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Abstract—In this paper, we present a flexible low-rank matrix
completion (LRMC) approach for topological interference man-
agement (TIM) in the partially connected K-user interference
channel. No channel state information (CSI) is required at
the transmitters except the network topology information. The
previous attempt on the TIM problem is mainly based on its
equivalence to the index coding problem, but so far only a fevn-
dex coding problems have been solved. In contrast, in this per,
we present an algorithmic approach to investigate the achiable
degrees-of-freedom (DoFs) by recasting the TIM problem asra
LRMC problem. Unfortunately, the resulting LRMC problem is
known to be NP-hard, and the main contribution of this paper
is to propose a Riemannian pursuit (RP) framework to detect
the rank of the matrix to be recovered by iteratively increasng
the rank. This algorithm solves a sequence of fixed-rank matx
completion problems. To address the convergence issues ihet
existing fixed-rank optimization methods, the quotient marifold
geometry of the search space of fixed-rank matrices is expted
via Riemannian optimization. By further exploiting the structure
of the low-rank matrix varieties, i.e., the closure of the seof fixed-
rank matrices, we develop an efficient rank increasing stratgy
to find good initial points in the procedure of rank pursuit.
Simulation results demonstrate that the proposed RP algothm
achieves a faster convergence rate and higher achievable B®
for the TIM problem compared with the state-of-the-art methods.

Index Terms—Interference alignment, topological interference
management, degrees-of-freedom, index coding, low-rank atrix
completion, Riemannian optimization, quotient manifolds

I. INTRODUCTION

its practical implementation_[7]. This motivates numerous
research efforts on CSI overhead reduction for interfezenc
alignment, e.g., with delayed CSlI[8] and alternating C$l [9
However, the practical applicability of these results réma
unclear. More recently, a new proposal has emerged, namely,
topological interference management (TIM)[[10], as a psmi
ing solution for the partially connected interference aeln.

It is mainly motivated by the fact that most of the channels in
a wireless network are very weak and can be ignored due to
the shadowing and pathloss [10], [11],[12]. It thus progide
opportunity to manage interference only based on topotdgic
information rather than the instantaneous CSI.

Specifically, in the TIM problem, we assume that no CSI
at the transmitters is available beyond the network topolog
knowledge, i.e., the connectivity of the wireless network.
Due to the practical applicability of such CSI assumption
and information theoretic interest, the TIM problem has re-
ceived tremendous attentions and been investigated in vari
ous scenarios with partial connectivity, e.g., the fastirfgd
scenarios[[11],[T13], transmitter cooperation]|[14] and NOM
interference channels_[115]. In particular, in a slow fading
scenario, by establishing the connection between the egsel
TIM problem and the wired index coding problem, efficient
capacity and DoF analysis was provided inl[10] based on
the existing results from index coding problems. However,
the index coding problem itself is an open problem, and thus
the existing solutions are only valid for some special cases
For general network topologies in the wireless TIM problem,

Network densification with interference coordination haﬁ]e 0pt|ma| DoF is still unknown. In a fast fad|ng ScenariO, a

been recognized as a promising way to meet the exponegtrix rank-loss approach based on matroid and graph #eori
tially growing mobile data traffic in next generation wirete was presented ir [13] to characterize the symmetric DoF for
networks [1], [2], [3]. In particular, interference aligemt 5 class of TIM problems.

[4] has been proposed as a powerful tool to understand then this paper, we will present an algorithmic approach to
Shannon capacity in various interference-limited scesari evaluate the achievable DoFs in the TIM problem for general
e.g., the MIMO interference channgl [5] and cellular netsor partially connected interference channels. It is achielgd
[6]. Although interference alignment can serve as a lingar irecasting the original TIM problem as a low rank matrix
terference management strategy achieving the optimal DoFgompletion (LRMC) probleni[16]. Then the minimum number
many scenarios, the overhead of obtaining the requiredagjlogf channel uses for interference-free data transmissidirbei
instantaneous channel state information (CSI) has hiddeggual to the minimum rank of the matrix in the associated
LRMC problem. This approach has recently been applied to
solve the linear index coding problem over the finite field][17
and the wireless TIM problem with symmetric DoEs|[18],/[19].
We shall extend the previous results on the symmetric DoF
case with single data transmission for each user [18], [@9] t
any achievable DoF region. The presented LRMC approach
will serve as a flexible way to maximize the achievable DoFs
for any network topology, thereby providing insights on the
TIM problem for general network topologies that are not yet
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available in theory. 2) To address the convergence issues in the existing fixed-
Unfortunately, the resulting LRMC problem is NP-hard due rank based methods, we present a versatile Riemannian

to the non-convex rank objective. Although the widely used  optimization framework by exploiting the quotient man-

nuclear norm based convex relaxation provides an effective ifold geometry of the fixed-rank matrices and the least-

way to solve the LRMC problem with polynomial time squares structure of the cost functionl|[26] as well as the

complexity and optimality guarantees with well structured second-order information of the problem.

affine constraints[[16], it is inapplicable to our problem as 3) A novel rank increasing strategy is proposed, which

it always returns a full rank solution [18]. Another categor considers intrinsic manifold structures in the developed
of algorithms is based on alternating minimization|/[20[1][2 Riemannian optimization algorithms. In particular, by
by recasting the original LRMC problem as a fixed-rank exploiting the structures of low-rank varieties, we extend
optimization problem. Although the optimality can be guara the results in[[24],[[19] for the embedded manifold to
teed with standard assumptions (e.g., the original databmat the framework of the quotient manifold.

should be incoherent [16]), the existing fixed-rank methods simulation results will demonstrate the superiority of the
may converge slowly [22]/ 23] and require the optimal rankroposed RP algorithms with faster convergence rates and

of the matrix as a prior information [24]. the capability of automatic rank detection compared with th
existing fixed-rank optimization algorithms to maximizesth
A. Contributions achievable DoFs for the TIM problem.

We present a low-rank matrix completion approach to max-
imize the achievable DoFs for the TIM problem. In particulaB. Organization

LRMC problem for the TIM problem. This is achieved by, s rithms are developed in Sectibnl IV. The rank increasing
|terat|vely increasing the rank of th_e matrix to be recodeta strategy is presented in Sectibh V. Numerical results véll b
parUcngr, .the developed RP algorithm possesses theiop - yemonstrated in SectidmVI. Finally, conclusions and discu
properties: sions are presented in Sectibn VIl. The derivations of the

« We can efficiently solve the fixed-rank optimization probrijemannian optimization related ingredients are divetted
lems to address the convergence issues in the exist{dg appendix.

fixed-rank methods;
. We de_s?gn an_efﬁ_cient rank i_ncregsing strategy to fi.nd @ ||. SYSTEM MODEL AND PROBLEM STATEMENT
good initial point in the next iteration for rank pursuit.
In the proposed RP framework, by exploiting the RieA' Channel Model
mannian quotient manifold geometry of the search space ofConsider the topological interference management (TIM)
fixed-rank matrices via low-rank matrix factorization [23]problem in the partially connectdd-user interference channel
[25], [26], [27], the nonlinear conjugate gradient (a firstwith K single-antenna transmitters and single-antenna
order method with superlinear convergence rate endowed wieceivers [[10]. Specifically, leV be the index set of the
a good Riemannian metri¢_[26][ [27]) and trust-region (@onnected transceiver pairs such thatj) € V representing
second-order method with quadratic convergence fate [28) i-th receiver is connected to thjeth transmitter. That is,
based Riemannian optimization algorithms|[29] are dewedopthe channel propagation coefficients belonging to the/sate
to solve the smooth fixed-rank optimization problems. Thes@nzero and are set to be zeros otherwise. Each transpitter
algorithms can achieve faster convergence rates and highighes to send a messaf¢; to its corresponding receiver
precision solutions compared with the existing fixed-rarikere, W; is uniformly chosen in the corresponding message
methods, such as the alternating minimization method [2GgtW;.
[21] and the embedded manifold based Riemannian optimiza£Each transmitterj encodes its messagé’; into a vector
tion algorithm [22]. Furthermore, by exploiting the struts x; € C of length N and transmits the signal ove¥ time
of low-rank matrix varieties [24],[T30],19], i.e., the clore slots. Therefore, the input-output relationship is given b
of the set of fixed-rank matrices, an efficient rank incregsin y y .
strategy is proposed to find a high quality initial point and Y% ~ Hx; Z HUx; +n,¥i=1,... K, (1)
to guarantee that the objective decreases monotonicathein (4,4)EV,i#j
procedure of rank pursuit. where n; ~ CN(0,Iy) andy; € CV are the additive
In summary, the major contributions of the paper are @otropic white Gaussian noise and received signal atvecei
follows: i, respectively;Hld = diag{H;;} = H;;Iy isan N x N
1) A Riemannian pursuit framework is proposed to solvéiagonal matrix withH;; € C as the channel coefficient
the resulting LRMC problem by solving a sequence dietween transmittef and receivet in the considered block.
fixed-rank optimization problems with an efficient ranRVe consider the block fading channel model, and thus the
increasing strategy. channel stays constant during thé time slots, i.e., all the



diagonal entries inH!”! are the same. The matrix repreteceived signal vectoy; onto the spacdJ;, the interference
sentation for the channel coefficients i (1) is mainly foterms should be aligned and then cancelled while the desired
the comparison of different channel models to establish te&gnal should be preserved [5], [32]) [4], i.e.,

