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Sample Approximation-Based Deflation
Approaches for Chance SINR Constrained

Joint Power and Admission Control
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Abstract

Consider the joint power and admission control (JPAC) mwobior a multi-user single-input single-
output (SISO) interference channel. Most existing worksJB¥C assume the perfect instantaneous
channel state information (CSI). In this paper, we consilerJPAC problem with the imperfect CSl,
that is, we assume that only the channel distribution indrom (CDI) is available. We formulate
the JPAC problem into a chance (probabilistic) constraipemjram, where each link’s SINR outage
probability is enforced to be less than or equal to a spedifieniance. To circumvent the computational
difficulty of the chance SINR constraints, we propose to heesample (scenario) approximation scheme
to convert them into finitely many simple linear constrairarthermore, we reformulate the sample
approximation of the chance SINR constrained JPAC problem@mposite group sparse minimization
problem and then approximate it by a second-order cone anpgSOCP). The solution of the SOCP
approximation can be used to check the simultaneous swtyilitst of all links in the network and to

guide an iterative link removal procedure (the deflationrapph). We exploit the special structure of
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the SOCP approximation and custom-design an efficient ithgorfor solving it. Finally, we illustrate
the effectiveness and efficiency of the proposed sampleoappation-based deflation approaches by

simulations.

Index Terms

Chance SINR constraint, group sparse, power and admissiuinot, sample approximation.

I. INTRODUCTION

Joint power and admission control (JPAC) has been recognéze an effective tool for
interference management in cellular, ad hoc, and cognitivéerlay wireless networks for two
decades. Generally speaking, there are two kinds of JPA€isoio support a maximum number
of links at their specified signal to interference plus noigago (SINR) targets while using
minimum total transmission power when all links in the netkvaannot be simultaneously
supported[1]-+[22], and the other is to determine whetheew arrival link can be admitted to
the network while maintaining the SINR of all already adettlinks above their required SINR
levels [23]-[25]. This paper focuses on the former one, whiot only determines the set of
links that must be turned off and rescheduled (possibly glarthogonal resource dimensions
such as time, space, or frequency slots), but also allevidie difficulties of the convergence
of stand-alone power control algorithms. For example, gdtending issue associated with the
Foschini-Miljanic algorithm[[3] is that, it does not conger when the preselected SINR levels
are infeasible. In this case, a JPAC approach must be adotpteetermine which links to be
removed.

The JPAC problem can be solved to global optimality by chegkihe simultaneous sup-
portability of every subset of links. However, the compiataal complexity of this enumeration
approach grows exponentially with the total number of linkseoretically, the problem is known
to be NP-hard to solve (to global optimality) and to approxien(to constant ratio of global
optimality) [1], [4], [8], so various heuristic algorithnigve been proposed [1]=]22]. In particular,
the reference J1] proposed a convex approximation-baggatitiim, called linear programming
deflation (LPD) algorithm. Instead of solving the originaPhhard problem directly, the LPD
algorithm solves an appropriate LP approximation of thginél problem at each iteration and

use its solution to guide the removal of interfering linkfhieTremoval procedure is terminated
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if all the remaining links in the network are simultaneouslypportable. The referencgl [8]
developed another LP approximation-based new linear progning deflation (NLPD) algorithm
for the JPAC problem. In_[8], the JPAC problem is first equevdly reformulated as a sparse
{y-minimization problem and then it§-convex approximation is used to derive a LP, which is
different from the one in[]1]. Again, the solution to the dexd LP can guide an iterative link
removal procedure, and the removal procedure is terminiétalll the remaining links in the
network are simultaneously supportable. Similar ideasevedso used in [13]/[16][[20] to solve
the joint beamforming and admission control problem for ¢e8ular downlink network.

Most of the aforementioned works on the joint power/beamfog and admission control
problem assume the perfect instantaneous channel statenation (CSI) except [1]/[4],[14],
[22]. In [1]], the authors also considered the worst-casausbldPAC problem with bounded
channel estimation errors. The key iin [1] is that the LP apipnation with bounded uncertainty
can be equivalently rewritten as a second-order cone pro@®CP). The overall approximation
algorithm remains similar to LPD for the case of the perfe&l,Cexcept that the SOCP
formulation is used to carry out power control and its solutis used to check whether links
are simultaneously supportable in the worst casel ln [4], [[22], the authors employed the
Foschini-Miljanic algorithm([3] or its variants to updatestpower and then use the updated power
to guide the removals of links without assuming the perfeSt @s long as the SINR can be
measured at the receiver and feedbacked to the corresgpotndivsmiter). The Foschini-Miljanic
algorithm [3] can leverage the perfect CSI assumption whadating the power, but it does not
take admission control into consideration compared to ftiseiglined convex approximation-
based power control algorithms in! [1],][8], [13],_[16], J20This makes the JPAC algorithms
where the power is updated by the Foschini-Miljanic aldgomitsuffer a significant performance
loss in the number of supported links compared to those wtierepower is updated by the
disciplined convex approximation-based power controbatgms.

The assumption of the perfect CSI generally does not hokl due to CSI estimation errors
or limited CSI feedback in practice [26], [27]. Even thoudie tinstantaneous CSI can be
perfectly available, dynamic JPAC in accordance with itaateons would lead to excessively
high computational and signaling costs. In this paper, wesicter the chance (probabilistic
or outage-based) SINR constrained JPAC problem, where ledch SINR outage probability
must be kept below a given tolerance. Different from mostha aforementioned works on
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JPAC where the perfect CSI is assumed, our new formulatidy r@guires the availability of
the channel distribution information (CDI). Due to the faécat the CDI can remain unchanged
over a relatively long period of time, JPAC based on the CDi tzerefore be performed on
a relatively slow timescale (compared to fast fluctuatiohgnstantaneous channel conditions),
hence the overall computational cost and signaling overlcaa be significantly reduced, which
is particularly appealing from the network operator’s pexgive. Moreover, the chance SINR
constrained JPAC formulation can maximize the numbeloafy-term supported links by us-
ing minimum total transmission power, and at the same timgrantee thashort-termSINR
requirements are respected with high probability, whicpethels on the user-specified outage
tolerance.

It is well-known that characterizing Quality-of-Servid®@dS) constraints in terms of an outage
probability can significantly improve practicality of thesource allocation algorithms including
power control and beamforming design; seel [27]-[34] anéregfces therein. Therefore, the
chance constrained programming methodology has been ywajgblied to wireless system
designs in recent years. However, as far as we know, suchooha@tigy has not been used in the
context of JPAC. This is largely due to the computationallehge of solving the chance SINR
constrained JPAC problem. First, chance SINR constraiotsal have closed-form expressions
and are nonconvex in general. Second, even when the CSI fiecidgravailable, the JPAC
problem is NP-hard to solve and to approximate [d1], [4], [8].

