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Abstract

Delay constrained linear transmission (LT) strategies areconsidered for the transmission of com-

posite Gaussian measurements over an additive white Gaussian noise fading channel under an average

power constraint. If the channel state information (CSI) isknown by both the encoder and decoder, the

optimal LT scheme in terms of the average mean-square error distortion is characterized under a strict

delay constraint, and a graphical interpretation of the optimal power allocation strategy is presented.

Then, for general delay constraints, two LT strategies are proposed based on the solution to a particular

multiple measurements-parallel channels scenario. It is shown that the distortion decreases as the delay

constraint is relaxed, and when the delay constraint is completely removed, both strategies achieve the

optimal performance under certain matching conditions. Ifthe CSI is known only by the decoder, the

optimal LT strategy is derived under a strict delay constraint. The extension for general delay constraints

is shown to be hard. As a first step towards understanding the structure of the optimal scheme in this

case, it is shown that for the multiple measurements-parallel channels scenario, any LT scheme that

uses only a one-to-one linear mapping between measurementsand channels is suboptimal in general.

Index Terms

Linear transmission, delay constraint, composite of Gaussians, fading channel, water filling, wireless

sensor networks.
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I. INTRODUCTION

Near real-time monitoring of a physical phenomena is of great significance to many emerging

network applications, such as monitoring of voltage, current magnitudes, active/reactive power

values in smart grids (SGs) [1], or temperature and humidityin forest fire detection networks [2].

To this end, wireless sensors are deployed throughout the physical network and the sensor

measurements are delivered to a control center (CC) over wireless links. For the robust, reliable

and efficient management of the underlying physical networks, near real-time and accurate

reconstruction of the measurements at the CC becomes necessary. For example, in conventional

state estimation for the electricity grid, measurements are collected once every two to four

seconds and the state is updated once every few minutes [3]. However, more frequent state

measurements and estimations are required for modern SGs, which inevitably imposes strict

delay constraints on the transmission of measurements. As afurther example, in forest fire

detection networks [4], measurements of smoke and gas sensors along with camera images are

used to detect fire, and the delay inevitably becomes a major constraint for the transmission.

Thus, zero-delay linear transmission (LT), rather than advanced compression and channel coding

techniques that span large codewords, is an attractive strategy for the transmission of sensor

measurements in intelligent networks. This is because LT reduces both the delay and encoding

complexity significantly; and accordingly limits the cost and energy requirements of the sensors.

LT of Gaussian sources has been extensively studied in the literature. Goblick showed in [5]

that zero-delay LT of a Gaussian source over an additive white Gaussian noise (AWGN) channel

achieves the optimal mean-square error (MSE) distortion. In [6], the optimal LT scheme that

matches anr-dimensional Gaussian signal to ak-dimensional AWGN vector channel is character-

ized. It is shown that the optimal LT performance can be achieved by mapping ordered sources to

ordered channels in a one-to-one fashion. LT of a Gaussian source over a fading AWGN channel

is studied in [7]. It is shown that the optimal LT performancecan be achieved by symbol-by-

symbol processing, and increasing the block length does notprovide any gain, as opposed to

nonlinear coding schemes. In [8], LT of noisy vector measurements over a fading AWGN channel

is studied under diagonal and general observation matrices. LT of vector Gaussian sources over

static and fading multi-antenna channels is studied in [9] and [10], respectively.

We consider a wireless sensor node that collects measurements from J Gaussian parameters.
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We discretize time into time slots (TSs), and assume that theCC asks for a measurement of a

particular parameter from the sensor at each TS. The sensor takes one sample of the requested

parameter at each TS, and transmits these samples to the CC over an AWGN fading channel

under a given delay constraint. Note that, in contrast to multi-dimensional Gaussian source

models studied in [6], [10], [11], where the sensor has the measurements of all theJ Gaussian

parameters at the beginning of a TS, we assume that only one measurement is taken from the

requested parameter at each TS.

We assume that each measurement must be delivered withind TSs. Thereby, after each

transmission, the CC estimates the measurement whose deadline is just about to expire. We

assume that the channel gain from the sensor to the CC is independent and identically distributed

(i.i.d.) over TSs. We consider two different scenarios regarding the channel state information

(CSI): In the first scenario, the CSI is assumed to be available to both the encoder and decoder,

while in the second scenario, only the decoder has CSI. Our goal is to estimate all the requested

measurements at the CC within their delay constraints with the minimum MSE distortion.

We focus explicitly on LT strategies. Assuming that the CSI is known by both the encoder

and decoder, we first derive the optimal LT strategy under a strict delay constraint(d = 1), and

show that the optimal power allocation and the corresponding distortion can be interpreted as

water-filling reflected on a reciprocal mirror. Exploiting the results of [6], we also derive the

optimal LT strategy under a strict delay constraint for a particular scenario in which the sensor

transmits the measurement vector over parallel AWGN fadingchannels at each TS. Then, building

on our previous works [12], [13], and exploiting the optimalLT strategy derived for multiple

measurements-parallel channels scenario above, we propose two LT strategies for general delay

constraints. In both strategies, measurements are first collected and stored in a buffer whose

size depends on the delay constraint, and then, are transmitted to the CC over multiple channel

accesses within the delay constraint. The two strategies consider different measurement selection

criterias, which are used to select the appropriate stored measurement to be transmitted at each

channel access. We then derive the theoretical lower bound (TLB) and the LT lower bound (LLB)

on the achievable MSE distortion. We characterize the MSE distortion achieved by the proposed

LT schemes, as well as the TLB and the LLB under various power and delay constraints. We

show that the MSE distortion diminishes as the delay constraint is relaxed if the sensor is capable

of measuring more than one system parameter, i.e.,J > 1. However, ifJ = 1, then relaxing the
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Fig. 1. The illustration of the transmission model from the perspective of the sensor with multiple channel accesses.

delay constraint does not provide any improvement in LT performance as argued in [6]. When the

fading channel follows a discrete distribution and the delay constraint is completely removed, we

show that the proposed LT strategies meet the TLB under certain matching conditions between

the channel states and the paramater variances; and hence, achieve the optimal performance.

When the CSI is known only by the decoder, we first derive the optimal LT strategy under a

strict delay constraint. Then, we consider the multiple measurements-parallel channels scenario

under a strict delay constraint andJ > 1 assumption, and show that the optimal LT performance

cannot be achieved by an LT scheme that is constrained to use only a one-to-one linear mapping

between measurements and channels, as opposed to theJ = 1 case [7], and the CSI is known

by both the encoder and decoder [6], respectively. Since theoptimal LT strategy is elusive for

J > 1, we do not consider LT strategies for larger delay constraints. Finally, we derive the TLB

on the achievable MSE distortion.

The rest of the paper is structured as follows. The system model is presented in Section II. In

Sections III to V CSI is assumed at both the encoder and decoder. In Section III, we study the

optimal LT strategy under a strict delay constraint. Two LT strategies are proposed for general

delay constraints in Section IV. In Section V, we characterize the TLB and LLB on the achievable

MSE distortion. In Section VI, the optimal LT strategy is derived under a strict delay constraint

along with the TLB, when the CSI is known only by the decoder. Section VII presents extensive

numerical results, and finally, Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a CC that monitors the operation of a system through a wireless sensor (Fig. 1),

which is capable of measuringJ distinct system parameters. Thejth system parameter is

modelled as a zero-mean Gaussian random variable (r.v.) with varianceσ2
j , i.e.,N (0, σ2

j ), for
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j ∈ [1:J ], where[1:J ] denotes the set{1, 2, . . . , J}. These system parameters are independent

from each other, and their realizations are i.i.d. over time. In order to monitor the network

operation, the CC requests the measurement of one system parameter from the sensor at each

TS. The index of the requested system parameter at each TS is ar.v. denoted byM ∈ [1:J ], with

distributionpM(m), which is also i.i.d. over time. Based on these requests, thesensor takes one

measurement of the requested parameterm at each TS. Thereby, the model is that of a composite

source introduced in Chapter6 of [14]. The sourceS can be described as a composite source

comprised ofJ distinct components (subsources), each operating independently of the others.