interference alignment conditions, which will be explaira

Section[TI-C. In this paper, following the TIM setting [10], UMHWIV; =0,Vi # j, (i,7) € V, (5)
we assume that only the network topology informatidris det (UHHW]V») £0,Vi ©6)
available at transmitters. Furthermore, each transntitisran ‘ ! T

average power constraint, i.e5E[[|x;|?] < p with p > 0 as

the maximum transmit power. If conditions [3) and[(b) are satisfied, the parallel intexfeee-

free channels can be obtained ovéichannel uses. Therefore,
the DoF of M; /N is achieved for messad#;. However, this
B. Achievable Rates and DoF requires instantaneous CSI and its acquisition is chaitieng
We assume that transmittets2, ..., K have independent in dense networks with a large number of transceiver palrs [7
messagedl/;, Ws, . .., W intended for receivers, 2,..., K, [10].
respectively. The rate tupléR;, Rs,...,Ri) with R; = Observe that the channel matiiX/! equalsH;; I, for the
log Wil js achievable if there exists an encoding and decodikgnstant channel over th€ channel uses. The conditiors (5)
scheme such that the probability of decoding error for al thand [6) can be rewritten as the following channel independen
messages can be made arbitrarily small simultaneouslyeas ¢onditions:
codewords lengthiv approaches infinity [31].
The degrees of freedom (DoF) in the partially connected Uf'Vj =0,Vi#£j,(i,j) €V, @)
K-user interference channel is defined[as [10], [4] det (UMV;) #0, Vi. (8)

di = 1if£1;8£p log(p)’ V. (@) Therefore, we can design the transceivis andV;’s only

ased on the knowledge of the network topology without re-
uiring the instantaneous CSI. This is fundamentally défife
from the conventional interference alignment approacdh [5]
[4], [33], in which the global instantaneous CSI is required
In contrast, the channel independent topological interfee
Rsym} 3) management conditiong](7) and (8) make the corresponding

The DoF regionD is defined as the closure of the set OE
achievable DoF tuples. In particular, the symmetric Digfm
is the highest valuely, such that the DoF allocatiod;, =
do, Vi, is inside the DoF region. This is given Ky [10]

dsym = lim sup \sup g, interference management approach much more practical.

p—}oo 7....,]%sym)efD M
.CRemark 1:In this paper, we consider the block fading

In this paper, we choose the DoF as the performance metéhannel model to capture the channel coherence phenomenon
and design the corresponding linear interference managtemeé P P

. - . In a slow fading scenario. Specifically, we assume that chlann
strategies to maximize the achievable DoEs [10], [5] gains stay constant oveéY time slots such that the effective
channel matrixHl7! is a diagonal matrix with identical
C. Topological Interference Management diagonal entries, which plays a key role to yield the channel

Linear schemes become particular interesting for interféndependent interference alignment conditions (7) dnd (8)
ence management due to their low-complexity and the DdHis further motives the low-rank matrix completion appioa
optimality in many scenarios [10]][4]][5]. We thus restricin Section[Ill. However, in a fast fading scenario, i.e., the
the class of interference management strategies to linehannel gains change at each time instant, the approaches
schemes to maximize the achievable DoFs as the signaljwesented in this paper may not be applicable, and other
noise ratio (SNR) approaches infinity. Specifically, for sege approaches (e.g., the rank-loss approach [13]) are rehuire
W;, let V; € CV*Mi and U; € CV*Mi pe the precoding  The problem of studying the DoFs in the partially connected
matrix at transmitterj and the receiver combining matrixinterference channels based on the network topology infor-
at receiveri, respectively. Assume that each message mation is known as théopological interference management
is split into M; independent scalar data streams, denot¢fiM) problem [10], [11], [34]. Most of the existing works
ass; = [s1(W;),s2(W;),...,sa;,(W;)]T € CMi. And on the TIM problem are trying to establish the topology
sm(W;)'s are independent Gaussian codebooks, each of whighnditions under which the desired DoF is achievable based o
carries one symbol and is transmitted along the column v&ctgraph theory[[111],[[34], or applying the existing resultsrfr
of the precoding matriXxV ;. Therefore, over theV channel the index coding problem [10]. In contrast, in this paper, by
uses, the input-output relationshig (1) is rewritten as generalizing the preliminary results in [18]. [19] for thase of

ii ij . single data stream transmission, we present a novel agproac
yi=HVisi+ 30 HYIVs; 40, vio (4) based on the low-rank matrix completion [16] to solve the
(6.) €V, i TIM problem based on condition§](7) and (8) for arbitrary

In the regime of asymptotically high SNR, to accomplishetwork topologies with arbitrary number of data streams.
decoding, we impose the constraints that, at each recgitte  Furthermore, novel algorithms will be developed based on
desired signal spadd!"lV; is complementary to the interfer- Riemannian optimization techniqués [29] to solve the syl
ence space_; ey i, HYIV;. That is, after projecting the NP-hard LRMC problem.
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In this section, we present a low-rank matrix completion . i, Tensomaion 5 8 | 0T T (% 10

approach to solve the TIM problem, i.e., finding the minimum R 2 0l T=1110
. . . Wy — — Wa

channel use®’ such that the interference alignment conditions 10 %1 %11
(@ and [8) are feasible. Specifically, defie; = U"V; € Ws -

CMixM; Then, conditions[{7) and](8) can be rewritten as ®)
Pa (X) =1y, (9) Fig. 1. (a) The topological interference management prokife a partially

' . . connected network with no CSI at transmitters (except thevoré topology
where X = [X;;] € CM>M with M = > M;, Iy is the information). The desired channel links are black and fatence links are
M x M identity matrix, andPq, : RMxM _y RMXxM jg the red. (b) Associated incomplete matrix with™representing arbitrary values.
orthoaonal proiection operator onto the subspace of mlﬂri(g(or example, as there is no interference from transmitteo 2eteiver 1,

. 9 . proj . P e P 12 = ullvy can take any value; whilé{13 = uf'vs must be 0 as it
which vanish outsidé) such that the(4, j)-th component of represents the equivalent interference channel from usenier 1.
Pa(X) equals toX;; if (i,7) € Q and zero otherwise. Here,
the set() is defined as? = {G; x G;,(i,j) € V}, where
Gi= {3t My+1,...,3%_, My}. For example, given the Note that, we only need to consider proble# in the real
network topology adjacency matrix = {(1,1),(1,2),(2,2)} field without losing any performance in terms of achievable
and M; = My, = 2, the setQ) is given asQ} = DoFs, as the problem paramefgy is a real matrix and the
{(1,1),(1,2),(2,1),(2,2),(1,3),(1,4),(2,3),(2,4), (3, 3), matricesUY'V Vi # j, (i,7) ¢ V can be further restricted to
(3,4),(4,3), (4,4)}. To yield a nontrivial solution, we assumethe real field, whose corresponding signals will not conitieb
that N < M. As X = [U"V,] = U"V € CM*M with U = any interference. LeX* be the solution of problen#, and we

[Uy,..., U e CMXN V = [V,..., V] € CV*M we can extract the precoding matric¥s’s and decoding matrices
haverank(X) = N. U,’s by performing matrix factorization aX* = U"V =
Remark 2:To assist numerical algorithm design, we speciffU'V ], which can be obtained by the QR decomposition for
UV, = I,vi for condition [8) to recover the desiredmatrix X* using the Gram-Schmidt process.
signal. Specifically, for the desired messdge asUHV; is The achievable DoFs will then be given by
invertible, by projectingy; onto theU; space, we have M [rank(X*), ..., My /rank(X*) with X* as the optima
~ 1 Her 1=1 voh of problem 2. This LRMC approach for the TIM problem
Yi= H; [Ui Vi] Uiyi (10) has been presented in 18], [19] for the single data stream

1 e -1 9y y transmission with the performance metric as the symmetric
= [UFVi] (HuUP'Visi +Ul'ny) (1) DoF, i.e., M; = 1,¥i. While problem2 in (8) provides a
" clean formulation of the TIM problem, compared to existing

—1
=s;+— [Uj'Vi]  Uj'n (12) matrix completion problems, unique challenges arise With t
1” poorly structured affine constraint, as will be illustratied
=s; + —U"n,, (13) the next subsection. An example of the idea of transforming

Ha the TIM problem to the corresponding matrix completion

where the second equation is based on conditidn (7) {eophiem is illustrated in Figl1. For this special case, we ca
eliminate the interference contributed by other messa®s, o\rite the conditions[{7) andl(8) as the incomplete matrix
the last equation is obtained by settibf'V, = I. Based on X = [X,;] with X;; = ut'v,.

