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Abstract—In this paper, we present a flexible low-rank matrix
completion (LRMC) approach for topological interference man-
agement (TIM) in the partially connected K-user interference
channel. No channel state information (CSI) is required at
the transmitters except the network topology information. The
previous attempt on the TIM problem is mainly based on its
equivalence to the index coding problem, but so far only a fewin-
dex coding problems have been solved. In contrast, in this paper,
we present an algorithmic approach to investigate the achievable
degrees-of-freedom (DoFs) by recasting the TIM problem as an
LRMC problem. Unfortunately, the resulting LRMC problem is
known to be NP-hard, and the main contribution of this paper
is to propose a Riemannian pursuit (RP) framework to detect
the rank of the matrix to be recovered by iteratively increasing
the rank. This algorithm solves a sequence of fixed-rank matrix
completion problems. To address the convergence issues in the
existing fixed-rank optimization methods, the quotient manifold
geometry of the search space of fixed-rank matrices is exploited
via Riemannian optimization. By further exploiting the structure
of the low-rank matrix varieties, i.e., the closure of the set of fixed-
rank matrices, we develop an efficient rank increasing strategy
to find good initial points in the procedure of rank pursuit.
Simulation results demonstrate that the proposed RP algorithm
achieves a faster convergence rate and higher achievable DoFs
for the TIM problem compared with the state-of-the-art methods.

Index Terms—Interference alignment, topological interference
management, degrees-of-freedom, index coding, low-rank matrix
completion, Riemannian optimization, quotient manifolds.

I. I NTRODUCTION

Network densification with interference coordination has
been recognized as a promising way to meet the exponen-
tially growing mobile data traffic in next generation wireless
networks [1], [2], [3]. In particular, interference alignment
[4] has been proposed as a powerful tool to understand the
Shannon capacity in various interference-limited scenarios,
e.g., the MIMO interference channel [5] and cellular networks
[6]. Although interference alignment can serve as a linear in-
terference management strategy achieving the optimal DoFsin
many scenarios, the overhead of obtaining the required global
instantaneous channel state information (CSI) has hindered
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its practical implementation [7]. This motivates numerous
research efforts on CSI overhead reduction for interference
alignment, e.g., with delayed CSI [8] and alternating CSI [9].
However, the practical applicability of these results remain
unclear. More recently, a new proposal has emerged, namely,
topological interference management (TIM) [10], as a promis-
ing solution for the partially connected interference channels.
It is mainly motivated by the fact that most of the channels in
a wireless network are very weak and can be ignored due to
the shadowing and pathloss [10], [11], [12]. It thus provides an
opportunity to manage interference only based on topological
information rather than the instantaneous CSI.

Specifically, in the TIM problem, we assume that no CSI
at the transmitters is available beyond the network topology
knowledge, i.e., the connectivity of the wireless network.
Due to the practical applicability of such CSI assumption
and information theoretic interest, the TIM problem has re-
ceived tremendous attentions and been investigated in vari-
ous scenarios with partial connectivity, e.g., the fast fading
scenarios [11], [13], transmitter cooperation [14] and MIMO
interference channels [15]. In particular, in a slow fading
scenario, by establishing the connection between the wireless
TIM problem and the wired index coding problem, efficient
capacity and DoF analysis was provided in [10] based on
the existing results from index coding problems. However,
the index coding problem itself is an open problem, and thus
the existing solutions are only valid for some special cases.
For general network topologies in the wireless TIM problem,
the optimal DoF is still unknown. In a fast fading scenario, a
matrix rank-loss approach based on matroid and graph theories
was presented in [13] to characterize the symmetric DoF for
a class of TIM problems.

In this paper, we will present an algorithmic approach to
evaluate the achievable DoFs in the TIM problem for general
partially connected interference channels. It is achievedby
recasting the original TIM problem as a low rank matrix
completion (LRMC) problem [16]. Then the minimum number
of channel uses for interference-free data transmission will be
equal to the minimum rank of the matrix in the associated
LRMC problem. This approach has recently been applied to
solve the linear index coding problem over the finite field [17]
and the wireless TIM problem with symmetric DoFs [18], [19].
We shall extend the previous results on the symmetric DoF
case with single data transmission for each user [18], [19] to
any achievable DoF region. The presented LRMC approach
will serve as a flexible way to maximize the achievable DoFs
for any network topology, thereby providing insights on the
TIM problem for general network topologies that are not yet
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available in theory.
Unfortunately, the resulting LRMC problem is NP-hard due

to the non-convex rank objective. Although the widely used
nuclear norm based convex relaxation provides an effective
way to solve the LRMC problem with polynomial time
complexity and optimality guarantees with well structured
affine constraints [16], it is inapplicable to our problem as
it always returns a full rank solution [18]. Another category
of algorithms is based on alternating minimization [20], [21]
by recasting the original LRMC problem as a fixed-rank
optimization problem. Although the optimality can be guaran-
teed with standard assumptions (e.g., the original data matrix
should be incoherent [16]), the existing fixed-rank methods
may converge slowly [22], [23] and require the optimal rank
of the matrix as a prior information [24].

A. Contributions

We present a low-rank matrix completion approach to max-
imize the achievable DoFs for the TIM problem. In particular,
we extend the results in [19], [18] for the symmetric DoF
with single data transmission for each user to any DoF region.
To address the limitations of existing fixed-rank approaches,
we propose a Riemannian pursuit (RP) algorithm to solve the
LRMC problem for the TIM problem. This is achieved by
iteratively increasing the rank of the matrix to be recovered. In
particular, the developed RP algorithm possesses the following
properties:

• We can efficiently solve the fixed-rank optimization prob-
lems to address the convergence issues in the existing
fixed-rank methods;

• We design an efficient rank increasing strategy to find a
good initial point in the next iteration for rank pursuit.

In the proposed RP framework, by exploiting the Rie-
mannian quotient manifold geometry of the search space of
fixed-rank matrices via low-rank matrix factorization [23],
[25], [26], [27], the nonlinear conjugate gradient (a first-
order method with superlinear convergence rate endowed with
a good Riemannian metric [26], [27]) and trust-region (a
second-order method with quadratic convergence rate [28])
based Riemannian optimization algorithms [29] are developed
to solve the smooth fixed-rank optimization problems. These
algorithms can achieve faster convergence rates and higher
precision solutions compared with the existing fixed-rank
methods, such as the alternating minimization method [20],
[21] and the embedded manifold based Riemannian optimiza-
tion algorithm [22]. Furthermore, by exploiting the structures
of low-rank matrix varieties [24], [30], [19], i.e., the closure
of the set of fixed-rank matrices, an efficient rank increasing
strategy is proposed to find a high quality initial point and
to guarantee that the objective decreases monotonically inthe
procedure of rank pursuit.

In summary, the major contributions of the paper are as
follows:

1) A Riemannian pursuit framework is proposed to solve
the resulting LRMC problem by solving a sequence of
fixed-rank optimization problems with an efficient rank
increasing strategy.

2) To address the convergence issues in the existing fixed-
rank based methods, we present a versatile Riemannian
optimization framework by exploiting the quotient man-
ifold geometry of the fixed-rank matrices and the least-
squares structure of the cost function [26] as well as the
second-order information of the problem.

3) A novel rank increasing strategy is proposed, which
considers intrinsic manifold structures in the developed
Riemannian optimization algorithms. In particular, by
exploiting the structures of low-rank varieties, we extend
the results in [24], [19] for the embedded manifold to
the framework of the quotient manifold.

Simulation results will demonstrate the superiority of the
proposed RP algorithms with faster convergence rates and
the capability of automatic rank detection compared with the
existing fixed-rank optimization algorithms to maximize the
achievable DoFs for the TIM problem.

B. Organization

The remainder of the paper is organized as follows. Section
II presents the system model and problem formulations. In
Section III, the low-rank matrix completion approach with Rie-
mannian pursuit is developed. The Riemannian optimization
algorithms are developed in Section IV. The rank increasing
strategy is presented in Section V. Numerical results will be
demonstrated in Section VI. Finally, conclusions and discus-
sions are presented in Section VII. The derivations of the
Riemannian optimization related ingredients are divertedto
the appendix.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Channel Model

Consider the topological interference management (TIM)
problem in the partially connectedK-user interference channel
with K single-antenna transmitters andK single-antenna
receivers [10]. Specifically, letV be the index set of the
connected transceiver pairs such that(i, j) ∈ V representing
the i-th receiver is connected to thej-th transmitter. That is,
the channel propagation coefficients belonging to the setV are
nonzero and are set to be zeros otherwise. Each transmitterj
wishes to send a messageWj to its corresponding receiverj.
Here,Wj is uniformly chosen in the corresponding message
setWj .

