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Sample Approximation-Based Deflation

Approaches for Chance SINR Constrained

Joint Power and Admission Control

Ya-Feng Liu, Mingyi Hong, and Enbin Song

Abstract

Consider the joint power and admission control (JPAC) problem for a multi-user single-input single-

output (SISO) interference channel. Most existing works onJPAC assume the perfect instantaneous

channel state information (CSI). In this paper, we considerthe JPAC problem with the imperfect CSI,

that is, we assume that only the channel distribution information (CDI) is available. We formulate

the JPAC problem into a chance (probabilistic) constrainedprogram, where each link’s SINR outage

probability is enforced to be less than or equal to a specifiedtolerance. To circumvent the computational

difficulty of the chance SINR constraints, we propose to use the sample (scenario) approximation scheme

to convert them into finitely many simple linear constraints. Furthermore, we reformulate the sample

approximation of the chance SINR constrained JPAC problem as a composite group sparse minimization

problem and then approximate it by a second-order cone program (SOCP). The solution of the SOCP

approximation can be used to check the simultaneous supportability of all links in the network and to

guide an iterative link removal procedure (the deflation approach). We exploit the special structure of
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the SOCP approximation and custom-design an efficient algorithm for solving it. Finally, we illustrate

the effectiveness and efficiency of the proposed sample approximation-based deflation approaches by

simulations.

Index Terms

Chance SINR constraint, group sparse, power and admission control, sample approximation.

I. INTRODUCTION

Joint power and admission control (JPAC) has been recognized as an effective tool for

interference management in cellular, ad hoc, and cognitiveunderlay wireless networks for two

decades. Generally speaking, there are two kinds of JPAC: one is to support a maximum number

of links at their specified signal to interference plus noiseratio (SINR) targets while using

minimum total transmission power when all links in the network cannot be simultaneously

supported [1]–[22], and the other is to determine whether a new arrival link can be admitted to

the network while maintaining the SINR of all already admitted links above their required SINR

levels [23]–[25]. This paper focuses on the former one, which not only determines the set of

links that must be turned off and rescheduled (possibly along orthogonal resource dimensions

such as time, space, or frequency slots), but also alleviates the difficulties of the convergence

of stand-alone power control algorithms. For example, a longstanding issue associated with the

Foschini-Miljanic algorithm [3] is that, it does not converge when the preselected SINR levels

are infeasible. In this case, a JPAC approach must be adoptedto determine which links to be

removed.

The JPAC problem can be solved to global optimality by checking the simultaneous sup-

portability of every subset of links. However, the computational complexity of this enumeration

approach grows exponentially with the total number of links. Theoretically, the problem is known

to be NP-hard to solve (to global optimality) and to approximate (to constant ratio of global

optimality) [1], [4], [8], so various heuristic algorithmshave been proposed [1]–[22]. In particular,

the reference [1] proposed a convex approximation-based algorithm, called linear programming

deflation (LPD) algorithm. Instead of solving the original NP-hard problem directly, the LPD

algorithm solves an appropriate LP approximation of the original problem at each iteration and

use its solution to guide the removal of interfering links. The removal procedure is terminated
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if all the remaining links in the network are simultaneouslysupportable. The reference [8]

developed another LP approximation-based new linear programming deflation (NLPD) algorithm

for the JPAC problem. In [8], the JPAC problem is first equivalently reformulated as a sparse

ℓ0-minimization problem and then itsℓ1-convex approximation is used to derive a LP, which is

different from the one in [1]. Again, the solution to the derived LP can guide an iterative link

removal procedure, and the removal procedure is terminatedif all the remaining links in the

network are simultaneously supportable. Similar ideas were also used in [13], [16], [20] to solve

the joint beamforming and admission control problem for thecellular downlink network.

Most of the aforementioned works on the joint power/beamforming and admission control

problem assume the perfect instantaneous channel state information (CSI) except [1], [4], [14],

[22]. In [1], the authors also considered the worst-case robust JPAC problem with bounded

channel estimation errors. The key in [1] is that the LP approximation with bounded uncertainty

can be equivalently rewritten as a second-order cone program (SOCP). The overall approximation

algorithm remains similar to LPD for the case of the perfect CSI, except that the SOCP

formulation is used to carry out power control and its solution is used to check whether links

are simultaneously supportable in the worst case. In [4], [14], [22], the authors employed the

Foschini-Miljanic algorithm [3] or its variants to update the power and then use the updated power

to guide the removals of links without assuming the perfect CSI (as long as the SINR can be

measured at the receiver and feedbacked to the corresponding transmiter). The Foschini-Miljanic

algorithm [3] can leverage the perfect CSI assumption when updating the power, but it does not

take admission control into consideration compared to the disciplined convex approximation-

based power control algorithms in [1], [8], [13], [16], [20]. This makes the JPAC algorithms

where the power is updated by the Foschini-Miljanic algorithm suffer a significant performance

loss in the number of supported links compared to those wherethe power is updated by the

disciplined convex approximation-based power control algorithms.

The assumption of the perfect CSI generally does not hold true due to CSI estimation errors

or limited CSI feedback in practice [26], [27]. Even though the instantaneous CSI can be

perfectly available, dynamic JPAC in accordance with its variations would lead to excessively

high computational and signaling costs. In this paper, we consider the chance (probabilistic

or outage-based) SINR constrained JPAC problem, where eachlink’s SINR outage probability

must be kept below a given tolerance. Different from most of the aforementioned works on
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JPAC where the perfect CSI is assumed, our new formulation only requires the availability of

the channel distribution information (CDI). Due to the factthat the CDI can remain unchanged

over a relatively long period of time, JPAC based on the CDI can therefore be performed on

a relatively slow timescale (compared to fast fluctuations of instantaneous channel conditions),

hence the overall computational cost and signaling overhead can be significantly reduced, which

is particularly appealing from the network operator’s perspective. Moreover, the chance SINR

constrained JPAC formulation can maximize the number oflong-term supported links by us-

ing minimum total transmission power, and at the same time guarantee thatshort-termSINR

requirements are respected with high probability, which depends on the user-specified outage

tolerance.

It is well-known that characterizing Quality-of-Service (QoS) constraints in terms of an outage

probability can significantly improve practicality of the resource allocation algorithms including

power control and beamforming design; see [27]–[34] and references therein. Therefore, the

chance constrained programming methodology has been widely applied to wireless system

designs in recent years. However, as far as we know, such methodology has not been used in the

context of JPAC. This is largely due to the computational challenge of solving the chance SINR

constrained JPAC problem. First, chance SINR constraints do not have closed-form expressions

and are nonconvex in general. Second, even when the CSI is perfectly available, the JPAC

problem is NP-hard to solve and to approximate [1], [4], [8].

This is the first work that formulates the chance SINR constrained JPAC problem and proposes

efficient deflation approaches for solving it. The main contributions of this paper are twofold.

• Novel Problem Formulation and Reformulation.In this paper, we assume that only the CDI

is available, which is different from most of the existing works on JPAC where the perfect

CSI is assumed. We propose the first chance SINR constrained JPAC formulation, where

each link’s SINR outage probability is required to be less than or equal to a preselected

tolerance. Furthermore, we approximate the chance SINR constraint via sampling [35], [36]

and reformulate the sample approximation of the chance SINRconstrained JPAC problem

as a composite group sparse minimization problem.