(I3), we have the following parallel interference-free mhels “ “ .

for each desired symbol steam: )
1 A. Problem Analysis
Ui;m = Si;m + Tim, 1,2,..., M;}, o . ! )
Y, Sism & Rigm, m € { } (14) The problem of rank minimization with affine constraints

wherey; = [§im], si = [si,m] and HLUfnl = [ni,m]. AS has received enormous attention in areas such as collateorat
each interference-free channel contribut¢d’ DoF, we have filtering, statistical machine learning, as well as image an
M;/N DoFs for the desired messag¥;. Note that for the signal processind [16][ [35]. Recently, the rank minimiaat
generic invertible matrixUH'V;, we can always obtain the approach has been proposed to solve the design problem of
parallel interference-free channel[s](14) with differemise transmit and receive beamaformers for interference alegrim
terms to achievél/;/N DoF in the high SNR regime. in MIMO interference channels [36]. However, the non-conve
Given the number of data streamd,..., Mk, to max- rank objective function in the LRMC problen®”? makes
imize the achievable DoFs, i.eM;/N,...,Mk/N, it is it NP-hard. Enormous progress has been made recently to
equivalent to minimizingN, or the rank of the matrixX, address the NP-hardness of the LRMC problem with elegant
subject to constrain{]9). Thus the linear TIM problem catheoretical results using convex relaxation approac¢hgisgid
be reformulated as the following matrix completion problemon-convex optimization approachés][21]. However, most of

[18], [19]: the results highly rely on the assumptions of well struadure
. ffine constraints, e.g., the s@tis uniformly sampled[[16],
x k(X a nt _ S L
gI(llerﬁg?Xl%? rank(X) [21] and the original matrix to be recovered is incohereil [1

subject to Pq(X) = I,. (15) Unfortunately, with the poorly structured affine consttain



in problem &2, none of the above standard assumptions the LRMC problem#? by alternatively performing the fixed-
the literature is satisfied. This brings unique challenges frank optimization and rank increase, thereby detecting the
solving and analyzing the LRMC proble® for topological minimum rank of matrixX in problem &2. The proposed
interference management. In this subsection, we will firatgorithm is described as Algorithid 1. It will well address
review the existing algorithms for the LRMC problem andhe limitations of the existing fixed-rank based methadd,[18
then motivate our proposed algorithm based on Riemanni@9)], [21], [37] by

optimization [29]. 1) Designing efficient algorithms for fixed-rank optimiza-
1) Nuclear Norm Minimization:Let X = S oyuv! tion to minimize the squared errors of the affine con-

be the singular value decomposition (SVD) of the maiXix straint in problems;

with o;'s as the singular values and;’s and v;'s as the  2) Designing an effective rank increasing strategy to find

left and right singular vectors, respectively. The rankction good initial points in the procedure of rank pursuit,

rank(X) = [loflo with o = (o1,...,0u0) is often relaxed thereby detecting the minimum rank of mati such

with the nuclear normj|X||. = |||/ as a convex surrogate that the affine constraint in probler® is satisfied.

[16], which can be regarded as an analogy with conéex  gpecifically, by fixing the rank of matriX asr (1 <
norm relaxation of the non-conve-norm in sparse signal . < M), we propose to solve the following smooth fixed-

recovery. If we apply this relaxation to probles?, it will  rank constrained optimization problem,
give the following problem,

&, : minimize f(X), (19)
minimize [|X|. XeM.
subject to Pqo(X) = Iy. (16) Wwhere f(X) := $IPa(X) — In||% is the cost function
_ . representing the squared errors of the affine constraint in
Unfortunately, based on the following fact [18]: problem 22, and M,. is a smooth (">°) manifold given by
1r(X)] = [T (3, ovmavt!) | = [ 32, T (v M, = {X e RMM . rank(X) =r}. (20
_ ’Z ot < Z i v O_bserving that the least-squared cost_functio_n in prpb!em
i i Z, is also smooth, we thus adopt the Riemannian optimiza-
< Z i = || X]«, (17) tion technique[[29] to solve it. Riemannian optimizatiorsha

] ] . recently gained popularity due to its capability of exploit
problem [(16) will always return the solutidk = I, which jng the geometry of well structured search spaces based on
is full rank. As a consequence, with the poorly structurggitrix factorization [20, [122], [123], [138], [125], [126], [T2],
affine c_onstraint in prpb!en@, t_he nuclear norm based CONVexthereby being competitive with alternative approaches,, e.
relaxation approach is inapplicable to problerh convex relaxation and alternating minimization. In pare,

2) Alternating Optimization Approachegilternating min-  the Riemannian optimization is the generalization of stadd
imization [21], [20] is another popular non-convex optiedz nconstrained optimization, where the search spacR"is
tion approach to solve the LRMC problem. Specifically, thgy optimization of a smooth objective function on the search
alternating minimization approach involves expressirgth-  space of a Riemannian manifold. The details of Riemannian
known rank# matrix X as the product of two smaller matricesoptimization for the fixed-rank optimization probleg, will
UVT, whereU € RM*" andV € RM*", such that the low- g presented in SectiGillV.
rank property of the matriX is automatically satisfied. Based The rank increasing strategy plays an important role in the
on this factorization, the original LRMC proble®? with the proposed algorithm. In particular, by embedding the ailtic
optimal rank as a prior information can be reformulated as ”ﬁbointxm in the current iteration into the manifold, . in
following non-convex optimization problem: the next iteration, we propose an efficient rank increasirag-s

P T 2 egy to generate good initial points and guarantee monotonic

UGRIEIXIE,%%ZHSMW [P(UVE) = Ll (18) decrease of the objective function for fixed-rank optimaat
in the procedure of rank pursuit. This is achieved by exjplgit
the structures of the low-rank matrix varieties and the fficdahi
geometry of fixed-rank matrices. The rank increasing gsate

0Will be presented in Sectidn]V.

The alternating minimization algorithm for problem{18)eo
sists of alternatively solving folU and V while fixing the
other factor.

However, the fixed-rank based alternating minimizati
approach has a low convergence ratel [22],] [26]. It also
fails to utilize the second-order information to improvees th
convergence rate, e.g., the Hessian of the objective fumcti

Moreover, it requires the optimal rank as a prior informatio N this section, we present a versatile framework of Rie-
which is, however, not available in probles#. mannian optimization for the fixed-rank matrix completion

problem Z,.. It is performed on the quotient manifolds and
exploits the symmetry structure (i.e., the quotient mddifo
geometry) in the search space of the fixed-rank constraint
In this paper, we propose a Riemannian pursuit algorithamd the Hessian of the least-squares structure of the cost
based on the Riemannian optimization techniqué [29] toesolfunction. Specifically, the problem structures will be pneted

IV. A RIEMANNIAN OPTIMIZATION FRAMEWORK FOR
SMOOTH FIXED-RANK OPTIMIZATION

B. Riemannian Pursuit



Algorithm 1 Riemannian Pursuit (RP) for LRMC probles#  particular, the only constraint imposed on the metric ig tha

1: Input: M, Q, desired accuracy. should be invariant along the set of equivalence clagXes
2: Initialize: X[ € RM*M p =1, (22). The Riemannian metrigx : TxM, x TxM, — R
3: while not convergedio defines an inner product between the tangent vectors on the

4:  Compute a critical pointX!"! for the smooth fixed tangent spac&x.M, in the computation spac#f,..
rank+ problem &, with initial point X([)T] with the Furthermore, by encoding the Hessian (the second-order in-
Riemannian optimization algorithm in Sectibnl IV. formation) of the cost function into the metrjg, superlinear

5:  Update the rank < r + 1. Compute the initial point convergence rates can be achieved for the first-order atimi
X([)T] for the next iteration based on the rank increasirigpn algorithms|[[38],[[2F]. However, calculating the Hessof

algorithm in Sectio V. the cost functionf in problem.&? is computationally costly.
6: end while We thus propose a valid Riemannian metric based on the block
7: Output: X"l and the detected minimum ramk diagonal approximation of the Hessian of the simplified cost

function as presented in the following proposition.
Proposition 1 (Riemannian Metric)By exploiting the sec-

in Section TV-A. The framework of Riemannian optimizatiorP”d order information of the least-squares cost functibg, t
on the quotient manifolds will be demonstrated in SectidRiémannian metrigx : Tx M, x Tx M, — R is given by

M _In partlcul_ar, the matrix representations qf all thpfue 9x(€x, Cx) = (€02 CuSET) + (€, Cs) +
mization ingredients and algorithm implementation detwiill sy 23
be provided in Section TVAC and in Sectibn 1V-D, respectjvel (&v.Cv 2 (23)

whereéx = (&, €x,€v) € Tx M, Cx = ((p;Cs:Cv) €
A. Problem Structures TxM, andX := (U, X, V).

To develop efficient algorithms for the smooth fixed-ran
optimization problemZ2,., we exploit two fundamental struc-
tures: one is the symmetry in the fixed-rank constraint; a
the other is the least-squares structure of the cost fumcti
All the structures will be incorporated into the Riemannial
optimization framework.