This is the first work that formulates the chance SINR comstichJPAC problem and proposes
efficient deflation approaches for solving it. The main ciatiions of this paper are twofold.

« Novel Problem Formulation and Reformulatidn.this paper, we assume that only the CDI

is available, which is different from most of the existingnk® on JPAC where the perfect
CSl is assumed. We propose the first chance SINR constrafP®&@ formulation, where
each link’'s SINR outage probability is required to be lesantlor equal to a preselected
tolerance. Furthermore, we approximate the chance SINBti@nt via sampling [35])[36]
and reformulate the sample approximation of the chance Sibligtrained JPAC problem
as a composite group sparse minimization problem.

« Efficient Deflation Approache®Ve propose an efficient convex SOCP approximation (dif-

ferent from that in[[l]) of the group sparse minimizationarefulation. The solution of

the SOCP approximation can be used to check the simultarseguoortability of all links
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in the network and to guide an iterative link removal proged(the deflation approach).
Instead of relying on standard SOCP solvers to solve theveler5OCP, we exploit its

special structure and custom-design an efficient algoritbmsolving it. Note that the

standard SOCP solvers cannot efficiently solve the SOCRoappation here because both
the number of constraints and unknown variables in the SO@#oaimation increase
linearly with the number of samples, which is generally éaig order to guarantee the
approximation performance.

Notation We denote the index sdtl,2,..., K} by K. Lowercase boldface and uppercase
boldface are used for vectors and matrices, respectively.aFgiven vectorx, the notation
max{x}, min {x}, (x)x, and||x||o stand for its maximum entry, its minimum entry, kgh entry,
and the indicator function of (i.e., ||x||o = 0 if x = 0 and||x||o = 1 otherwise), respectively. The
expressiommax {x;, Xs} (min {x;, X2 }) represents the component-wise maximum (minimum) of
two vectorsx; andx,. For any subsef C K, A; stands for the matrix formed by the rows
of A indexed byZ. We use(A;, A,) to denote the matrix formed by stacking matrices and
A, by column and uséA;; A,) to denote the matrix formed by stacking, and A, by row.
Similar notation applies to stacking of vectors and scalkisally, we usee to represent the
vector with all components being onkthe identity matrix, ands, the matrix with all entries

being zero except its-th column entries being one, respectively.

Il. REVIEW OF THENLPD ALGORITHM

The algorithms developed for the chance SINR constrain&d Jitoblem in this paper are
based on the NLPD algorithnm [[8] for the JPAC problem that amsithe perfect CSI. To
streamline the presentation, we briefly review the NLPD aigm in this section. The basic idea
of the NLPD algorithm is to update the power and check whetlidinks can be simultaneously
supported or not. If the answer is yes, then terminate theritthgn; else drop one link from the
network and update the power again. The above process iategpentil all the remaining links
can be simultaneously supported.

Specifically, consider &-link (a link corresponds to a transmitter-receiver paingte-input
single-output interference channel with channel ggins> 0 (from transmitter;j to receiverk),
noise powery, > 0, SINR targety, > 0, and power budget, > 0 for k, j € K. Denote the power

allocation vector by = (p1, po, . . ., px )’ and the power budget vector py= (py, ps, ..., px)?.
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Treating interference as noise, we can write the SINR atthie receiver as

9k, kPk
Mk + Z 9k.jPj
J#k
Correspondingly, we introduce an equivalent normalizeghalel. In particular, we use

SINR,(p) = , VkeKk. 1)

q= (CJ1,C_I2,--~>CJK)T (2)

with ¢, = px/py to denote the normalized power allocation vector, andause(cy, ca, . . . ,cK)T
with ¢, = (vnr)/(9xxDr) > 0 to denote the normalized noise vector. We denote the naredhli
channel matrix byA € RE*X with its (k, j)-th entry

1, if k=j;
Mg = _kIkiPi i y
GkkPr

With these notation, it is simple to check that SINR) > -, if and only if (Aq —c¢), > 0.
Based on the Balancing Lemmia [5], we reformulate the JPAGIpno as a sparse optimization

problem

min Y ||(c — Aq)illo +ap’q
1 ek ®3)

st. 0<g<e.
In the abovey is a parameter and is the all-one vector of lengtlk’. For details on the choice
of the parametety, we refer the readers tol[8, Section 1lI-B]. Since problémig3NP-hard [[1],
we further consider itg,-convex approximation (which is equivalent to an LP; s€¢ [8]

min Z |(c — Aq)i| + ap’q
T kex 4)

st. 0<g<e
By solving (4), we know whether all links in the network can sienultaneously supported or
not. If not, we drop one link (mathematically, delete theresponding row and column ok
and the corresponding entry pfandc) from the network according to some removal strategy,

and solve a reduced problem (4) until all the remaining liakes supported.
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I1l. PROBLEM FORMULATION

Consider the chance SINR constrained JPAC problem, wherettannel gaingg; ;} in the
SINR expressiori (1) are random variables. In this paper,ssarae the distribution ofg; ;} is
known. However, we do not assume any specific channel disiily, which is different from
most of the existing works on outage probability constrdinesource allocation for wireless
systems[[29],[[30],[32]. We also assume that all coordoratiand computations are carried out
by a central controller who knows the CDI of all links. Singg. ;} in (@) are random variables,
we need to redefine the concept of a supported link. We cdl Ains supported if its outage

probability is below a specified toleraneec (0,1), i.e.,

P(SINR,(p) = ) = 1 —¢, ®)

where the probability is taken with respect to the randoniaées{g; ;} .
The chance SINR constrained JPAC problem aims to maximaatimber of supported links

while using minimum total transmission power. Mathemadlycéhe problem can be formulated

as
max |S| —ae’p
p,S
st. P(SINRy(p) > ) >1—¢ keSCK, (6)
0<p=p

In the above,S denotes the set of supported links aj&| denotes its cardinality, i.e., the
number of supported links; the parametebalances the relative importance of the two goals,
i.e., maximizing the number of supported links (the firsiié$| in the objective) and minimizing
the total transmission power (the second terhp in the objective).

To gain further understanding of formulatidd (6), we congpiwith the following two-stage

formulation. Specifically, the first stage maximizes the bemof admitted links:

max |S|

p,S

st. P(SINRy(p)>:) >1—¢ keSCK, (7)
0<p<p

We useS, to denote the optimal solution for problei (7) and calthié maximum admissible

set Notice that the solution fof{7) might not be unique. Theaset stage minimizes the total
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transmission power required to support the admitted links:

min e’p
p
st. P(SINRy(p) > ) >1—¢ ke Sy, (8)
0<p<p

Due to the choice o8, power control problem{8) is feasible.

