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Abstract—We consider wireless transmission over fading chan-
nel powered by energy harvesting and storage devices. Assuming
a finite battery storage capacity, we design an online power
control strategy aiming at maximizing the long-term time-
averaged transmission rate under battery operational constraints
for energy harvesting. We first formulate the stochastic optimiza-
tion problem, and then develop techniques to transform this
problem and employ techniques from Lyapunov optimization
to design the online power control solution. In particular, we
propose an approach to handle unbounded channel fade which
cannot by directly dealt with by Lyapunov framework. Our
proposed algorithm determines the transmission power based

only on the current energy state of the battery and channel fade
conditions,without requiring any knowledge of the statistics of
energy arrivals and fading channels. Our online power control
solution is a three-stage closed-form solution depending on
the battery energy level. It not only provides strategic energy
conservation through the battery energy control, but also reveals
an opportunistic transmission style based on fading condition,
both of which improve the long-term time-averaged transmission
rate. We further characterize the performance bound of our
proposed algorithm to the optimal solution with a general fading
distribution. Simulation results demonstrate a significant perfor-
mance gain of our proposed online algorithm over alternative
online approaches.

I. INTRODUCTION

The excess carbon emission due to the growing energy

demand has caused significant environmental concern. To face

increasing energy cost and reduce carbon footprint, renewable

generation has increasingly been considered as an alternative

energy source for power supply in wireless communication

systems. In particular, using energy harvesting devices to

supply power to wireless transmitters has recently attracted

a growing attention. Unlike the traditional fixed power supply

either from the grid or battery, an energy harvesting device

can scavenge energy from renewable energy sources in the

environment and provide continuous power supplies. There

is a growing demand of this low-cost green technology for

a wide range of applications, such as supplying power to

base station or relay station in cellular networks. For energy-

constrained wireless applications such as sensor networks,

energy harvesting device provides an unlimited power supply
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to maintain the lifetime of the network operation without the

need to replenish batteries.

For wireless transmission powered by renewable energy,

typically, an energy harvesting device is implemented with

a storage battery to store the harvested energy and to provide

power for transmission. With energy harvesting and storage,

power control for transmission over fading channels faces

unique challenges, including the randomness of both renew-

able energy source and wireless fading channels, and the

battery operational constraints on energy harvesting and power

supply.

To address this problem, several existing works have con-

sidered off-line optimal power control designs for additive

white Gaussian noise (AWGN) channels [2]–[6] and for fading

channels [7]–[9], where the harvested energy (and channel

fades in case of fading channels) within a time period are

assumed known beforehand. However, for practical system

designs, both harvested energy and channel quality can only be

acquired causally. Some existing works have proposed online

power control strategies [7], [9]–[17] based on the current and

past system information. However, these works also assume

statistics of energy arrivals and channel fades to be certain

types and known at the transmitter, and the solutions often

need to be obtained numerically with high computational

complexity. In reality, the statistics of the energy arrival for

harvesting are difficult to obtain or predict accurately. Thus, it

is desirable and practical to design online power control which

only relies on the harvested energy and fading condition up

to the current time without requiring their statistical knowl-

edge. In addition, most existing works often make simple

assumptions on the battery operation for energy harvesting and

power supply, without realistically consider battery operational

constraints. However, these constraints limit the amount of

energy that can be stored or drawn, and affect the transmission

performance. Thus, a more realistic battery operation model

for energy harvesting and power supply should be considered

in the power control design.

A. Contributions

In this paper, we consider the problem of power control

for transmission powered by energy harvesting and storage

devices for transmission over fading channels. For energy

harvesting, we consider a finite battery storage capacity and

model the battery operational constraints on charging and

power output. In addition, we assume the statistics of energy

arrivals and fading are unknown at the transmitter. Our goal

is to maximize the long-term time-averaged transmission rate

under the battery operational constraints.

http://arxiv.org/abs/1606.01416v2


2

Our formulated optimization problem is stochastic and

technically challenging to solve. In particular, the finite battery

storage capacity and operational constraints cause the power

control decision coupled over time which complicates the

control decision making. We leverage Lyapunov optimization

framework [18] to design online power control. However,

applying the Lyapunov technique to our problem is nontriv-

ial. Specifically, the original optimization problem cannot be

directly handled by Lyapunov framework. Several issues need

to be addressed, including the form of battery operational

constraints and unbounded channel fades. We develop special

techniques to handle these issues to tackle the online power

control problem. Our main contributions are summarized as

follows:

• We formulate the transmission power control under en-

ergy harvesting and storage for the long-term average

rate maximization over fading channels as a stochastic

optimization problem by taking into account detailed

battery operational dynamics and constraints.

• We propose, to the best of our knowledge, the first

online power control algorithm under realistic battery

operational dynamics and constraints for transmission

over fading channels. Our proposed algorithm determines

transmit power only based on the current energy state

of battery and fading condition, without requiring any

statistical knowledge of energy arrivals and channel fades.

Our online solution is given in closed-form which is not

only simple to implement, but also provides insight of

the energy conservation and control in the battery and

transmission control over fading. In particular, transmis-

sion under our power control solution turns out to be in

an opportunistic fashion based on the fading condition

and the battery energy level, resembling a “water-filling”

like solution. Furthermore, although focusing on a single-

antenna transmission system, we show that our proposed

online power control algorithm is applicable to general

multi-antenna beamforming scenarios.

• We analyze our proposed algorithm and show that it has

a bounded performance gap to the optimal solution with

a general fading distribution.

• We study the performance of our proposed online power

control algorithm via simulation and demonstrate that a

significant gain is achieved by our proposed algorithm

over several alternative algorithms. We further numer-

ically analyze our proposed algorithm under different

battery storage size, energy arrival rate, and fading con-

ditions. In particular, we show that it is near optimal even

with relatively small battery storage size.

B. Related Work

Due to the randomness of the energy source and the wireless

fading channels, existing works on the transmission power

control design can be grouped into two categories: off-line

and online power control strategies. For an off-line power

control design, energy arrivals and channel fades within a

time period are known non-causally. In this case, typically a

deterministic power optimization problem can be formulated

with various criteria. Several literature works have considered

off-line strategies for AWGN channels [2]–[9]. From infor-

mation theoretic point of view, the capacity of the AWGN

channel with an energy harvesting transmitter has been derived

in [2]. Optimal power allocation solution to minimize the

transmission time for point-to-point transmission has been

obtained in [3]. Power allocation for throughput maximization

in a Gaussian relay channel under energy harvesting has been

considered in [4]. In all these works, infinite capacity of the

battery is assumed for energy storage. With finite battery

capacity, power allocation policy for rate maximization has

been investigated for both single user and two-user Gaussian

interference channel [5], [6]. For fading channels, power

allocation solution for throughput maximization has been

obtained for infinite battery capacity [7], [8] and finite battery

capacity cases [9]. For [8], different from the commonly used

harvest-store-use models for energy harvesting, the authors

have considered a harvest-use-store model to improve the

efficiency of energy usage.

Online power control design based on the current and past

system information, such as energy arrivals, is a more practical

but much challenging problem. A few existing works have

formulated the power control problem by a Markov decision

process (MDP) and obtain the power solution by Dynamic

Programming (DP) for rate maximization or transmission error

minimization [7], [9]–[13]. For example, in [7], online power

control for rate maximization over a fading channel in finite

time slots has been considered, where the harvested energy

and fading are modeled as first-order Markov processes. To

compute the power solution by DP, these works generally

require the statistics of energy harvested and fading channel

to be certain types and known at the transmitter. In addition,

the numerical solutions by DP are typically obtained with high

computational complexity which is impractical for real imple-

mentation. Some low-complexity heuristic online approaches

are proposed in [9], [14]–[16]. However, they also assume cer-

tain known statistical information and there is no performance

guarantee. For the sensing application in a sensor network with

energy harvesting, without the knowledge of energy arrival

statistics, online power control to maximize long-term average

sensing rate is considered for the AWGN channel in [19],

where Lyapunov technique is used in providing an online

power solution. The maximization of utility performance for a

network with energy harvesting nodes is studied in [20], where

an online algorithm based on Lyapunov technique is presented

to jointly manage the energy and power allocation of packet

transmissions.