1) Matrix Factorization and Quotient ManifoldThe set
M, is known to be a smooth submanifold of dimensf@i/ —
r)r embedded in the Euclidean spaké’*M [22]. Based on B. Riemannian Optimization on Quotient Manifolds

Proof: Please refer to Appendix]A for details. ]
Klote that, different from the conventional metric [38], i
ly takes the search space into consideration, the nowelome
) can encode the second-order information of the cost
nction, thus leads to a faster convergence speed for ste fir
order algorithms [27]/[39]. This will be further justified the
simulation section.

the SVD-type factorization, we represeXite M, as [25] The main idea of Riemannian optimization is to encode the
X =UsvT, (1) constraints on the manifold into the search space, and then
perform descent on this manifold search space rather than
whereU,V € St(r, M) andX € GL(r). Here,St(r, M) = in the ambient Euclidean space. In particular, the Euclidea
{Y e RM* . Y'Y = I} denotes theStiefel gradient and Euclidean Hessian need to be converted to the
manifold of orthonormal M x r matrices andGL(r) = Riemannian gradient and Riemannian Hessian, respegtively
{Y € R™" : rank(Y) = r} is the set of allr x r to implement the conjugate gradient method and trust-regio

invertible matrices. However, the factorization in_](21) isnethod in the Riemannian optimization framework. This will
not uniqgue as we have the symmetry structuds = be explicitly presented in Sectign TV-C. For the quotientma
(UQu)(QEEQv)(VQY)T,Qu, Qv € Q(r), whereQ(r) is  ifold M,/ ~, the abstract geometric objects call for concrete
the set of all- x  orthogonal matrices given b§(r) = {Q € matrix representations in the computation spade, which
R™*": QT'Q =1,}. Therefore, the search space for problens achieved by the principle of thRiemannian submersion
2, should be the set of equivalence classes as follows: [29, Section 3.6.2]. Therefore, essentially, the algonghare

. T ) implemented in the computation space. Specifically, with th

X]={(UQu,QuZQv, VQv) : Qu,Qv € Q(")}- 22)  picrannian metric[(23), the quotient manifafdl,/ ~ is
In particular, denote theomputation spacéor the total space) submersednto M,.. We now have theRiemannian quotient
asM,. := St(r, M) x GL(r) x St(r, M). The abstracjuotient manifoldas follows:
space M,/ ~ makes the optima isolated a#t,/ ~:= Definition 1 (Riemannian Quotient Manifold[29, Section.3]B
M.,./(O(r) x O(r)), whereO(r) x O(r) is the fiber space Endowed with the Riemannian metr[c {23,/ ~ is called
and ~ represents the equivalence relation. More details afRiemannian quotient manifoldf M.
the quotient manifolds can be found in [29]. As the quotient Let Tix;(M,/ ~) denote the abstract tangent space in the
manifold M,./ ~ is an abstract space, to design algorithmsguotient manifoldM,./ ~, which has the matrix representa-
the matrix representation in the computation space is redui tion in Tx M,. The abstract tangent vectorsTik(M,./ ~)

2) Least-Squares Structures and Riemannian Metiio: are restricted to the directions that do not produce a displa
optimize on the abstract search spdek./ ~, a Riemannian ment along the equivalence clagg] (22). This is achieved
metric in the computation spac@é, is required such that by decomposing the tangent spafg. M., in the computa-
M,/ ~ is a Riemannian submersion [29, Section 3.6.2]. ltion space into complementary spaces as follofugM, =



Vx M, @ Hx M., whereVx M, andHx M, are thevertical
space and horizontal space respectively. In particular, the
horizontal spac&{x M., which is the orthogonal complement
of Vx M. in the sense of the Riemannian metyig, provides
a valid matrix representation of the abstract tangent space
Tixj(M,./ ~) [29, Section 3.5.8]. The vertical spat& M,
is obtained from the tangent space of the equivalence Xdss
(22). We call it thehorizontal lift given that any element in
the abstract tangent spagg;; € Tix; (M,./ ~) has a unique
element in the horizontal spaég € HxM,.

As gx is constrained to be invariant along the equiv:

. . . . . Fig. 2. A schematic view of Riemannian optimization framekvaabstract
alent class[X] (22), it can define a Riemannian metriggeometric objects (shown in dotted line) on a quotient nudif\A, / ~ call

gIx] (é[x]vC[x]) . T[X] (MT/ N) X T[X] (MT/ N) — R in the for matrix representatives (shown in solid lines) in the paoation space (or

uotient spaceM / ~ as (5 ¢ ) L (5 ¢ ) total space)M,.. The pointsx andy in M, belong to the same equivalence
q P r IXINSx]> 6x)) = IX8x56X)r (lass (shown in solid blue color) and they represent a sipajlet [x] = {y €
whereS[X],c[X] € Tix)(M,/ ~) and§x,{x € HxM, are A, .y ~x} on the quotient manifold\,./ ~. Figure courtesy of Mishra
the horizontal lifts or matrix representations&y,; and(x;. etal.[27].
Note that both¢x and{x belong to the tangent spagg M,
In summary, we hav&iemannian submersiaas follows: L i ) o

Definition 2 (Riemannian Submersidn [29, Section 3.6.2]fbiective functionf(X) on this space, which is the gener-

The choice of the metrid (23), which is invariant along th&lization of the Euclidean gradiet /(X) = Pq(X) — Inr
equivalent clas§X], and of the horizontal spacé(x.M, of f(X). To achieve this goal, we first provide the following

as the orthogonal complement %, in the sense of the proposition on the matrix representation of the abstra¢at

Riemannian metric[(23), makes the search spa¢g/ ~ a SPacelix|(M:/ ~). _

Riemannian submersion Proposition 2 _(Horlzontal Space)The horizontal space
Therefore, with the metrid(23), the Riemannian optimiza?x//r. Which is any complementary subspace gt M,

tion algorithms on the quotient manifoldt,/ ~ call for N the sense of the Riemannian metrig (23). pro-

matrix representation (horizontal lifts) in the compuaati vides a valid matrix representation of the abstract tangent

space M,. Specifically, letZ; € Hx, M, be the search SPac€ Tixj(My/ ~) as HxM, = {nx £ TxM, ;

direction at thei-th iteration. DefineRx : HxM, — M, St and S e SmimemCT}’ whereS; = 379U — s,

as the retraction mapping operator that maps the eleme@ndS2 =% EnyV + 15X

in the horizontal spac&; € HxM, to the points on the Proof: Plear?e refer to Append(;X]B for deta|(ljs. g f,.
computation spacé,.. The Riemannian optimization frame- To compute the Riemannian gradient, we need to define two

work for the smooth optimization proble, is presented in projection operators: tangent space projection and hotato

Algorithm[Z and the corresponding schematic view is shown ﬁ?ace projectir(])n. Spgcificalrlly, theb'gangent space prgjledﬁ
Fig.[2. In particular, the parametes in Algorithm[2 denotes the operator that projects the ambient space onto the tangen

the step size, which we will explain in Sectibn TV-D. ace. L
P P . Proposition 3 (Tangent Space Projectiorijhe tangent
i i . TPMxr rXT Mxr
Algorithm 2 A Riemannian Optimization Framework for theSPace prOjectlo_n operat@rpoT PRV X R XR XM_>
Fixed-Rank Optimization Problen#, Tx M, that projects the ambient spaRe&! ™ x R™*" x RMxr

“Input: M, r, 2, desired accuracy, onto the tangent spacgk.M,. is given by:
- Initialize: X, = X"t =, =0,i = 0. Prom, (A, As, Av) = (€p, €5, &), (24)

2
3: while not convergedio h A _ UBn(EST)-1 A A

4. Compute the search directi@®; € Hx, M,.. w ereg%_ e vl )7 € = Au, &y = Ay —

5 VBy (2¥'3)~'. Here,By andBy are symmetric matrices of
6

7

=

UpdateX;.; = Rx, (a;E;). Updatei = ¢ + 1. . . . ;
) endF:/vhiIe 1 x: (@i :). Up P sizer x r that are obtained by solving the Lyapunov equations

: Output: X* = X;. S3TBy + BpEET =327 (UTAy + ATU)SET, (25)
STEBy + By 2T =2TS(VTAy + AL V)ETS. (26)

) ) ) Proof: Please refer to Appendix] C for details. ]
C. Quotient Manifold Representation The horizontal space projection is the operator that etdrac
In this subsection, we derive the concrete matrix repréie horizontal component of the tangent vector by projectin
sentations (horizontal lifts) in the computation spaeg. for the tangent space onto the horizontal space.
abstract geometric objects on the quotient manifdid / ~, Proposition 4 (Horizontal Space Projection).he horizon-
thereby implementing the Riemannian optimization algadal space projection operat®fy, g, : Tx M, — Hx M,
rithms. that projects the tangent spa@& .M, onto the horizontal
1) Riemannian GradientTo design an algorithm using thespace Hx M., is given by ITy, m, (€x) = (Cu,¢s,Cv),
conjugate gradient method on he quotient spade/ ~, where {; = &, — UOy, (s = &5 + 01X — X0,
we need to define thRiemannian gradiengrad;x, f for the (, = &, — VO2. Here, ®; and ©, are skew-symmetric



matrices of size- x r that are obtained by solving the coupled
system of Lyapunov equations

2370, + 0,237 - 0,37 = Skew(UT ¢, =27 +
Skew(2¢y,), (27)

T30, + 0,327 - 270,32 = Skew(VT ¢, 2TT) +
Skew(27¢y), (28)

(a) Retraction (b) Vector transport

where Skew(-) extracts the skew-symmetric part of a SquarIgi 3. Visual representation of the concept of retractind @ector transport
matrix, i.e.,Skew(C) = (C — CT)/2. g = P b P

) within the framework of Riemannian optimization techniguEigure courtesy
Proof: Please refer to AppendixID for details. W of Kressneret al. [40].