Although the above two-stage formulation (i.€], (7) d0d {8)ntuitive and easy to understand,
the formulation[(B) is better in terms of modeling the JPAGhtem; see the following Theorem
. TheorenIl can be shown by a similar argument as used in @yrém 1] and a detailed
proof is provided in Section | of [37].

Theorem 1:Suppose the parametarsatisfies
0<a<a :=1/e"p. (9)

Then the optimal value of problerq](7) i® if and only if the optimal value of probleni(6)
lies in (M — 1, M). Moreover, supposéS*, p*) is the solution of problem[{6). Ther&* is

a maximum admissible set ard p* is the minimum total transmission power to support any
maximum admissible set.

Theorenm[L states that the single-stage formulation (6) with (0, o) is equivalent to the
two-stage formulation (7) and (8) in terms of finding the nmaxim admissible set. Moreover, it
is capable of picking the maximum admissible set with mimmtotal transmission power from
potentially multiple maximum admissible sets.

In the rest of this paper, we develop sample approximatesetl deflation approaches for
(approximately) solving the chance SINR constrained JPA®Ipm [6).

V. SAMPLE APPROXIMATION AND REFORMULATION

In general, the chance SINR constrained optimization grob[6) is difficult to solve exactly,
since it is difficult to obtain the closed-form expressiorf@)t In this section, we first approximate
the computationally intractable chance SINR constraiatsampling, and then reformulate the
sample approximation of problernl (6) as a composite groupsepaptimization problem. Three
distinctive advantages of the sample approximation schantige context of approximating the
chance SINR constrairt](5) are as follows. First, it worksgeneral channel distribution models

and thus is distributionally robust. Second, the sample@apmation technique significantly
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simplifies problem[(6) by replacing the difficult chance SINBnstraint with finitely many
simple linear constraints (depending on the sample siza$t but not the least, solving the
sample approximation problem returns a solution to theimasigchance constrained problem
with guaranteed performance [35], [36].

It is worthwhile remarking that safe tractable approximati[38], [39] is an alternative
approach to the sample approximation approach to dealitigthve chance constraint. The safe
tractable approximation approach builds an analytic uppend of the probability for the chance
constraint to be violated. The advantage of this line of apphh over the sample approximation
approach is that solving the deterministic analytic uppauria will return a feasible solution
to the chance constraint for sure. However, to build suchraatyéic upper bound, some strict
conditions on structures of the function composed in thexcbaonstraint and on the distribution

of the random variables are required.

A. Sample Approximation

We handle the chance SINR constraint via sample approema[B5], [40]. Supposég,’;j}:{:1
are N independent samples drawn according to the distributidyof} by the central controller,

we use
Ik 1Pk

M+ Y grips
ik
to approximate the chance SINR constralft (5). Since thepkmmare random variables, the

SINR}(p) := >y, neN:={1,2,...,N} (10)

power allocation vectop satisfying the sampled SINR constrairits|(10) is also a randariable.
Intuitively, if the sample sizéV is sufficiently large, then the power allocation vegtosatisfying
(@30) will satisfy the chance SINR constraifil (5) with higropability.

The above intuition has been rigorously shownlin [36, Theoté and [28, Theorem 1]. It is

shown that, if the sample siz¥ satisfies

N > N* = F (K—1+1n%+\/2(K—1)1n%+1n2%ﬂ (11)
€

for any o € (0,1), then any solution to the linear system

SINR!(p) >, k€K, ne N (12)
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will satisfy the chance SINR constrairitl (5) for &ll € K with probability at leastl — ¢. In
particular, if 9 is chosen to be a very small value, any solution[fd (12) with@dt surely be
feasible for the chance SINR constrairt$ (5) for fale K. Note that the number of samples
needed will not increase significantly @aslecreases, sindg* has only a logarithmic dependence
on 1/4. Although the dependence @f* on e is N* = O(1/e), really small values ot are of
no interest in the scenario considered in this paper.

The linear systeni (12) might have multiple solutions. Thestiiateresting solution is the one

that minimizes the total transmission power, i.e., the thmfuto the following problem

min e’p
p
st. SINR(p) >, k€K, neEN, (13)
0<p<p

Supposep is the solution to probleni(13). Then, for eakhe K, there must exist an index
ny € N such that
SINR™ (p) = . (14)

For simplicity, we will refer linkk to be supported if all constraints ih_{10) are satisfied in the

sequel.

B. Sampled Channel Normalization

To facilitate the reformulation of the sample approximatid problem[(6) and the development

of efficient algorithms, we normalize the sampled channehp&ters. To this end, we use

T
S (5L U I
9k kPk i 1Pk 9., 1Pk
to denote the normalized noise vector of lihkDefine
1, if &=y,
az .= n . )
5J _rykgkvj_pj7 |f k #97
g 1Pk

n __ n n n IxK
ap = (ap, a3, ... ap ) €eRN neN, kek,

and

A, = (ai;az;...;ag) e RV*E L e K.
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Notice that the entries of thieth column ofA,, are one, and all the other entries are nonpositive.
This special structure oA, (k € K) will play an important role in the following algorithm

design. Furthermore, we let
c=(ci;Co...;cx) ERVEland A = (A Ay .. Ag) € RVEXE,

With the above notation andl(2), we can see that SI(YRR > ;. for all n € A if and only if
Aq > c;. Consequently, the sample approximation of problem (6) @eduivalently rewritten
as

max |S| —ap’q
q,S
st. Aygq—cy >0, ke SCK, (15)

0<qg<e

C. Composite Group Sparse Minimization Reformulation
By the definition of||-||o, the sampled JPAC problein (15) can be reformulated as traioll)
composite group sparse optimization problem

min Z | max {c;, — Arq, 0} |lo + ap’q
9 kex (16)

st. 0<q<e.

Problem [(I6) has the following property stated in Proposifi, which is mainly due to the
special structure ofA;. The proof of Propositiofil1 can be found in Appentdix A.

Proposition 1: Suppose thaf* is the solution to probleni_(16) and linkis supported at the
pointq* (i.e., A.q* > c¢;). Then there must exist an index € A such that(c; — Akq*)nk =0.

Propositiori 1L implies that problerh {16) can be viewed as ant(ivial) extension of problem
@). In fact, we know from Propositidd 1 that whéh = 1, the solution of probleni(16) satisfies
c—Aq" >0 (i.e.,, (c — Aq*)r = 0 for supported links andc — Aq*), > 0 for unsupported
links), and problem[(16) reduces to probldm (3). Since mab[3) is NP-hard to solve to global
optimality and NP-hard to approximate to constant factoglobal optimality [1], [4], [8], it
follows that problem[(16) is also NP-hard to solve and apipnake.