Each transmitterj encodes its messageWj into a vector
xj ∈ CN of lengthN and transmits the signal overN time
slots. Therefore, the input-output relationship is given by

yi = H[ii]xi +
∑

(i,j)∈V,i6=j

H[ij]xj + ni, ∀i = 1, . . . ,K, (1)

where ni ∼ CN (0, IN ) and yi ∈ CN are the additive
isotropic white Gaussian noise and received signal at receiver
i, respectively;H[ij] = diag{Hij} = HijIN is an N × N
diagonal matrix withHij ∈ C as the channel coefficient
between transmitterj and receiveri in the considered block.
We consider the block fading channel model, and thus the
channel stays constant during theN time slots, i.e., all the
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diagonal entries inH[ij] are the same. The matrix repre-
sentation for the channel coefficients in (1) is mainly for
the comparison of different channel models to establish the
interference alignment conditions, which will be explained in
Section II-C. In this paper, following the TIM setting [10],
we assume that only the network topology informationV is
available at transmitters. Furthermore, each transmitterhas an
average power constraint, i.e.,1NE[‖xi‖2] ≤ ρ with ρ > 0 as
the maximum transmit power.

B. Achievable Rates and DoF

We assume that transmitters1, 2, . . . ,K have independent
messagesW1,W2, . . . ,WK intended for receivers1, 2, . . . ,K,
respectively. The rate tuple(R1, R2, . . . , RK) with Ri =
log |Wi|

N is achievable if there exists an encoding and decoding
scheme such that the probability of decoding error for all the
messages can be made arbitrarily small simultaneously as the
codewords lengthN approaches infinity [31].

The degrees of freedom (DoF) in the partially connected
K-user interference channel is defined as [10], [4]

di = lim sup
ρ→∞

Ri

log(ρ)
, ∀i. (2)

The DoF regionD is defined as the closure of the set of
achievable DoF tuples. In particular, the symmetric DoFdsym

is the highest valued0, such that the DoF allocationdi =
d0, ∀i, is inside the DoF region. This is given by [10]

dsym = lim sup
ρ→∞

[

sup(Rsym,...,Rsym)∈D

Rsym

log(ρ)

]

. (3)

In this paper, we choose the DoF as the performance metric
and design the corresponding linear interference management
strategies to maximize the achievable DoFs [10], [5].

C. Topological Interference Management

Linear schemes become particular interesting for interfer-
ence management due to their low-complexity and the DoF
optimality in many scenarios [10], [4], [5]. We thus restrict
the class of interference management strategies to linear
schemes to maximize the achievable DoFs as the signal-to-
noise ratio (SNR) approaches infinity. Specifically, for message
Wj , let Vj ∈ CN×Mj and Ui ∈ CN×Mi be the precoding
matrix at transmitterj and the receiver combining matrix
at receiveri, respectively. Assume that each messageWj

is split into Mj independent scalar data streams, denoted
as sj = [s1(Wj), s2(Wj), . . . , sMj

(Wj)]
T ∈ CMj . And

sm(Wj)’s are independent Gaussian codebooks, each of which
carries one symbol and is transmitted along the column vectors
of the precoding matrixVj . Therefore, over theN channel
uses, the input-output relationship (1) is rewritten as

yi = H[ii]Visi +
∑

(i,j)∈V,i6=j

H[ij]Vjsj + ni, ∀i. (4)

In the regime of asymptotically high SNR, to accomplish
decoding, we impose the constraints that, at each receiveri, the
desired signal spaceH[ii]Vi is complementary to the interfer-
ence space

∑

(i,j)∈V,i6=j H
[ij]Vj . That is, after projecting the

received signal vectoryi onto the spaceUi, the interference
terms should be aligned and then cancelled while the desired
signal should be preserved [5], [32], [4], i.e.,

UH

i H
[ij]Vj = 0, ∀i 6= j, (i, j) ∈ V , (5)

det
(

UH

i H
[ii]Vi

)

6= 0, ∀i. (6)

If conditions (5) and (6) are satisfied, the parallel interference-
free channels can be obtained overN channel uses. Therefore,
the DoF ofMi/N is achieved for messageWi. However, this
requires instantaneous CSI and its acquisition is challenging
in dense networks with a large number of transceiver pairs [7],
[10].

Observe that the channel matrixH[ij] equalsHijIN for the
constant channel over theN channel uses. The conditions (5)
and (6) can be rewritten as the following channel independent
conditions:

UH

i Vj = 0, ∀i 6= j, (i, j) ∈ V , (7)

det
(

UH

i Vi

)

6= 0, ∀i. (8)

Therefore, we can design the transceiversUi’s andVj ’s only
based on the knowledge of the network topology without re-
quiring the instantaneous CSI. This is fundamentally different
from the conventional interference alignment approach [5],
[4], [33], in which the global instantaneous CSI is required.
In contrast, the channel independent topological interference
management conditions (7) and (8) make the corresponding
interference management approach much more practical.

Remark 1: In this paper, we consider the block fading
channel model to capture the channel coherence phenomenon
in a slow fading scenario. Specifically, we assume that channel
gains stay constant overN time slots such that the effective
channel matrixH[ij] is a diagonal matrix with identical
diagonal entries, which plays a key role to yield the channel
independent interference alignment conditions (7) and (8).
This further motives the low-rank matrix completion approach
in Section III. However, in a fast fading scenario, i.e., the
channel gains change at each time instant, the approaches
presented in this paper may not be applicable, and other
approaches (e.g., the rank-loss approach [13]) are required.

The problem of studying the DoFs in the partially connected
interference channels based on the network topology infor-
mation is known as thetopological interference management
(TIM) problem [10], [11], [34]. Most of the existing works
on the TIM problem are trying to establish the topology
conditions under which the desired DoF is achievable based on
graph theory [11], [34], or applying the existing results from
the index coding problem [10]. In contrast, in this paper, by
generalizing the preliminary results in [18], [19] for the case of
single data stream transmission, we present a novel approach
based on the low-rank matrix completion [16] to solve the
TIM problem based on conditions (7) and (8) for arbitrary
network topologies with arbitrary number of data streams.
Furthermore, novel algorithms will be developed based on
Riemannian optimization techniques [29] to solve the resulting
NP-hard LRMC problem.
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III. L OW-RANK MATRIX COMPLETION FORTOPOLOGICAL

INTERFERENCEMANAGEMENT VIA RIEMANNIAN PURSUIT

In this section, we present a low-rank matrix completion
approach to solve the TIM problem, i.e., finding the minimum
channel usesN such that the interference alignment conditions
(7) and (8) are feasible. Specifically, defineXij = UH

i Vj ∈
CMi×Mj . Then, conditions (7) and (8) can be rewritten as

PΩ(X) = IM , (9)

whereX = [Xij ] ∈ C
M×M with M =

∑

iMi, IM is the
M ×M identity matrix, andPΩ : RM×M → RM×M is the
orthogonal projection operator onto the subspace of matrices
which vanish outsideΩ such that the(i, j)-th component of
PΩ(X) equals toXij if (i, j) ∈ Ω and zero otherwise. Here,
the setΩ is defined asΩ = {Gi × Gj , (i, j) ∈ V}, where
Gi = {

∑i−1
k=1 Mk+1, . . . ,

∑i
k=1 Mk}. For example, given the

network topology adjacency matrixV = {(1, 1), (1, 2), (2, 2)}
and M1 = M2 = 2, the set Ω is given as Ω =
{(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 3),
(3, 4), (4, 3), (4, 4)}. To yield a nontrivial solution, we assume
thatN ≤M . As X = [UH

i Vj ] = UHV ∈ CM×M with U =
[U1, . . . ,UK ]H ∈ CM×N , V = [V1, . . . ,VK ] ∈ CN×M , we
haverank(X) = N .

Remark 2:To assist numerical algorithm design, we specify
UH

i Vi = I, ∀i for condition (8) to recover the desired
signal. Specifically, for the desired messageWi, asUH

i Vi is
invertible, by projectingyi onto theUi space, we have

ỹi =
1

Hii

[

UH

i Vi

]−1
UH

i yi (10)

=
1

Hii

[

UH

i Vi

]−1 (
HiiU

H

i Visi +UH

i ni

)

(11)

= si +
1

Hii

[

UH

i Vi

]−1
UH

i ni (12)

= si +
1

Hii
UH

i ni, (13)

where the second equation is based on condition (7) to
eliminate the interference contributed by other messages,and
the last equation is obtained by settingUH

i Vi = I. Based on
(13), we have the following parallel interference-free channels
for each desired symbol steam:

ỹi,m = si,m + ñi,m,m ∈ {1, 2, . . . ,Mi}, (14)

where ỹi = [ỹi,m], si = [si,m] and 1
Hii

UH

i ni = [ñi,m]. As
each interference-free channel contributes1/N DoF, we have
Mi/N DoFs for the desired messageWi. Note that for the
generic invertible matrixUH

i Vi, we can always obtain the
parallel interference-free channels (14) with different noise
terms to achieveMi/N DoF in the high SNR regime.

Given the number of data streamsM1, . . . ,MK , to max-
imize the achievable DoFs, i.e.,M1/N, . . . ,MK/N , it is
equivalent to minimizingN , or the rank of the matrixX,
subject to constraint (9). Thus the linear TIM problem can
be reformulated as the following matrix completion problem
[18], [19]:

P : minimize
X∈RM×M

rank(X)

subject to PΩ(X) = IM . (15)

1

2

3

4

5

1

2

3

4

5

Transmitters

R
e
c
e
iv
e
rs

Transformation

Fig. 1. (a) The topological interference management problem in a partially
connected network with no CSI at transmitters (except the network topology
information). The desired channel links are black and interference links are
red. (b) Associated incomplete matrix with “⋆” representing arbitrary values.
For example, as there is no interference from transmitter 2 to receiver 1,
X12 = uH

1
v2 can take any value; whileX13 = uH

1
v3 must be 0 as it

represents the equivalent interference channel from user 3to user 1.