Based on Propositiold 3 ahdl 4, we have the matrix repre-
sentation (horizontal liftgradx f of the Riemannian gradient _ _ o _
gradx, f on the quotient manifoldM,./ ~ atX = (U, 2, V) D. Riemannian Optimization Algorithms

as follows: Based on the above matrix representations or horizonts lif
of the geometric objects on abstract search s ~,
grady f = (€v: €5, &v), (29) it is ready to implement the algorithms in the pg)tr?putation
where £, = AVET(EXT)"! — UBy(SXT)7!, & = spf':lce/\/lr. To trgde off the convergence rate anc_zl the compu-
UTSV, ¢, = ATUS(ETS)"! — VBy(2T®)!, with tathnal comple?qty, we present a first-order algorithra.(ithe _
A = Vf(X) = Po(X) — I ;. Here, By and By are the conjugate gr_ad|ent methpd) anq a second-order method (i.e.
solutions to the Lyapunov equations the trust-region method) in Sectibn IV-D1 and Secfion TW-D2
respectively.
SXT"By + BpEXT =28ym(TXTUTAVE),  (30) 1) Conjugate Gradient Methodin the conjugate gradi-
7By + By ETS = 28ym(ZT=vTsTUY), (31) ent scheme, the search direction at iteratiors given by
B = —gradyg, f + BiTx,_,-x,(Ei—1), wheregradx f €
whereSym(-) extracts the symmetric part of a square matri4ixM, is the Riemannian gradient at poiX; € M,
i.e., Sym(C) = (C + CT)/2. Please refer to AppendiX E forand 7x, ,_x,(£x) : Hx,M, — Hx, M, is the matrix
the details on the derivation of the Riemannian gradien}. (29epresentation (the horizontal lift) of theector transport
2) Riemannian HessiariTo design second-order algorithms/[x, ,]-x;)(§x;) that maps tangent vectors from one tangent
(e.g., the trust-region scheme) on the quotient spatg ~, spacelix, ,j(M,/ ~) to another tangent spadex, (M../ ~
we need to define thRiemannian connectioan this space, ) given by 7x, ,x,(Zi-1) = My, m, (Prx, m, (Bi-1))-
which is the generalization of directional derivative ofector Therefore, the sequence of the iterates is given by
field on the manifold. Le¥/,,, £x be the directional derivative _
of the vector field¢x € TxM, applied in the direction Xir1=Rx, (i), (34)
nx € Tx M, on the computation spacet,.. Then the matrix
representation (horizontal lift) of the Riemannian cornitec

Vi §[x) ON the quotient spacéA, / ~ With mix), §x) € oo viion mapping operator that maps the element in the
Tix)(M,/ ~) is given byII (V. €x), Which is the . .

(XA VEr oS Hx M AV mx SX ) . horizontal spaceg; € HxM, to the points on the com-
horizontal projection of the Riemannian connection onte th . Th d f th .
horizontal space. By thEoszulformula [29, Theorem 5.3.1], putation spaceM,.. The product nature of the computation

. . o spaceM,. allows to choose a retraction by simply combining
the Riemannian connection is given by the retractions on the individual manifolds_[29, Example
— 4.1.3], Rx(€x) = (uf(U + &y), 2 + &5, uf(V + &),
Vixbx = Dexlx] + (0u. 0. 6v), (32) where £x :(:)ESU{E(,S‘E) € H;(JMT and lzlf(-)(extract‘s/)tLe
where D¢ [nx] is the classical Euclidean directional derivaerthogonal factor of a full column-rank matrix, i.eif(A) =
tive and@y = ny By + UBy + 26, Sym(ny =7)(=x7)~1, A(ATA)" /2
0s =0, 6y = nyBy + VBy + 26, Sym(niX) (7)1 The concepts of vector transport and retraction in the total
Here,By andBy are the solutions to the Lyapunov equationspaceM,. are illustrated on the right and left sides of Hig). 3,
(30) and [(31). respectively.
Therefore, the matrix representation (horizontal lift)toé 2) Trust Region MethodTo provide quadratic convergence
Riemannian Hessiahless;x; f[§x] on the quotient manifold rate, we implement the second-order optimization algorith

where «; denotes the step size satisfying the strong Wolf
conditions [24], [29] andRx : HxM, — M, is the

M,/ ~ is given by based on the trust-region methad [[28]. In particular, in the
quotient manifold M,/ ~, the trust-region subproblem is
Hessx f[€x] = Ilptxm, (Vey gradx f), (33)  horizontally lifted toHx M, and formulated as

wheregrady f ([29) is the Riemannian gradient in the compu- minimize m(€x)
tation spaceM, and the Riemannian connection is given in ExEHx My

(32). subject to gx (éx,&x) < 02, (35)



TABLE |
OPTIMIZATION-RELATED INGREDIENTS FOR PROBLEMZ,-

P : minimizex e p,. f(X)
Matrix representation of an elemekt € M, X =(U,%,V)
Computational spacé, St(r, M) x GL(r) x St(r, M)
Quotient space St(r, M) x GL(r) x St(r, M)/(O(r) x O(r))
Metric gx (§x,¢x) for €x,¢x € Tx M 9x (€x,¢x) = (v, CuBET) + (€5, ¢x) + (€, ¢V ETE)
Riemannian gradiengradx f gradx f = (€7, €5, €v) (29)
Riemannian Hessiakessx f[€x] Hessx f[€x] = My m, (Veygradx f) @G3)
RetractionRx (€x) : Hx Mr — M, (uf(U + €x), X+ &5, uf(V + &)

whered is the trust-region radius and the cost function is givemhere V. f = (PQ(XW) —I,s) is the Euclidean gradient

by of the cost functiony at pointX!”! and=(" is the orthogonal
projection on the tangent spadg 1M, given by the Rie-
m(€x) :{(X) +gx(€x, gradx f) + mannian gradient, i.,eZ(") = —grady.sf, andEY is the

5 gx (€x, Hessx f[€x]), (36) best rank-one approximation of

. - _ _ =) _ r
where grady f (29) and Hessxf (33) are the horizontal B, = —Vxo f = &) = Vi f(XI) + gradyp f .
lift (matrix representation) of the Riemannian gradientian = —Vxi f(X") + &, VT + U VT + USEY, (38)
Riemannian Hessian on the quotient manifgid./ ~. Given S
) ) L which is orthogonal to the tangent spdtg M, [43].
ghi Tat:‘I)t(h rgpre;sentatlto? of :‘htﬁ stear(t:h d!rect| .(t?t’]s)’ theBased on[(37) and (88), we shall adopt the following rank
etails ot the implementation ot the trust-region aiganttan update strategy to find a good initial point for the next itiemra

be found in [41]. . i
y L . . Algorith ,
In summary, the optimization-related ingredients for protl)n gorithm 1

lem &2, are provided in Tablg I. Xt =p, (Xm + ay (E(l) — gradx f)) , (39)

T

where o, > 0 is a step size and satisfies the following
condition [24],

In this section, we propose a rank-one update algorithm to . o
generate good initial points and provide monotonic deereas FXEY < pxty - 7T<®r7 ©,). (40)
for the objective functions for fixed-rank optimization ihet
procedure of rank pursuit in Algorithid 1. This is achieved b
exploiting the structure of the low-rank matrix varieti@?],
[30].

V. RANK INCREASINGALGORITHM

Therefore, if 2, is zero, thenVxwf = 0 and we can
Yerminate.

Remark 3:Note that when the Riemannian gradient
grady (- f equals zero, the rank update strategy (39) is equiv-
alent to the following rank increasing strate@y |[44]

A. Low-Rank Matrix Varieties
XgH] =Xl ouv’, (41)

We present a systematic way to develop the rank increasing
strategy in Algorithm[1L based on the following low-rankwvheres > 0 is the dominant singular value ard, v) is the
matrix varietiesM <, = {X € RM*M . rank(X) < r}, pair of top left and right singular vectors with unit-normtbe
which is the closure of the set of fixed-rank metridd,. Euclidean gradienVx. f. Although the rank update strategy
Furthermore, we consider the linear-search methodtn. .,  (41) ensures that the cost functigndecreases monotonically
with the iterates as follows, w.r.t. r, it ignores the intrinsic manifold structure of fixed-

_ rank matrices in Algorithni]2. Specifically, the Riemannian
Xi1 = Perp1(Xi + iF), (37) gradientgrady 1 f (29), which belongs to the tangent space

whereE; is a search direction in thangent con&d’x, M,,; 1xinMy, is not necessarily equal to zero, as the corresponding
atX; [42], o, is a step-size, anf,,; is a metric projection fixed-rank optimization problem may not be solved exactly in

onto M<,,1 with a best ranks + 1) approximation in the Practice, e.g., Algorithrhl2 may terminate when the maximum
Frobenius norm. number of iterations is exceeded [24].

C. Monotonic Decrease of the Objective Function
Assume that the iteraf¥”] has rank- at ther-th iteration We shall show that the Riemannian manifold rank update
in Algorithm[d. In the next iteration, we will increase thenka strategy [(3P) ensures that the objective function decsease

by r+1. To embedX!”) into the search spackt <, , 1, suppose monotonically with respect to. Specifically, agradxi f €

that we choose the projection of the negative Euclidean grf%iﬁ“]MT ?ndzr: (38) is orthogonal td’x(1 M., we have the
dient on the tangent coriB ., M<, .1 as a search direction, '0"'oWIng fact that

Mepir | = Vxin f=EBllr = B +ED, (=1, gradx f) = 0. (42)

B. Riemannian Pursuit

=, — argmine
" & BeTy
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Let XY X2l be the sequence generated by Algorithm

[, based on[{40) an@_(#2), we have 10°
r r r (078
FXI) <y XE) <) FXI) - SO, 0,) ]
T Tr .
<@ FX) = ZOEO U3 +lgradyen £13) | e

<@ F(XI). (43) e

Here, the first inequality is due to the fact that the iterates

of the Riemannian optimization algorithm try to minimizesth

cost functionf, the second and the third inequalities are base( TRRP

on the facts[(40) and_(#2), respectively. Therefore, the cos  10°

function f(X[")) decreases monotonically with respect-to
Remark 4: Although only the rank-one update strategy is 107 o 200 00 200 00

considered in Algorithnm(J1, the proposed rank increasing Iteration

algorithm in this section can be easily generalized to the

general rank= with » > 1 updates to improve the convergenceig. 4. Convergence rate with the rank of matias four.

rate [24], [30] for the RP algorithm. However, this may yield

the detected rank of matriX overestimated.