Besides renewable sources such as solar and wind, harvest-

ing energy from radio-frequency energy signals has recently

been considered for wireless transfer of information and power

simultaneously [21]–[26]. First proposed in [21], simultaneous

wireless information and power transfer (SWIPT) has been

studied extensively under different system model assumptions.

Point-to-point single antenna transmission is considered in

[21], [22]. A multiple input multiple output (MIMO) SWIPT

system is first presented in [23], and then is extended to a

multiple input-single output (MISO) with more than two users

in [24]–[26]. No energy storage unit is considered in these
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works.

Given these recent works on energy harvesting, few studies

have considered online power control over fading channels.

Different from most existing works for online power control

design, we consider more sophisticated energy harvesting

constraints due to battery charging and power output charac-

teristics, and make no assumption on known prior statistics

or distribution of energy harvested or fading. In addition,

unlike those online solutions obtained by DP [7], [9]–[13]

which suffer from high computational complexity, our online

power solution is provided in closed-form and thus very

simple to implement. Among the existing work, [19] has

used techniques related to Lyapunov framework to provide

an online solution without requiring statistical knowledge of

harvested energy. However, the problem there is regarding

sensing rate maximization by jointly controlling sensing rate

and power allocation. The problem structure, formulation

and constraints are very different from our work. Due to

different form of constraints, the approach and procedure to

design rate control and power allocation through Lyapunov

framework are quite different from ours. Furthermore, [19]

only considers the AWGN channel case. As mentioned in

Section I-A, the consideration of the fading channel is highly

nontrivial in both design and performance analysis, where

Lyapunov optimization technique cannot be directly applied

to this case with unbounded fading channel gain.

C. Organization

The rest of the paper is organized as follows. In Section II,

we provide the system model. In Section III, we formulate the

power control optimization problem and propose our online

power control algorithms for the point-to-point fading channel.

Section IV provides the performance analysis of our proposed

algorithms. Section V presents the simulation results, and

Section VI concludes the paper.

II. SYSTEM MODEL

We consider a point-to-point wireless transmission system

where the transmitter is equipped with energy harvesting and

storage devices as illustrated in Fig. 1. The system operates in

discrete slotted time t ∈ {0, 1, 2, . . .} with duration ∆t, and

all operations are performed per time slot. The transmitter is

powered by energy harvested from the environment (e.g., solar,

radio wave) using the harvesting device. Let Ea(t) denote the

amount of energy arrived at the harvesting device at time slot t,
and Es(t) denote the amount of energy actually harvested into

the battery at the end of time slot t. We have Es(t) ≤ Ea(t).
A battery storage device is used at the transmitter to store the

harvested energy and to supply power for data transmission.

Let Eb(t) denote the energy state of battery (SOB) at the

beginning of time slot t. It is bounded by

Emin ≤ Eb(t) ≤ Emax, ∀t (1)

where Emin and Emax represent the minimum and maximum

energy levels allowed in the battery, respectively; their values

depend on the type and size of the battery.

The battery has its maximum charging and discharging

rates. Let Ec,max denote the maximum charging amount per

slot. Let Pmax denote the maximum transmit power that can

be drawn from the battery, which should satisfy ∆tPmax ≤
Emax−Emin. In addition, we assume Ec,max ≤ ∆tPmax, i.e.,

the maximum charging rate is no more than the maximum

discharging rate1. Let P (t) denote the transmit power drawn

from the battery at time slot t for data transmission, which is

determined at each time slot t and remains unchanged during

the time slot. It is bounded by

0 ≤ P (t) ≤ Pmax, ∀t. (2)

In each time slot t, energy is harvested into the battery

and power is drawn from the battery for transmission. The

dynamics of SOB Eb(t) over time slots is given by

Eb(t+ 1) = Eb(t)−∆tP (t) + Es(t) (3)

where by constraint (1) and dynamics of Eb(t) in (3), P (t)
should satisfy

∆tP (t) ≤ Eb(t)− Emin, ∀t. (4)

The harvested energy Es(t) is determined by the amount of

energy arrived, available room in the battery, and the maximum

charging rate as follows

Es(t) = min{Emax − (Eb(t)−∆tP (t)), Ea(t), Ec,max}. (5)

Remark: We assume perfect charging and discharging for

the battery modeling. In practice, due to battery charging inef-

ficiency, energy loss is expected during charging and discharg-

ing. The actual stored energy is less than the charging amount

and the contributed power through discharging is larger than

the actual power output. Let ρc ∈ (0, 1] and ρd ∈ [1,∞)
denote the charging efficiency and discharging efficiency coef-

ficients, respectively. Considering the charging and discharging

losses, the actual stored energy Es(t) is given by Es(t) =
min{Emax − (Eb(t) −∆tP (t)), ρcEa(t), ρcEc,max}, and the

actual contributed energy through discharging is ρd∆tP (t).
In this work, for simplicity and without loss of generality, we

assume ρc = ρd = 1. Our developed online power control

algorithm and its analysis can be straightforwardly applied to

the battery model with general values of ρc and ρd within their

respective ranges.

For the transmission over fading, we focus on the case

where both transmitter and receiver have a single antenna.

In Section III-E, we extend our proposed algorithm to the

case of multi-antenna transmit beamforming. We assume a

slow block fading scenario, where the channel, denoted by

h(t), is assumed to be constant during time slot t and changes

over time slots. Assuming the receiver noise is additive white

Gaussian noise with zero mean and variance σ2
N , we define

γ(t) as the normalized channel gain (against receiver noise)

by γ(t) , |h(t)|2/σ2
N . We assume γ(t) is perfectly known

at the transmitter at each time slot t. With transmit power

P (t), the instantaneous rate over the channel is given by

R(t) , log [1 + P (t)γ(t)].

1Based on the battery technology, for current rechargeable batteries, it is
typical that the maximum charging rate is less than the maximum discharging
rate [27], [28].
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Fig. 1. The system model with energy harvesting and storage devices.

III. POWER CONTROL DESIGN FOR RATE MAXIMIZATION

Define the system state s(t) , [Ea(t), γ(t)]. At the begin-

ning of each time slot t, the transmitter observes s(t) and Eb(t)
to determine transmit power P (t) for time slot t. Our objective

is to design a power control algorithm for {P (t)} to maximize

the long-term time-averaged expected rate, while satisfying

the battery operational constraints. It can be formulated as the

following optimization problem

P1 : max
{P (t)}

lim
T→∞

1

T

T−1
∑

t=0

E[R(t)]

subject to (2), (3), (4)

where the expectation is taken with respect to the system state

s(t).

Due to the randomness of energy arrival and fading, P1 is

a stochastic optimization problem that is challenging to solve.

Furthermore, constraint (4) depends on the SOB Eb(t), which

has time-coupling dynamics over time as shown in (3). This

results in power control decisions {P (t)} being correlated over

time. If random processes {γ(t)} and {Ea(t)} are Markovian

and their statistics are all known, it is possible to solve P1

through Dynamic Programming [29]. However, this approach

typically faces the curse of dimensionality in computational

complexity to provide a practical solution. Furthermore, in

practice, the statistical information of {γ(t)} and {Ea(t)},

especially the energy arrival process {Ea(t)}, is difficult to

obtain ahead of time, making such an assumption less realistic.

