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Abstract—As future networks aim to meet the ever-increasing spectrum, a trend towards densification and heterogereity i
requirements of high data rate applications, dense and hete-  essential to respond adequately to the continued surge in mo
geneous networks (HetNets) will be deployed to provide bedt bile data traffic [10]-[12]. To this end, heterogeneous ineks

coverage and throughput. Besides the important implicatias for : .
energy consumption, the trend towards densification calls df (HetNets) can provide higher coverage and throughput by

more and more wireless links to forward a massive backhaul overlaying macro cells with a large number of small cells
traffic into the core network. It is critically important to t ake and access points, thus offloading traffic and reducing the
into account the presence of a wireless backhaul for the engy-  distance between transmitter and receiver [13], [14]. When
efficient design of HetNets. In this paper, we provide a genel g4 cells are densely deployed, forwarding a massiveleell

framework to analyze the energy efficiency of a two-tier MIMO .
heterogeneous network with wireless backhaul in the presee traffic to the backbone network becomes a key problem, and a

of both uplink and downlink transmissions. We find that under Wireless backhaul is regarded as the only practical saiutio
spatial multiplexing the energy efficiency of a HetNet is sesitive for outdoor scenarios where wired links are not available
to the network load, and it should be taken into account when [15]-[19]. However, the power consumption incurred on the
controlling the number of users served by each base station. wireless backhaul links, together with the power consumed

We show that a two-tier HetNet with wireless backhaul can by th ltitude of ints deploved. b ruci
be significantly more energy efficient than a one-tier celludr y the multitude or access points deployed, becomes a ¢rucia

network. However, this requires the bandwidth division betveen iSSUe, and an energy-efficient design is necessary to etieure
radio access links and wireless backhaul to be optimally degned  viability of future wireless HetNets [20].

according to the load conditions. Various approaches have been investigated to improve the

Index Terms—Green communications, wireless backhaul, het- energy efficiency of heterogeneous networks. Cell size, de-

erogeneous networks, stochastic geometry ployment density, and number of antennas were optimized
to minimize the power consumption of small cells [21],

. INTRODUCTION [22]. Cognitive sensing and sleep mode strategies were also

aroposed to turn off inactive access points and enhance the

In order to meet the exponentially growing mobile dat
P Y 9 9 1ergy efficiency [23], [24]. A further energy efficiency gai

demand, the next generation of wireless communication s . . ;
tems targets a thousand-fold capacity improvement, and § shown 1o be at_tgmable by serving USErs tha_t experience
prospective increase in energy consumption poses urgent ttgr chann_el conditions, and by dynamically assIgniregus
vironmental and economic challenges [3], [4]. Green commif d|fferent tiers of the network [25], [26]. Although vaus
nications have become an inevitable necessity, and muctt efftudies have been conducted on the energy efficiency of
is being made both in industry and academia to develop n tWNets, the impact of a wireless backhaul has typlcall_y
architectures that can reduce the energy per bit from cturr en negle(_:ted. On t_he other hand, the power c_onsumptlon
levels, thus ensuring the sustainability of future wirslegt- 0 _backhaulmg operations at small cell access points ($APS
works [5]-[9]. might be comparable to t.he amount of power necessary to
operate macro base stations (MBSs) [27]-[29]. Moreover,
since it is responsible to aggregate traffic from SAPs toward
MBSs, the backhaul may significantly affect the rates and
Since the current growth rate of wireless data exceeds bgffarefore the energy efficiency of the entire network. With a

spectral efficiency advances and availability of new wsgle potential evolution towards dense infrastructures, wineaey
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A. Background and Motivation



of the total available bandwidth. We undertake an anallytical -~ —» wireless backhaul downlink P~ .8
approach to derive data rates and power consumption fqr--> ﬁirele/ssbaﬁliﬁlll;ss]l;rﬁik \\

the entire network in the presence of both uplink (UL) and| Mzz;g/f;z“ceuuphnk 4 f\\/w
downlink (DL) transmissions and spatial multiplexing. 3'é 8 /)
a practical scenario that has not yet been addressed. In this . *”k\\ 8 /
paper, we model the spatial locations of MBSs, SAPs, and T <~/> \

user equipments (UEs) as independent homogeneous Poiss -/ \‘,w\ 8

point processes (PPPs), and analyze the energy efficiency/by .— )/ ~
combining tools from stochastic geometry and random matri ((5 s & 0 B\ Prad) NN
theory. Stochastic geometry is a powerful tool to analyze : 8 - ’
the interference in large HetNets with a random topology J /,wf" \:\
[30], whereas random matrix theory enables a deterministic g U3a \\ 8

abstraction of the physical layer, for a fixed network tojgglo
[31]. Our analysis is general and encompasses all the key i
features of a heterogeneous network, i.e., interferemee, | @
deployment strategy, and capability of the wireless infras
tructure components. With the developed framework, we can _ _ N
explicitly characterize the power consumption of the HetNgfclkr}éul lllustration of a two-tier heterogeneous networkthwivireless
due to signal processing operations in macro cells, smbdl, ce '

and wireless backhaul, as well as the rates and ultimately th

energy efficiency of the whole network. Our main contribuy HetNet with wireless backhaul. The paper is concluded in
tions are summarized below. Section VI.