• Efficient Deflation Approaches.We propose an efficient convex SOCP approximation (dif-

ferent from that in [1]) of the group sparse minimization reformulation. The solution of

the SOCP approximation can be used to check the simultaneoussupportability of all links
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in the network and to guide an iterative link removal procedure (the deflation approach).

Instead of relying on standard SOCP solvers to solve the derived SOCP, we exploit its

special structure and custom-design an efficient algorithmfor solving it. Note that the

standard SOCP solvers cannot efficiently solve the SOCP approximation here because both

the number of constraints and unknown variables in the SOCP approximation increase

linearly with the number of samples, which is generally large in order to guarantee the

approximation performance.

Notation. We denote the index set{1, 2, . . . , K} by K. Lowercase boldface and uppercase

boldface are used for vectors and matrices, respectively. For a given vectorx, the notation

max{x}, min {x} , (x)k, and‖x‖0 stand for its maximum entry, its minimum entry, itsk-th entry,

and the indicator function ofx (i.e.,‖x‖0 = 0 if x = 0 and‖x‖0 = 1 otherwise), respectively. The

expressionmax {x1,x2} (min {x1,x2}) represents the component-wise maximum (minimum) of

two vectorsx1 andx2. For any subsetI ⊆ K, AI stands for the matrix formed by the rows

of A indexed byI. We use(A1,A2) to denote the matrix formed by stacking matricesA1 and

A2 by column and use(A1;A2) to denote the matrix formed by stackingA1 andA2 by row.

Similar notation applies to stacking of vectors and scalars. Finally, we usee to represent the

vector with all components being one,I the identity matrix, andEk the matrix with all entries

being zero except itsk-th column entries being one, respectively.

II. REVIEW OF THE NLPD ALGORITHM

The algorithms developed for the chance SINR constrained JPAC problem in this paper are

based on the NLPD algorithm [8] for the JPAC problem that assumes the perfect CSI. To

streamline the presentation, we briefly review the NLPD algorithm in this section. The basic idea

of the NLPD algorithm is to update the power and check whetherall links can be simultaneously

supported or not. If the answer is yes, then terminate the algorithm; else drop one link from the

network and update the power again. The above process is repeated until all the remaining links

can be simultaneously supported.

Specifically, consider aK-link (a link corresponds to a transmitter-receiver pair) single-input

single-output interference channel with channel gainsgk,j ≥ 0 (from transmitterj to receiverk),

noise powerηk > 0, SINR targetγk > 0, and power budget̄pk > 0 for k, j ∈ K. Denote the power

allocation vector byp = (p1, p2, . . . , pK)
T and the power budget vector byp̄ = (p̄1, p̄2, . . . , p̄K)

T .
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Treating interference as noise, we can write the SINR at thek-th receiver as

SINRk(p) =
gk,kpk

ηk +
∑

j 6=k

gk,jpj
, ∀ k ∈ K. (1)

Correspondingly, we introduce an equivalent normalized channel. In particular, we use

q = (q1, q2, . . . , qK)
T (2)

with qk = pk/p̄k to denote the normalized power allocation vector, and usec = (c1, c2, . . . , cK)
T

with ck = (γkηk)/(gk,kp̄k) > 0 to denote the normalized noise vector. We denote the normalized

channel matrix byA ∈ R
K×K with its (k, j)-th entry

ak,j =







1, if k = j;

−
γkgk,jp̄j
gk,kp̄k

, if k 6= j.

With these notation, it is simple to check that SINRk(p) ≥ γk if and only if (Aq− c)k ≥ 0.

Based on the Balancing Lemma [5], we reformulate the JPAC problem as a sparse optimization

problem

min
q

∑

k∈K

‖(c−Aq)k‖0 + αp̄Tq

s.t. 0 ≤ q ≤ e.

(3)

In the above,α is a parameter ande is the all-one vector of lengthK. For details on the choice

of the parameterα, we refer the readers to [8, Section III-B]. Since problem (3)is NP-hard [1],

we further consider itsℓ1-convex approximation (which is equivalent to an LP; see [8])

min
q

∑

k∈K

|(c−Aq)k|+ αp̄Tq

s.t. 0 ≤ q ≤ e.

(4)

By solving (4), we know whether all links in the network can besimultaneously supported or

not. If not, we drop one link (mathematically, delete the corresponding row and column ofA

and the corresponding entry ofp̄ andc) from the network according to some removal strategy,

and solve a reduced problem (4) until all the remaining linksare supported.
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III. PROBLEM FORMULATION

Consider the chance SINR constrained JPAC problem, where the channel gains{gk,j} in the

SINR expression (1) are random variables. In this paper, we assume the distribution of{gk,j} is

known. However, we do not assume any specific channel distribution, which is different from

most of the existing works on outage probability constrained resource allocation for wireless

systems [29], [30], [32]. We also assume that all coordinations and computations are carried out

by a central controller who knows the CDI of all links. Since{gk,j} in (1) are random variables,

we need to redefine the concept of a supported link. We call link k is supported if its outage

probability is below a specified toleranceǫ ∈ (0, 1), i.e.,

P (SINRk(p) ≥ γk) ≥ 1− ǫ, (5)

where the probability is taken with respect to the random variables{gk,j} .

The chance SINR constrained JPAC problem aims to maximize the number of supported links

while using minimum total transmission power. Mathematically, the problem can be formulated

as
max
p,S

|S| − αeTp

s.t. P (SINRk(p) ≥ γk) ≥ 1− ǫ, k ∈ S ⊆ K,

0 ≤ p ≤ p̄.

(6)

In the above,S denotes the set of supported links and|S| denotes its cardinality, i.e., the

number of supported links; the parameterα balances the relative importance of the two goals,

i.e., maximizing the number of supported links (the first term |S| in the objective) and minimizing

the total transmission power (the second termeTp in the objective).

To gain further understanding of formulation (6), we compare it with the following two-stage

formulation. Specifically, the first stage maximizes the number of admitted links:

max
p,S

|S|

s.t. P (SINRk(p) ≥ γk) ≥ 1− ǫ, k ∈ S ⊆ K,

0 ≤ p ≤ p̄.

(7)

We useS0 to denote the optimal solution for problem (7) and call itthe maximum admissible

set. Notice that the solution for (7) might not be unique. The second stage minimizes the total
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transmission power required to support the admitted links:

min
p

eTp

s.t. P (SINRk(p) ≥ γk) ≥ 1− ǫ, k ∈ S0,

0 ≤ p ≤ p̄.

(8)

Due to the choice ofS0, power control problem (8) is feasible.

Although the above two-stage formulation (i.e., (7) and (8)) is intuitive and easy to understand,

the formulation (6) is better in terms of modeling the JPAC problem; see the following Theorem

1. Theorem 1 can be shown by a similar argument as used in [8, Theorem 1] and a detailed

proof is provided in Section I of [37].

Theorem 1:Suppose the parameterα satisfies

0 < α < α1 := 1/eT p̄. (9)

Then the optimal value of problem (7) isM if and only if the optimal value of problem (6)

lies in (M − 1,M). Moreover, suppose(S∗,p∗) is the solution of problem (6). Then,S∗ is

a maximum admissible set andeTp∗ is the minimum total transmission power to support any

maximum admissible set.