Note that, we only need to consider problemP in the real
field without losing any performance in terms of achievable
DoFs, as the problem parameterIM is a real matrix and the
matricesUH

i Vj , ∀i 6= j, (i, j) /∈ V can be further restricted to
the real field, whose corresponding signals will not contribute
any interference. LetX⋆ be the solution of problemP, and we
can extract the precoding matricesVj ’s and decoding matrices
Ui’s by performing matrix factorization asX⋆ = UHV =
[UH

i Vj ], which can be obtained by the QR decomposition for
matrix X⋆ using the Gram-Schmidt process.

The achievable DoFs will then be given by
M1/rank(X

⋆), . . . ,M1/rank(X
⋆) with X⋆ as the optima

of problemP. This LRMC approach for the TIM problem
has been presented in [18], [19] for the single data stream
transmission with the performance metric as the symmetric
DoF, i.e.,Mi = 1, ∀i. While problemP in (15) provides a
clean formulation of the TIM problem, compared to existing
matrix completion problems, unique challenges arise with the
poorly structured affine constraint, as will be illustratedin
the next subsection. An example of the idea of transforming
the TIM problem to the corresponding matrix completion
problem is illustrated in Fig. 1. For this special case, we can
rewrite the conditions (7) and (8) as the incomplete matrix
X = [Xij ] with Xij = uH

i vj .

A. Problem Analysis

The problem of rank minimization with affine constraints
has received enormous attention in areas such as collaborative
filtering, statistical machine learning, as well as image and
signal processing [16], [35]. Recently, the rank minimization
approach has been proposed to solve the design problem of
transmit and receive beamaformers for interference alignment
in MIMO interference channels [36]. However, the non-convex
rank objective function in the LRMC problemP makes
it NP-hard. Enormous progress has been made recently to
address the NP-hardness of the LRMC problem with elegant
theoretical results using convex relaxation approaches [16] and
non-convex optimization approaches [21]. However, most of
the results highly rely on the assumptions of well structured
affine constraints, e.g., the setΩ is uniformly sampled [16],
[21] and the original matrix to be recovered is incoherent [16].

Unfortunately, with the poorly structured affine constraint



5

in problem P, none of the above standard assumptions in
the literature is satisfied. This brings unique challenges for
solving and analyzing the LRMC problemP for topological
interference management. In this subsection, we will first
review the existing algorithms for the LRMC problem and
then motivate our proposed algorithm based on Riemannian
optimization [29].

1) Nuclear Norm Minimization:Let X =
∑M

i=1 σiuiv
H

i

be the singular value decomposition (SVD) of the matrixX

with σi’s as the singular values andui’s and vi’s as the
left and right singular vectors, respectively. The rank function
rank(X) = ‖σ‖0 with σ = (σ1, . . . , σM ) is often relaxed
with the nuclear norm‖X‖∗ = ‖σ‖1 as a convex surrogate
[16], which can be regarded as an analogy with convexℓ1-
norm relaxation of the non-convexℓ0-norm in sparse signal
recovery. If we apply this relaxation to problemP, it will
give the following problem,

minimize ‖X‖∗
subject to PΩ(X) = IM . (16)

Unfortunately, based on the following fact [18]:

|Tr(X)|=
∣

∣

∣
Tr

(

∑

i
σiuiv

H

i

)∣

∣

∣
=

∣

∣

∣

∑

i
Tr

(

σiuiv
H

i

)

∣

∣

∣

=
∣

∣

∣

∑

i
σiv

H

i ui

∣

∣

∣
≤

∑

i
σi|vH

i ui|

≤
∑

i
σi = ‖X‖∗, (17)

problem (16) will always return the solutionX = IM , which
is full rank. As a consequence, with the poorly structured
affine constraint in problemP, the nuclear norm based convex
relaxation approach is inapplicable to problemP.

2) Alternating Optimization Approaches:Alternating min-
imization [21], [20] is another popular non-convex optimiza-
tion approach to solve the LRMC problem. Specifically, the
alternating minimization approach involves expressing the un-
known rank-r matrixX as the product of two smaller matrices
UVT , whereU ∈ RM×r andV ∈ RM×r, such that the low-
rank property of the matrixX is automatically satisfied. Based
on this factorization, the original LRMC problemP with the
optimal rank as a prior information can be reformulated as the
following non-convex optimization problem:

minimize
U∈RM×r,V∈RM×r

‖PΩ(UVT )− IM‖2F . (18)

The alternating minimization algorithm for problem (18) con-
sists of alternatively solving forU and V while fixing the
other factor.

However, the fixed-rank based alternating minimization
approach has a low convergence rate [22], [26]. It also
fails to utilize the second-order information to improve the
convergence rate, e.g., the Hessian of the objective function.
Moreover, it requires the optimal rank as a prior information,
which is, however, not available in problemP.

B. Riemannian Pursuit

In this paper, we propose a Riemannian pursuit algorithm
based on the Riemannian optimization technique [29] to solve

the LRMC problemP by alternatively performing the fixed-
rank optimization and rank increase, thereby detecting the
minimum rank of matrixX in problem P. The proposed
algorithm is described as Algorithm 1. It will well address
the limitations of the existing fixed-rank based methods [18],
[20], [21], [37] by

1) Designing efficient algorithms for fixed-rank optimiza-
tion to minimize the squared errors of the affine con-
straint in problemP;

2) Designing an effective rank increasing strategy to find
good initial points in the procedure of rank pursuit,
thereby detecting the minimum rank of matrixX such
that the affine constraint in problemP is satisfied.

Specifically, by fixing the rank of matrixX as r (1 ≤
r ≤ M), we propose to solve the following smooth fixed-
rank constrained optimization problem,

Pr : minimize
X∈Mr

f(X), (19)

where f(X) := 1
2‖PΩ(X) − IM‖2F is the cost function

representing the squared errors of the affine constraint in
problemP, andMr is a smooth (C∞) manifold given by

Mr := {X ∈ R
M×M : rank(X) = r}. (20)

Observing that the least-squared cost function in problem
Pr is also smooth, we thus adopt the Riemannian optimiza-
tion technique [29] to solve it. Riemannian optimization has
recently gained popularity due to its capability of exploit-
ing the geometry of well structured search spaces based on
matrix factorization [29], [22], [23], [38], [25], [26], [27],
thereby being competitive with alternative approaches, e.g.,
convex relaxation and alternating minimization. In particular,
the Riemannian optimization is the generalization of standard
unconstrained optimization, where the search space isRn,
to optimization of a smooth objective function on the search
space of a Riemannian manifold. The details of Riemannian
optimization for the fixed-rank optimization problemPr will
be presented in Section IV.

The rank increasing strategy plays an important role in the
proposed algorithm. In particular, by embedding the critical
point X[r] in the current iteration into the manifoldMr+1 in
the next iteration, we propose an efficient rank increasing strat-
egy to generate good initial points and guarantee monotonic
decrease of the objective function for fixed-rank optimization
in the procedure of rank pursuit. This is achieved by exploiting
the structures of the low-rank matrix varieties and the manifold
geometry of fixed-rank matrices. The rank increasing strategy
will be presented in Section V.

IV. A R IEMANNIAN OPTIMIZATION FRAMEWORK FOR

SMOOTH FIXED-RANK OPTIMIZATION

In this section, we present a versatile framework of Rie-
mannian optimization for the fixed-rank matrix completion
problemPr. It is performed on the quotient manifolds and
exploits the symmetry structure (i.e., the quotient manifold
geometry) in the search space of the fixed-rank constraint
and the Hessian of the least-squares structure of the cost
function. Specifically, the problem structures will be presented
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Algorithm 1 Riemannian Pursuit (RP) for LRMC problemP
1: Input : M , Ω, desired accuracyǫ.
2: Initialize: X[1]

0 ∈ RM×M , r = 1.
3: while not convergeddo
4: Compute a critical pointX[r] for the smooth fixed

rank-r problem Pr with initial point X
[r]
0 with the

Riemannian optimization algorithm in Section IV.
5: Update the rankr ← r + 1. Compute the initial point

X
[r]
0 for the next iteration based on the rank increasing

algorithm in Section V.
6: end while
7: Output : X[r] and the detected minimum rankr.

in Section IV-A. The framework of Riemannian optimization
on the quotient manifolds will be demonstrated in Section
IV-B. In particular, the matrix representations of all the opti-
mization ingredients and algorithm implementation details will
be provided in Section IV-C and in Section IV-D, respectively.

A. Problem Structures

To develop efficient algorithms for the smooth fixed-rank
optimization problemPr, we exploit two fundamental struc-
tures: one is the symmetry in the fixed-rank constraint; and
the other is the least-squares structure of the cost function.
All the structures will be incorporated into the Riemannian
optimization framework.