In this work, we aim to develop an online power con-

trol algorithm without relying on the statistical knowledge

of {γ(t)} and {Ea(t)}. In particular, we apply Lyapunov

optimization framework [18] to design an online (sub-optimal)

power control solution to P1. Under Lyapunov optimization,

certain time-averaged constraints can be transformed into

queue stability constraints and further be utilized to provide

an online optimization solution. However, the transmit power

constraint (4) on P (t) is per time slot, resulting in time-

coupled decision. Thus, to employ Lyapunov optimization, we

first relax the per time slot constraint to a long-term time-

averaged relation between Eb(t), Es(t) and P (t).

A. Problem Relaxation

Define the following long-term time-averaged quan-

tities: Ēs , limT→∞
1
T

∑T−1
t=0 E[Es(t)] and P̄ ,

limT→∞
1
T

∑T−1
t=0 E[P (t)]. We have the following long-term

time-averaged relation

Ēs −∆tP̄ = 0. (6)

To see this, note that from (3), the battery energy level over

time T has the following relation

E[Eb(T )]− E[Eb(0)] =

T−1
∑

t=0

E[Es(t)−∆tP (t)]. (7)

By constraint (1), the left hand side (LHS) is bounded. Divid-

ing both sides of (7) by T and taking the limit T → ∞, we

have (6). The relation in (6) is intuitive. It indicates that over

the long run, the average energy harvested should be equal to

the average energy used from the battery for transmission.

Now, replacing per-slot constraint (3) by the long-term

time-averaged constraint (6), and removing battery capacity

constraint (1), we relax the optimization problem P1 to the

following problem

P2 : max
{P (t)}

lim
T→∞

1

T

T−1
∑

t=0

E[R(t)]

subject to (2), (6)

where the dependency of power control decision P (t) on Eb(t)
in constraint (4) is removed. It can be easily verified that any

feasible solution to P1 is also feasible to P2, but not vise versa.

Thus, P2 is indeed a relaxed problem of P1.

With the knowledge of only current system state s(t), P2

is still challenging to solve. However, the relaxation enables

us to employ Lyapunov optimization framework to develop an

online power control algorithm to solve P2. In the following,

we develop our online algorithm. Furthermore, we will show

that by our design, our proposed solution is feasible to the

original problem P1.

B. Online Power Control via Lyapunov Optimization

We now develop an online power control algorithm to solve

P2. Based on Lyapunov optimization [18], we introduce a

virtual queue X(t) for the SOB Eb(t) as

X(t) = Eb(t)−A (8)

where A is a time-independent constant. It can be shown [18]

that keeping the stability of the queue X(t) is equivalent to

satisfying constraint (6). We will later determine the value of

A to ensure the proposed solution is feasible to P1.

Since X(t) is a shifted version of Eb(t), by (3), the queuing

dynamics of X(t) is given by

X(t+ 1) = X(t)−∆tP (t) + Es(t). (9)

Note that, although Eb(t) ≥ 0, the value of X(t) can be

negative.

Define the quadratic Lyapunov function as L(X(t)) ,

X2(t)/2. Define the per-slot Lyapunov drift, conditioned on

X(t) at time slot t by

∆(X(t)) , E [L(X(t+ 1))− L(X(t))|X(t)] (10)
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where the expectation is taken with respect to the random

system state s(t), given queue length X(t). By Lyapunov

optimization framework, instead of directly using the objective

in P2, we consider the minimization of a drift-plus-cost

metric, a technique to stabilize a queue while optimizing the

time-averaged objective function. The drift-plus-cost metric is

defined by

∆(X(t)) + V E[−R(t)|X(t)]

which is a weighted sum of the per-slot Lyapunov drift

∆(X(t)) and the cost function (i.e., negative of the rate)

conditioned on X(t) with V > 0 being the weight.

We first provide an upper bound on the drift-plus-cost metric

in the following lemma.

Lemma 1: Under any control algorithm and for any values

of X(t) and V ≥ 0, the drift-plus-cost expression has the

following upper bound

∆(X(t))− V E[R(t)|X(t)] ≤

B +X(t)E[Es(t)−∆tP (t)|X(t)]− V E[R(t)|X(t)] (11)

where B , max{Ec,max, ∆tPmax}
2/2.

Proof: See Appendix A.

Due to the dynamics involved in ∆X(t), minimizing the

drift-plus-cost metric directly is still difficult. Instead, we

consider minimizing its upper bound in (11). Specifically, we

develop an online algorithm to determine P (t), by minimizing

the upper bound of the drift-plus-penalty in (11) in a per-

slot fashion. That is, given Ea(t), γ(t) and X(t), taking the

per-slot version of the upper bound in (11) by removing the

expectation E[·] and removing the constant B, we have the

following equivalent per-slot optimization problem

P3 : min
P (t)

X(t)[Es(t)−∆tP (t)]− V log (1 + P (t)γ(t))

subject to (2).

Since the objective in P3 is convex and the constraint is linear

in P (t), P3 is a convex optimization problem and can be

solved analytically. We obtain the optimal power P ∗(t) in

closed-form as follows.

Proposition 1: The optimal transmit power P ∗(t) for P3 is

given by

P ∗(t) =














Pmax for X(t) > −V
∆t(Pmax+

1
γ(t)

)

−V
∆tX(t) −

1
γ(t) for

−V γ(t)
∆t ≤ X(t) ≤ −V

∆t(Pmax+
1

γ(t)
)

0 for X(t) < −V γ(t)
∆t .

(12)

Proof: See Appendix B.

Thus, at each time slot t, the transmitter observes the system

state s(t) and determines transmit power P ∗(t) using (12).

It then updates X(t) according to (9). Note that determining

P ∗(t) does not require any statistical information of the energy

arrival Ea(t) or channel gain γ(t).
As mentioned earlier, since P2 is the relaxed problem, its

solution may not be feasible to P1. To ensure the solution

P ∗(t) of P3 is feasible to P1, we need to guarantee SOB

Eb(t) satisfies the battery capacity constraint (1). Recall that

two parameters A and V are introduced in developing the

online power solution P ∗(t) for P3. We will design the values

of A and V to ensure the feasibility. However, the challenge

to do so is that the normalized channel gain γ(t) is unbounded

in general for a fading channel. This prevents us to properly

design A and V . To provide our online algorithm feasible

to P1, in the following, we first consider the case where the

fading channel gain is upper-bounded and derive our feasible

solution. Then, we extend the solution to the case where the

fading channel gain distribution has unbounded support.

C. Algorithm for Fading with Bounded Channel Gain

We first assume the channel gain |h(t)|2 is upper-bounded.

Consequently, the normalized channel gain γ(t) is upper-

bounded as γ(t) ≤ γmax, where γmax denotes the maximum

gain.

As mentioned at the beginning of Section III-B, maintaining

the stability of X(t) is equivalent to satisfying constraint (6).

The following lemma provides the upper and lower bounds of

the virtual queue X(t). Define ζmax , γmax/∆t.
Lemma 2: With the proposed power control solution P ∗(t)

in (12), the virtual queue X(t) is bounded for all t as follows

Xlow ≤ X(t) ≤ Xup (13)

where Xlow = −V ζmax −∆tPmax and Xup = Ec,max.

Proof: See Appendix C.

With Lemma 2, the following proposition provides the

conditions of the shift constant A in (8) and the weight V
for which the solution P ∗(t) is feasible to P1.

Proposition 2: Assume γ(t) ≤ γmax, ∀t. With the proposed

online power control solution P ∗(t) in (12), if A in (8) is set

as

A = ∆tPmax + Emin + V ζmax (14)

and V ∈ (0, Vmax] with

Vmax =
Emax − Emin − Ec,max −∆tPmax

ζmax
, (15)

then Eb(t) satisfies battery capacity constraint (1), and the

power solutions {P ∗(t)} provided by (12) are feasible to P1.