Theorem 1 states that the single-stage formulation (6) withα ∈ (0, α1) is equivalent to the

two-stage formulation (7) and (8) in terms of finding the maximum admissible set. Moreover, it

is capable of picking the maximum admissible set with minimum total transmission power from

potentially multiple maximum admissible sets.

In the rest of this paper, we develop sample approximation-based deflation approaches for

(approximately) solving the chance SINR constrained JPAC problem (6).

IV. SAMPLE APPROXIMATION AND REFORMULATION

In general, the chance SINR constrained optimization problem (6) is difficult to solve exactly,

since it is difficult to obtain the closed-form expression of(5). In this section, we first approximate

the computationally intractable chance SINR constraint via sampling, and then reformulate the

sample approximation of problem (6) as a composite group sparse optimization problem. Three

distinctive advantages of the sample approximation schemein the context of approximating the

chance SINR constraint (5) are as follows. First, it works for general channel distribution models

and thus is distributionally robust. Second, the sample approximation technique significantly
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simplifies problem (6) by replacing the difficult chance SINRconstraint with finitely many

simple linear constraints (depending on the sample size). Last but not the least, solving the

sample approximation problem returns a solution to the original chance constrained problem

with guaranteed performance [35], [36].

It is worthwhile remarking that safe tractable approximation [38], [39] is an alternative

approach to the sample approximation approach to dealing with the chance constraint. The safe

tractable approximation approach builds an analytic upperbound of the probability for the chance

constraint to be violated. The advantage of this line of approach over the sample approximation

approach is that solving the deterministic analytic upper bound will return a feasible solution

to the chance constraint for sure. However, to build such an analytic upper bound, some strict

conditions on structures of the function composed in the chance constraint and on the distribution

of the random variables are required.

A. Sample Approximation

We handle the chance SINR constraint via sample approximations [35], [40]. Suppose
{

gnk,j
}N

n=1

areN independent samples drawn according to the distribution of{gk,j} by the central controller,

we use

SINRn
k(p) :=

gnk,kpk

ηk +
∑

j 6=k

gnk,jpj
≥ γk, n ∈ N := {1, 2, . . . , N} (10)

to approximate the chance SINR constraint (5). Since the samples are random variables, the

power allocation vectorp satisfying the sampled SINR constraints (10) is also a random variable.

Intuitively, if the sample sizeN is sufficiently large, then the power allocation vectorp satisfying

(10) will satisfy the chance SINR constraint (5) with high probability.

The above intuition has been rigorously shown in [36, Theorem 1] and [28, Theorem 1]. It is

shown that, if the sample sizeN satisfies

N ≥ N∗ :=

⌈

1

ǫ

(

K − 1 + ln
1

δ
+

√

2(K − 1) ln
1

δ
+ ln2 1

δ

)⌉

(11)

for any δ ∈ (0, 1), then any solution to the linear system

SINRn
k(p) ≥ γk, k ∈ K, n ∈ N (12)
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will satisfy the chance SINR constraint (5) for allk ∈ K with probability at least1 − δ. In

particular, if δ is chosen to be a very small value, any solution to (12) will almost surely be

feasible for the chance SINR constraints (5) for allk ∈ K. Note that the number of samples

needed will not increase significantly asδ decreases, sinceN∗ has only a logarithmic dependence

on 1/δ. Although the dependence ofN∗ on ǫ is N∗ = O(1/ǫ), really small values ofǫ are of

no interest in the scenario considered in this paper.

The linear system (12) might have multiple solutions. The most interesting solution is the one

that minimizes the total transmission power, i.e., the solution to the following problem

min
p

eTp

s.t. SINRnk(p) ≥ γk, k ∈ K, n ∈ N ,

0 ≤ p ≤ p̄.

(13)

Supposep is the solution to problem (13). Then, for eachk ∈ K, there must exist an index

nk ∈ N such that

SINRnk

k (p) = γk. (14)

For simplicity, we will refer linkk to be supported if all constraints in (10) are satisfied in the

sequel.

B. Sampled Channel Normalization

To facilitate the reformulation of the sample approximation of problem (6) and the development

of efficient algorithms, we normalize the sampled channel parameters. To this end, we use

ck =

(

γkηk
g1k,kp̄k

,
γkηk
g2k,kp̄k

, . . . ,
γkηk
gNk,kp̄k

)T

∈ R
N×1

to denote the normalized noise vector of linkk. Define

ank,j =











1, if k = j;

−
γkg

n
k,jp̄j

gnk,kp̄k
, if k 6= j,

a
n
k =

(

ank,1, a
n
k,2, . . . , a

n
k,K

)

∈ R
1×K , n ∈ N , k ∈ K,

and

Ak =
(

a
1
k;a

2
k; . . . ;a

N
k

)

∈ R
N×K , k ∈ K.
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Notice that the entries of thek-th column ofAk are one, and all the other entries are nonpositive.

This special structure ofAk (k ∈ K) will play an important role in the following algorithm

design. Furthermore, we let

c = (c1; c2; . . . ; cK) ∈ R
NK×1 andA = (A1;A2; . . . ;AK) ∈ R

NK×K.

With the above notation and (2), we can see that SINRn
k(p) ≥ γk for all n ∈ N if and only if

Akq ≥ ck. Consequently, the sample approximation of problem (6) can be equivalently rewritten

as
max
q,S

|S| − αp̄Tq

s.t. Akq− ck ≥ 0, k ∈ S ⊆ K,

0 ≤ q ≤ e.

(15)

C. Composite Group Sparse Minimization Reformulation

By the definition of‖·‖0, the sampled JPAC problem (15) can be reformulated as the following

composite group sparse optimization problem

min
q

∑

k∈K

‖max {ck −Akq, 0} ‖0 + αp̄Tq

s.t. 0 ≤ q ≤ e.

(16)

Problem (16) has the following property stated in Proposition 1, which is mainly due to the

special structure ofAk. The proof of Proposition 1 can be found in Appendix A.

Proposition 1: Suppose thatq∗ is the solution to problem (16) and linkk is supported at the

pointq∗ (i.e.,Akq
∗ ≥ ck). Then there must exist an indexnk ∈ N such that(ck −Akq

∗)nk
= 0.

Proposition 1 implies that problem (16) can be viewed as an (nontrivial) extension of problem

(3). In fact, we know from Proposition 1 that whenN = 1, the solution of problem (16) satisfies

c − Aq∗ ≥ 0 (i.e., (c −Aq∗)k = 0 for supported links and(c −Aq∗)k > 0 for unsupported

links), and problem (16) reduces to problem (3). Since problem (3) is NP-hard to solve to global

optimality and NP-hard to approximate to constant factor ofglobal optimality [1], [4], [8], it

follows that problem (16) is also NP-hard to solve and approximate.