A key difference between problenis {16) aht (3) lies inithes operator introduced in problem
(@8). In problem[(B), if linkk is supported, ther, — A,q* is a scalar and equals zero; while

in problem [(16), if link %k is supported, ther;, — A,.q* < 0 but not necessarily equal to zero.
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12

Therefore, to correctly formulate the JPAC problem, weaddtrce amax operation and put
max {c; — Axq, 0} in || - ||o instead ofc, — A,q; see problem[{16). Notice that in the sparse
formulation it is desirable that a link is supported if andyoif the correspondind,-quasi-norm

is zero. To further illustrate this, we give the followingaswple, wherek = N =2, and

1 —0.2 0.5
1 —0.5 0.5
A = (A17 A?) = , C=
—-0.3 1 0.5
—0.5 1 0.5

It can be checked that the only possible way to simultangosispport the two links{1,2}
is q* = e and max{c; — A1;q*,0} = max{cy, — A2q*,0} = 0 butc; — A;q* # 0 and
Co — qu* §£ 0.

V. EFFICIENT DEFLATION APPROACHES FOR THESAMPLED JPAC RROBLEM

In this section, we develop efficient convex approximati@sed deflation algorithms for
solving the sampled JPAC problefn {16). As can be seen, prolfl&) has a discontinuous
objective function due to the first term. However, it allows &n efficient convex approximation.
We first approximate problerh (I1L6) by a convex problem, whschgtually equivalent to an SOCP,
and then design efficient algorithms for solving the appration problem. The solution to the
approximation problem can be used to check the simultansopisortability of all links in the
network and to guide an iterative link removal procedure (eflation approach). We conclude
this section with two convex approximation-based deflat@gorithms for solving the sampled

joint control problem[(16).

A. Convex Approximation

Recall that problem[ (16) aims to find a feasilgjesuch that the vectox = (x1;x;...;Xx)
is as sparse as possible in the group sense, where- max {c; — Axq,0}. The nonsmooth
mixed (5/¢; norm, >, . [[xx|l,, is shown in [41] to be quite effective in characterizing and
inducing thegroup sparsityof the vectorx. To understand this, observe tha}, . [|xx||, . the/,
norm of the vector||x ||, ||xz|2 - - -, |xx||2)" , is @ good approximation of it§ norm, which
is equal to the’, norm of the vector(||x|lo, |[%2/lo, - - -, | xx]|lo)" . More discussions on using

the mixed/,/¢; norm to recover the group sparsity can be found in [41].
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Motivated by the above discussion and the NP-hardness dflgno(16), we consider the
convex approximation of problerh (16) as follows:

min  f(q) = »_|[max{c; — Axq, 0}, +op’q
4 kek (17)

st. 0<qg<e.

The convexity of the objective function of problem{17) tmiis directly from[42, Section 3.2.5].

Compared to probleni (16), the objective function of probl@m) is continuous iry, but still
nonsmooth. We give the subdifferential [43] of the functjeiax {c; — Axq, 0}||, in Proposition
[2, which is important in the following analysis and algonittdesign. The proof of Proposition
2 is provided in AppendiXB.

Proposition 2: Defineh(q) = || max {c; — Arq, 0} ||2. Suppose, —A,q < 0 andN,™ :=
{n|](cr — Axrq), = 0} # 0, then

Oh(@) = — > salap) [s,>0, ) s2<1

neNg neN;-
In particular, if Ni- = N, then 0h(q) = {—Afls|s>0,|s|l» <1}. Further, if NV}t =
{n|(cr — Axq)n > 0} # 0, then

Vhe(q) = - Zne/\/,j (cr — As@),, (a)” ~ —Al max{c; — A,q,0} (18)
»d | max {cx — Arq, 0} |2 [ max {cx — Azq, 0} |2

We now discuss the choice of the parametein (17). The parameted: in (I14) should be
chosen appropriately such that the following “Never-ORemoval” property is satisfied: the
solution of problem[(1]7) should simultaneously supportliaks at their desired SINR targets
with minimum total transmission power as long as all linkshe network are simultaneously
supportable. Otherwise, since the solution [ofl (17) will beedi to check the simultaneous
supportability of all links and to guide the links’ removadtl,may mislead us to remove the
links unnecessarily. Notice that problem}(17) with= 0 indeed can simultaneously support all
links as long as the links are simultaneously supportabiebtinecessarily with minimum total
transmission power, i.e., the solution of probléml (17) with- 0 might not solve[(13). Theorem
gives an interval of the parameterto guarantee the “Never-Over-Removal” property. The
proof of Theoreni 2 (see AppendiX C) is mainly based on ProjpogB.
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Theorem 2:Suppose there exists some vectpsuch thatd < q < e and Aq > c. Then

any solution of problem({17) with

min {c}
K max {p}
can simultaneously support all links at their desired SlidRyets with minimum total transmis-

O<a<ay:= (19)

sion power.

Combining [9) and[{19), we propose to choose the parameter(17) according to
a =min{ciaq, o}, (20)

wherecy, ¢, € (0, 1) are two constants.

Link Removal Strategyrhe solution of problem(17) can be used to guide the link neaho
process. In particular, by solving_(17) with given in [20), we know whether all links in the
network can be simultaneously supported by simply checKiitg solution q satisfiesAq > c.
Furthermore, if all links in the network cannot be simultangly supported, we need to remove
at least one link from the network. In particular, pickingetlworst sampled channel index
nr = argmax {cx — Axq}, we remove the link with the largest interference plus néageprint

k:argmax{zmzmqj+Z|ai§€|qk+czk} : (21)
#k ik

In the next subsection, we design efficient algorithms toesahe convex but nonsmooth

problem [(17).

B. Solution for Approximation Probleifi?)

By introducing auxiliary variables = (xi;Xs;...;xx) andt = (t1;ts;...;tx ), problem (1Y)

can be transformed into the following SOCP

min Z tr + aplq

Xt ek

st x| <tg, k€K,
c—Aq <x, (22)
0 <x,
0<q<e,

which can be solved by using the standard solver like CVX .[#wever, it is not an efficient

way of solving problem[(17) by solving its equivalent SOCRormulation [22), since both
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the number of constraints and the number of unknown vasableproblem [(2R) are of order
O(NK) while (I1) suggests that the sample si¥eis generally very large.

Next, we develop a custom-design algorithm for problem (yrjirst smoothing the problem
and then applying the efficient projected alternate BarBtawein (PABB) algorithm[[45],[[45]
to solve its smooth counterpart. More specifically, we sthgobblem [(1V) by

min fla,p) = 3/ Imax {ee — Axq, 032 + 22 + ap’q
4 kek (23)

st. 0<qg<e,

wherey > 0 is the smoothing parameter. By {18) in Proposifibn 2, theadbje functionf(q, 1)
of problem [28) is differentiable everywhere with respecttand its gradient is given by
< —Al'max {c;, — Ayq,0
Via,m =) i e {C = )
kek \/Hmax {ck — Agq, O}]|5 + 2

+ap.