In our model, each component produces data according to a Gaussian probability distribution

P (·|m) = N (0, σ2
m). The setG of all sources comprises the composite source{Si, G}. In our

case,

G =
[

N (0, σ2
1),N (0, σ2

2), . . . ,N (0, σ2
J)
]

. (1)

The index of the requested system parameterm generates the sequence of positions assumed

by the switch in Fig. 1. In our model both the encoder and the decoder possess the exact

knowledge of this sequence. Notice that, in the particular case in which the encoder and decoder

are uninformed about this sequence, the composite source{Si, G} is equivalent to a mixture of

Gaussian distributions, i.e.,PS(s) =
∑J

m=1 PM(m)PS|M(s|m).

We assume that the CC imposes a maximum delay constraint ofd ∈ Z
+ on the measurements,

that is, the measurement requested in a TS needs to be transmitted within the followingd TSs;

otherwise, it becomes stale. The collected sensor measurements are transmitted to the CC over

a fading channel with zero-mean and unit variance AWGN. The channel output at TSi is given

by yi = hixi + zi, wherexi is the channel input,zi is the additive noise withZ ∼ N (0, 1),

andhi is the fading state of the channel. We consider a fading channel model, and assume that

the fading coefficientHi ∈ R is modelled as a r.v. i.i.d. over time with probability distribution

pH(h).

We defineml
i = [mi, mi+1, ..., ml] as the sequence of indices of requested parameters at TSs

[i:l] for i ≤ l. The measurement sequence is defined similarly assli = [si, . . . , sl], where thei-th

entrysi is the measured value of the requested parametermi at TSi. Therefore, the sequencesli

has independent entries, where thei-th entry comes from a Gaussian distribution with variance

σ2
mi

. Note that in our composite Gaussian measurements model, conditioned on the requested
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parameter index, which is known by both the encoder and decoder, the source samples follow

Gaussian distributions with different variance values.

The channel state and the output sequences at TSs[i:l] are similarly defined ashl
i = [hi, ..., hl]

andyl
i = [yi, ..., yl], respectively. We assume that both the encoder and decoder at TS i know all

the past channel states,hi−1
1 , and the indices of requested parameters,mi

1, as well as the statistics

of the measured parameters,σ2
m, the parameter requests,pM(m), and the channel,pH(h). In the

first part of the paper we assume that both the encoder and decoder know the current channel

state,hi. Note that this assumption might be hard to realize for a fastfading channel model;

on the other hand, our system model can be considered as instances of a slow fading channel.

Typically, there will be a large number of sensors in the system, and each sensor is going to

be scheduled only once in a while; and hence, each TS in our system model can be considered

as one instance of a slow fading channel when a particular sensor is scheduled to transmit.

Since these instances are separated from each other due to the transmission of other sensors,

corresponding channel states are modeled as i.i.d., and areassumed to be known by both the

encoder and decoder, as channel estimation and CSI feedbackcan be carried out between two

transmissions of the same sensor. In Section VI we will consider the scenario in which the CSI

is known only by the decoder.

1) Encoding Function:The encoding function̂fi : Ri × R
i × R

i → R, mapssi1, h
i
1, andmi

1

to a channel inputxi at each TSi, i.e., xi = f̂i(s
i
1,h

i
1,m

i
1). An average power constraint ofP

is imposed on the encoding function:

P̄ , lim
n→∞

1

n

n
∑

i=1

EM,H,S

[

|Xi|2
]

≤ P,

whereEM,H,S [·] denotes the expectation overM , H andS. For any generic transmission policy,

the encoding function̂fi, at TS i, may consider to use any combination ofsi1, h
i
1, andmi

1 to

generatexi. This gives rise to a time-varying encoding scheme.

2) Decoding Function:At the end of TSi, the goal of the CC is to estimate with the minimum

MSE distortion, the measurementsi−d+1, which has been requested exactlyd− 1 TSs ago, and

is about to expire. The decoding functionĝi : Ri×R
i×R

i → R, estimateŝsi−d+1 based onyi
1,

hi
1, andmi

1, i.e., ŝi−d+1 = ĝi(y
i
1,h

i
1,m

i
1). The MSE distortion is given by:
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D̄ , lim
n→∞

1

n

n
∑

i=d

EM,H,S,Z

[

|Si−d+1 − Ŝi−d+1|2
]

.

The decoding function̂gi, at TSi, reconstructs the measurement usingyi
1, h

i
1, andmi

1. Hence,

similarly to the encoder, the decoder may be time-varying.

We are interested only in LT policies in whicĥfi’s are restricted to be linear functions of the

sensor measurements,si’s, i.e., f̂i(si1,h
i
1,m

i
1) , fi(h

i
1,m

i
1) · si1, wherefi(hi

1,m
i
1) is a vector.

Under this linearity constraint, the optimal estimators atthe receiver,̂gi’s, are also linear functions

of the channel outputs,yi’s, i.e., ĝi(yi
1,h

i
1,m

i
1) , gi(h

i
1,m

i
1) · yi

1, wheregi(hi
1,m

i
1) is a vector.

Hereafter, we will refer tofi andgi for the encoding and decoding functions at TSi, respectively.

III. STRICT DELAY CONSTRAINT

We first derive the optimal LT strategy under a strict delay constraint(d = 1), and characterize

the minimum achievable MSE distortion. In this scenario, optimal LT performance is achieved

by transmitting only the most recent measurement since all the previous measurements have

expired, and transmitting an expired measurement cannot help the estimation of the current

measurement since the measurements are independent. Then the encoding functionfi(hi, mi) at

TS i is a scalar. Given the encoding function, the decoding function gi(hi, mi) that minimizes

the MSE for Gaussian r.v.s is the linear MMSE estimator [15],and is also a scalar.

In particular, for a measurementsi with varianceσ2
mi

, and channel outputyi = hi · fi(hi, mi) ·
si + zi at TS i, the decoding function can be written explicitly as:

gi(hi, mi) =
ES,Z [SiYi]

ES,Z [Y 2
i ]

=
|hi|fi(hi, mi)σ

2
mi

|hi|2fi(hi, mi)2σ2
mi

+ 1
. (2)

In the following lemma we show that there is no loss of optimality by limiting the encoding

function to be time-invariant.

Lemma 1. Under a strict delay constraint there is no loss of optimality by considering only

time-invariant encoding functions, i.e.,fi(hi, mi) = f(hi, mi) ∀i.

Proof:
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D̄ = lim
n→∞

1

n

n
∑

i=1

EM,H,S,Z

[

|Si − Ŝi|2
]

= lim
n→∞

1

n

n
∑

i=1

EM,H

[

σ2
m

|h|2fi(h,m)2σ2
m + 1

]

, (3)

≥ EM,H

[

σ2
m

|h|2f(h,m)2σ2
m + 1

]

, (4)

where (3) is the average MSE distortion under a strict delay constraint(d = 1); and defining

f(h,m)2 , limn→∞
1
n

n
∑

i=1

fi(h,m)2 such thatf(h,m) satisfies the average power constraint

P , (4) follows from the convexity of the functionEM,H

[

σ2
m

|h|2fi(h,m)2σ2
m+1

]

in terms offi(h,m)2,

and the equality holds ifffi(h,m) = f(h,m) for ∀i and due to the strict convexity of the

aforementioned function. Thus, the time-invariant encoding functionf(h,m), which is a function

of only h andσ2
m, does not lead to any loss in optimality.

The time-invariant encoding functionf(h,m) leads to a time-invariant decoding function

g(h,m). In the rest of the paper, we will consider time-invariant encoding and decoding functions

without loss of optimality. Then, the MSE distortion,̄D = EM,H,S,Z[|S − Ŝ|2], and the average

power,P̄ = EM,H,S[|X|2], can be written explicitly as functions ofh andσ2
m, as follows:

D̄ =

J
∑

m=1

pM(m)

∫

R

σ2
m

|h|2f(h,m)2σ2
m + 1

pH(h)dh, (5)

P̄ =
J
∑

m=1

pM(m)

∫

R

f(h,m)2σ2
mpH(h)dh. (6)

The optimal linear encoding functionf ∗(h,m) is found as the solution to the convex op-

timization problemD̄∗ , min
f

D̄, subject to the average power constraintP̄ ≤ P . From the

Karush-Kuhn-Tucker (KKT) optimality conditions [16], we obtain:

f ∗(h,m) =

√

[

λ∗

|h|σm

− 1

|h|2σ2
m

]+

, (7)

whereλ∗ is the optimal Lagrange multiplier, such thatP̄ = P .