A key difference between problems (16) and (3) lies in themax operator introduced in problem

(16). In problem (3), if linkk is supported, thenck −Akq
∗ is a scalar and equals zero; while

in problem (16), if linkk is supported, thenck −Akq
∗ ≤ 0 but not necessarily equal to zero.
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Therefore, to correctly formulate the JPAC problem, we introduce amax operation and put

max {ck −Akq, 0} in ‖ · ‖0 instead ofck −Akq; see problem (16). Notice that in the sparse

formulation it is desirable that a link is supported if and only if the correspondingℓ0-quasi-norm

is zero. To further illustrate this, we give the following example, whereK = N = 2, and

A = (A1;A2) =















1 −0.2

1 −0.5

−0.3 1

−0.5 1















, c =















0.5

0.5

0.5

0.5















.

It can be checked that the only possible way to simultaneously support the two links{1, 2}

is q∗ = e and max {c1 −A1q
∗, 0} = max {c2 −A2q

∗, 0} = 0 but c1 − A1q
∗ 6= 0 and

c2 −A2q
∗ 6= 0.

V. EFFICIENT DEFLATION APPROACHES FOR THESAMPLED JPAC PROBLEM

In this section, we develop efficient convex approximation-based deflation algorithms for

solving the sampled JPAC problem (16). As can be seen, problem (16) has a discontinuous

objective function due to the first term. However, it allows for an efficient convex approximation.

We first approximate problem (16) by a convex problem, which is actually equivalent to an SOCP,

and then design efficient algorithms for solving the approximation problem. The solution to the

approximation problem can be used to check the simultaneoussupportability of all links in the

network and to guide an iterative link removal procedure (the deflation approach). We conclude

this section with two convex approximation-based deflationalgorithms for solving the sampled

joint control problem (16).

A. Convex Approximation

Recall that problem (16) aims to find a feasibleq such that the vectorx = (x1;x2; . . . ;xK)

is as sparse as possible in the group sense, wherexk := max {ck −Akq, 0}. The nonsmooth

mixed ℓ2/ℓ1 norm,
∑

k∈K ‖xk‖2 , is shown in [41] to be quite effective in characterizing and

inducing thegroup sparsityof the vectorx. To understand this, observe that
∑

k∈K ‖xk‖2 , theℓ1

norm of the vector(‖x1‖2, ‖x2‖2, . . . , ‖xK‖2)
T , is a good approximation of itsℓ0 norm, which

is equal to theℓ0 norm of the vector(‖x1‖0, ‖x2‖0, . . . , ‖xK‖0)
T . More discussions on using

the mixedℓ2/ℓ1 norm to recover the group sparsity can be found in [41].
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Motivated by the above discussion and the NP-hardness of problem (16), we consider the

convex approximation of problem (16) as follows:

min
q

f(q) :=
∑

k∈K

‖max {ck −Akq, 0}‖2 + αp̄Tq

s.t. 0 ≤ q ≤ e.

(17)

The convexity of the objective function of problem (17) follows directly from [42, Section 3.2.5].

Compared to problem (16), the objective function of problem(17) is continuous inq, but still

nonsmooth. We give the subdifferential [43] of the function‖max {ck −Akq, 0}‖2 in Proposition

2, which is important in the following analysis and algorithm design. The proof of Proposition

2 is provided in Appendix B.

Proposition 2: Definehk(q) = ‖max {ck −Akq, 0} ‖2. Supposeck−Akq̄ ≤ 0 andNk
= :=

{n | (ck −Akq̄)n = 0} 6= ∅, then

∂hk(q̄) =







−
∑

n∈N=
k

sn (a
n
k)

T | sn ≥ 0,
∑

n∈N=
k

s2n ≤ 1







.

In particular, if N=
k = N , then ∂hk(q̄) =

{

−AT
k s | s ≥ 0, ‖s‖2 ≤ 1

}

. Further, if Nk
+ :=

{n | (ck −Akq̄)n > 0} 6= ∅, then

∇hk(q̄) =
−
∑

n∈N+

k
(ck −Akq̄)n (a

n
k)

T

‖max {ck −Akq̄, 0} ‖2
=

−AT
k max {ck −Akq̄, 0}

‖max {ck −Akq̄, 0} ‖2
. (18)

We now discuss the choice of the parameterα in (17). The parameterα in (17) should be

chosen appropriately such that the following “Never-Over-Removal” property is satisfied: the

solution of problem (17) should simultaneously support alllinks at their desired SINR targets

with minimum total transmission power as long as all links inthe network are simultaneously

supportable. Otherwise, since the solution of (17) will be used to check the simultaneous

supportability of all links and to guide the links’ removal,it may mislead us to remove the

links unnecessarily. Notice that problem (17) withα = 0 indeed can simultaneously support all

links as long as the links are simultaneously supportable but not necessarily with minimum total

transmission power, i.e., the solution of problem (17) withα = 0 might not solve (13). Theorem

2 gives an interval of the parameterα to guarantee the “Never-Over-Removal” property. The

proof of Theorem 2 (see Appendix C) is mainly based on Proposition 2.
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Theorem 2:Suppose there exists some vectorq such that0 ≤ q ≤ e andAq ≥ c. Then

any solution of problem (17) with

0 < α ≤ α2 :=
min {c}

Kmax {p̄}
(19)

can simultaneously support all links at their desired SINR targets with minimum total transmis-

sion power.

Combining (9) and (19), we propose to choose the parameterα in (17) according to

α = min {c1α1, c2α2} , (20)

wherec1, c2 ∈ (0, 1) are two constants.

Link Removal Strategy.The solution of problem (17) can be used to guide the link removal

process. In particular, by solving (17) withα given in (20), we know whether all links in the

network can be simultaneously supported by simply checkingif its solution q̄ satisfiesAq̄ ≥ c.

Furthermore, if all links in the network cannot be simultaneously supported, we need to remove

at least one link from the network. In particular, picking the worst sampled channel index

n̄k = argmax {ck −Akq̄}, we remove the link with the largest interference plus noisefootprint

k = argmax

{

∑

j 6=k

|an̄k

k,j|q̄j +
∑

j 6=k

|a
n̄j

j,k|q̄k + cn̄k

k

}

. (21)

In the next subsection, we design efficient algorithms to solve the convex but nonsmooth

problem (17).

B. Solution for Approximation Problem(17)

By introducing auxiliary variablesx = (x1;x2; . . . ;xK) andt = (t1; t2; . . . ; tK), problem (17)

can be transformed into the following SOCP

min
q,x,t

∑

k∈K

tk + αp̄Tq

s.t. ‖xk‖ ≤ tk, k ∈ K,

c−Aq ≤ x,

0 ≤ x,

0 ≤ q ≤ e,

(22)

which can be solved by using the standard solver like CVX [44]. However, it is not an efficient

way of solving problem (17) by solving its equivalent SOCP reformulation (22), since both
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the number of constraints and the number of unknown variables of problem (22) are of order

O(NK) while (11) suggests that the sample sizeN is generally very large.

Next, we develop a custom-design algorithm for problem (17)by first smoothing the problem

and then applying the efficient projected alternate Barzilai-Borwein (PABB) algorithm [45], [46]

to solve its smooth counterpart. More specifically, we smooth problem (17) by

min
q

f̃(q, µ) =
∑

k∈K

√

‖max {ck −Akq, 0}‖
2
2 + µ2 + αp̄Tq

s.t. 0 ≤ q ≤ e,

(23)

whereµ > 0 is the smoothing parameter. By (18) in Proposition 2, the objective functionf̃(q, µ)

of problem (23) is differentiable everywhere with respect to q and its gradient is given by

∇f̃(q, µ) =
∑

k∈K

−AT
k max {ck −Akq, 0}

√

‖max {ck −Akq, 0}‖
2
2 + µ2

+αp̄.