It can be shown that, as the parametetends to zero,(q, ;) uniformly converges tof (q)
in (17) and the solution of the smoothing probleml(23) alsnveoges to the one of problem
(d7); see Section Il of [37]. Therefore, when the paramgtés very close to zero, the solution
of problem [ZB) will be very close to the one of probledm](17).

We apply the PABB algorithm [45], [46] to solve the smoothprgblem [238). Three distinctive
advantages of the PABB algorithm in the context of solvingabem [23) are as follows. First, the
box constraint is easy to project onto, and thus the PABBrdlgo can be easily implemented to
solve problem[(23). Second, the PABB algorithm requirey émé gradient information but not
the high-order derivative information, which makes it abie for solving large-scale optimization
problem [23B). Last but not least, the PABB algorithm enjoygide good numerical performance
due to the use of the BB stepsize [46]. When using the PABBrilgo to solve problem[(23),
we employ thecontinuationtechnique [[47], [[48]. That is, to obtain an approximate 8otu
of (I7), we solve[(Z3) with a series of gradually decreasiafyes foru, instead of using a
tiny fixed . The continuation technique can reasonably improve thepatational efficiency.
Solving problem[(1l7) by the PABB algorithm (combined witke temoothing and continuation
techniques) is much faster than solving its SOCP refornona22) by the standard SOCP
solver. Simulation results will be given later in Sectlond VI
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C. Convex Approximation-Based Deflation Algorithms

The basic idea of the proposed convex approximation-basiation algorithm for the sampled
JPAC problem[(1l6) is to solve the power control problém (17 aheck whether all links can
be supported or not; if not, remove a link from the networkd anlve a reduced probleri {17)
again until all the remaining links are supported.

As in [8], to accelerate the deflation procedure (avoid sg\tbo many optimization problems
in the form of [17)), we can derive an easy-to-check necgssandition for all links in the

network to be simultaneously supported. It is easy to vahft the condition
,u,{e — (,uzcmaX + eTc) >0 (24)

is necessary for all links to be simultaneously supporteder® i, = max{u,0}, p_ =
max {—mu,0}, p = ATe, andc™™ = (max {c;} ;max {co};...;max {ck}). If (B4) is violated,

we remove the linkk, according to

]{70 = argrglealé({zmkﬂ +Z‘C_Lj’k| +5k} ; (25)

ik ik
which corresponds to applying the SMART rul€ [4] to the ndireal sampled channel and
substitutingg = e. In (25), a, ; and¢, are the averaged sample channel gain and noise, i.e.,

_ _ _ _ eTAk -~ eTck
ap = (A1, k2, -, Qp i) = N Ck = N ke K.

The proposed convex approximation-based deflation algorit framework for problem (16)
is described in Algorithm 1. It is worthwhile remarking théference between the proposed
Algorithm 1 and the NLPD algorithm in_[8]. The first key diffamce is that Algorithm 1 is
designed for solving the sample approximation of the ch&@I®&R constrained JPAC problem
@©) (i.e., problem [(16)) while the NLPD algorithm is designfor solving the instantaneous
SINR constrained JPAC probler (3). As discussed in SulmsefY-C, problem [(IB) includes
problem [B) as a special case. The second key differenceebatthe two algorithms lies in the
power control step (i.e.Step 3. More specifically, at each iteration, the proposed Altponi
1 solves the SOCH (1L7) to update the power while the NLPD #fgorsolves the LP[{4) to
update the power. We also remark that the SOCP approxim@@idnused in Algorithm 1 is
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different from the one used inl[1]. The two SOCP approximaitake different forms and are

derived from different perspectives.

Algorithm 1: A Convex Approximation-Based Deflation Algorithmic Framework
Step 1.Initialization: Input data(A, c, p) .
Step 2.Preprocessing: Remove linfl iteratively according to[(25) until conditiot
(24) holds true.

—

Step 3.Power control: Compute parameteiby (20) and solve probleni (IL7); check
whether all links are supported: if yes, go$tep 5 else go toStep 4

Step 4. Admission control: Remove link, according to[(2l1), sek = K \ {ko},
and go toStep 3

Step 5.Postprocessing: Check the removed links for possible aioms

In the above framework, if the power control probldml(17)absed via solving its equivalent
SOCP reformulation{22), we call the corresponding alganitSOCP-D; while if problen{(17)
is solved via using the PABB algorithm to solve its smoothamunterpart[(23), we call the
corresponding algorithm PABB-D. The SOCP-D algorithm ispolynomial time complexity,
i.e., it has a complexity o(N3°K%%), since it needs to solve at mo&f SOCP problems
(22) and solving one SOCP problem in the form [of] (22) requiéd/3> K3-°) operations|[[49,
Page 423]. It is hard to analyze the complexity of the PABB{Doathm. This is because
global (linear) convergence rate of the PABB algorithm, wheis used to solve general
nonlinear optimization problems, remains unknown [50]e Tiostprocessing step (Step 5) aims
at admitting the links removed in the preprocessing and ssion control steps [1]/[8]. A

specification of the postprocessing step can be found inddelit of [37].

VI. NUMERICAL SIMULATIONS

To illustrate the effectiveness and efficiency of the twopmsed convex approximation-based
deflation algorithms (SOCP-D and PABB-D), we present sontaarical simulation results in
this section. The number of supported links, the total traassion power, and the execution
CPU time are used as the metrics for comparing differentralgos.

Simulation SetupAs in [1], each transmitter’s location obeys the uniformtalgition over a

D; Km x D; Km square and the location of each receiver is uniformly gated in a disc with
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center at its corresponding transmitter and radiysKkm, excluding a radius of0 m. Suppose

that the channel coefficiertt, ; is generated from the Rician channel model [51], i.e.,

hiy = ( KL + %HC’”) %ﬁ Yk jeK, (26)
where (;, ; obeys the standard complex Gaussian distribution, §ig.,~ CN(0,1), dy ; is the
Euclidean distance from the link of transmittgto the link of receiverk, and x is the ratio of
the power in the line of sight (LOS) component to the powerhia other (non-LOS) multipath
components. For = 0 we have Rayleigh fading and for = oo we have no fading (i.e., a
channel with no multipath and only a LOS component). Thepaterx therefore is a measure
of the severity of the channel fading: a smallimplies severe fading and a largeimplies

relatively mild fading. The channel gaify; ;} are set to be:

2 K 1

Each link’s SINR target is set to bg, = 2 dB (V k € K), each link's noise power is set to be

2
1 .
k.j

n = —90 dB (V k € K), and the power budget of the link of transmitteiis set to be
pr="bp,, keK, (28)

wherep, is the minimum power needed by lirkto meet its SINR requirement in the absence
of any interference from other links when= +oco in (26).