The optimal power allocation and the corresponding distortion are given by:

P ∗(h,m) =
σm

|h|

[

λ∗ − 1

|h|σm

]+

, (8)

D∗(h,m) =
σm

|h| min

(

1

λ∗
, |h|σm

)

, (9)
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whereD̄∗ = EM,H [D∗(h,m)] andEM,H [P ∗(h,m)] = P .

In Fig. 2, we present a graphical interpretation of the optimal power allocation and the

corresponding distortion forJ = 2 parameters with variancesσ2
1 and σ2

2, which are requested

with probabilitiespM(1), pM(2), respectively. We also consider a discrete fading channel with

three states, where thekth state,ĥk, is observed with probabilitypH(ĥk), k = 1, 2, 3. Fig. 2

depicts rectangles that are placed upon a mirror surface andtheir reciprocally scaled images

below. Rectangles represent all possible source-channel pairs {σm, ĥk}, wherelkm , 1

|ĥk|σm
and

wkm , σm

|ĥk|
indicate the height and width of the rectangles, respectively. The total power is

poured above the levellkm up to the water levelλ∗ across the rectangles placed upon the mirror.

The optimal power allocated to the source-channel pair{σm, ĥk} is given by the shaded area

below the water level and abovelkm. The corresponding distortion values are found by simply

looking at the reciprocally scaled reflections of the rectangles and the water level on the mirror.

If 1
lkm

> 1
λ∗

, distortion is given by the widthwkm times the reciprocal of the water level1
λ∗

, and

if 1
lkm
≤ 1

λ∗
, distortion isσ2

m, which are illustrated as dashed areas in Fig. 2. We call thisas

water-filling reflected on a reciprocal mirror.

A. Multiple Measurements and Parallel Channels

Next, we assume that the CC requestsN > 1 measurements from the sensor at each TS,

and the sensor transmits a length-N measurement vector overN parallel orthogonal AWGN

fading channels under a strict delay constraint(d = 1). For this scenario, we characterize the

optimal LT strategy by generalizing the results of [6] derived for Gaussian vector sources to our

composite Gaussian measurements model. This scenario differs from the system model defined
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in Section II, since we allow to takeN measurements at each TS as opposed to taking only one

measurement at each TS. However, we will exploit the optimalLT strategy in this setting for the

construction of the proposed transmission strategies in Section IV, as well as for characterizing

the LLB in Section V-B.

Only for this scenario, we definem = [m1, ..., mN ] as the vector of indices ofN re-

quested parameters at a particular TS. Then, the sensor takes the length-N measurement vector

s = [s1, . . . , sN ] according to the parameters indicated bym, i.e., s1 is the measured value of

parameterm1. For a strict delay constraint(d = 1), the optimal LT performance is achieved

by transmitting only the most recent measurement vector. Similarly to Lemma 1, the encoding

function can be limited to a time-invariantN×N square matrixFh,m without loss of optimality,

where subscriptsh andm indicate the dependence of the encoding matrix on the realizations

of h andm. We assume that theN channels are i.i.d with distributionpH(h), andH is defined

as theN ×N diagonal channel matrix. The diagonal elements ofH are denoted by a channel

vectorh = [h1, . . . , hN ] at a particular TS. The length-N channel output vector at that particular

TS is given byy = Hx+z, wherex is the length-N channel input vector andz is the length-N

additive noise vector withz ∼ N (0, I).

The encoder at any TS maps its measurement vectors, to a channel input vectorx, i.e.,

x = Fh,ms. An average power constraint ofP is imposed on the encoding function:

P̄ =
1

N
Tr
{

EM,H,S[xx
T ]
}

=
1

N
Tr
{

EM,H [Fh,mCsF
T
h,m]

}

≤ P, (10)

whereCs = ES[ss
T ].

Given the encoding function, the decoding function that minimizes the MSE for a Gaussian

random vector is theN × N linear MMSE estimator matrixGh,m [15], which is also time-

invariant. Similarly toFh,m, subscriptsh andm indicate the dependence of the decoding matrix

on the realizations ofh andm. For the measurement vectors, and the channel output vectory,

at any TS, we have:

Gh,m = CsyC
−1
y = CsF

T
h,mHTΦ, (11)

whereCsy = ES,Z [sy
T ], Cy = ES,Z [yy

T ] andΦ , (HFh,mCsF
T
h,mHT + I)−1.

At any TS, the CC estimates the most recent measurement vector s as ŝ, i.e., ŝ = Gh,my.

The MSE distortion is given by:
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D̄ =
1

N
Tr
{

EM,H,S,Z[
∣

∣s− ŝ||s− ŝ|T
] }

=
1

N
Tr
{

EM,H [Cs −CsF
T
h,mHTΦHFh,mCs]

}

. (12)

The optimal linear encoding matrixF∗
h,m, is found as the solution to the convex optimization

problemD̄∗ , min
Fh,m

D̄, subject to the average power constraintP̄ ≤ P . For a set of static parallel

AWGN channels and Gaussian vector sources, the optimal linear encoding matrix transmits one

measurement over each channel [6]. The optimal mapping between channels and measurements

is as follows: We first reorder the measurement vectors to obtains̄ = [s(1), . . . , s(N)], such that

σ2
m(1)
≤ σ2

m(2)
≤ · · · ≤ σ2

m(N)
, and reorder the channel vectorh to obtainh̄ =

[

h(1), . . . , h(N)

]

,

such that|h(1)| ≤ |h(2)| ≤ · · · ≤ |h(N)|. Then, the optimal linear encoding matrixF∗
h,m is diagonal

with entries
[

f(1)(h(1), m(1)), . . . , f(N)(h(N), m(N))
]

, and it maps the ordered measurements to

ordered channel states. In order to find the diagonal entriesof F∗
h,m, we can explicitly rewrite

the convex optimization problem by using the optimal mappings derived in [6], as follows:

D̄∗ , min
f(t)

EM(t),H(t)

[

1

N

N
∑

t=1

σ2
m(t)

|h(t)|2f(t)(h(t), m(t))2σ2
m(t)

+ 1

]

s.t.EM(t),H(t)

[

1

N

N
∑

t=1

f(t)(h(t), m(t))
2σ2

m(t)

]

≤ P,

(13)

where the expectation is taken overM(t) andH(t) for t ∈ [1:N ]. The t-th smallest entry of the

requested parameter vectorm = [m1, m2, . . . , mN ], is denoted by the r.v.M(t) ∈ [1:J ] with the

order statisticspM(t)
(m). Without loss of generality, we assume that ordering the entries ofm in

ascending order, i.e.,m(1) ≤ m(2) ≤ · · · ≤ m(N), implies ordering the entries of the measurement

vector s in ascending variances, i.e.,σ2
m(1)
≤ σ2

m(2)
≤ · · · ≤ σ2

m(N)
. Similarly, thet-th smallest

entry of the channel vectorh = [h1, h2, . . . , hN ] is denoted by the r.v.H(t) ∈ R with the order

statisticspH(t)
(h).

The optimal linear encoding matrixF∗
h,m with diagonal entriesf ∗

(t)(h(t), m(t)) for t ∈ [1:N ],

can be found from the Lagrange and the KKT conditions as follows:

f ∗
(t)(h(t), m(t)) =

√

√

√

√

[

δ∗

|h(t)|σm(t)

− 1

|h(t)|2σ2
m(t)

]+

, (14)
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whereδ∗ is the optimal Lagrange multiplier, such thatP̄ = P in (13).