It can be shown that, as the parameterµ tends to zero,̃f(q, µ) uniformly converges tof(q)

in (17) and the solution of the smoothing problem (23) also converges to the one of problem

(17); see Section II of [37]. Therefore, when the parameterµ is very close to zero, the solution

of problem (23) will be very close to the one of problem (17).

We apply the PABB algorithm [45], [46] to solve the smoothingproblem (23). Three distinctive

advantages of the PABB algorithm in the context of solving problem (23) are as follows. First, the

box constraint is easy to project onto, and thus the PABB algorithm can be easily implemented to

solve problem (23). Second, the PABB algorithm requires only the gradient information but not

the high-order derivative information, which makes it suitable for solving large-scale optimization

problem (23). Last but not least, the PABB algorithm enjoys aquite good numerical performance

due to the use of the BB stepsize [46]. When using the PABB algorithm to solve problem (23),

we employ thecontinuation technique [47], [48]. That is, to obtain an approximate solution

of (17), we solve (23) with a series of gradually decreasing values forµ, instead of using a

tiny fixed µ. The continuation technique can reasonably improve the computational efficiency.

Solving problem (17) by the PABB algorithm (combined with the smoothing and continuation

techniques) is much faster than solving its SOCP reformulation (22) by the standard SOCP

solver. Simulation results will be given later in Section VI.
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C. Convex Approximation-Based Deflation Algorithms

The basic idea of the proposed convex approximation-based deflation algorithm for the sampled

JPAC problem (16) is to solve the power control problem (17) and check whether all links can

be supported or not; if not, remove a link from the network, and solve a reduced problem (17)

again until all the remaining links are supported.

As in [8], to accelerate the deflation procedure (avoid solving too many optimization problems

in the form of (17)), we can derive an easy-to-check necessary condition for all links in the

network to be simultaneously supported. It is easy to verifythat the condition

µ
T
+e−

(

µ
T
−c

max + eTc
)

≥ 0 (24)

is necessary for all links to be simultaneously supported, where µ+ = max {µ, 0} , µ− =

max {−µ, 0}, µ = ATe, andcmax = (max {c1} ; max {c2} ; . . . ; max {cK}) . If (24) is violated,

we remove the linkk0 according to

k0 = argmax
k∈K

{

∑

j 6=k

|āk,j|+
∑

j 6=k

|āj,k|+ c̄k

}

, (25)

which corresponds to applying the SMART rule [4] to the normalized sampled channel and

substitutingq = e. In (25), āk,j and c̄k are the averaged sample channel gain and noise, i.e.,

āk = (āk,1, āk,2, . . . , āk,K) =
eTAk

N
, c̄k =

eTck

N
, k ∈ K.

The proposed convex approximation-based deflation algorithmic framework for problem (16)

is described in Algorithm 1. It is worthwhile remarking the difference between the proposed

Algorithm 1 and the NLPD algorithm in [8]. The first key difference is that Algorithm 1 is

designed for solving the sample approximation of the chanceSINR constrained JPAC problem

(6) (i.e., problem (16)) while the NLPD algorithm is designed for solving the instantaneous

SINR constrained JPAC problem (3). As discussed in Subsection IV-C, problem (16) includes

problem (3) as a special case. The second key difference between the two algorithms lies in the

power control step (i.e.,Step 3). More specifically, at each iteration, the proposed Algorithm

1 solves the SOCP (17) to update the power while the NLPD algorithm solves the LP (4) to

update the power. We also remark that the SOCP approximation(17) used in Algorithm 1 is
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different from the one used in [1]. The two SOCP approximations take different forms and are

derived from different perspectives.

Algorithm 1: A Convex Approximation-Based Deflation Algori thmic Framework

Step 1. Initialization: Input data(A, c, p̄) .

Step 2.Preprocessing: Remove linkk0 iteratively according to (25) until condition

(24) holds true.

Step 3.Power control: Compute parameterα by (20) and solve problem (17); check

whether all links are supported: if yes, go toStep 5; else go toStep 4.

Step 4. Admission control: Remove linkk0 according to (21), setK = K \ {k0} ,

and go toStep 3.

Step 5.Postprocessing: Check the removed links for possible admission.

In the above framework, if the power control problem (17) is solved via solving its equivalent

SOCP reformulation (22), we call the corresponding algorithm SOCP-D; while if problem (17)

is solved via using the PABB algorithm to solve its smoothingcounterpart (23), we call the

corresponding algorithm PABB-D. The SOCP-D algorithm is ofpolynomial time complexity,

i.e., it has a complexity ofO(N3.5K4.5), since it needs to solve at mostK SOCP problems

(22) and solving one SOCP problem in the form of (22) requiresO(N3.5K3.5) operations [49,

Page 423]. It is hard to analyze the complexity of the PABB-D algorithm. This is because

global (linear) convergence rate of the PABB algorithm, when it is used to solve general

nonlinear optimization problems, remains unknown [50]. The postprocessing step (Step 5) aims

at admitting the links removed in the preprocessing and admission control steps [1], [8]. A

specification of the postprocessing step can be found in Section III of [37].

VI. NUMERICAL SIMULATIONS

To illustrate the effectiveness and efficiency of the two proposed convex approximation-based

deflation algorithms (SOCP-D and PABB-D), we present some numerical simulation results in

this section. The number of supported links, the total transmission power, and the execution

CPU time are used as the metrics for comparing different algorithms.

Simulation Setup:As in [1], each transmitter’s location obeys the uniform distribution over a

D1 Km × D1 Km square and the location of each receiver is uniformly generated in a disc with
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center at its corresponding transmitter and radiusD2 Km, excluding a radius of10 m. Suppose

that the channel coefficienthk,j is generated from the Rician channel model [51], i.e.,

hk,j =

(

√

κ

κ+ 1
+

√

1

κ + 1
ζk,j

)

1

d2k,j
, ∀ k, j ∈ K, (26)

whereζk,j obeys the standard complex Gaussian distribution, i.e.,ζk,j ∼ CN (0, 1), dk,j is the

Euclidean distance from the link of transmitterj to the link of receiverk, andκ is the ratio of

the power in the line of sight (LOS) component to the power in the other (non-LOS) multipath

components. Forκ = 0 we have Rayleigh fading and forκ = ∞ we have no fading (i.e., a

channel with no multipath and only a LOS component). The parameterκ therefore is a measure

of the severity of the channel fading: a smallκ implies severe fading and a largeκ implies

relatively mild fading. The channel gain{gk,j} are set to be:

gk,j = |hk,j|
2 =

∣

∣

∣

∣

∣

√

κ

κ+ 1
+

√

1

κ + 1
ζk,j

∣

∣

∣

∣

∣

2
1

d4k,j
, k, j ∈ K. (27)

Each link’s SINR target is set to beγk = 2 dB (∀ k ∈ K), each link’s noise power is set to be

ηk = −90 dB (∀ k ∈ K), and the power budget of the link of transmitterk is set to be

p̄k = bp
k
, k ∈ K, (28)

wherep
k

is the minimum power needed by linkk to meet its SINR requirement in the absence

of any interference from other links whenκ = +∞ in (26).