1) Matrix Factorization and Quotient Manifold:The set
Mr is known to be a smooth submanifold of dimension(2M−
r)r embedded in the Euclidean spaceRM×M [22]. Based on
the SVD-type factorization, we representX ∈ Mr as [25]

X = UΣVT , (21)

whereU,V ∈ St(r,M) andΣ ∈ GL(r). Here,St(r,M) =
{Y ∈ RM×r : YTY = Ir} denotes theStiefel
manifold of orthonormalM × r matrices andGL(r) =
{Y ∈ Rr×r : rank(Y) = r} is the set of all r × r
invertible matrices. However, the factorization in (21) is
not unique as we have the symmetry structuresX =
(UQU )(Q

T
UΣQV )(VQV )

T ,QU ,QV ∈ Q(r), whereQ(r) is
the set of allr×r orthogonal matrices given byO(r) = {Q ∈
R

r×r : QTQ = Ir}. Therefore, the search space for problem
Pr should be the set of equivalence classes as follows:

[X] = {(UQU ,Q
T
UΣQV ,VQV ) : QU ,QV ∈ Q(r)}. (22)

In particular, denote thecomputation space(or the total space)
asMr := St(r,M)×GL(r)×St(r,M). The abstractquotient
spaceMr/ ∼ makes the optima isolated asMr/ ∼:=
Mr/(O(r) × O(r)), whereO(r) × O(r) is the fiber space
and ∼ represents the equivalence relation. More details of
the quotient manifolds can be found in [29]. As the quotient
manifoldMr/ ∼ is an abstract space, to design algorithms,
the matrix representation in the computation space is required.

2) Least-Squares Structures and Riemannian Metric:To
optimize on the abstract search spaceMr/ ∼, a Riemannian
metric in the computation spaceMr is required such that
Mr/ ∼ is a Riemannian submersion [29, Section 3.6.2]. In

particular, the only constraint imposed on the metric is that it
should be invariant along the set of equivalence classes[X]
(22). The Riemannian metricgX : TXMr × TXMr → R

defines an inner product between the tangent vectors on the
tangent spaceTXMr in the computation spaceMr.

Furthermore, by encoding the Hessian (the second-order in-
formation) of the cost function into the metricgX, superlinear
convergence rates can be achieved for the first-order optimiza-
tion algorithms [39], [27]. However, calculating the Hessian of
the cost functionf in problemP is computationally costly.
We thus propose a valid Riemannian metric based on the block
diagonal approximation of the Hessian of the simplified cost
function as presented in the following proposition.

Proposition 1 (Riemannian Metric):By exploiting the sec-
ond order information of the least-squares cost function, the
Riemannian metricgX : TXMr × TXMr → R is given by

gX(ξX, ζX) = 〈ξU , ζUΣΣT 〉+ 〈ξΣ, ζΣ〉+
〈ξV , ζV Σ

TΣ〉, (23)

whereξX := (ξU , ξΣ, ξV ) ∈ TXMr, ζX := (ζU , ζΣ, ζV ) ∈
TXMr andX := (U,Σ,V).

Proof: Please refer to Appendix A for details.
Note that, different from the conventional metric [38], which
only takes the search space into consideration, the novel metric
(23) can encode the second-order information of the cost
function, thus leads to a faster convergence speed for the first-
order algorithms [27], [39]. This will be further justified in the
simulation section.

B. Riemannian Optimization on Quotient Manifolds

The main idea of Riemannian optimization is to encode the
constraints on the manifold into the search space, and then
perform descent on this manifold search space rather than
in the ambient Euclidean space. In particular, the Euclidean
gradient and Euclidean Hessian need to be converted to the
Riemannian gradient and Riemannian Hessian, respectively,
to implement the conjugate gradient method and trust-region
method in the Riemannian optimization framework. This will
be explicitly presented in Section IV-C. For the quotient man-
ifold Mr/ ∼, the abstract geometric objects call for concrete
matrix representations in the computation spaceMr, which
is achieved by the principle of theRiemannian submersion
[29, Section 3.6.2]. Therefore, essentially, the algorithms are
implemented in the computation space. Specifically, with the
Riemannian metric (23), the quotient manifoldMr/ ∼ is
submersedinto Mr. We now have theRiemannian quotient
manifoldas follows:

Definition 1 (Riemannian Quotient Manifold [29, Section 3.6.2]):
Endowed with the Riemannian metric (23),Mr/ ∼ is called
a Riemannian quotient manifoldof Mr.

Let T[X](Mr/ ∼) denote the abstract tangent space in the
quotient manifoldMr/ ∼, which has the matrix representa-
tion in TXMr. The abstract tangent vectors inT[X](Mr/ ∼)
are restricted to the directions that do not produce a displace-
ment along the equivalence class[X] (22). This is achieved
by decomposing the tangent spaceTXMr in the computa-
tion space into complementary spaces as follows:TXMr =
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VXMr⊗HXMr, whereVXMr andHXMr are thevertical
space and horizontal space, respectively. In particular, the
horizontal spaceHXMr, which is the orthogonal complement
of VXMr in the sense of the Riemannian metricgX, provides
a valid matrix representation of the abstract tangent space
T[X](Mr/ ∼) [29, Section 3.5.8]. The vertical spaceVXMr

is obtained from the tangent space of the equivalence class[X]
(22). We call it thehorizontal lift given that any element in
the abstract tangent spaceξ[X] ∈ T[X](Mr/ ∼) has a unique
element in the horizontal spaceξX ∈ HXMr.

As gX is constrained to be invariant along the equiv-
alent class [X] (22), it can define a Riemannian metric
g[X](ξ[X], ζ[X]) : T[X](Mr/ ∼)× T[X](Mr/ ∼) → R in the
quotient spaceMr/ ∼ as g[X](ξ[X], ζ [X]) := gX(ξ

X
, ζ

X
),

whereξ[X], ζ[X] ∈ T[X](Mr/ ∼) and ξX, ζX ∈ HXMr are
the horizontal lifts or matrix representations ofξ[X] andζ[X].
Note that bothξ

X
andζ

X
belong to the tangent spaceTXMr.

In summary, we haveRiemannian submersionas follows:
Definition 2 (Riemannian Submersion [29, Section 3.6.2]):

The choice of the metric (23), which is invariant along the
equivalent class[X], and of the horizontal spaceHXMr

as the orthogonal complement ofVX, in the sense of the
Riemannian metric (23), makes the search spaceMr/ ∼ a
Riemannian submersion.

Therefore, with the metric (23), the Riemannian optimiza-
tion algorithms on the quotient manifoldMr/ ∼ call for
matrix representation (horizontal lifts) in the computation
spaceMr. Specifically, letΞi ∈ HXi

Mr be the search
direction at thei-th iteration. DefineRX : HXMr → Mr

as the retraction mapping operator that maps the element
in the horizontal spaceΞi ∈ HXMr to the points on the
computation spaceMr. The Riemannian optimization frame-
work for the smooth optimization problemPr is presented in
Algorithm 2 and the corresponding schematic view is shown in
Fig. 2. In particular, the parameterαi in Algorithm 2 denotes
the step size, which we will explain in Section IV-D.

Algorithm 2 A Riemannian Optimization Framework for the
Fixed-Rank Optimization ProblemPr

1: Input : M , r, Ω, desired accuracyε.
2: Initialize: X0 = Xinitial ,Ξ0 = 0, i = 0.
3: while not convergeddo
4: Compute the search directionΞi ∈ HXi

Mr.
5: UpdateXi+1 = RXi

(αiΞi). Updatei = i+ 1.
6: end while
7: Output : X⋆ = Xi.

C. Quotient Manifold Representation

In this subsection, we derive the concrete matrix repre-
sentations (horizontal lifts) in the computation spaceMr for
abstract geometric objects on the quotient manifoldMr/ ∼,
thereby implementing the Riemannian optimization algo-
rithms.

1) Riemannian Gradient:To design an algorithm using the
conjugate gradient method on he quotient spaceMr/ ∼,
we need to define theRiemannian gradientgrad[X]f for the

by the Hessian of the cost function [8]. This induced metric (or its ap-
es convergence issues of first-order optimization algorithms. Analogously, find-

a good inner product for (1) is of profound consequence. Specifically for the case of quadratic
5] propose a fam-

of Riemannian metrics from the Hessian of the cost function. Applying this approach directly
of (1) is computationally costly. To circumvent the issue, we con-

a simplified cost function by assuming that of indices, i.e., we focus on
to propose a metric candidate. Applying the metric tuning approach of [9, Section 5]

to the simplified cost function leads to a family of Riemannian metrics. A good trade-off between
is by considering only the k diagonal of the Hessian

of . It should be noted that the cost function is vex and quadratic
in . Consequently, it is also convex and quadratic in the arguments

valently, the block diagonal approximation of the Hessian of in is

((

is the mode- of is assumed to be full rank. The terms
, and , which is a reasonable

A novel Riemannian metric. An element in the total space
. Consequently, the tangent space is the Cartesian product of the tangent

of the individual manifolds of (6), i.e.,

= 0 for }}

on symmetry and least-squares structure, we propose the novel metric

) =

vectors with matrix characterizations, shown in (8),
, respectively and is the Euclidean inner product.