Proof: See Appendix D.

From Proposition 2, substituting the expression of A in (14)

into (8), we obtain the power solution P ∗(t) as a function of

the SOB Eb(t) shown in (16) at the top of next page, where

Eb,th1(t) and Eb,th2(t) are two time-dependent thresholds on

the battery energy level, defined by

Eb,th1(t) , ∆tPmax + Emin + V

(

ζmax −
γ(t)

∆t

)

(17)

Eb,th2(t) , ∆tPmax + Emin

+ V

(

ζmax −
γ(t)

∆t(Pmaxγ(t) + 1)

)

. (18)

We summarize our proposed online power control algorithm

in Algorithm 1. In addition, we provide the following remarks.

Remark 1: We see from (16) that the solution P ∗(t) in (16)

is a three-stage solution depending on Eb(t) of the battery: 1)

When Eb(t) is lower than a certain level, the transmitter stops

transmission to conserve energy for future transmission; 2)
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P ∗(t) =











0 for Eb(t) < Eb,th1(t).
V

∆t(V ζmax+∆tPmax+Emin−Eb(t))
− 1

γ(t) for Eb,th1(t) ≤ Eb(t) ≤ Eb,th2(t)

Pmax for Eb(t) > Eb,th2(t)

(16)

When Eb(t) is sufficiently high, the maximum transmit power

is used for transmission; 3) When Eb(t) is between the above

two energy levels, i.e., the battery energy level is moderate,

the transmit power is set between 0 and Pmax, depending on

the current Eb(t) and fading condition γ(t).
Remark 2: In determining P ∗(t), the two thresholds for

Eb(t) depend on the normalized channel gain γ(t) at the

current time slot t. In particular, a higher value of γ(t) (i.e.,

good channel condition) results in lower threshold values

Eb,th1(t) and Eb,th2(t) on the energy level and higher P ∗(t)
for data transmission. On the other hand, when the channel

condition is bad, the transmitter tends to conserve energy and

use less power for transmission. Thus, we see that under

the proposed power control algorithm, the transmission is

carried out in an opportunistic fashion based on the channel

condition. In particular, for a given Eb(t) that is between the

two thresholds, P ∗(t) in (16) resembles the water-filling power

control strategy, where more power is allocated for a better

channel condition.

To clearly demonstrate the above, consider the case when

V = Vmax. The two thresholds Eb,th1(t) and Eb,th2(t) in (17)

and (18) are respectively given by

Eb,th1(t) = Emax − Ec,max

−
γ(t)

γmax
(Emax − Emin − Ec,max −∆tPmax) (19)

Eb,th2(t) = Emax − Ec,max −
γ(t)

∆t(Pmaxγ(t) + 1)

· (Emax − Emin − Ec,max −∆tPmax) . (20)

We see that Eb,th1(t) is a decreasing function of γ(t). For

Eb,th2(t), if γ(t) ≫ 1/Pmax, then Eb,th2(t) is roughly con-

stant with respect to γ(t). The power allocation P ∗(t) for

Eb,th1(t) ≤ Eb(t) ≤ Eb,th2(t) is given by

P ∗(t) =
Vmax

∆t(Emax − Ec,max − Eb(t))
−

1

γ(t)
. (21)

It is clear that P ∗(t) depends on the channel condition γ(t),
and the “water line” depends on the current battery energy

level Eb(t). Note that the consideration of V = Vmax is not a

random choice. In Section IV, we will show that for the best

performance, we should set V = Vmax.

Remark 3: Since V > 0, Vmax in (15) should be positive.

This means the battery energy storage capacity Emax −Emin

should be larger than the sum of maximum charging and dis-

charging amount per slot Ec,max +∆tPmax. This assumption

generally holds for the typical battery size and usage.

D. Algorithm for Fading with Unbounded Channel Gain

Now, we consider a more general fading scenario where

the channel gain distribution has unbounded support (e.g.,

Algorithm 1 Online Transmit Power Control Algorithm under

Energy Harvesting (γ(t) ≤ γmax)

Set V ∈ (0, Vmax] with Vmax given in (15).

At time slot t:

1: Observe the system state s(t).
2: Solve P3 to obtain P ∗(t) as in (16).

3: Output transmit power solution: P ∗(t).

Rayleigh fading). The normalized channel gain is unbounded,

i.e., γ(t) < ∞. To deal with this case, we now develop a

modified algorithm from Algorithm 1 to provide a feasible

power solution for the case when γ(t) > γmax.

Define A , [0, γmax] and Ac = (γmax,∞). We define

the case γ(t) ∈ Ac as an outage event. Let η denote the

outage probability, i.e., Prob(γ(t) ∈ Ac) = η. When γ(t) ∈ A,

Algorithm 1 still provides the feasible solution P (t) to P1.

When γ(t) ∈ Ac, however, constraint (4) may be violated,

and P (t) in (16) may not be feasible. In this case, we propose

the following scheme to determine P (t).

Define Ee
b (t) = Eb(t) − ∆tP (t) as the SOB at the end

of time slot t. Define Ēe
b (t) , 1

t

∑t
τ=1E

e
b (τ) as the time-

averaged Ee
b (t) up to time slot t. For γ(t) ∈ Ac and P ∗(t) in

(16) not satisfying constraint (4), we set the transmit power as

P s(t) =

[

Eb(t)− Ēe
b (t− 1)

∆t

]+

(22)

where [x]+ , max(x, 0).

Remark: The main idea of our scheme is that we use the

time-averaged battery energy level Eb(t) from the past to

determine P (t), so that at the end of the time slot, the battery

energy level remains at its historical time-averaged level. This

idea comes from the observation that in the case of γ(t) ∈ A,

our proposed algorithm under Lyapunov optimization tries to

maintain the SOB Eb(t) at a certain level. Thus, when the

outage event occurs temporarily, we control the transmission

power such that Eb(t) is still roughly being maintained at

its historical level as in the non-outage case. As a result, the

battery energy dynamics over time will not be disturbed due

to the outage event.

We summarize our online transmit power control algorithm

for the general unbounded fading case in Algorithm 2. As

discussed earlier, there are two main benefits provided by our

proposed algorithm to improve the long-term time-averaged

rate: 1) Strategic energy conservation through energy control

in the battery; 2) Opportunistic transmission through power

control over fading. As we will see in simulation results

in Section V, these benefits are evident in improving the

transmission data rate.
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Algorithm 2 Online Transmit Power Control Algorithm under

Energy Harvesting (γ(t) < ∞)

Choose η. Determine γmax from η.

At time slot t:

1: Observe the system state s(t).
2: Apply Algorithm 1 to produce P ∗(t). Set P s(t) = P ∗(t).
3: if γ(t) ∈ Ac and P s(t) > (Eb(t)−Emin)/∆t then obtain

P s(t) as in (22).

4: Update Ee
b (t) = Eb(t)−∆tP s(t).

5: Update Ēe
b (t) =

1
t

[

(t− 1)Ēe
b (t− 1) + Ee

b (t)
]

.

6: Output the transmit power solution P s(t).

E. Extension to Multi-antenna Beamforming Scenarios

In the above, we have focused on the single-antenna case.

Our proposed algorithm can be easily extended to the scenarios

of multi-antenna beamforming.

For example, consider a MISO system with N transmit

antennas and a single receive antenna. Under the block fading

model, the channel vector between the transmitter and the re-

ceiver at time slot t is denoted by h(t) = [h1(t), . . . , hN (t)]T .

With perfect knowledge of h(t) at the transmitter and the

optimal transmit beamforming, the normalized channel gain at

time slot t is given by γ(t) , ||h(t)||2/σ2
N . The instantaneous

rate over the channel during time slot t has the same expression

as we consider before: R(t) = log (1 + P (t)γ(t)). Thus, the

only difference is about channel gain γ(t) and its distribution.