Benchmark:When κ = +∞, there is no uncertainty of channel gains, and the number of

supported links in this case should be greater than or equal to the number of supported links

under the same channel conditions except whereκ < +∞. In addition, if the number of supported

links under these two cases are equal to each other, the totaltransmission power in the former

channel condition should be less than the one in the latter channel condition. In fact, when

κ = +∞, the corresponding JPAC problem (16) reduces to problem (3), which can be solved

efficiently by the NLPD algorithm in [8]. The solution given by the NLPD algorithm will be used

as the benchmark to compare with the two proposed algorithms1, since the NLPD algorithm was

1We remark that this is the first paper that addresses the JPAC problem based on the CDI assumption without specifying

any particular distribution, and there is no existing algorithms dealing with the same issue that we can compare the proposed

algorithms with.
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reported to have the close-to-global-optimal performancein terms of the number of supported

links in [8].

Choice of Parameters:We set the parametersǫ, δ, andK in (11) to be0.1, 0.05, and 10,

respectively. We remark thatK in equation (11) is the number of supported links but not the

number of total links. Substituting these parameters in (11), we obtainN∗ = 200, and we set

N = 200 in all of our simulations. Both of the parametersc1 andc2 in (20) are set to be0.999.

We do simulations in two different setups where(D1, D2) = (2, 0.4) and(D1, D2) = (1, 0.2). For

convenience, we call the former setup as Setup1 and the latter one as Setup2. Notice that Setup2

represents a dense network where the distance between the transmitters and receivers are closer

(i.e., half of that of the Setup1). Under each setup, we test three different sets of parameters, where

one is(κ, b) = (+∞, 2), one is(κ, b) = (100, 4), and another one is(κ, b) = (10, 40). Finally,

we use CVX [44] to solve the SOCP problems in the SOCP-D algorithm.

Simulation Results and Analysis:Table I summarizes the statistics of the number of supported

links of 200 Monte-Carlo runs of numerical experiments with different choices of simulation

parameters. For instance, “664 = 2 ∗ 19 + 3 ∗ 98 + 4 ∗ 83” in the third column of Table I stands

for that when(K,D1, D2, κ, b) = (4, 2, 0.4,+∞, 2) , total 664 links are supported in these200

Monte-Carlo runs, and amongest them,2 links are supported19 times, 3 links are supported

98 times, and4 links are supported83 times. Figs. 1, 2, and 3 are obtained by averaging over

the 200 Monte-Carlo runs. They plot the average number of supportedlinks, the average total

transmission power, and the average execution CPU time of the proposed SOCP-D and PABB-D

algorithms (for solving the sampled JPAC problem (16)) and the benchmark versus different

number of total links in Setup1.

It can be seen from Fig. 1 that the number of supported links bythe two proposed algorithms

(for fading channels) is less than the benchmark (for deterministic channels). This shows that the

uncertainty of channel gains could lead to a (significant) reduction in the number of supported

links. This can also be clearly observed from Table I. For instance, whenK = 4 (see the first

three lines of Table I) all links can be simultaneously supported 83 times whenκ = +∞, 78

times whenκ = 100, and only50 times whenκ = 10. In fact, this is the reason why we associate

different κ with different b in our simulations. We expect that a largeb and thus large power

budgetsp̄k (cf. (28)) can compensate the performance degradation of the number of supported

links caused by the large uncertainty of channel gains.
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TABLE I

STATISTICS OF THENUMBER OF SUPPORTEDL INKS OF 200 MONTE-CARLO RUNS.

Parameters(K,D1, D2, κ, b) Algorithm Statistics of the Number of Supported Links

(4, 2, 0.4,+∞, 2) Benchmark 664=2*19+3*98+4*83

(4, 2, 0.4, 100, 4) SOCP-D/PABB-D 659=2*19+3*103+4*78

(4, 2, 0.4, 10, 40) SOCP-D/PABB-D 609=1*1+2*39+3*110+4*50

(12, 2, 0.4,+∞, 2) Benchmark 1468=5*8+6*36+7*68+8*60+9*24+10*4

(12, 2, 0.4, 100, 4) SOCP-D/PABB-D 1431=5*12+6*42+7*72+8*54+9*17+10*3

(12, 2, 0.4, 10, 40) SOCP-D/PABB-D 1236=4*10+5*39+6*79+7*53+8*15+9*4

(20, 2, 0.4,+∞, 2) Benchmark 1953=6*1+7*8+8*21+9*50+10*67+11*38+12*11+13*3+14*1

(20, 2, 0.4, 100, 4) SOCP-D/PABB-D 1864=7*13+8*40+9*58+10*58+11*22+12*8+13*1

(20, 2, 0.4, 10, 40) SOCP-D/PABB-D 1570=5*2+6*17+7*65+8*60+9*39+10*15+11*2

(28, 2, 0.4,+∞, 2) Benchmark 2342=8*1+9*13+10*23+11*54+12*56+13*31+14*17+15*2+16*1+17*2

(28, 2, 0.4, 100, 4) SOCP-D/PABB-D 2250=8*3+9*21+10*40+11*50+12*50+13*22+14*11+15*1+16*2

(28, 2, 0.4, 10, 40) SOCP-D/PABB-D 1875=5*1+6*1+7*13+8*37+9*60+10*48+11*25+12*14+13*0+14*1

(4, 1, 0.2,+∞, 2) Benchmark 639=2*26+3*109+4*65

(4, 1, 0.2, 100, 4) SOCP-D/PABB-D 632=1*1+2*27+3*111+4*61

(4, 1, 0.2, 10, 40) SOCP-D/PABB-D 589=1*2+2*44+3*117+4*37

(12, 1, 0.2,+∞, 2) Benchmark 1443=4*3+5*4+6*38+7*85+8*45+9*22+10*3

(12, 1, 0.2, 100, 4) SOCP-D/PABB-D 1403=4*3+5*11+6*45+7*82+8*41+9*16+10*2

(12, 1, 0.2, 10, 40) SOCP-D/PABB-D 1214=3*2+4*8+5*56+6*64+7*52+8*14+9*4

(20, 1, 0.2,+∞, 2) Benchmark 1942=6*1+7*3+8*29+9*49+10*69+11*37+12*11+13*1

(20, 1, 0.2, 100, 4) SOCP-D/PABB-D 1882=6*1+7*10+8*32+9*65+10*58+11*23+12*11

(20, 1, 0.2, 10, 40) SOCP-D/PABB-D 1577=5*4+6*18+7*54+8*59+9*55+10*6+11*4

(28, 1, 0.2,+∞, 2) Benchmark 2333=8*2+9*13+10*34+11*41+12*50+13*37+14*18+15*4+16*1

(28, 1, 0.2, 100, 4) SOCP-D/PABB-D 2236=7*1+8*5+9*22+10*36+11*57+12*38+13*27+14*13+15*1

(28, 1, 0.2, 10, 40) SOCP-D/PABB-D 1857=6*5+7*16+8*38+9*51+10*51+11*28+12*9+13*2

Table I, Fig. 1, and Fig. 2 show that the two proposed algorithms always return the same

solution to the sampled JPAC problem (16), i.e., supportingsame number of links with same total

transmission power. However, Fig. 3 shows that the PABB-D algorithm substantially outperforms

the SOCP-D algorithm in terms of the average CPU time. This isnot surprising, since in each

power control step (i.e., solving the convex approximationproblem (17)), the custom-design

algorithm is used to carry out power control in the PABB-D algorithm while a general-purpose

solver CVX is used to update power in the SOCP-D algorithm. Note that both the number of
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Fig. 1. Average number of supported links versus the number of total links in Setup1.
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Fig. 2. Average total transmission power versus the number of total links in Setup1.

constraints and the number of unknown variables in problem (22) are of orderO(NK) and (11)

shows that the sample sizeN needs to be large to guarantee the approximation performance,

which makes CVX unsuitable to be used to solve problem (17) via solving its equivalent SOCP

reformulation (22).