Similarly, the optimal power allocation and the corresponding distortion can be found by using

thewater-filling reflected on a reciprocal mirrorinterpretation. The optimal Lagrange multiplier

δ∗ depends onpM(t)
(m) andpH(t)

(h), which can be found explicitly by using the order statistics.

In the following lemma, we give thet-th order statisticspM(t)
(m) andpH(t)

(h), for t ∈ [1:N ].

Lemma 2. Let FM(m) and FH(h) denote the cumulative distribution functions ofpM(m) and

pH(h), respectively. GivenFM(m), pM(m), FH(h), pH(h) and N , the t-th order statistics

pM(t)
(m) and pH(t)

(h), t ∈ [1:N ], are found as:

pH(t)
(h) = tpH(h)

(

N

t

)

(FH(h))
t−1(1− FH(h))

N−t, (15)

pM(t)
(m) =

N
∑

b=t

(

N

b

)

[

FM(m)b(1− FM(m))N−b − FM(m− 1)b(1− FM(m− 1))N−b
]

. (16)

Proof: The proof is trivial and achieved through the definition of the cumulative distribution

functions ofH(t) andM(t).

FH(t)
(h) = Pr{H(t) ≤ h} = Pr{at leastt of H ’s are≤ h}, (17)

=

N
∑

b=t

N !

(N − b)!b!
FH(h)

b(1− FH(h))
N−b. (18)

where (17) implies a binomial distribution with at leastt successes and can be formulated as (18).

The t-th order statisticspH(t)
(h) is found by taking the derivative of (18) with respect toh. The

same proof holds forM(t).

IV. LT STRATEGIES

In this section, we propose two LT strategies for general delay constraintsd ≥ 1. The block

diagram of the proposed LT strategies is illustrated in Fig.3. Both strategies are composed

of two main blocks, namely, storage and transmission blocks. There are two buffers of sizēd

measurements, namely, the measurement buffer (MB) and the transmission buffer (TB). Here,

we present these two schemes for an odd delay constraint, i.e., d ∈ {1, 3, 5, . . .}, but they can
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Fig. 3. The block diagram illustration of the proposed LT strategies.

be easily adapted to the case whend is even. In the storage block, given a delay constraint of

d = 2d̄ − 1 for d̄ ∈ [1:∞], the sensor collects a block of̄d consecutive measurements afterd̄

consecutive TSs, and stores them in the MB. The consecutive blocks of d̄ measurements, taken

over successive time intervals, are indexed byk̄ = {1, 2, . . .}. Then, thek̄-th block consists of

the measurements taken within TSs[(1 + (k̄ − 1)d̄):k̄d̄], i.e., sk̄d̄
(1+(k̄−1)d̄)

. When the MB gets

full with the d̄ measurements of thēk-th block, the sensor removessk̄d̄
(1+(k̄−1)d̄)

from the MB

and loads them into the TB. Then, for the next consecutived̄ TSs [k̄d̄:((k̄ + 1)d̄ − 1)], the

sensor accesses the channel and transmits a linear functionof the measurements in the TB, i.e.,

sk̄d̄
(1+(k̄−1)d̄)

, over the channel statesh((k̄+1)d̄−1)

k̄d̄
satisfying the delay constraintd. The specifics of

these linear functions will be explained below.

Note that, while the sensor transmits the measurements in the TB, it starts refilling the MB

with new measurementss(k̄d̄+d̄)

(k̄d̄+1)
. After d̄ channel accesses within TSs[k̄d̄:((k̄ + 1)d̄ − 1)], the

MB gets full again and its new̄d measurements are transferred to the TB for transmission over

the nextd̄ TSs.

The proposed transmission strategies consist of two sub-blocks, namely, the measurement

selection and scaling sub-blocks. This division is motivated by the results of [6] presented in

Section III-A, in whichN ordered measurements are mapped one-to-one toN ordered channels,

and each measurement is transmitted over its correspondingchannel. Hence, we assume that, at

each channel access, the sensor selects only one measurement and scales it to a channel input
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value. However, in this case, we cannot directly use the optimal LT scheme in [6] and guarantee

that the selected measurement and the channel state satisfythe optimal matching. This is because

even though̄d measurements are available in the TB in advance, the states of the nextd̄ channels

are not available to the transmitter as in the parallel channel model of [6]; and instead, they

become available over time. The two proposed LT strategies differ in the way they choose the

measurement to be transmitted at each TS.

A. Linear Transmission Scheme with Hard Matching (LTHM)

This transmission scheme has the following measurement selection criteria. Assume, without

loss of generality, that parameters are ordered such thatσ2
1 > σ2

2 > · · · > σ2
J . We divide the

channel magnitude space (R
+) into J ordered channel intervals as,Hm = [H ′

m, H
′
(m−1)), where

H ′
m < H ′

(m−1) for m ∈ [1:J ]. The boundary values are chosen asH ′
0 =∞, H ′

J = 0 andH ′
m =

F−1
H (1 −

m
∑

j=1

pM(j)), for m ∈ [1:(J − 1)], whereF−1
H (·) denotes the inverse of the cumulative

distribution function of the channel magnitude|h|, FH(|h|). Observe that according to this choice,

the probability of the channel magnitude belonging toHm is Pr{|h| ∈ Hm} = pM(m).1

The algorithmic description of LTHM is given in Algorithm 1.Let b = [b1, b2, . . . , bJ ] be

a J-length vector, where them-th entry, bm ∈ [0:d̄], denotes the number of measurements of

parameterm in the TB, for m ∈ [1:J ]. At each channel access, if|h| ∈ Hm and bm 6= 0,

then the sensor selects one measurement of the parameter type m from the TB and feeds it

to the scaling sub-block. If there are multiple measurements of the same parameter typem in

the TB, i.e.,bm > 1, then the sensor selects one of them randomly. The selected measurement

is removed from the TB andb is updated by reducing them-th entry, bm, by one. Thereby,

each measurement is transmitted only once. On the other hand, if |h| ∈ Hm and bm = 0, no

measurement is transmitted in that TS. Hence, LTHM considers a hard matching condition for

selecting measurements, in which each parameter has a corresponding interval of channel states,

1If channel fading follows a discrete distribution, we definesets of channel states as opposed to intervals. With abuse ofnotation,
we denote themth set asHm, for m ∈ [1:J ]. Suppose that the discrete channel states are ordered as|ĥ1| > |ĥ2| > |ĥ3| > · · · .
We allocate the discrete states intoJ sets such that the probability of channel state falling intosetHm is pM (m). However,
it may be possible that the channel states cannot be grouped to satisfy this equality exactly for allm. In that case we create
virtual states to satisfy these equalities, as explained below.

Let j be the minimum index for which
∑j

i=1 pH(|h| = ĥi) > pM (1). Define p1M = pM (1) −
∑j−1

i=1 pH(|h| = ĥi). We
define a new virtual channel stateĥ1

j , whose gain is equivalent tôhj . Whenever the real channel state isĥj , we randomly assign
the channel state tôh1

j with probability p1M/pM (j). We letH1 = {ĥ1, . . . , ĥj−1, ĥ
1
j}. We repeat the same process forpM (2),

starting with channel statêhj whose probability is nowpH(ĥj)− p1M .
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and only measurements of that parameter can be transmitted over a channel state from that

interval. Note that, since the channel state is known at the receiver, it also knows which type of

measurement is transmitted at each TS.

For the scaling sub-block we use the power allocation strategy derived in Section III. Thus,

the selected measurement of the parameter typem is transmitted at the current channel state

|h| ∈ Hm, for m ∈ [1:J ], by allocating powerP (h,m), leading to distortionD(h,m) :

P (h,m) =











[

µσm

|h|
− 1

|h|2

]+

, if hard matching holds,

0, otherwise.
(19)

D(h,m) =











σ2
m

|h|2P (h,m)+1
, if hard matching holds,

σ2
m, otherwise,

(20)

whereµ is chosen such that the average power constraint is satisfied.