Normalized Residual
o

VI. SIMULATION RESULTS 10°
In this section, we simulate the proposed Riemanniar .
pursuit algorithms for topological interference manageme 107

problems in partially connectell-user interference channels.
The conjugate gradient Riemannian algorithm and the trust
region Riemannian pursuit algorithm, are termed “CGRP” anc
“TRRP”, respectively. The two algorithms are compared t th
following state-of-the-art algorithms:

o LRGeom with Riemannian Pursuit: In this algorithm[[24],
[19], termed “LRGeom”, the embedded manifold based s | TRRP
fixed-rank optimization algorithm developed [n [22] with
the Riemannian pursuit rank increasing strategy propose 107 ‘ ‘ ‘ ‘ ‘
in [19], [24] is adopted to solve probler. 0 % 00 eeon 0 B0 0

o LMaFit: In this algorithm, the alternating minimization
scheme with rank adaptivity is adopted to solve problemg. 5. Convergence rate with the rank of matiixas five.

Z [20].

The Matlab implementation of all the Riemannian al-
gorithms for the fixed-rank optimization problen?, is
based on the manifold optimization toolbox ManOpt[41]pptimization problemZ?, with r = 4 andr = 5, respectively.
All the Riemannian optimization algorithms are initiakize Both figures show that the trust-region based Riemannian
randomly as shown in_[22] and are terminated when eithgptimization algorithm TRRP has the fastest convergeniee ra
the norm of the Riemannian gradient is belaw°, i.e., and achieves higher precision solutions in a few iterations
[gradx f| < 107° or the number of iterations exceedgompared with the other three algorithms. Encoded with
500. The setting for LMaFit is the same as that[inl [20]. Whe second-order information in the Riemannian mefrid ,(23)
adopt the following normalized residual |20] as the stogpinthe conjugate gradient based Riemannian algorithm CGRP
criteria for Algorithm[l to estimate the rank for matr: achieves a faster convergence rate than LRGéom [22], while

e = |Pa(X) —Iyllr/VM. We sete = 10~° for all the LMaFit [20] has the lowest convergence rate among all the
algorithms to estimate the minimum rank of matd such algorithms.

that it satisfies the affine constraint in proble#.

LMaFit

Normalized Residual
o

LRGeom

These two figures also indicate that, with the same stopping
criteriae = 10~° in Algorithm[1, the detected rank of matrix
A. Convergence Rate X by TRRP is 4. Although the detected rank of matrix
Consider a 100-user partially connected interferencechaX by both CGRP and LRGeom is 5, the latter one has
nel with 400 interference channel links. The sets of the coa- slower convergence rate. Furthermore, the required rank
nected interference links are generated uniformly at rendoof LMaFit should be larger than 5 to achieve the stopping
We turn off rank adaptivity for all the algorithms to solveeth criteria e = 1075. This conclusion will be further confirmed
fixed-rank optimization problen?,.. Fig.[4 and Fig[b show in the following simulations on the empirical results foeth
the convergence rates of different algorithms for the firs@uk achievable DoFs.
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VII. CONCLUSIONS AND FURTHER WORKS

T
TRRP

ool —core | In this paper, we presented a flexible low-rank matrix
—O— LiaFi completion approach to maximize the achievable DoFs for
] the partially connectedK-user interference channel with
orf ] any network topology. A Riemannian pursuit algorithm was
proposed to solve the resulting low-rank matrix completion
optimization problem by exploiting the quotient manifold
osr ] geometry of the search space and the structure of low-rank
matrix varieties for rank pursuit. In particular, we showed
that, by encoding the second-order information, the qubtie
manifold based Riemannian optimization algorithms achiev
02f ] a faster convergence rate and higher precious solutioms tha
o1 ‘ ‘ ‘ ‘ ‘ : ‘ the existing algorithms. Simulation results showed tha th
’ T Clteering Links. v proposed Riemannian pursuit algorithms achieve highersDoF
for general network topologies compared with the statéief-
Fig. 6. Achievable symmetric DoF versus different numbdraerference  art methods.
links. Several future directions of interest are listed as foltows
o From the algorithmic perspective, it is interesting to
establish the optimality of the Riemannian pursuit al-
B. Achievable Symmetric DoF and Optimal DoF Results gorithms for the low-rank matrix completion problem
&, thereby establishing the relationship between the

) ) ) achievable DoF and the network topology.
Consider a 20-user partially connected interference oflann , From the information theoretic perspective, it is critical

The sets of the connected interference links are generated to translate the numerical insights (e.g., optimal DoF

uniformly at random. We simulate and average 100 network achievability for the specific network topologies in [10])
topology realizations. Fig[16 demonstrates the achievable provided by the LRMC approach into the optimal DoF
symmetric DoF with different algorithms assuming that the o any network topology.

data streams\/; = 1,Vi. We can see that the second-order , |tis particularly interesting to extend the LRMC approach
algorithm TRRP can achieve the highest symmetric DoF, to more general scenarios, e.g., with finite SNR scenarios,
but it has the highest computational complexity due to the nMO interference channels, transmitter cooperations
computation expensive calculation of the Hessian. For the fi with data sharing, and wired linear index coding problems
order optimization algorithm, CGRP can achiever a higher n the finite field. In particular, as optimization on mani-
symmetric DoF than LRGeom [24], [19] and LMaFiit 120]. In fo|ds deeply relies on smoothness, the search space will
particular, we can see that, with few interference linkstegu become discrete in a finite field. Therefore, the presented
high DoFs can be achieved. Riemannian pursuit algorithms cannot be extended to the

To further justify the effectiveness of the RP framework, we finite field in principle.

numerically check that our RP algorithms can recover all thee Itis also interesting to apply the Riemannian optimization
optimal DoF results for the specific TIM problemsfin[10]. The  technique to other wireless communications and network-
same conclusion has also been presented in [19]. Note that ou ing problems (e.g., the hybrid precoding in millimeter
proposed automatic rank detection capable RP algorithms do wave systems|[45]). In particular, extending the corre-
not need the optimal rank as a prior information, while the sponding algorithms to the complex field is critical, as

Achievable Symmetric DoF
°
'S

o
w

alternating projection algorithm [18] requires the optimank most of the Riemannian algorithms are only developed
as a prior information to perform low-rank matrix projectio in real field and complex field extension is not trivial.
Moreover, it is interesting to theoretically identify thiass of

network topologies such that the proposed RP framework can APPENDIX A

provide optimal symmetric DoFs. PROOF OFPROPOSITIONI: REMANNIAN METRIC

In summary, all the simulation results illustrate the ef- To induce the metric based on the Hessian of the cost
fectiveness of the proposed Riemannian pursuit algorithgction f in problem £2,, we consider a simplified cost
by exploiting the quotient manifold geometry of the fixedfunction || X — I,,(|%/2, yielding the following optimization
rank matrices and encoding the second-order information groblem:
the Riemannian metri¢d_(23), as well as utilizing the second- 1
order optimization scheme. In particular, there is a tréfdeo minimize ~Tr(X7X) — Tr(X), (44)
between the achievable symmetric DoF and the computational XeM, 2
complexity using the first-order algorithm CGRP (which iBased on the factorizatio®X = UXVT, we have the
applicable in large-sized networks) and the second-oider a matrix representation of Lagrangian for probldml|(44) as fol
rithm TRRP (which is applicable in small-sized and mediuntews £(X) = i Tr(VETUTUEVT) — Tr(UXVT), where
sized networks). X has the matrix representatiofU, X, V) € St(r,n) x
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GL(r) x St(r,n). The second-order derivative @f(X) ap- symmetric, the characterization of the horizontal spaggvisn
plied in the direction¢x is given by D*L(X)[€x] = by

(EuSET + 2USym(SEy) — VEg — 57, £y V! + .