By comparing the two sets of numerical experiments where(κ, b) = (100, 4) and (κ, b) =

(10, 40), it can be observed from Figs. 1 and 2 that more links can be supported with signif-

icantly less total transmission power in the former case than the latter case. This is because
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Fig. 3. Average execution time (in seconds) versus the number of total links in Setup1.
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Fig. 4. Average number of supported links versus the number of total links in Setup1 and Setup2.

the uncertainty of the channel gains withκ = 100 is generally much smaller than the one with

κ = 10. We also point out that the execution CPU time of the two proposed deflation algorithms

mainly depends on how many times the power control problem (17) is solved. In general, the

larger number of links are supported, the smaller number of links are removed from the network

and the smaller number of power control problems in form of (17) are solved. Therefore, the

average CPU time of the proposed algorithms when(κ, b) = (10, 40) is larger than the one when

(κ, b) = (100, 4); see Fig. 3.
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Fig. 5. Average total transmission power versus the number of total links in Setup1 and Setup2.

For conciseness, we do not present the comparison of the PABB-D and SOCP-D algorithms

when both algorithms are used to solve the sampled JPAC problem (16) in Setup2, since the

same observations as in Setup1 can be made in Setup2. Instead, we focus on the comparison

of two different setups in the following. Since the PABB-D algorithm always returns the same

solution as the SOCP-D algorithm but takes much less CPU time, we choose to use the PABB-D

algorithm to solve the sampled JPAC problem (16) in the following.

TABLE II

THE RATIO OF THE AVERAGE TOTAL TRANSMISSIONPOWER IN SETUP1 TO THAT IN SETUP2.

❍
❍
❍
❍
❍
❍❍

(κ, b)

K
4 8 12 16 20 24 28

(100, 4) 17.1513 15.7554 16.5563 16.1834 15.9193 15.6577 16.4100

(10, 40) 19.1574 15.7159 16.0476 16.2672 15.9009 14.7517 16.0995

Figs. 4 and 5 report the average number of supported links andthe average total transmission

power (returned by the PABB-D algorithm for solving the sampled JPAC problem (16)) versus

different number of total links in Setup1 and Setup2. It can be observed that the average number

of supported links and the average execution time in both setups are roughly equal to each other,

but the average total transmission power in Setup1 is approximately16 times as large as that in
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Setup2 (also see Table II). This is because when the setup is switched from Setup1 to Setup2

(with the random variablesζk,j in (26) and (27) neglected for the time being), the corresponding

distancesdk,j between the transmitters and receivers decrease by half. According to (27) and

(28), all the channel gains (including both the direct-linkand cross-link channel gains) increase

and power budgets decrease by a factor of16. As the channel gains are increased and power

budgets are decreased by a same factor while the noise powersremain to be fixed, the number

of supported links in problem (16) remains unchanged. However, it brings a benefit of a 93.75%

(=15/16) reduction in the total transmission power, which is consistent with our engineering

practice. Due to the effects of the random variablesζk,j in (26) and (27), the ratio of the average

total transmission power in Setup1 to that in Setup2 is approximately (but not exactly)16.

VII. CONCLUSIONS

In this paper, we have considered the chance SINR constrained JPAC problem, and have

proposed two sample approximation-based deflation approaches for solving the problem. We first

approximated the computationally intractable chance SINRconstraints by sampling, and then

reformulated the sampled JPAC problem as a composite group sparse minimization problem.

Furthermore, we approximated the NP-hard group sparse minimization problem by a convex

problem (equivalent to an SOCP) and used its solution to check the simultaneous supportability

of all links and to guide an iterative link removal procedure(the deflation approach), resulting

in two efficient deflation algorithms (SOCP-D and PABB-D).

The proposed approaches are particularly attractive for practical implementations for the

following reasons. First, the two proposed approaches onlyrequire the CDI, which is more

practical than most of the existing algorithms for JPAC where the perfect instantaneous CSI

is required. Second, the two proposed approaches enjoy a lowcomputational complexity. The

SOCP-D approach has a polynomial time complexity. To further improve the computational

efficiency, the special structure of the SOCP approximationproblem is exploited, and an efficient

algorithm, PABB-D, is custom designed for solving it. The PABB-D algorithm significantly

outperforms the SOCP-D algorithm in terms of the execution CPU time. Finally, our simulation

results show that the proposed approaches are very effective by using the NLPD algorithm as

the benchmark.
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APPENDIX A

Proof of Proposition 1:We prove Proposition 1 by contraction. Assume that linkk is supported

in (16) butAkq
∗ > ck holds true. Then we can construct a feasible pointq̂ satisfying

∑

k∈K ‖max {ck −Akq̂, 0} ‖0 + αp̄T q̂ <
∑

k∈K ‖max {ck −Akq
∗, 0} ‖0 + αp̄Tq∗. (29)

Define q̂ = (q̂1, q̂2, . . . , q̂K)
T with

q̂j =







max {(Ek −Ak)q
∗ + ck} , if j = k;

q∗j , if j 6= k.

Recalling the definitions ofEk andAk, we knowEk − Ak is a nonnegative matrix, and thus

q̂k = max {(Ek −Ak)q
∗ + ck} > 0. Since

Akq
∗ = Ekq

∗ − (Ek −Ak)q
∗ = q∗ke− (Ek −Ak)q

∗ > ck,

it follows from the definition ofq̂k that

q∗k > max {(Ek −Ak)q
∗ + ck} = q̂k.

Hence,q̂ is feasible (i.e.,0 ≤ q̂ ≤ q∗ ≤ e and the inequalitŷq ≤ q∗ holds true strictly for the

k-th entry) and

p̄T q̂ < p̄Tq∗. (30)

Moreover, it follows from the definition of̂q that Akq̂ ≥ ck. For anyj 6= k, if Ajq
∗ ≥ cj,

we haveAjq̂− cj ≥ Ajq
∗ − cj ≥ 0, where the first inequality is due to the fact that all entries

of Aj except itsj-th column are nonpositive and the factq̂ ≤ q∗. Consequently, there holds

J ∗ ⊂ Ĵ , whereJ ∗ = {j |Ajq
∗ ≥ cj} and Ĵ = {j |Ajq̂ ≥ cj} . Thus, we have

∑

k∈K ‖max {ck −Akq
∗, 0} ‖0 =

∑

k/∈J ∗ ‖max {ck −Akq
∗, 0} ‖0

≥
∑

k/∈Ĵ ‖max {ck −Akq̂, 0} ‖0

=
∑

k∈K ‖max {ck −Akq̂, 0} ‖0.