After every transmission, the CC estimates the transmittedmeasurements by using the

channel outputy. It is noteworthy that after̄d channel accesses, we may have untransmitted

measurements in the TB. TB is emptied anyway since these measurements have expired, and

they are estimated with the maximum distortionσ2
m. As we show next, the average number

of untransmitted measurements decreases with the increasing delay constraintd. However, for

a finite delay constraint the untransmitted measurements dominate the distortion even for a

high average transmission power constraint. In order to combat this drawback, we propose an

alternative LT scheme.

B. Linear Transmission Scheme with Soft Matching (LTSM)

The algorithmic description of LTSM is given in Algorithm 1.The LTSM retains the hard

matching condition of LTHM, i.e., at each channel access, if|h| ∈ Hm andbm 6= 0 for m ∈ [1:J ],

LTSM selects one measurement of the parameter typem from the TB. Hence, LTSM also

gives the highest selection priority to the measurement of the parameter type that satisfies the

hard matching condition with the channel state. However, if|h| ∈ Hm and bm = 0, LTSM

does not waste the channel state; and instead, selects one measurement based on the following

measurement selection criteria:
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Algorithm 1 LTHM and LTSM
1: Initialization:

Load measurements of MB,sk̄d̄
(1+(k̄−1)d̄)

, into TB and updateb.
2: for i = k̄d̄ to (k̄ + 1)d̄− 1 do ⊲ TSs for d̄ channel accesses
3: if |hi| ∈ Hm andbm 6= 0 then ⊲ both for LTHM and LTSM

Select one measurement of parameterm from TB. ⊲ measurement selection
Transmit the measurement over|hi| with an allocated power of Eqn. (19). ⊲ scaling
bm ← bm − 1 ⊲ updateb

4: else ⊲ only for LTSM
Find ς by solving min

bς 6=0

∣

∣|hi| − h′
ς

∣

∣ .

Select one measurement of parameterς from TB. ⊲ measurement selection
Transmit the measurement over|hi| with an allocated power of Eqn. (19). ⊲ scaling
bm ← bm − 1 ⊲ updateb

5: end if
6: end for

k̄ ← k̄ + 1 and go toInitialization

Assume that each intervalHm is further divided into two equally probable intervals by the

boundary valueh′
m = F−1

H

(

FH (H′

(m−1)
)+FH (H′

m)

2

)

, for ∀m ∈ [1:J ]2. If |h| ∈ Hm and bm = 0,

then LTSM selects one measurement of parameterς, which is the parameter that minimizes the

following distance metric:

min
bς 6=0

∣

∣|h| − h′
ς

∣

∣ . (21)

When the hard matching condition is not satisfied, the LTSM considers a soft matching

condition for selecting measurements; that is, among all parameter types of the measurements in

the TB, it selects a measurement of the parameter whose corresponding interval of channel states

has the valueh′
ς closest to the channel state magnitude|h|. If two distinct ς values satisfy the

solution of Eqn. (21), then LTSM chooses the smallest value of ς. LTSM allocates the power as

in Eqn. (19), and transmits the selected measurement, leading to distortion in Eqn. (20). Note that

the optimal Lagrange multiplierµ is chosen such that the average power constraint is satisfied.

At the end ofd̄ channel accesses, the sensor will have transmitted all the measurements in the

TB, albeit some might have been allocated zero power as a result of the water-filling algorithm.

2If the channel follows a discrete fading distribution, we find h′

m by taking the mean value of all elements of channel set
Hm.
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V. D ISTORTION LOWER BOUNDS

We characterize two lower bounds on the MSE distortion, namely, the TLB and the LLB.

While the TLB is the theoretical performance bound derived without any delay or complexity

constraints on the transmission, the LLB is a performance lower bound only for LT strategies.

We also prove that the proposed LT strategies meet the TLB under infinite delay and certain

matching conditions between the channel states and parameter variances.

A. Theoretical Lower Bound (TLB)

Shannon’s source-channel separation theorem states that the optimal end-to-end distortion is

achieved by concatenating the optimal source and channel codes when there is no delay or

complexity constraints, and the source and channel distributions are ergodic [17]. When we

remove the delay and linear encoding constraints in our system model, then the sensor can

transmit to the CC at the ergodic capacity,C̄e, of the underlying fading channel, while the

minimum distortion,D̄e, is found by evaluating the distortion-rate function for a composite

Gaussian source model at the ergodic capacity.

Since the channel state is known by both the transmitter and receiver, the ergodic capacity, in

terms of the optimal power allocation schemeP ∗
e (h), is given by:

C̄e , EH

[

1

2
log
(

1 + |h|2P ∗
e (h)

)

]

, (22)

whereP ∗
e (h) is found by the water-filling algorithm asP ∗

e (h) = [α∗ − 1/|h|2]+, whereα∗ is

chosen to satisfȳPe , EH [P ∗
e (h)] = P .

From Eqn. (6.1.21) of [14], the distortion-rate function ofa composite Gaussian source with

m components,N (0, σ2
m), each of which is observed with probabilitypM(m) for m ∈ [1:J ], is

defined as:

D̄e , EM

[

σ2
m2

−2R∗

e(σm)
]

, (23)

where the optimal rate allocated to sourcem, R∗
e(σm), and the corresponding distortion,D∗

e(σm),

are given by:

R∗
e(σm) =

1

2

[

log

(

σ2
m

β∗

)]+

, (24)
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D∗
e(σm) = min

(

β∗, σ2
m

)

, (25)

whereβ∗ is chosen such that̄Re , EM [R∗
e(σm)] = C̄e.

Hence, the optimal distortion is found as̄De = EM [D∗
e(σm)], which is the TLB on the

achievable MSE distortion by any transmission strategy. Note that we have removed both the

delay constraint and the linearity requirement on the encoder and decoder.

1) Asymptotic Optimality of LT:In general, the TLB cannot be achieved by LT strategies even

if the delay constraint is removed. However, it can be shown that LTHM and LTSM meet this

lower bound when the delay constraint is removed under certain matching conditions between

the channel states and the parameter variances.

Assume that the channel follows a discrete fading distribution, where the channel stateh

can take one of theJ valuesĥm with probability pH(ĥm) for m ∈ [1:J ]. The discrete values

are ordered as|ĥ1| > |ĥ2| > · · · > |ĥJ |. The next theorem states the necessary conditions

in this discrete channel model under which LTHM and LTSM achieve the optimal distortion

performance when the delay constraint is removed.

Theorem 1. For the discrete AWGN fading channel model, if the parametervariances and the

discrete channel states satisfyσ1

|ĥ1|
= · · · = σJ

|ĥJ |
, and pM(m) = pH(ĥm), for ∀m ∈ [1:J ], then

the TLB is achieved by LTHM and LTSM when the delay constraintis removed, i.e.,d→∞.

Proof: The proof can be found in Appendix A.

B. The Linear Transmission Lower Bound (LLB)

We next derive a lower bound on the achievable MSE distortionas a function of the delay

and power constraints for any LT strategy. In order to derivethis lower bound, we relax the

assumption on the causal knowledge of the measurements and channel states, and instead assume

that the sensor has the offline (non-causal) knowledge of a certain number of future measurements

and channel states. Accordingly, we assume that at any TS thesensor non-causally knows the

length-̄u measurement vector, i.e.,s = [s1, . . . , sū], taken over the next̄u TSs. Observe that,

for a delay constraintd, each measurement ofs can only be transmitted over the followingd

channel states observed after it is taken, thus the transmission of the vectors spans the following

c̄ = (d+ū−1) channel states observed after the first measurements1 is taken. We further assume
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that the sensor non-causally knows the length-c̄ channel vectorh = [h1, . . . , hc̄]. Henceforth, the

problem is reduced to optimally transmittinḡu measurements over̄c parallel channels, which is

attained by using the optimal LT scheme presented in SectionIII-A. Accordingly, we first reorder

s to get s̄ = [s(1), . . . , s(ū)], where the variances of the ordered measurements satisfyσ2
m(1)
≤

σ2
m(2)
≤ · · · ≤ σ2

m(ū)
, and reorderh to get h̄ =

[

h(1), . . . , h(c̄)

]