It should be emphasized that the proposed metric (9) is induced from (7).

Notions of optimization on the Tucker manifold

y

x

x+

Vx
Hx

TxM = Hx ⊕ VxM

[x] T[x](M/ ∼)

ξ[x]

[x+] [Rx(ξx)]
M/∼

ξx

Rx(ξx)

1: Riemannian optimization framework: geometric objects, shown in dotted lines, on the
ves, shown in solid lines, in the total space

on a quotient manifold represents an entire equivalence class of matrices in the total
on a quotient manifold call for matrix representatives in the total

, algorithms are run in the total space , but under appropriate compatibility be-
of of the quotient manifold

y define algorithms on the quotient manifold. The key is endowing a Riemannian
is the case, a constraint optimization problem, for example (1), is conceptually

an unconstrained optimization over the Riemannian quotient manifold (5). Below
we briefly show the development of various geometric objects that are required to optimize a smooth

on the quotient manifold (5) with first-order methods, e.g., conjugate gradients.

Fig. 2. A schematic view of Riemannian optimization framework: abstract
geometric objects (shown in dotted line) on a quotient manifold Mr/ ∼ call
for matrix representatives (shown in solid lines) in the computation space (or
total space)Mr . The pointsx andy in Mr belong to the same equivalence
class (shown in solid blue color) and they represent a singlepoint [x] = {y ∈
Mr : y ∼ x} on the quotient manifoldMr/ ∼. Figure courtesy of Mishra
et al. [27].

objective functionf(X) on this space, which is the gener-
alization of the Euclidean gradient∇f(X) = PΩ(X) − IM
of f(X). To achieve this goal, we first provide the following
proposition on the matrix representation of the abstract tangent
spaceT[X](Mr/ ∼).

Proposition 2 (Horizontal Space):The horizontal space
HXMr, which is any complementary subspace ofVXMr

in the sense of the Riemannian metricgX (23), pro-
vides a valid matrix representation of the abstract tangent
space T[X](Mr/ ∼) as HXMr = {ηX ∈ TXMr :
S1 and S2 are symmetric}, whereS1 = ΣΣTηT

U
U−ΣηT

Σ

andS2 = ΣTΣηT
V
V + ηT

Σ
Σ.

Proof: Please refer to Appendix B for details.
To compute the Riemannian gradient, we need to define two

projection operators: tangent space projection and horizontal
space projection. Specifically, the tangent space projection is
the operator that projects the ambient space onto the tangent
space.

Proposition 3 (Tangent Space Projection):The tangent
space projection operatorPTXMr

: RM×r×Rr×r×RM×r →
TXMr that projects the ambient spaceRM×r×Rr×r×RM×r

onto the tangent spaceTXMr is given by:

PTXMr
(AU ,AΣ,AV ) = (ξU , ξΣ, ξV ), (24)

whereξU = AU −UBU (ΣΣT )−1, ξΣ = AU , ξV = AV −
VBV (Σ

TΣ)−1. Here,BU andBV are symmetric matrices of
sizer×r that are obtained by solving the Lyapunov equations

ΣΣTBU +BUΣΣT =ΣΣT (UTAU +AT
UU)ΣΣT , (25)

ΣTΣBV +BV Σ
TΣ=ΣTΣ(VTAV +AT

V V)ΣTΣ. (26)

Proof: Please refer to Appendix C for details.
The horizontal space projection is the operator that extracts

the horizontal component of the tangent vector by projecting
the tangent space onto the horizontal space.

Proposition 4 (Horizontal Space Projection):The horizon-
tal space projection operatorΠHXMr

: TXMr → HXMr

that projects the tangent spaceTXMr onto the horizontal
spaceHXMr is given by ΠHXMr

(ξX) = (ζU , ζΣ, ζV ),
where ζU = ξU − UΘ1, ζΣ = ξΣ + Θ1Σ − ΣΘ2,
ζV = ξV − VΘ2. Here,Θ1 and Θ2 are skew-symmetric
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matrices of sizer×r that are obtained by solving the coupled
system of Lyapunov equations

ΣΣTΘ1 +Θ1ΣΣT −ΣΘ2Σ
T =Skew(UT ξUΣΣT ) +

Skew(ΣξTΣ), (27)

ΣTΣΘ2 +Θ2Σ
TΣ−ΣTΘ1Σ=Skew(VT ξV Σ

TΣ) +

Skew(ΣT ξΣ), (28)

whereSkew(·) extracts the skew-symmetric part of a square
matrix, i.e.,Skew(C) = (C−CT )/2.

Proof: Please refer to Appendix D for details.
Based on Propositions 3 and 4, we have the matrix repre-

sentation (horizontal lift)gradXf of the Riemannian gradient
grad[X]f on the quotient manifoldMr/ ∼ atX = (U,Σ,V)
as follows:

grad
X
f = (ξU , ξΣ, ξV ), (29)

where ξU = AVΣT (ΣΣT )−1 − UBU (ΣΣT )−1, ξΣ =
UTSV, ξV = ATUΣ(ΣTΣ)−1 − VBV (Σ

TΣ)−1, with
A = ∇f(X) = PΩ(X) − IM . Here,BU and BV are the
solutions to the Lyapunov equations

ΣΣTBU +BUΣΣT = 2Sym(ΣΣTUTAVΣ), (30)

ΣTΣBV +BV Σ
TΣ= 2Sym(ΣTΣVTSTUΣ), (31)

whereSym(·) extracts the symmetric part of a square matrix,
i.e., Sym(C) = (C+CT )/2. Please refer to Appendix E for
the details on the derivation of the Riemannian gradient (29).

2) Riemannian Hessian:To design second-order algorithms
(e.g., the trust-region scheme) on the quotient spaceMr/ ∼,
we need to define theRiemannian connectionon this space,
which is the generalization of directional derivative of a vector
field on the manifold. Let∇η

X
ξ
X

be the directional derivative
of the vector fieldξX ∈ TXMr applied in the direction
ηX ∈ TXMr on the computation spaceMr. Then the matrix
representation (horizontal lift) of the Riemannian connection
∇η[X]

ξ[X] on the quotient spaceMr/ ∼ with η[X], ξ[X] ∈
T[X](Mr/ ∼) is given by ΠHXMr

(∇η
X
ξX), which is the

horizontal projection of the Riemannian connection onto the
horizontal space. By theKoszulformula [29, Theorem 5.3.1],
the Riemannian connection is given by

∇η
X
ξ
X
=Dξ

X
[η

X
] + (θU , θΣ, θV ), (32)

whereDξX[ηX] is the classical Euclidean directional deriva-
tive andθU = ηUBU +UBU + 2ξUSym(ηΣΣ

T )(ΣΣT )−1,
θΣ = 0, θV = ηV BV +VBV + 2ξV Sym(ηT

ΣΣ)(ΣTΣ)−1.
Here,BU andBV are the solutions to the Lyapunov equations
(30) and (31).

Therefore, the matrix representation (horizontal lift) ofthe
Riemannian HessianHess[X]f [ξX] on the quotient manifold
Mr/ ∼ is given by

HessXf [ξX] = ΠHXMr
(∇ξ

X
gradXf), (33)

wheregradXf (29) is the Riemannian gradient in the compu-
tation spaceMr and the Riemannian connection is given in
(32).

(a) Retraction (b) Vector transport

Figure 1: Graphical representation of the concept of retraction and vector transport within

the framework of Riemannian optimization techniques.

3 Nonlinear Riemannian CG

With the concepts introduced in Section 2, we have all the necessary geometric ingredients
for performing Riemannian optimization on the manifold of low-rank tensors. In
particular, the nonlinear CG algorithm discussed in [ , Sec 8.3], yields Algorithm 1. This
can be seen as an extension of the standard nonlinear CG algorithm [22], with the Euclidean
gradient replaced by the Riemannian gradient. Applying retraction after each optimization
step ensures that we stay on the manifold. Finally, the use of vector transport allows us to
calculate conjugate directions using the Polak-Ribière+ (PR+) update rule. If the search
directions become insufficiently gradient-related during the iteration, the algorithm should
revert to steepest descent, see [ ]. A standard Armijo backtracking scheme is added to
control the step sizes, using the result of a linearized line search procedure as an initial
guess.

Algorithm 1 Geometric nonlinear CG for Tensor Completion

Input: Initial guess ∈M
← − grad % first step is steepest descent

argmin αη % step size by linearized line search

, α

for = 1 , . . . do

grad % compute Riemannian gradient

← − →X % conjugate direction by updating rule

argmin αη % step size by linearized line search

Find smallest integer 0 such that % Armijo backtracking for sufficient decrease

)) ≥ −10 · 〈

+1 % obtain next iterate by retraction

end for

In the following sections, we will provide algorithmic details on the individual steps of
Algorithm 1 and discuss their computational complexity. To simplify the expressions for
the complexity, we assume that := . . . and := . . .