Our proposed online algorithm (Algorithm 2) can be directly

applied for this transmit beamforming scenario.

Similarly, the algorithm can be applied for the single-

input multi-output (SIMO) case with receive beamforming, or

MIMO beamforming. For the latter, transmit and receive beam

vectors are selected as the principle right and left singular

vector of the MIMO channel, denoted by H(t). In this case, the

effective normalized channel gain is γ(t) = σ2
1(t)/σ

2
N , where

σ2
1(t) is the largest singular value of H(t). The expression of

instantaneous rate R(t) is still the same as before.

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our proposed

online power control algorithms.

A. Bounded Fading Scenario

We first consider the case where γ(t) ∈ A, ∀t, and analyze

the performance of Algorithm 1. Let R̄s(V,A) denote the

achieved objective value of P1 under Algorithm 1. Let R̄opt(A)
denote the maximum objective value of P1 under the optimal

solution. The following theorem provides a bound of the

performance of Algorithm 1 to R̄opt(A).
Theorem 1: Assume γ(t) ∈ A, ∀t. Assume the system state

s(t) are i.i.d over time. Under Algorithm 1, the performance

is bounded from the maximum value R̄opt(A) of P1 by

R̄opt(A)− R̄s(V,A) ≤
B

V
(23)

where B is defined below (11).

Proof: See Appendix E .

We have the following remarks on Theorem 1.

Remark 1: Theorem 1 provides an upper bound on the gap

of the long-term time-averaged rate of our proposed algorithm

away from R̄opt(A) by the optimal solution. It is in the order of

O(1/V ). Thus, larger V is desirable. However, due to battery

capacity constraint, by Proposition 2, V has to be chosen

within (0, Vmax]. Thus, to minimize the performance gap, we

should always chose V = Vmax.

Remark 2: For the upper bound in (23), note that B is only

related to the battery maximum charging and discharging rates,

not the battery capacity, while Vmax in (15) increases with

battery capacity. Thus, Algorithm 1 provides an asymptoti-

cally optimal solution for P1, as the battery storage capacity

(Emax − Emin) increases .

Remark 3: Although the upper bound in (23) is provided

under the i.i.d. assumption, the system state s(t) can be relaxed

to accommodate the case where s(t) evolving in ergodic non-

i.i.d. fashion. Specifically, if both normalized channel gain

{γ(t)} and energy arrival {Ea(t)} processes are modeled as

the finite state Markov chains, we can show a similar bound

(i.e., O(1/V )) under Algorithm 1, by applying a multi-slot

Lyapunov drift technique [18]. We omit details for brevity.

B. Unbounded Fading Scenario

With probability η, γ(t) ∈ Ac. In this case, the outage

event occurs, and power solution is determined differently. Let

R̄opt(Ac) denote the maximum objective value of P1 under the

optimal solution and R̄s(Ac) denote the achieved objective

using P (t) in (22), both in the presence of the outage. The

following lemma provides an upper bound on the performance

when the outage occurs.

Lemma 3: Assume that system state s(t) is i.i.d over time,

and the channel has a normalized channel gain distribution

f(γ). For γ(t) ∈ Ac, under Algorithm 2, the performance is

bounded by

R̄opt(Ac)− R̄s(Ac) ≤ G (24)

where constant 0 < G < ∞ is a function of f(γ) and γmax.

Proof: See Appendix F .

As indicated in Lemma 3, the upper bound G can be

obtained for any specific channel distribution. In particular,

for SIMO or MISO beamforming with channel vector h(t),
assume Rayleigh fading, i.e., element hn(t) in h(t) is complex

Gaussian with zero mean and variance σ2
h, for n = 1, . . . , N .

By Lemma 3, we obtain the expression of G in the following

corollary.

Corollary 1: Assume Rayleigh fading channels. Under the

assumptions of Lemma 3, G is given by

G = C

∫ ∞

γmax
σ̄2
h

log
(

1 + σ̄2
hPmaxγ

)

γN−1e−γdγ (25)

with σ̄2
h , σ2

h/σ
2
N and C ,

[

Γ̂
(

N, γmax

σ2
h

)]−1

, where

Γ̂(n, y) ,
∫∞

y
xn−1e−xdx is the upper incomplete Gamma

function. In particular, for N = 1, we have

G = log (1 + Pmaxγmax) + eγo Γ̂(0, γo) (26)
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where γo , γmax/σ̄
2
h + 1/(σ̄2

hPmax).
Proof: See Appendix G .

Let R̄opt denote the the maximum objective value of P1.

Let R̄s(V, η) denote the achieved objective under Algorithm 2,

where we emphasize the dependency of the achieved objective

value on the control parameter V and the outage probability

η used in our algorithm. Combining the results in Theorem 1

and Lemma 3, we have the following performance bound.

Theorem 2: Assume the system state s(t) is i.i.d over time.

For the fading channel with any fading distribution, given the

outage probability η, the performance under Algorithm 2 is

bounded from R̄opt by

R̄opt − R̄s(V, η) ≤ (1− η)
B

V
+ ηG. (27)

Proof: See Appendix H.

Theorem 2 provides an upper bound on the performance gap

of Algorithm 2 to the optimal solution of P1 over a general

fading scenario. The bound depends on the outage probability

η we choose. So long η is chosen to be small, the effect due

to outage on the bound will be small. As we will see in our

simulation, the difference on the actual performance of our

proposed algorithm under the bounded channel and unbounded

channel is negligible, provided η is small. In Section V-C, we

show through simulation that the performance approaches to

the optimal solution quickly as battery size increases.

Note that in the unbounded fading channel scenario, Al-

gorithm 1 is used for γ(t) ∈ A with probability 1 − η.

Thus, Remarks 1 and 3 after Theorem 1 are also applicable to

Theorem 2. However, due to the gap G in the case of outage

γ(t) ∈ Ac, as the battery capacity goes to infinity, we can

only guarantee Algorithm 2 to asymptotically have a bounded

gap ηG in performance to the optimal solution of P1.

V. SIMULATION RESULTS

In this section, we examine the performance of our proposed

online power control algorithm. We assume that the energy

arrival amount Ea(t) per slot follows a compound Poisson

process with a uniform distribution. We set the default Poisson

arrival rate λ = 0.5 unit/slot. The amount of energy per unit is

uniformly distributed between [0, 2α]J , with the default mean

amount α = 0.2J . The battery minimum energy level is set

to Emin = 0. For the battery maximum energy level, unless

specifically specified, we set the default value to Emax = 50J .

Also, the maximum charging amount per slot is Ec,max =
0.3J , and the maximum transmission power is Pmax = 0.5W .

We set time slot duration to be ∆t = 1 sec.

By default, we consider single antenna N = 1. We generate

channel h(t) as i.i.d. complex Gaussian random variable over

time t with the mean normalized channel gain E[γ(t)] = 10
dB. We set the outage probability η = 1%. This results in

γmax = 16.6 dB. For comparison purpose, we consider our

proposed algorithms in two fading scenarios:

(a) Bounded fading γ(t) ≤ γmax: We first generate the channel

as described above. If γ(t) > γmax, we set γ(t) = γmax.

We apply Algorithm 1 to obtain the transmit power P (t).
(b) Unbounded fading: The channel is generated as complex

Gaussian as described above. We apply Algorithm 2 to

determine the transmit power P (t). For both (a) and (b),

we set default V = Vmax.