, such that the ordered fading

states satisfy|h(1)| ≤ |h(2)| ≤ . . . ≤ |h(c̄)|. Then, thēc× ū optimal linear encoding matrixF∗
h,m

consists of āu× ū size diagonal partition with entries
[

f(1)(h(1+ē), m(1)), . . . , f(ū)(h(ū+ē), m(ū))
]

,

and aē×ū size partition with zero entries, wherēe = c̄−ū, and it maps̄u ordered measurements

to the ū channels with the largest gains. The optimal entries ofF∗
h,m are found as the solution

of the following convex optimization problem with the optimal objective functionD̄∗(d, ū, P ) :

min
f(t)

EM(t),H(t+ē)

[

1

ū

ū
∑

t=1

σ2
m(t)

|h(t+ē)|2f(t)(h(t+ē),m(t))2σ2
m(t)

+ 1

]

s.t. P̄ , EM(t),H(t+ē)

[

1

ū

ū
∑

t=1

f(t)(h(t+ē),m(t))
2σ2

m(t)

]

≤ P,

(26)

where the expectation is taken overM(t) andH(t+ē) for t ∈ [1:ū]. The t-th and(t+ ē)-th order

statisticspM(t)
(m) and pH(t+ē)

(h), are given by Lemma 2. The optimal linear encoding matrix

with diagonal entries is found as:

f ∗
(t)(h(t+ē), m(t)) =

√

√

√

√

[

ζ∗

|h(t+ē)|σm(t)

− 1

|h(t+ē)|2σ2
m(t)

]+

, (27)

whereζ∗ is the optimal Lagrange multiplier, such thatP̄ = P in (26).

Assuming non-causal knowledge ofū measurements and̄c channel states under the delay

constraintd and the average power constraintP , we obtain the optimal distortion̄D∗(d, ū, P ) for

any LT strategy. Then, the LLB is derived by finding theū value, which maximizes̄D∗(d, ū, P ) :

D̄l(d, P ) , max
ū

D̄∗(d, ū, P ). (28)

Note that we have relaxed the constraint for the causal knowledge of measurements and

channel states both at the encoder and decoder. The numerical comparisons of the LLB with the

proposed schemes will be presented in Section VII.
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VI. NO CSI AT THE ENCODER

In this section, we assume that the CSI is known only at the decoder. We derive the optimal

LT strategy under a strict delay constraint(d = 1), as well as the TLB on the achievable

MSE distortion. Additionally, for the multiple measurements-parallel channels scenario studied

in Section III-A, we show that if the CSI is available only at the receiver, any LT scheme that is

limited to a one-to-one linear mapping from the measurements to the channel input is suboptimal

in general. The optimal LT strategy is elusive and it will be anon-trivial function of the source

variances and the channel distribution.

A. Strict Delay Constraint

Under a strict delay constraint, the most recent measurement is transmitted at each TS. By

applying Lemma 1 to this scenario, we can similarly show thatthere is no loss of optimality

by considering time-invariant encoding functions, i.e.,fi(m) = f(m), ∀i. Hence, the encoding

function f(m) is a scalar and time-invariant. The decoding functiong(h,m) that minimizes the

MSE is the linear MMSE estimator [15], and is also a scalar andtime-invariant. Then, the MSE

distortion, D̄ = EM,H,S,Z [|S − Ŝ|2], and the average power,̄P = EM,S[|X|2], can be written

explicitly as:

D̄ =
J
∑

m=1

pM(m)

∫

R

σ2
m

|h|2f(m)2σ2
m + 1

pH(h)dh, (29)

P̄ =

J
∑

m=1

pM(m)f(m)2σ2
m. (30)

whereP (m) , f(m)2σ2
m. The optimal linear encoding function,f ∗(m), is found as the solution

to the convex optimization problem̄D∗ , min
f

D̄, subject to the average power constraintP̄ ≤ P .

From the KKT conditions [16], we have:

f ∗(m) =

√

√

√

√

[

Ψ−1( λ∗

σ2
m
)
]+

σ2
m

, (31)

whereΨ−1 : R → R is the inverse of the functionΨ : R → R, that is defined as,Ψ(P (m)) ,
∫

R

|h|2

(|h|2P (m)+1)2
pH(h)dh. The optimal Lagrange multiplierλ∗ is chosen such that̄P = P in (30).
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B. Multiple Measurements and Parallel Channels

Next we consider the multiple measurements-parallel channels scenario studied in Section III-A,

under the strict delay constraint and the assumption that the CSI is known only at the decoder,

andJ > 1. In such a scenario, the optimal LT scheme of [6], in which theordered measurements

are mapped one-to-one to ordered channel states, cannot be used directly. This is because, even

though the encoder knows theN measurements, it does not know any of the channel states, and

hence; cannot order them. For the special case whereN measurements are observed from a single

Gaussian source(J = 1), in [7] the authors show that the optimal performance is achieved by

transmitting one measurement over each channel. WhenJ = 1, sinceN measurements all have

the same variance, all orderings are equivalent, and the optimal LT performance is achieved

by an LT scheme that uses only a one-to-one mapping between measurements and channels.

However, this is not the case in general whenJ > 1. SinceN measurements follow a composite

Gaussian source model, the encoder can have measurements with different variances; and hence,

we can exploit the diversity of the fading channel by transmitting a single measurement over

multiple channels, instead of transmitting each measurement only once. Depending on the source

variances, the former may surpass the best LT performance achieved by using only a one-to-one

linear mapping. This is shown in the following lemma by considering a particular example.

Lemma 3. Consider the LT ofN measurements of a composite Gaussian source withJ > 1

components overN parallel AWGN fading channels. If the CSI is known only by thedecoder,

then the LT scheme that uses a one-to-one linear mapping between measurements and channels

is suboptimal in general.

Proof: The proof can be found in Appendix B.

C. The Theoretical Lower Bound (TLB)

Similarly to Section V-A, we derive the TLB on the achievableMSE distortion by using

Shannon’s source-channel separation theorem. If the CSI isavailable only at the decoder and

the average power constraint isP , then the ergodic capacity is given by:

C̄e , EH

[

1

2
log
(

1 + |h|2P
)

]

. (32)
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Fig. 4. Achievable MSE distortion with LTHM with respect to average power for different delay constraints in the discrete
fading channel model.

The distortion-rate function of a composite Gaussian source is defined as in Eqn. (23) of

Section V-A, which leads to the optimal rate allocated to sourcem, R∗
e(σm), as in Eqn. (24) and

the corresponding distortion,D∗
e(σm), as in Eqn. (25), respectively. The Lagrangian multiplier

β∗ for this case is chosen such thatEM [R∗
e(σm)] is equal to the ergodic capacitȳCe in (32).

Then the TLB on the achievable MSE distortion by any strategywhen the encoder does not

have the CSI is given bȳDe = EM [D∗
e(σm)].

VII. N UMERICAL RESULTS AND OBSERVATIONS

Here we provide numerical results to compare the performances of LTHM and LTSM with the

lower bounds, and to analyze the impact of the delay and powerconstraints on the performance.

In our simulations, we considerJ = 4 Gaussian parameters with variances{10, 5, 1, 0.5}, which

are requested with probabilities{0.1, 0.3, 0.4, 0.2}, respectively. For a continuous fading channel,

we consider Rayleigh distribution with a scale parameterω = 3, and for a discrete fading

channel, we consider four states{
√
10,
√
5, 1,
√
0.5}, which are observed with probabilities

{0.1, 0.3, 0.4, 0.2}, respectively.

We illustrate the achievable MSE distortion versus averagepower under various delay con-

straints with LTHM in the discrete channel setting in Fig. 4.We observe that the MSE distortion

diminishes as the delay constraint is relaxed. This is because a relaxed delay constraint provides a
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larger number of measurements in the TB; and hence, more flexibility for the sensor in selecting

the appropriate measurement for each TS. We note that this statement does not hold whenJ = 1,

in which case increasing the block length does not provide any improvement [6]. As it can be seen

in Fig. 4, the MSE distortion converges to a fixed value as the average power value increases.