Fig. 3. Visual representation of the concept of retraction and vector transport
within the framework of Riemannian optimization techniques. Figure courtesy
of Kressneret al. [40].

D. Riemannian Optimization Algorithms

Based on the above matrix representations or horizontal lifts
of the geometric objects on abstract search spaceMr/ ∼,
it is ready to implement the algorithms in the computation
spaceMr. To trade off the convergence rate and the compu-
tational complexity, we present a first-order algorithm (i.e., the
conjugate gradient method) and a second-order method (i.e.,
the trust-region method) in Section IV-D1 and Section IV-D2,
respectively.

1) Conjugate Gradient Method:In the conjugate gradi-
ent scheme, the search direction at iterationi is given by
Ξi := −grad

Xi
f + βiTXi−1→Xi

(Ξi−1), wheregrad
Xi

f ∈
HXMr is the Riemannian gradient at pointXi ∈ Mr

and TXi−1→Xi
(ξX) : HXi

Mr → HXi
Mr is the matrix

representation (the horizontal lift) of thevector transport
T[Xi−1]→[Xi](ξ[X]) that maps tangent vectors from one tangent
spaceT[Xi−1](Mr/ ∼) to another tangent spaceT[Xi](Mr/ ∼
) given byTXi−1→Xi

(Ξi−1) = ΠHXi
Mr

(PTXi
Mr

(Ξi−1)).
Therefore, the sequence of the iterates is given by

Xi+1 =RXi
(αiΞi), (34)

where αi denotes the step size satisfying the strong Wolf
conditions [24], [29] andRX : HXMr → Mr is the
retraction mapping operator that maps the element in the
horizontal spaceΞi ∈ HXMr to the points on the com-
putation spaceMr. The product nature of the computation
spaceMr allows to choose a retraction by simply combining
the retractions on the individual manifolds [29, Example
4.1.3], RX(ξX) = (uf(U + ξU ),Σ + ξΣ, uf(V + ξV )),
whereξX := (ξU , ξΣ, ξV ) ∈ HXMr and uf(·) extracts the
orthogonal factor of a full column-rank matrix, i.e.,uf(A) =
A(ATA)−1/2.

The concepts of vector transport and retraction in the total
spaceMr are illustrated on the right and left sides of Fig. 3,
respectively.

2) Trust Region Method:To provide quadratic convergence
rate, we implement the second-order optimization algorithm
based on the trust-region method [28]. In particular, in the
quotient manifoldMr/ ∼, the trust-region subproblem is
horizontally lifted toHXMr and formulated as

minimize
ξ
X
∈HXMr

m(ξX)

subject to gX(ξX, ξX) ≤ δ2, (35)
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TABLE I
OPTIMIZATION -RELATED INGREDIENTS FOR PROBLEMPr

Pr : minimizeX∈Mr
f(X)

Matrix representation of an elementX ∈ Mr X = (U,Σ,V)

Computational spaceMr St(r,M)×GL(r)× St(r,M)

Quotient space St(r,M)×GL(r) × St(r,M)/(O(r) ×O(r))

Metric gX(ξX, ζX) for ξX, ζX ∈ TXMr gX(ξX, ζX) = 〈ξU , ζUΣΣT 〉+ 〈ξΣ, ζΣ〉+ 〈ξV , ζV ΣTΣ〉

Riemannian gradientgradXf gradXf = (ξU , ξΣ, ξV ) (29)

Riemannian HessianHessXf [ξX] HessXf [ξX] = ΠHXMr
(∇ξX

gradXf) (33)

RetractionRX(ξX) : HXMr → Mr (uf(U+ ξX),Σ+ ξΣ,uf(V + ξV ))

whereδ is the trust-region radius and the cost function is given
by

m(ξX) = f(X) + gX(ξX, gradXf) +
1

2
gX(ξX,HessXf [ξX]), (36)

where gradXf (29) and HessXf (33) are the horizontal
lift (matrix representation) of the Riemannian gradient and
Riemannian Hessian on the quotient manifoldMr/ ∼. Given
the matrix representation of the search direction (35), the
details of the implementation of the trust-region algorithm can
be found in [41].

In summary, the optimization-related ingredients for prob-
lem Pr are provided in Table I.

V. RANK INCREASINGALGORITHM

In this section, we propose a rank-one update algorithm to
generate good initial points and provide monotonic decrease
for the objective functions for fixed-rank optimization in the
procedure of rank pursuit in Algorithm 1. This is achieved by
exploiting the structure of the low-rank matrix varieties [42],
[30].

A. Low-Rank Matrix Varieties

We present a systematic way to develop the rank increasing
strategy in Algorithm 1 based on the following low-rank
matrix varietiesM≤r = {X ∈ RM×M : rank(X) ≤ r},
which is the closure of the set of fixed-rank metricsMr.
Furthermore, we consider the linear-search method onM≤r+1

with the iterates as follows,

Xi+1 = P≤r+1(Xi + αiΞi), (37)

whereΞi is a search direction in thetangent coneTXi
M≤r+1

atXi [42], αi is a step-size, andP≤r+1 is a metric projection
ontoM≤r+1 with a best rank-(r + 1) approximation in the
Frobenius norm.

B. Riemannian Pursuit

Assume that the iterateX[r] has rankr at ther-th iteration
in Algorithm 1. In the next iteration, we will increase the rank
by r+1. To embedX[r] into the search spaceM≤r+1, suppose
that we choose the projection of the negative Euclidean gra-
dient on the tangent coneTX[r]M≤r+1 as a search direction,
Ξr = argminΞ∈T

X
[r]M≤r+1

‖−∇X[r]f−Ξ‖F = Ξ(r)
r +Ξ(1)

r ,

where∇X[r]f = (PΩ(X
[r]) − IM ) is the Euclidean gradient

of the cost functionf at pointX[r] andΞ(r)
r is the orthogonal

projection on the tangent spaceTX[r]Mr given by the Rie-
mannian gradient, i.e.,Ξ(r)

r = −grad
X[r]f , andΞ(1)

r is the
best rank-one approximation of

Σr =−∇X[r]f −Ξ(r)
r −∇X[r]f(X[r]) + gradX[r]f

=−∇X[r]f(X[r]) + ξUΣVT +UξΣV
T +UΣξTV , (38)

which is orthogonal to the tangent spaceTX[r]Mr [43].
Based on (37) and (38), we shall adopt the following rank

update strategy to find a good initial point for the next iteration
in Algorithm 1,

X
[r+1]
0 = P≤r+1

(

X[r] + αr

(

Ξ(1)
r − gradX[r]f

))

, (39)

where αr ≥ 0 is a step size and satisfies the following
condition [24],

f(X
[r+1]
0 ) ≤ f(X[r])− αr

2
〈Θr,Θr〉. (40)

Therefore, if Ξr is zero, then∇X[r]f = 0 and we can
terminate.

Remark 3:Note that when the Riemannian gradient
grad

X[r]f equals zero, the rank update strategy (39) is equiv-
alent to the following rank increasing strategy [44]

X
[r+1]
0 = X[r] − σuvT , (41)

whereσ ≥ 0 is the dominant singular value and(u,v) is the
pair of top left and right singular vectors with unit-norm ofthe
Euclidean gradient∇X[r]f . Although the rank update strategy
(41) ensures that the cost functionf decreases monotonically
w.r.t. r, it ignores the intrinsic manifold structure of fixed-
rank matrices in Algorithm 2. Specifically, the Riemannian
gradientgradX[r]f (29), which belongs to the tangent space
TX[r]Mr, is not necessarily equal to zero, as the corresponding
fixed-rank optimization problem may not be solved exactly in
practice, e.g., Algorithm 2 may terminate when the maximum
number of iterations is exceeded [24].

C. Monotonic Decrease of the Objective Function

We shall show that the Riemannian manifold rank update
strategy (39) ensures that the objective function decreases
monotonically with respect tor. Specifically, asgradX[r]f ∈
TX[r]Mr andΣr (38) is orthogonal toTX[r]Mr, we have the
following fact that

〈Σ(1)
r , gradX[r]f〉 = 0. (42)
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Let X[1],X[2], . . . , be the sequence generated by Algorithm
1, based on (40) and (42), we have

f(X[r+1])≤(1) f(X
[r+1]
0 ) ≤(2) f(X

[r])− αr

2
〈Θr ,Θr〉

≤(3) f(X
[r])− τr

2
(‖Σ(1)

r ‖2F +‖grad
X[r]f‖2F )

≤(4) f(X
[r]). (43)

Here, the first inequality is due to the fact that the iterates
of the Riemannian optimization algorithm try to minimize the
cost functionf , the second and the third inequalities are based
on the facts (40) and (42), respectively. Therefore, the cost
function f(X[r]) decreases monotonically with respect tor.

Remark 4:Although only the rank-one update strategy is
considered in Algorithm 1, the proposed rank increasing
algorithm in this section can be easily generalized to the
general rank-r with r > 1 updates to improve the convergence
rate [24], [30] for the RP algorithm. However, this may yield
the detected rank of matrixX overestimated.