To compare with other online power control algorithms, note

that, as discussed in Section I, existing online power control

strategies ( [7], [9]–[13], [30]) are either for AWGN channels

only, or based on known statistical knowledge of energy

arrivals and fading channels. Also, we have a more detailed

model of battery operational constraints on energy harvest-

ing and power supply. As a result, our proposed algorithm

cannot be directly compared with algorithms in [7], [9]–[13],

[30]. Nonetheless, we include a heuristic online water-filling

algorithm proposed in [9] for comparison, in which the fading

statistics is assumed to be known to determine the transmission

power2. Furthermore, for a fair comparison, we consider two

alternative online algorithms that also only rely on the current

system state without requiring its statistical information. The

three algorithms are described below:

(c) Energy adaptive water-filling algorithm (EAWF) [9]: Com-

pute a cutoff fade γ0 at each time slot as the solution of

the following equation
∫ ∞

γ0

(

1

γ0
−

1

γ

)

f(γ)dγ = Eb(t). (28)

Then, given γ(t), the transmission power is determined as

P (t) = min

{

[

1
γ0

− 1
γ(t)

]+

, Pmax, (Eb(t)− Emin)/∆t

}

.

This algorithm exploits the channel fade and uses energy

adaptive water-filling to improve the transmission rate.

(d) Greedy algorithm: At each time slot, the transmitter uses

the maximum possible power based on Eb(t) to maximize

the transmission rate at current time slot t, i.e.,

max
P (t)

R(t) subject to (2), (3), (4)

which results in P (t) = min{(Eb(t)− Emin)/∆t, Pmax}.

(e) Power halving algorithm: At each time slot, the transmitter

uses half of the maximum possible power given by the

greedy algorithm in (d). Different from the greedy algo-

rithm, this simple heuristic algorithm intends to conserve

harvested energy in the battery.

Note that, when implementing algorithms (c)–(e), the complex

Gaussian channel is used as in (b) unbounded fading case.

A. Average Rate Convergence over Time

Let Rs(t) denote the achieved rate at time slot t. In Fig. 2,

we plot the time-averaged rate 1
T

∑T−1
t=0 Rs(t), averaged over

Monte Carlo runs, versus time slots. We set Eb(0) = Emax =
50J . As we see, with 1% outage probability setting, the

performance of Algorithms 1 and 2 under the two fading

scenarios (bounded and unbounded) result in nearly identical

performance. Furthermore, our proposed online power control

algorithm provides significant performance improvement over

all the other three algorithms (c)–(e). Specifically, the achieved

average rate by Algorithm 2 is about 70% higher than that by

the greedy algorithm, and about 50% and 30% higher than

the EAWF and power halving algorithms, respectively. As we

2We slightly modify the solution to meet the battery operational constraints.
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Fig. 2. Time-averaged rate vs. time slot t (Emax = 50J, Eb(0) = Emax).
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Fig. 3. Time-averaged rate vs. time slot t (Emax = 10J, Eb(0) = Emax/2).

see, even though the EAWF algorithm in [9] assumes known

fading statistics, Algorithm 2 still provides more than 50%

improvement on the average rate without requiring any fading

statistics. The performance gain of our proposed algorithm

over these alternative algorithms comes from strategic energy

conservation and opportunistic transmission.

We repeat the experiment with a smaller battery capacity

with Emax = 10J . The initial state of battery is set to

Eb(0) = Emax/2. As shown in Figs. 3, similar perfor-

mance comparisons after convergence can be observed. In

addition, although not shown, we observe that for the same

ratio of initial energy level over the battery capacity (i.e.,

Eb(0)/(Emax−Emin)), the convergence time is much shorter

for a battery with smaller capacity. This behavior is intuitive

since with a smaller capacity room, it takes less time slots to

search for the relatively stabilized energy level for Eb(t) under

the same system setup.

B. Effect of Channel Fading

We study the dependency of power allocation by the pro-

posed algorithm on the fading channel. For this purpose, we

consider the bounded fading scenario and Algorithm 1. In

Fig. 4, we plot the normalized channel gain γ(t), the SOB

Eb(t) and thresholds Eb,th1(t) and Eb,th2(t), and the allocated

power P ∗(t) by Algorithm 1 versus time slot t in the top,

middle, and bottom subplots, respectively. As discussed in
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γ
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Fig. 4. Time trajectory of system parameters: Top: γ(t); Middle: Eb(t),
Eb,th1(t), Eb,th2(t); Bottom: P (t). (Emax = 50J)

Remarks 3 at the end of Section III-C for V = Vmax, we see

that threshold Eb,th1(t) in (20) changes according to −γ(t),
while Eb,th2(t) is roughly the constant over time. The battery

energy level Eb(t) roughly maintains at a level between the

two thresholds. At the bottom of Fig. 4, we see that the power

P ∗(t) is determined approximately according to the channel

condition with a higher power for a better channel gain. This

demonstrates that the transmission is opportunistic based on

channel quality.

C. Effect of Parameter V

We evaluate the performance of our proposed algorithms

for V ∈ (0, Vmax] in Fig. 5. The long-term time-averaged

data rate is averaged over 100 Monte carlo runs. We see that,

under the proposed algorithms, the average data rate initially

increases with V sharply, and then gradually converges to a

stable value. This trend is consistent with results in Theorems 1

and 2, where the bounded gap to the optimal performance

decreases with V . Furthermore, since the averaged rate quickly

converges to its stable value with a relatively small value of

V , the value of Vmax can be relatively small. Since Vmax is a

function of battery capacity, this indicates that a smaller battery

storage capacity would be sufficient to achieve a near-optimal

performance. This observation is confirmed in our next study

on the battery capacity. In contrast, the other three alternative

algorithms does not change with V , and thus the averaged rate

remains flat.

D. Performance vs. Battery Capacity

In Fig. 6, we show the long-term averaged data rate under

different battery capacity Emax. We see that the performance

gain over the other three alternative algorithms grows fast

as the battery capacity Emax increases from 1J to 10J and

becomes saturated afterwards. First, this demonstrates the

effectiveness of our proposed online power control algorithm

even for a small ratio of the battery capacity over the expected

energy arrival rate αλ. Second, we observe that under our

proposed algorithms, the performance benefits significantly

from a larger battery capacity, because the storage is crucial

for better performance.
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As the battery size continues to increase, the maximum

power Pmax and charging rate Ec,max become the limiting

factors, and as Vmax increases with Emax, the performance

gradually converges to that of the optimal solution. This clearly

shows that, under Algorithm 2, a relatively small battery

storage capacity would be sufficient for a near-optimal per-

formance. Further increasing battery size will not be effective

in improving the performance. In contrast, for the greedy

algorithm, due to the greedy nature, its performance is limited

by Ec,max and Pmax, and does not change with the battery

size. The same applies to the performance of the power

halving and EAWF algorithms whose performances are also

unchanged with the battery size.

E. Performance vs. Energy Arrival Rate λ and SNR

In Fig. 7, we examine the long-term average data rate under

various energy arrival intensities specified by arrival rate λ and

mean arrival amount α. The data rate monotonically increases

with both λ and α. The rate of increment becomes smaller as α
becomes larger. As more energy is stored in the battery, higher

transmit power is used and the data rate is in the non-linear

region with respect to transmit power. Thus, less rate increment

is observed. For the comparison purpose, the performance of

the greedy algorithm is also plotted. We see the gain of our

proposed algorithm over the greedy algorithm is consistent

over various values of λ and α.

Next, we evaluate the performance of Algorithm 2 un-

der MISO beamforming. Fig. 8 shows the long-term time-

averaged data rate versus the average received SNR per chan-

nel E[|hn(t)|
2/σ2

N ], for the number of transmitter antennas

N = 1, 2, 4. We set α = 0.1J and λ = 0.3 unit/slot. We

also include the other three algorithms (c)-(e) for comparison.