This is due to the additional distortion brought in by the untransmitted measurements in the

TB. The average number of untransmitted measurements and their effect on the MSE distortion

decreases as the delay constraint is relaxed, since having alarger number of measurements in the

TB increases the probability of finding a measurement that satisfies the hard matching condition.

In particular, when the delay constraint is removed, as seenin Fig. 4, LTHM achieves the TLB,

and becomes the optimal LT scheme, since the source-channelmatching conditions in Theorem 1

are satisfied for the setup considered here.

In Fig. 5, we illustrate the achievable MSE distortion with LTSM with respect to average

power under various delay constraints in the continuous channel model. Similarly to LTHM, the

MSE distortion diminishes as the delay constraint increases. On the other hand, as opposed to

LTHM, the MSE distortion achieved by LTSM decreases monotonically with the average power

as illustrated in Fig. 5. This is because the performance of LTSM does not suffer from a fixed

distortion component due to the untransmitted measurements. In addition, LTSM also approaches

the TLB as the delay constraint is relaxed. Although we do notexpect the LTSM to meet the

TLB in this setting since the matching conditions of Theorem1 do not hold, we observe in

Fig. 5 that it is very close to the TLB.

Next, we compare the performances of LTHM and LTSM with each other and with the TLB

and the LLB. Fig. 6 shows the achievable MSE distortion of LTHM, LTSM, the LLB and the

TLB with respect to delay constraint in the continuous fading channel model for an average

power constraintP̄ = 10 dB. As seen in the figure, the performance of the TLB is constant

since it is derived by completely removing the delay and complexity constraints. On the other

hand, the LLB decays slowly as the delay constraint increases. As expected, the MSE distortion

of LTHM and LTSM decrease as the delay constraint increases.We can see that LTSM meets the

LLB under the strict delay constraint. As expected, LTSM always outperforms LTHM, while the

gap between the two schemes decreases with the increasing delay constraint. The gap between

the TLB and two schemes also decreases with the increasing delay constraint even though we

do not expect either of the schemes converge to the TLB in thissetting since the matching
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Fig. 5. Achievable MSE distortion with LTSM with respect to average power for various delay constraints in the continuous
fading channel model.
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Fig. 6. MSE distortion versus delay constraint,d, in the continuous fading channel model for an average powerconstraint
P̄ = 10 dB.

conditions of Theorem 1 do not hold.

Finally, in Fig. 7, we illustrate the achievable MSE distortion of LT and the TLB with respect

to average power in the discrete channel model for the scenarios in which the CSI is known

only by the decoder, and by both the encoder and decoder. The MSE distortion of LT under

strict delay constraint ofd = 1 for both scenarios diminishes as the average power increases.

However, there is a constant gap between the optimal performances achieved with and without
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Fig. 7. The achievable MSE distortion of LT and the TLB with respect to average power in the discrete fading channel model
with and without encoder CSI.

encoder CSI at higher̄P values. On the other hand, the TLB for both scenarios meet as the

average power increases since the gain from the optimal power allocation over different channel

states disappears in the high power regime.

VIII. C ONCLUSIONS

We have studied the delay-constrained LT of composite Gaussian measurements from a sensor

to a CC over an AWGN fading channel. We have considered a wireless sensor that can collect

measurements fromJ distinct Gaussian parameters. The CC asks for a measurementof a

particular parameter from the sensor with a certain probability at each TS. In this framework,

we have presented the optimal LT strategy under a strict delay constraint, and have given a

graphical interpretation for the optimal power allocationscheme and the corresponding distortion

value. Then, we have proposed two LT strategies, called LTHMand LTSM, under general delay

constraints, and have provided numerical results to investigate the impact of the delay and average

power constraints on the performance. We have seen that, if the number of parameters,J , is more

than one, the MSE distortion decreases as the delay constraint is relaxed. We have also derived

lower bounds on the achievable MSE distortion for generic and LT strategies. While LTSM

outperforms LTHM at all delay constraints, we have shown analytically that both strategies

meet the lower bound when the delay constraint is removed, under certain matching conditions

between the parameter and the channel statistics.
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We have also studied the scenario in which the CSI is known only by the decoder. We have

presented the optimal LT strategy under a strict delay constraint. We have derived a TLB on

the achievable MSE distortion by relaxing the delay constraint and the linearity requirement.

We have also considered the multiple measurements-parallel channels scenario under a strict

delay constraint, and have shown that the optimal LT performance cannot be achieved by using

only a one-to-one linear mapping between measurements and channels, as opposed to the results

derived in [6] and [7]. The design of the optimal LT strategy for the multiple measurements-

parallel channels scenario for arbitrary delay constraints is elusive, and is left as future work.

APPENDIX A

PROOF OFTHEOREM 1

Given a delay constraintd = 2d̄ − 1, let the r.v.Z̄m, m ∈ [1:J ], denote the total number of

measurements of parameterm amongd̄ measurements loaded into the TB.Z̄m follows a Binomial

distribution with parameters̄d and pM(m). Hence, the probability of havinḡk measurements

of parameterm in the TB is given bypZ̄m
(k̄) = Pr{Z̄m = k̄} =

(

d̄

k̄

)

pM(m)k̄(1 − pM(m))d̄−k̄.

Similarly, considering the discrete fading model presented in Section V-A1, let the r.v.̂Zm, m ∈
[1:J ], denote the total number of channels with stateĥm, afterd̄ channel accesses.Ẑm also follows

a Binomial distribution with parameters̄d and pH(ĥm). Hence, the probability of observinĝk

channels with statêhm is given bypẐm
(k̂) = Pr{Ẑm = k̂} =

(

d̄

k̂

)

pH(ĥm)
k̂(1− pH(ĥm))

d̄−k̂.

Observe that after̄d channel accesses, the number of transmitted measurements selected from

the TB with LTHM is given by min{Z̄m, Ẑm}. On the other hand, the number of untransmitted

measurements remained in the TB is given by[Z̄m − Ẑm]
+. Then, the average power,̄P∞, and

the achievable MSE distortion,̄D∞, of LTHM when d̄→∞ are given by:

P̄∞ , lim
d̄→∞

1

d̄

J
∑

m=1

EZ̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

P (ĥm, m), (33)

D̄∞ , lim
d̄→∞

1

d̄

J
∑

m=1

{

EZ̄m,Ẑm

[

[Z̄m − Ẑm]
+
]

σ2
m + EZ̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

D(ĥm, m)
}

, (34)

where the allocated powerP (ĥm, m) and the distortionD(ĥm, m) are chosen as in Eqn. (19)

and Eqn. (20), respectively.
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In the rest of the proof, we usep(m) to refer to the condition of Theorem 1, i.e.,pM(m) =

pH(ĥm) = p(m), ∀m. Under this condition, the expected value and variance ofZ̄m andẐm can

be found as,E[Z̄m] = E[Ẑm] = d̄ · p(m) andVar[Z̄m] = Var[Ẑm] = σ2
Zm

= d̄ · p(m) · (1−p(m)),

respectively. Letǫ > 0 be any positive number. Then, the Chebyshev’s inequality leads to the

following inequalities,Pr{|Z̄m−d̄·p(m)| ≥ ǫ·σZm
} ≤ 1

ǫ2
andPr{|Ẑm−d̄·p(m)| ≥ ǫ·σZm

} ≤ 1
ǫ2

.

We define the intervalI on the real line as,I = [d̄ · p(m)− ǫ · σZm
, d̄ · p(m) + ǫ · σZm

].

Next, we compute (33) and (34) by finding upper and lower bounds on the expectation terms

under the matching condition. Observe that,

lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

≤ lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

Z̄m

]

= p(m). (35)

We can also lower bound this term as,

lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

, (36)

≥ lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[

min
{

Z̄m, Ẑm

} ∣

∣

∣Z̄m∈I,

Ẑm∈I

]

Pr{Z̄m∈I,Ẑm∈I}, (37)

≥ lim
d̄→∞

1

d̄

(

d̄p(m)− ǫσZm

)

(

1− 1

ǫ2

)2

, (38)

= lim
d̄→∞

(

p(m)−
√

p(m)(1− p(m))

d̄
1
6

)

(

1− 1

d̄
2
3

)2

= p(m), (39)

where (37) follows from the law of total expectation; (38) follows from the definition ofI, and

the Chebyshev’s inequality; and (39) is obtained by settingǫ = d̄
1
3 . Since the upper and lower

bounds in (35) and (39) are equal, we have shown that (35) converges top(m) as d̄→∞.