SzU‘f‘ 23Sym(VTEy) — STSV,EVEET —VUSE _ EJET T Hx M, ={nx € Tx M, : S; and Sy are symmetric}.(48)

2VSym(E7T¢y)), where £x has the matrix representation

€y, €s,Ey) € R X R™T x R™XT, APPENDIXC
As the cost function in[{44) is convex and quadraticXn PROOF OFPROPOSITION3: TANGENT SPACE PROJECTION
it is also convex and quadratic in the argume(its X, V) Given a matrix in the ambient spaBg’*" x R™*" x RM ",

individually. Therefore, the block diagonal elements oé thits projection onto the tangent spa@& .M., is obtained by
second-order derivativxx (X) of the Lagrangian are strictly extracting the component normal spa¥g.M.. to the tangent
positive definite. The following Riemannian metric can bepace in the Riemannian metric sense.

induced from the block diagonal approximation 6% x (X), We first derive the matrix characterization of the normal
B 9 space. Specifically, lehx = (ny,ns,nv) € TxM, and
gx(Ex:6x) = (6 DPLXlCx]) (x = (Cy» Cxr Cy) € NxM,. By definition, nx should be
~(€u, CuEE’) + (€x,¢x) + orthogonal to¢x with respect to the Riemannian metijg,
X
&y, ¢vETE), (45) i.e. g(nx,¢x)=0. That is, the following conditions

whereéx = (€y,€s,8v),¢x = (Cu,¢xs,Cv) € TxM. <£U1CUEET> =0, <£V7CVET2> =0,({¢xs,¢x) =0,(49)

andX € (U, X%, V). . : B
To verify that the metric is invariant along the equiv-ShOUId hold for anwyx € TxM,. Itis obvious thaky; = 0.

alent class[X] (@2), based on[[29, Proposition 3'6'1],Furthermore,based on [29, Example 3.5.2], we have thexnatri

it is equivalent to show that the metric for tangen?haractenzatmn Offy as

vectors £x,{x € TxM, does not change under the ny =UQ+ U, K, (50)
transformations (U, %,V) — (UQu,QLEQyv,QvV), - ; ; :

(. €5.60) = (E0Qu, Qe Q. €y V), (CuyCanCy) = where Q is a skew-symmetric matrix of size x r, K €
(¢ Qu, Q¢ Qy, ¢,/ V). After simple computation, we canRY 77" can be any matrix, an®, is any M x (M —r)
verify that [45) is a valid Riemannian metric and does n&fatrix such thatpan(X, ) is the orthogonal complement of
depend on the specific matrix representations along the-equan(X)- Similarly, we can obtain the characterizatiorvg.

alence clas$X] (22). We rewrite¢y asly = CuEET with,
&U =UBy + U, Ay, (51)
APPENDIXB
PROOF OFPROPOSITIONZ: HORIZONTAL SPACE whereAy € R™" andBy € R~ can be deduced from

. . . — . conditions [49) and(50). Based on the fact thatG” ©) =
The vertical spac&x.M.,. is the linearization of the equiv- 0, if and only if G is symmetric, we can conclude tHB, is

alence chsse{sX] (22) and formed by t_he set of d'reCt'onssymmetric andA — 0. Therefore, we have
that contains tangent vectors to the equivalence classsed

on the matrix representation of the tangent space for the ¢uEx? = UBy, (52)

orthogonal matrices [29, Example 3.5.3], we have the matrim _ BT, Similarl btain th ,
representation for the vertical space as where BU " By Similarly, we can o tain the matr|_x
characterization of{y,. Therefore, we arrive at the matrix
VxM, = (UB1,X¥0; — 0,3, VO,), (46) representation of the norm space,

where ©, aan ©, are any skew-symmetric matrices of size  NxM, = {(UBy(EX?)71,0,VBy(E7Z)™ )}, (53)
rxr, ie,0; =-0;i=1,2. . . )

The horizontal spacé(x M., which is any complementary WhereBu and By are symmetric metrics of sizex 7.
subspace t’x M,. in TxM,. with respect to the Riemannian S theé tangent space projectdtr, M, is obtained by
metric gx (23), provides a valid matrix representation of*tracting the compon]?PXtTnormflxio theﬂﬁr:gent spaee
the abstract tangent spa@éx(M,/ ~) [29, Section 3.5.8] " the ambient spac& x RO RYXT, we have the
based on the Riemannian submersion principle. SpecifjcaWpress'on for the operatdty, M, as
|et7/7cl< = (mé, 7f7z, nv) € HﬁM;aagdCx: (Cus ICzq Cv) ﬁ Pro M, (Ay,As, Ay) = (Ay — UBy(=2T) 71
Vx M.,.. By definition, nx should be orthogonal tgx wit _ T 1
respect to the Riemannian metijg, i.e., Az, Av = VBy (37 3)7)),(54)

_ T, T which belongs to the tangent space. The tangent Spreé .
gx (11, ¢x) = Tr((EX)ny U + in the computation spac#1,. at the pointX = (U, X, V) is

Tr(ngXO; — N30, %) + the product of the tangent spaces of the individual marsfold
Tr((ZTEZ)ni, ve,) which has the following matrix representatidn [29, Example
=Tr(S10,) + Tr(S:0,) =0, (47) 352,
whereS, = 2TpTU-2n% andS; = £75nLV4+nLs. Tx M, = {(£y, &, &) € RMXT x RT¥T x RMXT

Based on the fact thafr(GT@®) = 0, if and only if G is UT¢, + €U =0,VT¢, + €LV =0}. (55)
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APPENDIXF
RIEMANNIAN QUOTIENT MANIFOLDS

Based on[(54) and (b5), we know th&t should satisfy the
condition:

UTSU 4 ggU:UT [AU — UBU(EET)_l] 4 We now consider the case of a quotient manifald/ ~,
1T where the structure spacef is endowed with a Riemannian
[Ay = UBy(2x") '] U =0, (56) metric g. The horizontal spactx andX € M is canonically
which is equivalent to the Lyapunov equation for the symmeghosen as the orthogonal complementaM of the vertical
ric matrix By, spaceVx = Txn '(X), namely,

23xTBy 4+ Byl = sxT(UTAy + ALU)ZET (57) Hx := (TxVx)*
= {nx € TxM: g(xx,nx) = 0,Vxx € Vx}.(63)

Recall that the horizontal lift aX € 7—!([X]) of a tangent
vector§ x; € Tix)(M/ ~) is the unique tangent vectdk €

Similarly, we can obtain the Lyapunov equation for the sym-
metric matrixBy as in [26).

APPENDIXD .
Hx that satisfiesDr(X)[€x]. If, for every [X] € M/ ~ and
PROOF OFPROPOSITION4: HORIZONTAL SPACE .
PROJI’E\%]TION every{x;, ¢x) € Iixj(M/ ~), the expressiomx (§x,(x)

. _ . does not depend oKX € 7—*([X]), then
The horizontal space projectdi;, r¢, Can be obtained

by extracting the horizontal component of the tangent vecto 91x1(§x- [€x) == 9x(€x:Cx)
Specifically, letex = (£y.&x,8v) € TxM, and Cx = = yo6hoo o Riemannian metric okt/ ~. Endowed with this
v, ¢s,¢y) € HxM,. We have the expression for the_: . : : : . .
operatorly, v as Riemannian metricM/ ~ is called aRiemannian quotient
X manifold of M, and the natural projection : M — M/ ~
My m, (€x) = Ey —UO, €y + 0, — 0O, is a Riemannian submersiorfin other words, a Riemannian

(64)

£y —VO,) submersion is a submersion of Riemannian manifolds such
— (Cpr G Co) (58) that D preserves inner products of vectors normal to fibers.)
- UrsSXHrSV )
which belongs to the horizontal spats; M... Based on[(48), ACKNOWLEDGMENT

we have
»y7¢iu-—x¢L=sxT(, -Ue,) U -
By + 0,2 - %0,)"

The authors would like to thank Dr. Bamdev Mishra, Dr.
Nicolas Boumal and Prof. Bart Vandereycken for insightful
discussions about Riemannian optimization for low-rank ma

=zxTefu-—zel) + (=xTe, +
7o, - x0,x7), (59)

which is symmetric. ASSXT(¢LU — 3¢E = (2x27¢hU - .
Z}C%)T, we can obtain the equation in_{27). Similarly, we can!
obtain the equation i _(28) by checking the condition iat
iS symmetric. (2]
APPENDIXE

COMPUTE THERIEMANNIAN GRADIENT (29)

LetX = (U, X,V) andA = Vf(X) = Pq(X) —I denote
the Euclidean gradient of at pointX. The partial derivatives [4]
of f(X) with respective tdU,X andV are given by
0f(X) 2f(X) Of(X) _ 7 2

50 75 N A" UX(60)
With metric [23), the scaled Euclidean gradient is given by [6]

A = (AvET(=xT)~ L UTAV, ATUx(xTx) 1. (61) [

(3]

=AVXET, =UTAv,

By further projectingA onto the tangent space based [od (24)
we have the matrix representation (horizontal Igfthdy f of

grad[X] f as

(8]

. [9]
gradx f = Pryxm, (A), (62)

which yields the equations ih {R9). Note that, based on tiee Rj10]

mannian submersion principle [29, Section 3B}, o+, (A) is
already the horizontal lift, which can be verified that theiho

zontal space projectioH«, a4, Will not changePry, a4, (A).

[11]

trix completion.

REFERENCES

Y. Shi, J. Zhang, K. Letaief, B. Bai, and W. Chen, “Largeate convex
optimization for ultra-dense Cloud-RANJEEE Wireless Commun.
Mag. vol. 22, pp. 84-91, Jun. 2015.

D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Sirme@nd
W. Yu, “Multi-cell MIMO cooperative networks: A new look anier-
ference,” IEEE J. Sel. Areas Communvol. 28, pp. 1380-1408, Sep.
2010.

Y. Shi, J. Zhang, B. O’'Donoghue, and K. Letaief, “Largeke convex
optimization for dense wireless cooperative networdEEE Trans.
Signal Process.vol. 63, pp. 4729-4743, Sept. 2015.

V. Cadambe and S. Jafar, “Interference alignment andredeg of
freedom of theK -user interference channelEEE Trans. Inf. Theory
vol. 54, pp. 3425-3441, Aug. 2008.