Benchmark:When x = +o0, there is no uncertainty of channel gains, and the number of
supported links in this case should be greater than or egutdet number of supported links
under the same channel conditions except whete+oo. In addition, if the number of supported
links under these two cases are equal to each other, thettatasimission power in the former
channel condition should be less than the one in the lattanrél condition. In fact, when
k = +oo, the corresponding JPAC problem [16) reduces to problémwBich can be solved
efficiently by the NLPD algorithm in [8]. The solution givery the NLPD algorithm will be used
as the benchmark to compare with the two proposed algotitisirece the NLPD algorithm was

IWe remark that this is the first paper that addresses the JPaldlem based on the CDI assumption without specifying
any particular distribution, and there is no existing aigons dealing with the same issue that we can compare theogedp

algorithms with.
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reported to have the close-to-global-optimal performainceerms of the number of supported
links in [8].

Choice of ParametersiWe set the parametees 5, and K in (1) to be0.1, 0.05, and 10,
respectively. We remark that” in equation [(Il1) is the number of supported links but not the
number of total links. Substituting these parameterdin), (e obtainN* = 200, and we set
N =200 in all of our simulations. Both of the parametefrsandc, in (20) are set to b€.999.

We do simulations in two different setups where,, D,) = (2,0.4) and(D,, Dy) = (1,0.2). For
convenience, we call the former setup as Setupl and the daitéeas Setup2. Notice that Setup2
represents a dense network where the distance betweeratisenitters and receivers are closer
(i.e., half of that of the Setupl1). Under each setup, we kesetdifferent sets of parameters, where
one is(k,b) = (+00,2), one is(x, b) = (100, 4), and another one i&;,b) = (10,40). Finally,
we use CVX [44] to solve the SOCP problems in the SOCP-D alyoi

Simulation Results and AnalysiBable[] summarizes the statistics of the number of supported
links of 200 Monte-Carlo runs of numerical experiments with differehbices of simulation
parameters. For instancej64 = 2 x 19 4+ 3 %« 98 + 4 % 83” in the third column of Tablé]l stands
for that when(K, Dy, Do, k,b) = (4,2,0.4,+00,2), total 664 links are supported in thesx#)0
Monte-Carlo runs, and amongest thetnlinks are supported9 times, 3 links are supported
98 times, and4 links are supported3 times. Figs[1l[12, andl 3 are obtained by averaging over
the 200 Monte-Carlo runs. They plot the average number of suppditéd, the average total
transmission power, and the average execution CPU timeegbrtbposed SOCP-D and PABB-D
algorithms (for solving the sampled JPAC probldml (16)) anel benchmark versus different
number of total links in Setupl.

It can be seen from Fi@l 1 that the number of supported linkthbytwo proposed algorithms
(for fading channels) is less than the benchmark (for datestic channels). This shows that the
uncertainty of channel gains could lead to a (significanduotion in the number of supported
links. This can also be clearly observed from Tdble |. Fotanse, whenk = 4 (see the first
three lines of Tablél 1) all links can be simultaneously supgb83 times whenx = +o00, 78
times wherk = 100, and only50 times wherx = 10. In fact, this is the reason why we associate
different « with different b in our simulations. We expect that a largeand thus large power
budgetsp;. (cf. (28)) can compensate the performance degradationeohtimber of supported

links caused by the large uncertainty of channel gains.
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TABLE |

STATISTICS OF THENUMBER OF SUPPORTEDLINKS OF 200 MONTE-CARLO RUNS.

Parameter§ K, D1, D2, k,b)

Algorithm

Statistics of the Number of Supported Links

(4,2,0.4, 400, 2)

Benchmark

664=2*19+3*98+4*83

(4,2,0.4,100, 4)

SOCP-D/PABB-D

659=2*19+3*103+4*78

(4,2,0.4,10, 40)

SOCP-D/PABB-D

609=1*1+2*39+3*110+4*50

(12,2,0.4, +00,2)

Benchmark

1468=5*8+6*36+7*68+8*60+9*24+10*4

(12,2,0.4,100, 4)

SOCP-D/PABB-D

1431=5*12+6*42+7*72+8*54+9*17+10*3

(12,2,0.4, 10, 40)

SOCP-D/PABB-D

1236=4*10+5*39+6*79+7*53+8*15+9*4

(20,2,0.4, +00,2)

Benchmark

1953=6*1+7*8+8*21+9*50+10*67+11*38+12*11+13*3+14*1

(20,2,0.4, 100, 4)

SOCP-D/PABB-D

1864=7*13+8*40+9*58+10*58+11*22+12*8+13*1

(20,2,0.4, 10, 40)

SOCP-D/PABB-D

1570=5*2+6*17+7*65+8*60+9*39+10*15+11*2

(28,2,0.4, +00,2)

Benchmark

2342=8*1+9*13+10*23+11*54+12*56+13*31+14*17+15*2+16+17*2

(28,2,0.4,100, 4)

SOCP-D/PABB-D

2250=8*3+9*21+10*40+11*50+12*50+13*22+14*11+15*1+15

(28,2,0.4, 10, 40)

SOCP-D/PABB-D

1875=5*1+6*1+7*13+8*37+9*60+10*48+11*25+12*14+13*Q#4*1

(4,1,0.2, 400, 2)

Benchmark

639=2*26+3*109+4*65

SOCP-D/PABB-D

632=1*1+2*27+3*111+4*61

(4,1,0.2,100, 4)
(4,1,0.2, 10, 40)

SOCP-D/PABB-D

589=1*2+2*44+3*117+4*37

12,1,0.2, 400, 2)

Benchmark

1443=4*3+5*4+6*38+7*85+8*45+9*22+10*3

SOCP-D/PABB-D

1403=4*3+5*11+6*45+7*82+8*41+9*16+10*2

(
(12,1,0.2, 100, 4)
(12,1,0.2, 10, 40)

SOCP-D/PABB-D

1214=3*2+4*8+5*56+6*64+7*52+8*14+9*4

(20,1,0.2, 400, 2)

Benchmark

1942=6*1+7*3+8*29+9*49+10*69+11*37+12*11+13*1

(20, 1,0.2,100, 4) SOCP-D/PABB-D 1882=6*1+7*10+8*32+9*65+10*58+11*23+12*11

(20, 1,0.2, 10, 40) SOCP-D/PABB-D 1577=5*4+6*18+7*54+8*59+9*55+10*6+11*4
(28,1,0.2,4+00,2) Benchmark 2333=8*2+9*13+10*34+11*41+12*50+13*37+14*18+15*4+16
(28,1,0.2,100, 4) SOCP-D/PABB-D 2236=7*1+8*5+9*22+10*36+11*57+12*38+13*27+14*13+15*
(28,1,0.2,10, 40) SOCP-D/PABB-D 1857=6*5+7*16+8*38+9*51+10*51+11*28+12*9+13*2