As expected, the average rate increases with N due to the

beamforming gain, and with SNR. As we see, Algorithm

2 outperforms all the other three algorithms for all values

of SNR and N . In particular, the rate improvement by Al-

gorithm 2 over the greedy algorithm increases significantly

with both SNR and N . Comparing with the power halving

algorithm, the rate improvement by Algorithm 2 is roughly

constant over SNR and N . This is because the power halving

algorithm also attempt to conserve energy in the battery for

the future use. This demonstrates the importance of controlling

the stored energy in the battery for transmission over fading,

especially as SNR and N increases. The performance gap

between Algorithm 2 and the EAWF algorithm is reduced as

N increases. Note that as N increases, the fading distribution

of the effective channel changes and shifts to higher channel

gain. Since both algorithms provide water-filling like power

control for opportunistic transmission, this demonstrates the

benefit of taking advantage of opportunistic transmission based

on channel conditions.

VI. CONCLUSION

In this paper, we have designed an online transmission

power control algorithm for transmission over fading with

energy harvesting and storage devices at the transmitter for
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Fig. 6. The long-term averaged rate vs. battery size Emax.

power supply. Aiming at maximizing the long-term time-

averaged transmission rate under the battery operational con-

straints, we formulate the stochastic optimization problem

for transmission power control. By developing techniques to

transform the problem, we leverage Lyapunov optimization to

proposed an online power control algorithm. In particular, we

develop an approach to tackle the difficulty faced in handling

unbounded channel fading which otherwise cannot be dealt

with directly through Lyapunov optimization. Unlike most

existing online power control algorithms, our proposed algo-

rithm only depends on the current energy arrival and channel

fade condition, without requiring their statistical knowledge.

In addition, our online power solution is provided in closed-

form that is simple to implement. We show that our power

control solution not only provides energy conservation control

of the battery, but also results in an opportunistic transmission

style based on fading condition, resembling a “water-filling”

like solution. Through analysis, we show that our proposed

algorithm provides a bounded performance gap to the optimal

solution for a general fading distribution. In addition, we show

that our solution applies to the general multi-antenna beam-

forming scenarios. Simulation studies show that our proposed

online power control algorithm significantly outperforms other

alternative online algorithms.
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APPENDIX A

PROOF OF LEMMA 1

Proof: From the dynamics of X(t) in (9), we have

L(X(t+ 1))− L(X(t))

=
X2(t+ 1)−X2(t)

2

=
(Es(t)−∆tP (t))2

2
+X(t)(Es(t)−∆tP (t)). (29)

From (5), we have 0 ≤ Es(t) ≤ Ec,max. Along with constraint

(2) on P (t), we have

(Es(t)−∆tP (t))2 ≤ max{Ec,max,∆tPmax}
2. (30)

Taking expectation at both sides of (29) conditioned on

X(t) and considering (30), we have the per-slot Lyapunov

drift being upper bounded by

∆(X(t)) = E [L(t+ 1)− L(t)|X(t)]

≤ B +X(t)E [Es(t)−∆tP (t)|X(t)] (31)

where B , max{Ec,max,∆tPmax}
2/2. Adding

−V E [R(t)|X(t)] to both sides of (31), we have the

upper bound on the drift-plus-cost metric as in (11).

APPENDIX B

PROOF OF PROPOSITION 1

Proof: Denote the objective of P3 as J(P (t))

J(P (t)) , X(t) (Es(t)−∆tP (t))− V log (1 + γ(t)P (t)) .

Since J(P (t)) is convex and differentiable with respect to

P (t), its minimum can be found by taking derivative of

J(P (t)) with respect to P (t). Let P ′(t) denote the solution

to
dJ(P (t))
dP (t) = 0. It is given by

P ′(t) =
−V

∆tX(t)
−

1

γ(t)
. (32)

By constraint (2), to determine whether P ′(t) is an optimal

solution of P3, we consider two cases:

1) If X(t) < 0: In this case, J(·) is not a monotonic

function. Define P ∗(t) as the optimal solution of P3. It is

determined by comparing P ′(t) with the two bounds 0 and

Pmax by constraint (2). In order for P ∗(t) = P ′(t), it means

0 ≤ P ′(t) ≤ Pmax. By substituting P ′(t) in (32) into (2), the

range of X(t) for P ∗(t) = P ′(t) can be found as

−V γ(t)

∆t
≤ X(t) ≤

−V

∆t

(

1

Pmax +
1

γ(t)

)

. (33)

Thus, if X(t) < −V γ(t)
∆t , then P ∗(t) = 0. If X(t) >

−V
∆t

(

1
Pmax+

1
γ(t)

)

, then P ∗(t) = Pmax.

2) If X(t) ≥ 0: In this case, J(·) is a decreasing function

of P (t). Since P ′(t) < 0, it does not satisfy constraint (2).

Therefore, the minimum value of P3 is found by P ∗(t) =
Pmax .

APPENDIX C

PROOF OF LEMMA 2

Proof: We first present the following lemma that will be

used to prove Lemma 2.

Lemma 4: The optimal power allocation of problem P3 has

the following properties:

• If X(t) > 0 then the optimal solution always chooses

P ∗(t) = Pmax.

• If X(t) < −V ζmax then the optimal solution always

chooses P ∗(t) = 0.

Proof: Based on Proposition 1, we know that if X(t) <
−V γ(t)

∆t , then P ∗(t) = 0. For ζmax = γmax

∆t , the sufficient

condition for P ∗(t) = 0 is X(t) < −V ζmax. Similarly, we

can derive the sufficient condition for P ∗(t) = Pmax , which

is X(t) > 0.

Using Lemma 4 and Algorithm 1, we now prove the bounds

in (13). Note that by Lemma 4, when X(t) < −V ζmax, in

the next time slot, X(t+ 1) in (9) is always increasing, i.e.,

X(t + 1) ≥ X(t). When −V ζmax ≤ X(t), by Algorithm 1,

we have P ∗(t) > 0. From (9), the maximum possible decrease

of X(t) to X(t+ 1) is when P ∗(t) = Pmax and Es(t) = 0,

i.e., using maximum transmit power and no energy harvested.

In this case, we have

X(t+ 1) ≥ X(t)−∆tPmax ≥ −V ζmax −∆tPmax.
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Since the above inequality holds for any t, we conclude that

X(t) ≥ Xlow where

Xlow = −V ζmax −∆tPmax. (34)

From (5), we have Es(t) ≤ min{Emax − Eb(t) +
∆tP (t), Ec,max}. Combining this with (9), we have

X(t+ 1) ≤ X(t)−∆tP (t)

+ min{Emax −X(t)−A+∆tP (t), Ec,max} (35)

If X(t) > 0, by Lemma 4, P ∗(t) = Pmax. This means X(t+
1) ≤ X(t) − ∆tPmax + Ec,max ≤ X(t). Thus, X(t + 1)
is decreasing. If X(t) ≤ 0, we have P ∗(t) ∈ [0, Pmax). In

this case, the maximum increase from X(t) to X(t + 1) is

when P ∗(t) = 0 and Es(t) = Ec,max. In this case, we have

X(t+1) ≤ X(t)+Ec,max ≤ Ec,max, ∀t. It follows that X(t)
is upper bounded as X(t) ≤ Ec,max , Xup.

APPENDIX D

PROOF OF PROPOSITION 2

Proof: In order for P ∗(t) to be a feasible solution to

P1, Eb(t) needs to meet the battery capacity constraint (1).

Since X(t) ≥ Xlow, by (8) and (34) , we have Eb(t) − A ≥
−V ζmax − ∆tPmax. This means A ≤ Eb(t) + V ζmax +
∆tPmax, ∀t. It follows that set

A = Emin + V ζmax +∆tPmax (36)

would satisfy the above constraint. In order for P ∗(t) to

be feasible, it requires X(t) = Eb(t) − A ≤ Emax − A.