(31)

Combining (30) and (31) yields (29), which contradicts the optimality of q∗. This completes the

proof of Proposition 1.
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APPENDIX B

Proof of Proposition 2:To prove Proposition 2, we first consider the simple case where

h(q) = ‖max {q, 0} ‖2.

Lemma 1:Supposeh(q) = ‖max {q, 0} ‖2. Then ∂h(0) = {s | s ≥ 0, ‖s‖2 ≤ 1} . If there

existsi such that(q)i > 0, thenh(q) is differentiable and

∇h(q) =
max {q, 0}

‖max {q, 0} ‖2
. (32)

Proof: DefineS = {s | s ≥ 0, ‖s‖2 ≤ 1} . We claim∂h(0) = S. On one hand, taking any

s ∈ S, we have that

h(q) = ‖max {q, 0} ‖2 ≥ sT max {q, 0} ≥ sTq = h(0) + sT (q− 0), ∀ q,

where the first inequality is due to the Cauchy-Schwarz inequality and the fact‖s‖2 ≤ 1, and

the second inequality is due tos ≥ 0. This shows thatS ⊂ ∂h(0) according to the definition of

∂h(0) [43]. On the other hand, to show∂h(0) ⊂ S, it suffices to show that any points /∈ S is

not a subgradient ofh(q) at point0. In particular, if ‖s‖2 > 1, then

h(q) = ‖max {q, 0} ‖2 ≤ ‖q‖2 = 1 < ‖s‖2 = sTq = h(0) + sT (q− 0)

with q = s/‖s‖2. Thus, the subgradients of h(q) at point0 must satisfy‖s‖2 ≤ 1. If ‖s‖2 ≤ 1

but (s)1 < 0 (without loss of generality), we test the pointq = (−1, 0, . . . , 0)T , and obtain

h(q) = ‖max {q, 0} ‖2 = 0 < − (s)1 = sTq = h(0) + sT (q− 0).

Consequently, the subgradients of h(q) at point0 must satisfy‖s‖2 ≤ 1 and s ≥ 0. Hence,

∂h(0) = {s | s ≥ 0, ‖s‖2 ≤ 1} .

Next, we show thath(q) is differentiable at the pointq which has at least one positive entry,

and the corresponding gradient is given in (32). In fact, although the functionmax {q, 0} is

nondifferentiable at pointq = 0, its squaref(q) = (max {q, 0})2 is differentiable everywhere;

i.e.,

f ′(q) =







0, if q ≤ 0;

2q, if q > 0.

According to the composite rule of differentiation, we knowthat the gradient ofh(q) is given

by (32). This completes the proof of Lemma 1.
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Equipping with Lemma 1, we now can prove Proposition 2. Without loss of generality, assume

that ck −Akq̄ = 0. Then, for anyq and anys satisfying‖s‖2 ≤ 1 ands ≥ 0, we have

hk(q) = ‖max {ck −Akq, 0} ‖2 ≥ sT (ck −Akq) (from Lemma 1)

= hk(q̄) +
(

−AT
k s
)T

(q− q̄) ,
(33)

which shows that all vectors in
{

−AT
k s | s ≥ 0, ‖s‖2 ≤ 1

}

are subgradients ofhk(q) at point

q̄. In the same way as in the proof of Lemma 1, we can show that ifs does not satisfy

‖s‖2 ≤ 1 and s ≥ 0, the inequality in (33) will violate for some special choice of q. Hence,

∂hk(q̄) =
{

−AT
k s | s ≥ 0, ‖s‖2 ≤ 1

}

.

If N+
k 6= ∅, we know from the composite rule of differentiation and Lemma1 thathk(q̄) is

differentiable and its gradient is given by

∇hk(q̄) =
−
∑

n∈N+

k
(ck −Akq̄)n (a

n
k)

T

‖max {ck −Akq̄, 0} ‖2
=

−AT
k max {ck −Akq̄, 0}

‖max {ck −Akq̄, 0} ‖2
.

This completes the proof of Proposition 2.

APPENDIX C

Proof of Theorem 2:Suppose all links in the network can be simultaneously supported (i.e.,

there exists0 ≤ q ≤ e satisfyingAq ≥ c) and q̄ is the solution to problem

min
q

p̄Tq

s.t. Aq− c ≥ 0,

0 ≤ q ≤ e.

To prove Theorem 2, it suffices to show thatq̄ is also the solution to problem (17) withα ∈

(0, α2]. Moreover, to show̄q is the solution to problem (17), we only need to show that the

subdifferential of the objective function of problem (17) at point q̄ contains0 [43]. Next, we

claim the latter is true.

We first characterize the subdifferential of the objective function of problem (17) at point̄q.

It follows from (14) that there existsI = {n1, n2, . . . , nK} such thatq̄ is the solution to the

following linear system

AIq := [an1

1 ;an2

2 ; . . . ;anK

K ]q = (cn1

1 ; cn2

2 ; . . . ; cnK

K ) := cI .
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Recalling the definition ofan
k (see Subsection IV-B), we know thatI − AI is a nonnegative

matrix. Moreover, from [52, Theorem 1.15],AI is nonsingular,A−1
I is nonnegative, and

0 < eTA−1
I cI = eT q̄ ≤ K. (34)

Definehk(q) = ‖max {ck −Akq, 0}‖2 for k ∈ K. It follows from [43, Theorem 23.8] that the

subdifferential of the objective function of problem (17) at point q̄ is given by
{

∑

k∈K

gk + αp̄ | gk ∈ ∂hk(q̄), k ∈ K

}

.

According to Proposition 2,∂hk(q̄) contains2 all vectors in

Sk =
{

−sk (a
nk

k )T | 0 ≤ sk ≤ 1
}

. (35)

Therefore, all vectors in

S =
{

−AT
I s+ αp̄ | 0 ≤ s ≤ e

}

=

{

−
∑

k∈K

sk (a
nk

k )T + αp̄ | 0 ≤ sk ≤ 1, k ∈ K

}

are subgradients of the objective function of problem (17) at point q̄.

If 0 ∈ S, the subdifferential of the objective function of problem (17) at point q̄ contains

0 [43], which completes the proof of Theorem 2. Next, we show0 ∈ S is true. Consider the

vectors = αA−T
I p̄. It is a nonnegative vector (sinceA−1

I is nonnegative), and each of its entries

is less than or equal to1 as long asα ≤ α2. This is because

eT s = eTαA−T
I p̄ ≤ αmax {p̄} eTA−T

I e ≤ α
max {p̄}

min {cI}
cTIA

−T
I e

(a)

≤ α
max {p̄}

min {c}
K ≤ 1,

where(a) is due to (34) and the factmin {c} ≤ min {cI}. Substitutings = αA−T
I p̄ into S, we

obtain−AT
I s+ αp̄ = −AT

I

(

αA−T
I p̄

)

+ αp̄ = 0. Thus,0 ∈ S.
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