VI. SIMULATION RESULTS

In this section, we simulate the proposed Riemannian
pursuit algorithms for topological interference management
problems in partially connectedK-user interference channels.
The conjugate gradient Riemannian algorithm and the trust-
region Riemannian pursuit algorithm, are termed “CGRP” and
“TRRP”, respectively. The two algorithms are compared to the
following state-of-the-art algorithms:

• LRGeom with Riemannian Pursuit: In this algorithm [24],
[19], termed “LRGeom”, the embedded manifold based
fixed-rank optimization algorithm developed in [22] with
the Riemannian pursuit rank increasing strategy proposed
in [19], [24] is adopted to solve problemP.

• LMaFit: In this algorithm, the alternating minimization
scheme with rank adaptivity is adopted to solve problem
P [20].

The Matlab implementation of all the Riemannian al-
gorithms for the fixed-rank optimization problemPr is
based on the manifold optimization toolbox ManOpt [41].
All the Riemannian optimization algorithms are initialized
randomly as shown in [22] and are terminated when either
the norm of the Riemannian gradient is below10−6, i.e.,
‖grad

X
f‖ ≤ 10−6, or the number of iterations exceeds

500. The setting for LMaFit is the same as that in [20]. We
adopt the following normalized residual [20] as the stopping
criteria for Algorithm 1 to estimate the rank for matrixX:
ǫ = ‖PΩ(X)− IM‖F /

√
M . We set ǫ = 10−6 for all the

algorithms to estimate the minimum rank of matrixX such
that it satisfies the affine constraint in problemP.

A. Convergence Rate

Consider a 100-user partially connected interference chan-
nel with 400 interference channel links. The sets of the con-
nected interference links are generated uniformly at random.
We turn off rank adaptivity for all the algorithms to solve the
fixed-rank optimization problemPr. Fig. 4 and Fig. 5 show
the convergence rates of different algorithms for the fixed-rank
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Fig. 4. Convergence rate with the rank of matrixX as four.
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Fig. 5. Convergence rate with the rank of matrixX as five.

optimization problemPr with r = 4 andr = 5, respectively.
Both figures show that the trust-region based Riemannian
optimization algorithm TRRP has the fastest convergence rate
and achieves higher precision solutions in a few iterations
compared with the other three algorithms. Encoded with
the second-order information in the Riemannian metric (23),
the conjugate gradient based Riemannian algorithm CGRP
achieves a faster convergence rate than LRGeom [22], while
LMaFit [20] has the lowest convergence rate among all the
algorithms.

These two figures also indicate that, with the same stopping
criteria ǫ = 10−6 in Algorithm 1, the detected rank of matrix
X by TRRP is 4. Although the detected rank of matrix
X by both CGRP and LRGeom is 5, the latter one has
a slower convergence rate. Furthermore, the required rank
of LMaFit should be larger than 5 to achieve the stopping
criteria ǫ = 10−6. This conclusion will be further confirmed
in the following simulations on the empirical results for the
achievable DoFs.
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Fig. 6. Achievable symmetric DoF versus different numbers of interference
links.

B. Achievable Symmetric DoF and Optimal DoF Results

Consider a 20-user partially connected interference channel.
The sets of the connected interference links are generated
uniformly at random. We simulate and average 100 network
topology realizations. Fig. 6 demonstrates the achievable
symmetric DoF with different algorithms assuming that the
data streamsMi = 1, ∀i. We can see that the second-order
algorithm TRRP can achieve the highest symmetric DoF,
but it has the highest computational complexity due to the
computation expensive calculation of the Hessian. For the first-
order optimization algorithm, CGRP can achiever a higher
symmetric DoF than LRGeom [24], [19] and LMaFit [20]. In
particular, we can see that, with few interference links, quite
high DoFs can be achieved.

To further justify the effectiveness of the RP framework, we
numerically check that our RP algorithms can recover all the
optimal DoF results for the specific TIM problems in [10]. The
same conclusion has also been presented in [19]. Note that our
proposed automatic rank detection capable RP algorithms do
not need the optimal rank as a prior information, while the
alternating projection algorithm [18] requires the optimal rank
as a prior information to perform low-rank matrix projection.
Moreover, it is interesting to theoretically identify the class of
network topologies such that the proposed RP framework can
provide optimal symmetric DoFs.

In summary, all the simulation results illustrate the ef-
fectiveness of the proposed Riemannian pursuit algorithms
by exploiting the quotient manifold geometry of the fixed-
rank matrices and encoding the second-order information in
the Riemannian metric (23), as well as utilizing the second-
order optimization scheme. In particular, there is a tradeoff
between the achievable symmetric DoF and the computational
complexity using the first-order algorithm CGRP (which is
applicable in large-sized networks) and the second-order algo-
rithm TRRP (which is applicable in small-sized and medium-
sized networks).

VII. C ONCLUSIONS AND FURTHER WORKS

In this paper, we presented a flexible low-rank matrix
completion approach to maximize the achievable DoFs for
the partially connectedK-user interference channel with
any network topology. A Riemannian pursuit algorithm was
proposed to solve the resulting low-rank matrix completion
optimization problem by exploiting the quotient manifold
geometry of the search space and the structure of low-rank
matrix varieties for rank pursuit. In particular, we showed
that, by encoding the second-order information, the quotient
manifold based Riemannian optimization algorithms achieve
a faster convergence rate and higher precious solutions than
the existing algorithms. Simulation results showed that the
proposed Riemannian pursuit algorithms achieve higher DoFs
for general network topologies compared with the state-of-the-
art methods.

Several future directions of interest are listed as follows:

• From the algorithmic perspective, it is interesting to
establish the optimality of the Riemannian pursuit al-
gorithms for the low-rank matrix completion problem
P, thereby establishing the relationship between the
achievable DoF and the network topology.

• From the information theoretic perspective, it is critical
to translate the numerical insights (e.g., optimal DoF
achievability for the specific network topologies in [10])
provided by the LRMC approach into the optimal DoF
for any network topology.

• It is particularly interesting to extend the LRMC approach
to more general scenarios, e.g., with finite SNR scenarios,
MIMO interference channels, transmitter cooperations
with data sharing, and wired linear index coding problems
in the finite field. In particular, as optimization on mani-
folds deeply relies on smoothness, the search space will
become discrete in a finite field. Therefore, the presented
Riemannian pursuit algorithms cannot be extended to the
finite field in principle.

• It is also interesting to apply the Riemannian optimization
technique to other wireless communications and network-
ing problems (e.g., the hybrid precoding in millimeter
wave systems [45]). In particular, extending the corre-
sponding algorithms to the complex field is critical, as
most of the Riemannian algorithms are only developed
in real field and complex field extension is not trivial.

APPENDIX A
PROOF OFPROPOSITION1: RIEMANNIAN METRIC

To induce the metric based on the Hessian of the cost
function f in problem Pr, we consider a simplified cost
function ‖X − IM‖2F /2, yielding the following optimization
problem:

minimize
X∈Mr

1

2
Tr(XTX)− Tr(X), (44)

Based on the factorizationX = UΣVT , we have the
matrix representation of Lagrangian for problem (44) as fol-
lows L(X) = 1

2Tr(VΣTUTUΣVT ) − Tr(UΣVT ), where
X has the matrix representation(U,Σ,V) ∈ St(r, n) ×
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GL(r) × St(r, n). The second-order derivative ofL(X) ap-
plied in the direction ξX is given by D2L(X)[ξX] =
(ξUΣΣT + 2USym(ΣξΣ) − VξΣ − ξVΣT ,−ξUVT +
ξ
Σ
+2ΣSym(VT ξ

V
)−UT ξ

V
, ξ

V
ΣΣT −Uξ

Σ
− ξ

U
ΣT +

2VSym(ΣT ξΣ)), where ξX has the matrix representation
(ξU, ξΣ, ξV) ∈ R

n×r × R
r×r × R

n×r.
As the cost function in (44) is convex and quadratic inX,

it is also convex and quadratic in the arguments(U,Σ,V)
individually. Therefore, the block diagonal elements of the
second-order derivativeLXX(X) of the Lagrangian are strictly
positive definite. The following Riemannian metric can be
induced from the block diagonal approximation ofLXX(X),

gX(ξX, ζX) = 〈ξX, D2L(X)[ζX]〉
≈ 〈ξ

U
, ζ

U
ΣΣT 〉+ 〈ξ

Σ
, ζ

Σ
〉+

〈ξV, ζVΣTΣ〉, (45)

where ξ
X

= (ξ
U
, ξ

Σ
, ξ

V
), ζ

X
= (ζ

U
, ζ

Σ
, ζ

V
) ∈ TXMr

andX ∈ (U,Σ,V).
To verify that the metric is invariant along the equiv-

alent class [X] (22), based on [29, Proposition 3.6.1],
it is equivalent to show that the metric for tangent
vectors ξX, ζX ∈ TXMr does not change under the
transformations (U,Σ,V) 7→ (UQU ,Q

T
UΣQV ,QV V),

(ξU , ξΣ, ξV ) 7→ (ξUQU ,Q
T
UξΣQV , ξV V), (ζU , ζΣ, ζV ) 7→

(ζUQU ,Q
T
UζΣQV , ζV V). After simple computation, we can

verify that (45) is a valid Riemannian metric and does not
depend on the specific matrix representations along the equiv-
alence class[X] (22).