Since X(t) ≤ Xup = Ec,max, the feasibility is guaranteed

if Ec,max ≤ Emax −A. Replacing A in this inequality by the

expression in (36), we have

V ≤
Emax − Emin − Ec,max −∆tPmax

ζmax
. (37)

APPENDIX E

PROOF OF THEOREM 1

Proof: We adopt the approach in Lyapunov optimization

theory [18] to derive the bound. We first show that there exists

a stationary, randomized power control policy {P r(t)} for P2,

where P r(t) only depends on the current system state s(t), and

we can bound the expected values of the cost objective and the

constraints per slot. Using these bounds and the upper bound

of drift-plus-cost metric in (11), we derive the bound in (23).

The following lemma can be obtained straightforwardly

from the results in [18] .

Lemma 5: For system state s(t) i.i.d. over time, there exists

a stationary randomized power control solution P r(t) that only

depends on the current state s(t) and guarantees

EA[R
r(t)] , R̄r(A) = R̄o(A), (38)

EA[E
r
s (t)] = EA[∆tP r(t))] (39)

where Rr(t) and Er
s (t) are instantaneous rate and harvested

energy under the stationary randomized solution, EA[·] is taken

with respect to the random system state s(t) conditioned on

γ(t) ≤ γmax and the randomized power solution P r(t), and

R̄r(A) and R̄o(A) are the objectives of P2 achieved under

P r(t) and under the optimal solution, respectively.

Our proposed algorithm is to solve per slot optimization

problem P3, which minimizes the upper bound in (11) over

all possible power control solutions, including the optimal

stationary randomized solution P r(t) in Lemma 5. Plugging

P r(t) into the right hand side of (11) and by Lemma 5, we

have

∆(X(t))− V EA[R
s(t)|X(t)]

≤ B +X(t)EA[E
r
s (t)−∆tP r(t)|X(t)]− V EA[R

r(t)|X(t)]

= B +X(t)EA[E
r
s (t)−∆tP r(t)] − V EA[R

r(t)]

= B − V R̄o(A)

≤ B − V R̄opt(A) (40)

where the first equality is due to P r(t) only depending on

s(t), the second equality is by (38) and (39) of Lemma 5,

and the last inequality is because P2 is a relaxed version of

P1 and therefore we have R̄opt ≤ R̄o(A).
By the definition of ∆(X(t)) in (10), taking expectations

of both sides in (40) over X(t), and summing over t from 0
to T − 1, we have

V

T−1
∑

t=0

EA[R
s(t)]

≥ TV R̄opt(A)− TB + EA[L(X(T ))]− EA[L(X(0))]

≥ TV R̄opt(A)− TB − EA[L(X(0))]

where the last inequality is due to L(X(T )) being non-

negative by definition. Dividing both sides by V T and taking

limits over T , and noting that L(X(0)) is bounded, we have

lim
T→∞

1

T

T−1
∑

t=0

EA[R
s(t)] ≥ R̄opt(A) −

B

V
(41)

where the left hand side of (41) is R̄s(V,A).

APPENDIX F

PROOF OF LEMMA 3

Proof: To find an upper bound, we know that in each time

slot, an optimum rate Ropt(t) is less or equal to the maximum

achievable rate which is Rmax(t):

Ropt(t) ≤ log (1 + Pmaxγ(t)) , Rmax(t) (42)

So (42) can be written as

Ropt(t)− R(t) ≤ Rmax(t)−R(t) (43)

where R(t) is the instantaneous rate under random event

γ(t) ∈ Ac. RHS of (43) can be written as

Rmax −R(t) = log

(

1 + Pmaxγ(t)

1 + P s(t)γ(t)

)

(44)

By taking expectation of (43) over γ(t) and considering (44),

(43) can be written as

EAc [Ropt(t)]− EAc [R(t)] ≤ EAc

[

log

(

1 + Pmaxγ(t)

1 + P s(t)γ(t)

)]

(45)
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where EAc [·] , E[·|γ(t) ∈ Ac]. Define g(t) ,

EAc

[

log
(

1+Pmaxγ(t)
1+P s(t)γ(t)

)]

. Summing both sides of (45) over

T, and let T → ∞, we have

lim
T→∞

1

T

T−1
∑

t=0

EAc [R(t)] ≥ R̄opt − g(t) (46)

where LHS of (46) is R̄s(Ac). From the definition of g(t), we

have

g(t) =

∫ ∞

γmax

log

(

1 + Pmaxγ

1 + PAc(t)γ

)

f(γ|γ > γmax)dγ

≤

∫ ∞

γmax

log (1 + Pmaxγ)f(γ|γ > γmax) dγ

=
1

1− F (γmax)

∫ ∞

γmax

log (1 + Pmaxγ) f(γ)dγ

, G (47)

where for simplicity, we let γ(t) = γ, and f(γ|γ > γmax)
denotes the conditional probability density function (pdf); also,

F (γmax) = Prob(γ ≤ γmax), i.e., the cumulative distribution

function (cdf) of γ. Note that G < ∞ since the integration in

the second equality is finite. Thus, combining (46) and (47),

we have R̄s(Ac) ≥ Ropt −G as in (24).

APPENDIX G

PROOF OF COROLLARY 1

Proof: Note that for hn(t) being complex Gaussian

with variance σ2
h, for n = 1, · · · , N , γ(t) has the χ-square

distribution with 2N degree of freedom. Recall that γ(t) =
|h(t)|2/σ2

N . Define σ̄2
h , σ2

h/σ
2
N . Thus, we have

f(γ) =
γN−1

(N − 1)!σ̄2N
h

e
− γ

σ̄2
h

1− F (γmax) =
1

(N − 1)!
Γ̂(N,

γmax

σ̄2
h

). (48)

where Γ̂(n, y) ,
∫∞

y
xn−1e−xdx. From the above, the upper

bound G of g(t) is given by

G = C

∫ ∞

γmax
σ2
h

log
(

1 + σ̄2
hPmaxγ

)

γN−1e−γdγ

as shown in (25), where C ,

[

Γ̂
(

N, γmax

σ̄2
h

)]−1

. A special

case is when N = 1. The channel has a Rayleigh fading and

γ(t) has an exponential distribution. Therefore,

f(γ)

1− F (γmax)
=

1

σ̄2
h

e
− γ

σ̄2
h

+ γmax
σ̄2
h . (49)

It follows that

G =
1

σ̄2
h

e
γmax
σ̄2
h

∫ ∞

γmax

log (1 + Pmaxγ) e
− γ

σ̄2
h dγ. (50)

By using integral by part, we have

1

σ̄2
h

∫ ∞

γmax

log (1 + Pmaxγ) e
−γ/σ̄2

hdγ

= log(1 + Pmaxγmax)e
−γmax

σ̄2
h +

∫ ∞

γmax
σ̄2
h

σ̄2
hPmax

1 + σ̄2
hPmaxγ

e−γdγ

For the second term above, we use the following result
∫ ∞

u

1

β + x
e−xdx = eβΓ̂(0, u+ β) (51)

Thus, we have G as in (26)

APPENDIX H

PROOF OF THEOREM 2

Proof: The achieved long-term time-averaged expected

rate under Algorithm 2 can be written as

R̄s(V, η) = (1− η)R̄s(V,A) + ηR̄s(Ac) (52)

where R̄s(V, η) = limT→∞
1
T

∑T−1
t=0 E[R(t)]. Also, the opti-

mal solution of P1 can be written as

R̄opt = (1− η)R̄opt(A) + ηR̄opt(Ac) (53)

By subtracting (52) from (53), we have

R̄opt − R̄s(V, η) = (1 − η)
(

R̄opt(A) − R̄s(V,A)
)

+ η
(

R̄opt(Ac)− R̄s(Ac)
)

. (54)

Combining the results of Theorem 1 and Lemma 3, the

performance gap of Algorithm 2 to the optimal solution for

P1 in (27) follows.
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