Table[], Fig.[1, and Figl. ]2 show that the two proposed algoritalways return the same
solution to the sampled JPAC probleml(16), i.e., supposamge number of links with same total
transmission power. However, FId. 3 shows that the PABBdo@thm substantially outperforms
the SOCP-D algorithm in terms of the average CPU time. Thisoissurprising, since in each
power control step (i.e., solving the convex approximatmoblem [17)), the custom-design
algorithm is used to carry out power control in the PABB-Daxlthm while a general-purpose

solver CVX is used to update power in the SOCP-D algorithmteNbat both the number of
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Fig. 1. Average number of supported links versus the numbéotal links in Setupl.
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Average Total Transmission Power

4 8 12 16 20 24 28
Number of Total Links

Fig. 2. Average total transmission power versus the numbéotal links in Setupl.

constraints and the number of unknown variables in problE#) ére of ordeO(NK) and [11)
shows that the sample siZ€ needs to be large to guarantee the approximation perfomnanc
which makes CVX unsuitable to be used to solve problem (1&)swiving its equivalent SOCP
reformulation [(2R).

By comparing the two sets of numerical experiments wheré) = (100,4) and (x,b) =
(10,40), it can be observed from Figkl 1 ahtl 2 that more links can beaostggpwith signif-
icantly less total transmission power in the former casen tthee latter case. This is because
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Fig. 3. Average execution time (in seconds) versus the numbtotal links in Setupl.
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—<— Setupl
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Number of Supported Links

4 8 12 16 20 24 28
Number of Total Links

Fig. 4. Average number of supported links versus the numbéotal links in Setupl and Setup2.

the uncertainty of the channel gains with= 100 is generally much smaller than the one with
r = 10. We also point out that the execution CPU time of the two prepageflation algorithms
mainly depends on how many times the power control problen) i@ solved. In general, the
larger number of links are supported, the smaller numbein&glare removed from the network
and the smaller number of power control problems in form[df) (dre solved. Therefore, the
average CPU time of the proposed algorithms wherb) = (10, 40) is larger than the one when
(k,b) = (100, 4); see Fig[B.
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Fig. 5. Average total transmission power versus the numbéotal links in Setupl and Setup2.

For conciseness, we do not present the comparison of the RABBd SOCP-D algorithms
when both algorithms are used to solve the sampled JPAC gofl6) in Setup2, since the
same observations as in Setupl can be made in Setup2. Ingtegddcus on the comparison
of two different setups in the following. Since the PABB-Dyatithm always returns the same
solution as the SOCP-D algorithm but takes much less CPU, timaechoose to use the PABB-D
algorithm to solve the sampled JPAC probldm|(16) in the fuiihy.

TABLE Il

THE RATIO OF THE AVERAGE TOTAL TRANSMISSIONPOWER IN SETUP1 TO THAT IN SETUP2.

4 8 12 16 20 24 28
(r,0)

(100, 4) 17.1513| 15.7554| 16.5563| 16.1834| 15.9193| 15.6577| 16.4100
(10, 40) 19.1574| 15.7159| 16.0476| 16.2672| 15.9009 | 14.7517| 16.0995

Figs.[4 andb report the average number of supported linkshendverage total transmission
power (returned by the PABB-D algorithm for solving the s#elpJPAC problem[{16)) versus
different number of total links in Setupl and Setup?2. It carobserved that the average number
of supported links and the average execution time in botlpsesre roughly equal to each other,

but the average total transmission power in Setupl is appaigly 16 times as large as that in
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Setup2 (also see Takl€ Il). This is because when the setupitshed from Setupl to Setup2
(with the random variableg; ; in (26) and [[2V) neglected for the time being), the corredpan
distancesd,, ; between the transmitters and receivers decrease by hatbréiag to [2¥) and
(28), all the channel gains (including both the direct-larkd cross-link channel gains) increase
and power budgets decrease by a factoi®fAs the channel gains are increased and power
budgets are decreased by a same factor while the noise poeveasn to be fixed, the number
of supported links in probleni_(16) remains unchanged. Hewet/brings a benefit of a 93.75%
(=15/16) reduction in the total transmission power, whishconsistent with our engineering
practice. Due to the effects of the random varialglesin (26) and [(2F), the ratio of the average
total transmission power in Setupl to that in Setup?2 is apprately (but not exactly)6.

VIlI. CONCLUSIONS

In this paper, we have considered the chance SINR constralRAC problem, and have
proposed two sample approximation-based deflation appesdor solving the problem. We first
approximated the computationally intractable chance StéRstraints by sampling, and then
reformulated the sampled JPAC problem as a composite grparses minimization problem.
Furthermore, we approximated the NP-hard group sparsemization problem by a convex
problem (equivalent to an SOCP) and used its solution tokctiex simultaneous supportability
of all links and to guide an iterative link removal proced(tiee deflation approach), resulting
in two efficient deflation algorithms (SOCP-D and PABB-D).

The proposed approaches are particularly attractive factwal implementations for the
following reasons. First, the two proposed approaches osdyire the CDI, which is more
practical than most of the existing algorithms for JPAC veh#te perfect instantaneous CSI
is required. Second, the two proposed approaches enjoy a&dowputational complexity. The
SOCP-D approach has a polynomial time complexity. To furtingorove the computational
efficiency, the special structure of the SOCP approximatimilem is exploited, and an efficient
algorithm, PABB-D, is custom designed for solving it. The BBD algorithm significantly
outperforms the SOCP-D algorithm in terms of the executi®JQGime. Finally, our simulation
results show that the proposed approaches are very e#dayiwusing the NLPD algorithm as

the benchmark.
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APPENDIX A

Proof of Propositiof L \We prove Proposition 1 by contraction. Assume that firik supported

in (16) butA,q* > c; holds true. Then we can construct a feasible pqirsatisfying

D e [Imax {ex — Aq, 0} o + ap’q < 35, ¢ [ max {cx — Axq*,0} lo + ap’q*.  (29)
Defineq = (41, Ga, - -, qx)” With
max{(Ek — Ak)q* + Ck}, If ] = ]{3;
@, it j# k.
Recalling the definitions ok, and A, we knowE; — A, is a nonnegative matrix, and thus
gr = max {(E; — Ax)q* + ¢} > 0. Since
Arq" = Erq” — (Ex — Ap)q” = gre — (Ex — Ap)q" > ¢,
it follows from the definition ofg, that
g > max {(Ex, — Ag)q" + ¢k} = G-