APPENDIX B
PROOF OFPROPOSITION2: HORIZONTAL SPACE

The vertical spaceVXMr is the linearization of the equiv-
alence classes[X] (22) and formed by the set of directions
that contains tangent vectors to the equivalence classes. Based
on the matrix representation of the tangent space for the
orthogonal matrices [29, Example 3.5.3], we have the matrix
representation for the vertical space as

VXMr = (UΘ1,ΣΘ2 −Θ1Σ,VΘ2), (46)

whereΘ1 andΘ2 are any skew-symmetric matrices of size
r × r, i.e.,ΘT

i = −Θi, i = 1, 2.
The horizontal spaceHXMr, which is any complementary

subspace toVXMr in TXMr with respect to the Riemannian
metric gX (23), provides a valid matrix representation of
the abstract tangent spaceT[X](Mr/ ∼) [29, Section 3.5.8]
based on the Riemannian submersion principle. Specifically,
let ηX = (ηU,ηΣ,ηV) ∈ HXMr andζX = (ζU, ζΣ, ζV) ∈
VXMr. By definition,ηX should be orthogonal toζX with
respect to the Riemannian metricgX, i.e.,

gX(η
X
, ζ

X
) = Tr((ΣΣT )ηT

U
UΘ1) +

Tr(ηT
ΣΣΘ2 − ηT

ΣΘ1Σ) +

Tr((ΣTΣ)ηT
V
VΘ2)

= Tr(S1Θ1) + Tr(S2Θ2) = 0, (47)

whereS1 = ΣΣTηT
U
U−ΣηT

Σ
andS2 = ΣTΣηT

V
V+ηT

Σ
Σ.

Based on the fact thatTr(GTΘ) = 0, if and only if G is

symmetric, the characterization of the horizontal space isgiven
by

HXMr = {ηX ∈ TXMr : S1 and S2 are symmetric}.(48)

APPENDIX C
PROOF OFPROPOSITION3: TANGENT SPACE PROJECTION

Given a matrix in the ambient spaceRM×r×Rr×r×RM×r,
its projection onto the tangent spaceTXMr is obtained by
extracting the component normal spaceNXMr to the tangent
space in the Riemannian metric sense.

We first derive the matrix characterization of the normal
space. Specifically, letηX = (ηU,ηΣ,ηV) ∈ TXMr and
ζX = (ζU, ζΣ, ζV) ∈ NXMr. By definition,ηX should be
orthogonal toζ

X
with respect to the Riemannian metricgX,

i.e., g(ηX, ζX) = 0. That is, the following conditions

〈ξU, ζUΣΣT 〉 = 0, 〈ξV, ζVΣTΣ〉 = 0, 〈ξΣ, ζΣ〉 = 0, (49)

should hold for anyηX ∈ TXMr. It is obvious thatζΣ = 0.
Furthermore, based on [29, Example 3.5.2], we have the matrix
characterization ofηU as

ηU = UΩ+U⊥K, (50)

where Ω is a skew-symmetric matrix of sizer × r, K ∈
R(M−r)×r can be any matrix, andU⊥ is anyM × (M − r)
matrix such thatspan(X⊥) is the orthogonal complement of
span(X). Similarly, we can obtain the characterization ofηV.
We rewriteζU as ζ̄U = ζUΣΣT with,

ζ̄U = UBU +U⊥AU , (51)

whereAU ∈ R
r×r andBU ∈ R

(M−r)×r can be deduced from
conditions (49) and (50). Based on the fact thatTr(GTΘ) =
0, if and only if G is symmetric, we can conclude thatBU is
symmetric andAU = 0. Therefore, we have

ζUΣΣT = UBU , (52)

where BU = BT
U . Similarly, we can obtain the matrix

characterization ofζV. Therefore, we arrive at the matrix
representation of the norm space,

NXMr = {(UBU (ΣΣT )−1,0,VBV (Σ
TΣ)−1)}, (53)

whereBU andBV are symmetric metrics of sizer × r.
As the tangent space projectorPTX

Mr is obtained by
extracting the component normal to the tangent spaceTXMr

in the ambient spaceRM×r × Rr×r × RM×r , we have the
expression for the operatorPTX

Mr as

PTX
Mr(AU ,AΣ,AV ) = (AU −UBU (ΣΣT )−1,

AΣ,AV −VBV (Σ
TΣ)−1)),(54)

which belongs to the tangent space. The tangent spaceTXMr

in the computation spaceMr at the pointX = (U,Σ,V) is
the product of the tangent spaces of the individual manifolds,
which has the following matrix representation [29, Example
3.5.2],

TXMr = {(ξU , ξΣ, ξV ) ∈ R
M×r × R

r×r × R
M×r :

UT ξU + ξTUU = 0,VT ξV + ξTV V = 0}. (55)
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Based on (54) and (55), we know thatU should satisfy the
condition:

UT ξU + ξTUU=UT
[

AU −UBU (ΣΣT )−1
]

+
[

AU −UBU (ΣΣT )−1
]T

U = 0, (56)

which is equivalent to the Lyapunov equation for the symmet-
ric matrix BU ,

ΣΣTBU +BUΣΣT = ΣΣT (UTAU +AT
UU)ΣΣT .(57)

Similarly, we can obtain the Lyapunov equation for the sym-
metric matrixBV as in (26).

APPENDIX D
PROOF OFPROPOSITION4: HORIZONTAL SPACE

PROJECTION

The horizontal space projectorΠHXMr
can be obtained

by extracting the horizontal component of the tangent vector.
Specifically, letξX = (ξU , ξΣ, ξV ) ∈ TXMr and ζX =
(ζU , ζΣ, ζV ) ∈ HXMr. We have the expression for the
operatorΠHXMr

as

ΠHXMr
(ξ

X
) = (ξU −UΘ1, ξΣ +Θ1Σ−ΣΘ2,

ξV −VΘ2)

= (ζU , ζΣ, ζV ), (58)

which belongs to the horizontal spaceHXMr. Based on (48),
we have

ΣΣT ζT
UU−ΣζT

Σ =ΣΣT (ξU −UΘ1)
T
U−

Σ(ξΣ +Θ1Σ−ΣΘ2)
T

= (ΣΣT ξTUU−ΣξTΣ) + (ΣΣTΘ1 +

ΣΣTΘ1 −ΣΘ2Σ
T ), (59)

which is symmetric. AsΣΣT ζT
UU −ΣζT

Σ = (ΣΣT ζT
UU −

ΣζT
Σ)

T , we can obtain the equation in (27). Similarly, we can
obtain the equation in (28) by checking the condition thatζV

is symmetric.

APPENDIX E
COMPUTE THERIEMANNIAN GRADIENT (29)

Let X = (U,Σ,V) andA = ∇f(X) = PΩ(X)− I denote
the Euclidean gradient off at pointX. The partial derivatives
of f(X) with respective toU,Σ andV are given by

∂f(X)

∂U
= AVΣT ,

∂f(X)

∂Σ
= UTAV,

∂f(X)

∂V
= ATUΣ.(60)

With metric (23), the scaled Euclidean gradient is given by

Ā = (AVΣT (ΣΣT )−1,UTAV,ATUΣ(ΣTΣ)−1). (61)

By further projectingĀ onto the tangent space based on (24),
we have the matrix representation (horizontal lift)gradXf of
grad[X]f as

gradXf = PTXMr
(Ā), (62)

which yields the equations in (29). Note that, based on the Rie-
mannian submersion principle [29, Section 3.6],PTXMr

(Ā) is
already the horizontal lift, which can be verified that the hori-
zontal space projectionΠHXMr

will not changePTXMr
(Ā).

APPENDIX F
RIEMANNIAN QUOTIENT MANIFOLDS

We now consider the case of a quotient manifoldM/ ∼,
where the structure spaceM is endowed with a Riemannian
metricg. The horizontal spaceHX andX ∈ M is canonically
chosen as the orthogonal complement inTXM of the vertical
spaceVX = TXπ−1(X), namely,

HX := (TXVX)⊥

= {ηX ∈ TXM : g(χX,ηX) = 0, ∀χX ∈ VX}. (63)

Recall that the horizontal lift atX ∈ π−1([X]) of a tangent
vectorξ[X] ∈ T[X](M/ ∼) is the unique tangent vectorξX ∈
HX that satisfiesDπ(X)[ξX]. If, for every [X] ∈M/ ∼ and
every ξ[X], ζ[X] ∈ T[X](M/ ∼), the expressiongX(ξ

X
, ζ

X
)

does not depend onX ∈ π−1([X]), then

g[X](ξ[X], [ζ]X) := gX(ξ
X
, ζ

X
) (64)

defines a Riemannian metric onM/ ∼. Endowed with this
Riemannian metric,M/ ∼ is called aRiemannian quotient
manifold of M, and the natural projectionπ :M→M/ ∼
is a Riemannian submersion. (In other words, a Riemannian
submersion is a submersion of Riemannian manifolds such
thatDπ preserves inner products of vectors normal to fibers.)
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