G. Bresler, D. Cartwright, and D. Tse, “Feasibility ofténference
alignment for the MIMO interference channelZEE Trans. Inf. Theory
vol. 60, pp. 5573-5586, Sep. 2014.

V. Ntranos, M. Maddah-Ali, and G. Caire, “Cellular inference align-
ment,” IEEE Trans. Inf. Theoryvol. PP, no. 99, pp. 1-1, 2015.

O. El Ayach, A. Lozano, and R. Heath, “On the overhead tfriflerence
alignment: Training, feedback, and cooperatiolcEE Trans. Wireless
Commun,. vol. 11, pp. 4192-4203, Nov. 2012.

M. A. Maddah-Ali and D. Tse, “Completely stale transraittchannel
state information is still very usefullEEE Trans. Inf. Theoryvol. 58,
pp. 4418-4431, Jul. 2012.

R. Tandon, S. Jafar, S. Shamai Shitz, and H. Poor, “On yinergjistic
benefits of alternating CSIT for the MISO broadcast chahn@EE
Trans. Inf. Theoryvol. 59, pp. 4106—-4128, Jul. 2013.

S. Jafar, “Topological interference management tghoindex coding,”
IEEE Trans. Inf. Theoryvol. 60, pp. 529-568, Jan. 2014.

N. Naderializadeh and A. Avestimehr, “Interferencewarks with no
CSIT: Impact of topology,lEEE Trans. Inf. Theoryvol. 61, pp. 917—
938, Feb. 2015.



14

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Y. Shi, J. Zhang, and K. Letaief, “Optimal stochasticoatinated
beamforming for wireless cooperative networks with CSlartainty,”
IEEE Trans. Signal Processvol. 63, pp. 960-973, Feb. 2015.

A. E. Gamal, N. Naderializadeh, and A. S. Avestimehr, H& does
an ensemble of matrices with randomly scaled rows lose ram@kXiv
preprint/arXiv:1501.075442015.

X. Yi and D. Gesbert, “Topological interference managat with
transmitter cooperationJEEE Trans. Inf. Theoryvol. 61, pp. 6107—
6130, Nov. 2015.

H. Sun and S. Jafar, “Topological interference managgnwith multiple
antennas,” inProc. IEEE Int. Symp. Inform. Theory (IS|Thp. 1767—
1771, Jun. 2014.

E. J. Candés and B. Recht, “Exact matrix completion g@vex
optimization,” Found. Comput. Math.vol. 9, pp. 717-772, Apr. 2009.
H. Esfahanizadeh, F. Lahouti, and B. Hassibi, “A mattampletion
approach to linear index coding problem,” i8EE Information Theory
Workshop (ITW), 2014pp. 531-535, Nov 2014.

B. Hassibi, “Topological interference alignment inraless networks,”
Smart Antennas Workshopug. 2014.

Y. Shi, J. Zhang, and K. B. Letaief, “Low-rank matrix cpfation via
Riemannian pursuit for topological interference managerhée Proc.
IEEE Int. Symp. Inform. Theory (ISITjHong Kong), Jun. 2015.

Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factesiion
model for matrix completion by a nonlinear successive oe&xation
algorithm,” Mathematical Programming Computatiowol. 4, no. 4,
pp. 333-361, 2012.

P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank imatompletion us-
ing alternating minimization,” ilACM Symp. Theory Compupp. 665—
674, ACM, 2013.

B. Vandereycken, “Low-rank matrix completion by Rienmé&an opti-
mization,” SIAM J. Optim, vol. 23, pp. 1214-1236, Jun. 2013.

N. Boumal and P.-a. Absil, “RTRMC: A riemannian truggion method
for low-rank matrix completion,” inAdvances in neural information
processing systemgp. 406-414, 2011.

M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. Jn,Pa
“Riemannian pursuit for big matrix recovery,” iroc. Int. Conf. Mach.
Learn. (ICML) vol. 32, pp. 1539-1547, Jun. 2014.

B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre, éBixank matrix
factorizations and Riemannian low-rank optimizatio@3mput. Statist.
vol. 29, no. 3-4, pp. 591-621, 2014.

B. Mishra and R. Sepulchre, “R3MC: A Riemannian thraetér algo-
rithm for low-rank matrix completion,” iIHEEE Conference on Decision
and Contro) 2014.

B. Mishra and R. Sepulchre, “Riemannian preconditigrii arXiv
preprint/arXiv:1405.60552014.

P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-riesn methods
on riemannian manifolds,Found. Comput. Math.ol. 7, pp. 303-330,
Feb. 2007.

P.-A. Absil, R. Mahony, and R. Sepulchr®ptimization algorithms on
matrix manifolds Princeton University Press, 2009.

A. Uschmajew and B. Vandereycken, “Line-search meshadd rank
increase on low-rank matrix varieties,” iRroceedings of the 2014
International Symposium on Nonlinear Theory and its Apgpians
(NOLTA2014) 2014.

T. M. Cover and J. A. Thomaglements of information thearyJohn
Wiley & Sons, 2012.

K. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distridutemerical
approach to interference alignment and applications teless interfer-
ence networks,IEEE Trans. Inf. Theoryvol. 57, pp. 3309-3322, Jun.
2011.

M. Razaviyayn, G. Lyubeznik, and Z.-Q. Luo, “On the degg of free-
dom achievable through interference alignment in a MIM@iifgrence
channel,”IEEE Trans. Signal Processeol. 60, pp. 812-821, Feb. 2012.
X. Yi and D. Gesbert, “Topological interference managat with
transmitter cooperation,” iRroc. IEEE Int. Symp. Inform. Theory (ISIT)
pp. 846-850, Jun. 2014.

E. J. Candes, Y. C. Eldar, T. Strohmer, and V. Voroninskhase
retrieval via matrix completion,’'SIAM Journal on Imaging Sciences
vol. 6, no. 1, pp. 199-225, 2013.

D. Papailiopoulos and A. Dimakis, “Interference aligent as a rank
constrained rank minimization|EEE Trans. Signal Processvol. 60,
pp. 4278-4288, Aug. 2012.

P. Jain, R. Meka, and I. S. Dhillon, “Guaranteed rank imination
via singular value projection,” inAdvances in Neural Information
Processing Systempp. 937-945, 2010.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

G. Meyer, S. Bonnabel, and R. Sepulchre, “Linear regjozs under
fixed-rank constraints: a Riemannian approach,”Aroc. Int. Conf.
Mach. Learn. (ICML), 28th2011.

J. Nocedal and S. Wrighlumerical optimization Springer Science &
Business Media, 2006.

D. Kressner, M. Steinlechner, and B. Vandereycken,wiank tensor
completion by Riemannian optimizationBIT Numer. Math. vol. 54,
no. 2, pp. 447-468, 2014.

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Mmpt, a Matlab
toolbox for optimization on manifoldsJ. Mach. Learn. Resvol. 15,
pp. 1455-1459, 2014.

R. Schneider and A. Uschmajew, “Convergence resultspfojected
line-search methods on varieties of low-rank matrices \agagiewicz
inequality,” SIAM J. Optim. vol. 25, no. 1, pp. 622-646, 2015.

P.-A. Absil and I. V. Oseledets, “Low-rank retractiorsssurvey and new
results,”Computational Optimization and Applicatigngp. 1-25, 2014.
B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, “Lowkaptimization
with trace norm penalty,SIAM J. Optim. vol. 23, no. 4, pp. 2124-2149,
2013.

X. Yu, J. C. Shen, J. Zhang, and K. Letaief, “Alternatingnimization
algorithms for hybrid precoding in milimeter wave MIMO ggms,”
IEEE J. Sel. Topics Signal Procest appear, 2016.


http://arxiv.org/abs/1501.07544
http://arxiv.org/abs/1405.6055

	I Introduction
	I-A Contributions
	I-B Organization

	II System Model and Problem Statement
	II-A Channel Model
	II-B Achievable Rates and DoF
	II-C Topological Interference Management

	III Low-Rank Matrix Completion for Topological Interference Management via Riemannian Pursuit 
	III-A Problem Analysis
	III-A1 Nuclear Norm Minimization
	III-A2 Alternating Optimization Approaches

	III-B Riemannian Pursuit

	IV A Riemannian Optimization Framework for Smooth Fixed-Rank Optimization
	IV-A Problem Structures
	IV-A1 Matrix Factorization and Quotient Manifold
	IV-A2 Least-Squares Structures and Riemannian Metric

	IV-B Riemannian Optimization on Quotient Manifolds
	IV-C  Quotient Manifold Representation
	IV-C1 Riemannian Gradient
	IV-C2 Riemannian Hessian

	IV-D Riemannian Optimization Algorithms
	IV-D1 Conjugate Gradient Method
	IV-D2 Trust Region Method


	V Rank Increasing Algorithm
	V-A Low-Rank Matrix Varieties
	V-B Riemannian Pursuit
	V-C Monotonic Decrease of the Objective Function

	VI Simulation Results
	VI-A Convergence Rate
	VI-B Achievable Symmetric DoF and Optimal DoF Results

	VII Conclusions and further works
	Appendix A: Proof of Proposition ??: Riemannian Metric
	Appendix B: Proof of Proposition ??: Horizontal Space
	Appendix C: Proof of Proposition ??: Tangent Space Projection
	Appendix D: Proof of Proposition ??: Horizontal Space Projection
	Appendix E: Compute the Riemannian Gradient (??)
	Appendix F: Riemannian quotient manifolds
	References