Hence,q is feasible (i.e.0 < q < q* < e and the inequalityj < gq* holds true strictly for the
k-th entry) and
p'a<p'q. (30)
Moreover, it follows from the definition o that A,q > c,. For anyj # k, if A;,q* > c;,
we haveA;q —c; > A;q" —c; > 0, where the first inequality is due to the fact that all entries
of A, except itsj-th column are nonpositive and the fagt< q*. Consequently, there holds
J*c J,whereJ* = {j| A;q* > c;} andJ = {j| A;4 > c;} . Thus, we have

> rex lmax{c, — Arq”, 0} [lo = Zkﬁw*
> D pgg [ max{c, — Arq, 0} [lo (31)

= D kex llmax{cy — Ayq, 0} [|o.
Combining [(30) and (31) yields (29), which contradicts tipgimality of q*. This completes the
proof of Propositior]1.

max {c, — Axq*,0} ||
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APPENDIX B

Proof of PropositionR:To prove Propositioi]2, we first consider the simple case &her
h(q) = || max {q, 0} [.

Lemma 1:Supposeh(q) = || max{q,0} ||2. Thendh(0) = {s|s > 0,]s||» < 1}. If there
existsi such that(q); > 0, thenh(q) is differentiable and

~ max{q,0}
Vi) = Max .0} o (32)

Proof: DefineS = {s|s > 0, ||s||> < 1}. We claimdh(0) = S. On one hand, taking any

s € §, we have that
h(q) = || max {q,0} || > s" max {q, 0} > s"q = (0) +s"(q—-0), ¥ q,

where the first inequality is due to the Cauchy-Schwarz iaiyuand the fact||s||, < 1, and
the second inequality is due > 0. This shows thalS C 0h(0) according to the definition of
0h(0) [43]. On the other hand, to shoa/(0) C S, it suffices to show that any poist¢ S is
not a subgradient of(q) at point0. In particular, if ||s||» > 1, then

h(q) = || max{q,0} [l < [lall2 = 1 < [|s[l2 = s"q = 1(0) + " (q - 0)

with q = s/||s||2. Thus, the subgradiestof h(q) at point0 must satisfy||s|[s < 1. If ||s]|2 <1
but (s); < 0 (without loss of generality), we test the poigt= (—1,0,...,0)" , and obtain

h(q) = [[max{q,0} [, =0 < —(s), =s"q = h(0) +s"(q - 0).

Consequently, the subgradientf h(q) at point0 must satisfy|[s|» < 1 ands > 0. Hence,
Oh(0) ={s|s>0,|s|. < 1}.

Next, we show that(q) is differentiable at the poing which has at least one positive entry,
and the corresponding gradient is given [n](32). In facthalgh the functionmax {¢,0} is

nondifferentiable at poiny = 0, its squaref(q) = (max {¢,0}) is differentiable everywhere;

0, if ¢ <0;
fq) =

2q, if ¢ >0.

i.e.,

According to the composite rule of differentiation, we knéwat the gradient ofi(q) is given
by (32). This completes the proof of Lemia 1. [
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Equipping with Lemmall, we now can prove Proposifibn 2. WitHoss of generality, assume
thatc, — Axq = 0. Then, for anyq and anys satisfying||s|» < 1 ands > 0, we have
hi(q) = || max {cy — Apq,0} |2 > s’ (¢, — Arq) (from Lemmal}
= (@) + (-ATs)' (a—a),

which shows that all vectors if—Als|s > 0,|[s|| <1} are subgradients of;(q) at point

(33)

q. In the same way as in the proof of Lemm&a 1, we can show that dibes not satisfy
Is]l2 < 1 ands > 0, the inequality in[(3B) will violate for some special choicé @ Hence,
Oh(q) = {—Afs|s >0,|s[s <1}.

If N7 # 0, we know from the composite rule of differentiation and Lenifh¢hat /,(q) is

differentiable and its gradient is given by

vh (_) T Zne/\f}j (Ck - Akq)n (G’Z)T o —Ag max {Ck — A.q, 0}
4 [max {cr — Axq, 0} s [ max {cy — Arq, 0} |2

This completes the proof of Propositibh 2.

APPENDIX C

Proof of Theoreni]2Suppose all links in the network can be simultaneously stupddi.e.,
there existd) < q < e satisfyingAq > c) andq is the solution to problem
min plq
q
st. Aq—c>0,
0<qg<e
To prove Theorenl]2, it suffices to show thatis also the solution to probleni ([17) with €
(0, o). Moreover, to showq is the solution to problem(17), we only need to show that the
subdifferential of the objective function of problein [17)@oint q contains0 [43]. Next, we
claim the latter is true.
We first characterize the subdifferential of the objectivadtion of problem[(1]7) at poird.
It follows from (14) that there exist& = {n;,ns,...,ng} such thatq is the solution to the

following linear system

e ni. on2. K _ 1. Jn2. CAMKY L
Azq:=lal’;ay?; .. af g = ("5 chf) i=cq.
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Recalling the definition ofa} (see Subsection TViB), we know th@t— Az is a nonnegative

matrix. Moreover, from[[52, Theorem 1.15) 7 is nonsingularAZ;' is nonnegative, and
0< eTAgch —elqg< K. (34)

Define hy(q) = ||max {c; — Ayq,0}|, for k& € K. It follows from [43, Theorem 23.8] that the
subdifferential of the objective function of problefn [1%)pmint q is given by

{ng+ap|gk € ohi(q), k € IC}.

kel

According to Propositiol2)h,(q) contain all vectors in
Sk:{—sk (aZ‘“)T |0§Sk§1} (35)

Therefore, all vectors in

S:{—A§s+af)|0§s§e}:{—Zsk(azk)T+af)|0§sk§l,k:elC}
Kek

are subgradients of the objective function of problém (I7ant q.

If 0 € S, the subdifferential of the objective function of problefif)lat pointq contains
0 [43], which completes the proof of Theordmh 2. Next, we shdw S is true. Consider the
vectors = A7 p. It is a nonnegative vector (sinck;' is nonnegative), and each of its entries

is less than or equal tb as long asy < a,. This is because

T

p (a) D
els =elaA;"p < amax{p}e’A;Te < QM T max {p}K

A;Te <
min {cz} 8z €= Y {c}
where(a) is due to [(34) and the fachin {c} < min {c;}. Substitutings = aA;"p into S, we
obtain—AZs + ap = —AL («¢A;"p) + ap = 0. Thus,0 € S.

< 1,
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The subdifferential ohy.(q) at pointg is not necessarily equal 8 in (33). This is because that some other entries (except

the ng-th entry) of the vectok, — Arq might also be zero.
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