Similarly,
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lim
d̄→∞

1

d̄
EZ̄m,Ẑm

[

[Z̄m − Ẑm]
+
]

, (40)

= lim
d̄→∞

1

d̄

{

EZ̄m,Ẑm

[

[Z̄m − Ẑm]
+
∣

∣

∣Z̄m∈I,

Ẑm∈I

]

Pr{Z̄m∈I,Ẑm∈I}

+EZ̄m,Ẑm

[

[Z̄m − Ẑm]
+
∣

∣

∣Z̄m 6∈I
or

Ẑm 6∈I

]

Pr{Z̄m 6∈I or Ẑm 6∈I}

}

, (41)

≤ lim
d̄→∞

1

d̄

{

2ǫσZm
+

(

2

ǫ2
+

1

ǫ4

)

d̄

}

, (42)

= lim
d̄→∞

{(

2
√

p(m)(1− p(m))

d̄
1
6

)

+

(

2

d̄
2
3

+
1

d̄
4
3

)

}

= 0, (43)

where (41) follows from the law of total expectation; (42) follows from the from the definition

of I, and the Chebyshev’s inequality; and (43) is obtained by setting ǫ = d̄
1
3 . This proves

that (40) indeed converges to zero asd̄ → ∞. This also implies that as̄d → ∞, all selected

measurements by the LTSM strategy satisfy the hard matchingcondition. Hence, LTSM and

LTHM are equivalent in the asymptotic of̄d→∞ under the matching condition of Theorem 1.

Finally, we can rewriteP̄∞ and D̄∞ for both LTHM and LTSM as:

P̄∞ =
J
∑

m=1

[

µ∗q − 1

|ĥm|2
]+

p(m), (44)

D̄∞ =

J
∑

m=1

[

σ2
m

|ĥm|2
[

µ∗q − 1

|ĥm|2

]+

+ 1

]

p(m), (45)

where we useq , σm

|ĥm|
, ∀m, from Theorem 1, andµ∗ is chosen to satisfȳP∞ = P .

Next, we show that(P̄∞, D̄∞) pair above, obtained under the conditions of Theorem 1, achieve

the TLB pair(P̄e, D̄e), derived in Section V-A. First, under the matching condition, observe that

µ∗q = α∗, and thus,̄P∞ = P̄e = P . Moreover, under the matching condition,R̄e = C̄e in TLB im-

pliesα∗ = q2

β∗
. Combining the two equalities, we obtainµ∗ = q

β∗
. Substituting this into Eqn. (23)

together with the matching condition, we can show thatD̄e =
J
∑

m=1

min
(

q

µ∗
, σ2

m

)

p(m) = D̄∞,

which concludes the proof of Theorem 1.
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APPENDIX B

PROOF OFLEMMA 3

In order to prove Lemma 3, we construct a counter-example. Weargue that the achievable MSE

distortion of a particular LT scheme that is not constrainedto use only a one-to-one mapping

between measurements and channels can be smaller than the minimum achievable MSE distortion

of all possible LT schemes that use only a one-to-one mapping, i.e., a diagonal encoding matrix.

Suppose we haveJ = 2 zero-mean Gaussian parameters with variancesσ2
1 andσ2

2 , which are

requested with probabilitiespM(1) = p1 and pM(2) = p2 = (1 − p1), respectively, and assume

an extreme case, whereσ2
1 > 0 and σ2

2 = 0. Suppose we have a discrete fading channel with

two states, which are observed with probabilitiespH1(ĥ1) = p1 andpH2(ĥ2) = p2, respectively,

and assume that the channel states areĥ1 > 0 and ĥ2 = 0. We aim at linearly transmitting

N = 2 measurements of parametersm1 ∈ [1:2] and m2 ∈ [1:2], over N = 2 channel states

h1 ∈ {ĥ1, ĥ2} andh2 ∈ {ĥ1, ĥ2}.
We first characterize the minimum achievable MSE distortion, D̄1, for all possible LT schemes

with a diagonal encoding matrix. According to Eqn. (10), theencoding function needs to satisfy

the average power constraintP , i.e., 1
2
[P11p

2
1 + P12p1p2 + P21p1p2 + P22p

2
2] = P , wherePm1m2

is the allocated power for the pair of measurements of parametersm1 andm2, respectively. We

haveP22 = 0, sinceσ2
2 = 0. Then, by using Eqn. (12), the MSE distortion̄D1 can be written

explicitly as follows:

D̄1 =
1

2

{

p21

(

EH1

[

σ2
1

|h1|2 P11

2
+ 1

]

+ EH2

[

σ2
1

|h2|2 P11

2
+ 1

])

+p1p2

(

EH1

[

σ2
1

|h1|2P12 + 1

]

+ EH2

[

σ2
1

|h2|2P21 + 1

])}

, (46)

= p21

(

p1
σ2
1

|ĥ1|2
P11
2

+1
+ p2σ

2
1

)

+ p1p2
2

(

p1
σ2
1

|ĥ1|2P12+1
+ p1

σ2
1

|ĥ1|2P21+1
+ 2p2σ

2
1

)

, (47)

where the minimum distortion is achieved by dividing the power, i.e.,P11, equally between

measurements if two measurements are observed from parameter 1, i.e., m1 = m2 = 1. If one

measurement is requested from each parameter, i.e.,(m1 = 1, m2 = 2) or (m1 = 2, m2 = 1),

then the minimum distortion is achieved by allocating the entire power, i.e.,P12 or P21, to the

measurement of parameter1, sinceσ2
2 = 0.

Assuming the average power constraintP is satisfied as in the above scheme, we next consider
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a particular LT scheme. This scheme uses a diagonal encodingmatrix if both measurements

are observed from the same parameter; otherwise, it uses a non-diagonal matrix, where the

measurement of parameter1 is transmitted over two channels. Then, from Eqn. (12), the MSE

distortionD̄2 can be written as follows:

D̄2 =
1
2

{

p21

(

EH1

[

σ2
1

|h1|2
P11
2

+1

]

+ EH2

[

σ2
1

|h2|2
P11
2

+1

])

+ p1p2

(

EH1,H2

[

σ2
1

(|h1|2+|h2|2)
P12
2

+1

]

+EH1,H2

[

σ2
1

(|h1|2+|h2|2)
P21
2

+1

])}

, (48)

= p21

(

p1
σ2
1

|ĥ1|2
P11
2

+1
+ p2σ

2
1

)

+ p1p2
2

(

2p22σ
2
1 + p21

σ2
1

|ĥ1|2P12+1

+p21
σ2
1

|ĥ1|2P21+1
+ 2p1p2

σ2
1

|ĥ1|2
P12
2

+1
+ 2p1p2

σ2
1

|ĥ1|2
P21
2

+1

)

, (49)

where the minimum distortion can be achieved by dividing thepower, i.e.,P11, equally between

measurements if two measurements are observed from parameter 1, i.e.,m1 = m2 = 1, similarly

to the above scheme. If one measurement is requested from each parameter, i.e.,(m1 = 1, m2 =

2) or (m1 = 2, m2 = 1), then this particular scheme divides the power, i.e.,P12 or P21, equally

between two channelsh1 and h2 for the transmission of the measurement of parameter1, as

seen in the term multiplied byp1p2 in (48). If two measurements are observed from parameter

2, i.e.,m1 = m2 = 2, then we do not allocate power, i.e.,P22 = 0, sinceσ2
2 = 0.

We can easily see that̄D2 < D̄1 for all P11, P12 and P21. This implies that the minimum

achievable MSE distortion of LT schemes constrained to one-to-one mapping can be improved

by utilizing non-diagonal encoding matrices, which concludes the proof of Lemma 3.
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