − i)− TV (k) = Ẽ(k − i)− Ẽ(k)

In order to prove the second case we should comply with the expressions ford andc found in the first case. Note

thatpek+1
< pek. That is, the probability to increase the size of the maximalclique then acting by sending an empty
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line decreases with the state size. Hence,

Ẽ(k + 1)− Ẽ(k) = pek+1γV (k + 2) + (1− pek+1)γV (k + 1)− pekγV (k + 1)− (1 − pek)γV (k)

= pek+1γV (k + 2) + (1 − pek+1 − pek)γV (k + 1)− (1− pek)γV (k)

≤ γdpek+1 + (1 − pek)γV (k + 1)− (1− pek)γV (k) ≤ γdpek+1 + d(1− pek)γ < dγ < d

and

Ẽ(k − i)− Ẽ(k) = pek−iγV (k − i+ 1) + (1− pek−i)γV (k − i)− pekγV (k + 1)− (1− pek)γV (k)

≤ [pek−iγV (k − i+ 1)− pek−i)γV (k − i)] + γV (k − i) + [(1− pek)γV (k + 1)− (1− pek)γV (k)]− γV (k + 1)

≤ γdpek−i + γV (k − i)− (1− pek)dγ − γV (k + 1) ≤ γdpek−i + (1− pek)dγ − γi− γ + γc < −i+ c

See that forγ close enough to1 the last assertion is true.

3.

TV (k + 1)− TV (k) = S̃(k + 1)− Ẽ(k)

TV (k − i)− TV (k) = S̃(k − i)− Ẽ(k)

Using the proof of case1:

S̃(k + 1)− Ẽ(k) ≤ S̃(k + 1)− S̃(k) ≤ d

S̃(k − i)− Ẽ(k) ≤ S̃(k − i)− S̃(k) ≤ −i+ c

4.

TV (k + 1)− TV (k) = Ẽ(k + 1)− S̃(k)

TV (k − i)− TV (k) = Ẽ(k − i)− S̃(k)

Using the proof of case2:

Ẽ(k + 1)− S̃(k) ≤ Ẽ(k + 1)− Ẽ(k) ≤ d

Ẽ(k − i)− S̃(k) ≤ Ẽ(k − i)− Ẽ(k) ≤ −i+ c
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There are additional combinations, such asẼ(k + 1) − S̃(k) and S̃(k − i) − S̃(k), however their proof is

straightforward using same considerations as above. It is trivially seen that all the cases hold for the boundary

conditions as well.

To see thatV (k) is non-decreasing ink we use the following argumentation. Denote the aggregated state of

having a maximal clique of sizek as sk, s̄k ∈ S̄. Define functiongk : sk → sk−1, k > 1, such that for each

sk, gk acts by deleting a random line from the maximal clique of sizek, i.e. updating all entries of the chosen

line to 0. We aim to compareV (s(k)) = V (k) andV (gk(s(k))). By simple coupling argumentation one defines

two processes and sees thatV (s(k)) ≥ V (gk(s(k))). We skip the trivial details. Finally the contraction property of

operatorT follows from the well known results on MDP. See [40], for example. This accomplishes the proof of

the lemma.

Lemma 1.2. For j > 2, that is disjoint clique exists,

pck,i,j = 0, j > i

pck,i,0 ≤ pki,j , j ≤ i

Proof. Trivially, in case the disjoint clique is larger thanj, the probability to have clique smaller thanj is zero.

Therefore, the first assertion trivially holds,pck,i,j = 0 j > i.

Next, see that for alli,

pck,i,0 = pi(1− p)k−i

(

k

i

)

. (18)

The sum of all transition probabilities from statek acting ā = 1, for all j is 1:

k
∑

i=0

pck,i,j = 1

Hence, the second assertion holds.

Lemma 1.3. One has constantsd and c such that

S̃(k + 1)− S̃(k) < d

S̃(k − i)− S̃(k) > −i+ c

For all k and i < k.

Proof. We prove by finding such constants. Substitute (12) and (13),using inequalities (14) and (15), and perform
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algebraic simplifications. Write

S̃(k)− S̃(k − 1) = γ

k
∑

0

pck,iVi + (1− p)(k)− γ

k−1
∑

0

pck−1,iVi + (1− p)(k − 1)

≤ γV0 + γkdp+ (1 − p)(k) + a2(k)− γVk−1 + (1− γd)(1 − p)(k − 1) + b2(k − 1)

≤ dkγk + dγp− dγ − p+ 1 + a2(k) + b2(k − 1) + (1− k) γ + cγ ≤ d

and

S̃(k − i)− S̃(k) ≤ γV0 + γpd(k − i) + (1 − p)(k − i) + a2(k − i)− γVk + (1− γd)(1 − p)k + b2(k)

≤ −dγip+ d+ kγ k + pi+ γc− γi− k + a2(k − i) + b2(k) ≤ −i+ c

Next, for simplicity, assume equalities for both inequalities above and write



























dγ k + dγ p− dγ − p+ 1+ (1− k) γ + cγ = d

−dγ ip+ d+ kγ k + pi+ γc− γi− k + a2(k − i)− b2(k)

= −i+ c

Solving for d andc we have the following expressions

c = A(γ k + γ p− γ − 1)b2(k)−A(γ k + γ p− γ − 1)a2(k − i)

+A
(

p(γ2ik − γ2i+ γ2k − γ ik − γ k + i)
)

(19)

d = Aγa2(k − i)−Aγb2(k) +A(γ ip− γ2 − γ k + γ p− p+ 1) (20)

Where1/A = γ2ip + γ2p − γ2 − γ k − γ p + 1. Observe that1/A ⋍ ip − k as γ → 1. The rightmost part of

d in (20) is essentially independent ofi and k, and is less than1 for all k, i. Consequently, the assumptiond is

independent ofk is plausible. One the other hand,c has very low positive values, comparatively to that ofi. Hence,

the constantsd andc above satisfy the lemma.
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