-

« We provide a general toolset to analyze the energy
efficiency of a two-tier MIMO heterogeneous network
with wireless backhaul. Our model accounts for both
UL and DL transmissions and spatial multiplexing, for,
the bandwidth and power allocated between macro cells,
small cells, and backhaul, and for the infrastructure We study a two-tier heterogeneous network which consists
deployment strategy. of MBSs, SAPs, and UEs, as depicted in Figure 1. The

» We combine tools from stochastic geometry and randospatial locations of MBSs, SAPs, and UEs follow independent
matrix theory to derive the uplink and downlink ratePPs®,,, ®,, and®,, with spatial densities\,,,, s, and A,
of macro cells, small cells, and wireless backhaul. Thespectively. All MBSs, SAPs, and UEs are equipped with
resulting analysis is tractable and captures the effeqis,, M, and 1 antennas, respectively, each UE associates
of multiantenna transmission, fading, shadowing, anwliith the base station that provides the largest averagévezte
random network topology. power, and each SAP associates with the closest MBS. The

« Using the developed framework, we find that the enerdinks between MBSs and UEs, SAPs and UEs, and MBSs
efficiency of a HetNet is sensitive to the load condiand SAPs are referred to asacro cell links small cell links
tions of the network, thus establishing the importance ahdbackhaul links respectively. In light of its higher spectral
scheduling the right number of UEs per base station whefficiency [34], we consider spatial multiplexing where leac
spatial multiplexing is employed. Moreover, by comMBS and each SAP simultaneously serig, and K UEs,
paring the energy efficiency under different deploymeméspectively. In practice, due to a finite number of antennas
scenarios, we find that such property does not depend iBSs and SAPs use traffic scheduling to limit the number of
the infrastructure. UEs served td<,,, < M, and K < M [35]. Similarly, each

« We show that if the wireless backhaul is not allocate®BS limits to K3, the number of SAPs served on the backhaul,
sufficient resources, then the energy efficiency of a twevith K,M, < M,,. The MIMO dimensionality ratio for linear
tier HetNet with wireless backhaul can be worse thamocessing on macro cells, small cells, and backhaul isteéeno
that of a one-tier cellular network. However, the two-tieby 8, = 4=, B = 1#, and 3, = Z, respectively. As
HetNet can achieve a significant energy efficiency gaintiie MIMO dimensionality ratio at a base station reveals the
the backhaul bandwidth is optimally allocated accordingumber of active UEs within the cell coverage, for simpicit
to the load conditions of the network. of notation, we refer to the MIMO dimensionality ratio asdoa

The remainder of the paper is organized as follows. TH%“G”EYGV It (lioes not c%use amblawty. | denl ¢ I
system model is introduced in Section II. In Section IlI, we !N this work, we consider a co-channel deployment of sma

detail the power consumption of a heterogeneous netwotk Wp(ells with the macro cell tier, i.e., macro cells and smallsce

wireless backhaul. In Section IV, we analyze the data raids a

the energy efficiency, and we provide simulations that confir _Note that a PPP can serve as a good model not only for the ofpyift
h f IVsi ical | h deployment of small cell access points, but also for the m@dndeployment
the accuracy of our analysis. Numerical results are shown acro cell base stations, as verified by both empiricatlende [32] and

Section V to give insights into the energy-efficient desidn aheoretical analysis [33].

Il. SYSTEM MODEL

Topology and Channel




share the same frequency band for transmigsibnorder to
avoid severe interference which may degrade the perforenanc
of the network, we assume that the access and backhaul links

TABLE |
NOTATION SUMMARY

share the same pool of radio resources through orthogonal

division, i.e., the total available bandwidth is divideddriwo Notation

Definition

portions, where a fractioq, is used for the wireless backhaul, P;R;n
and the remainingl — ¢,) is shared by the radio access links rRRY; RDT; RPV
(macro cells and small cells) [15], [17], [40], [41]. In orde

to adapt the radio resources to the variation of the DL/ULE
traffic demand, we assume that MBSs and SAPs operate in & mt: Fsti Pus
dynamic time division duplex (TDD) mode [42], [43], where ~ Pmbi P
at every time slot, all MBSs and SAPs independently transmit
in downlink with probabilitiesr,,, 75, andn, on the macro
cell, small cell, and backhaul, respectively, and they snait

in uplink for the remaining timé We model the channels p,.; P; Puq
between any pair of antennas in the network as independent,
narrowband, and affected by three attenuation components, ®m; ®s; ®u

UL. pUL. pUL
m Rs ’ Rb

II)C; PSC

Pme; Pse; Pue

namely small-scale Rayleigh fading, shadowisig and Sp Am; Asi Au
for data link and backhaul link, respectively, and largalsc Am; As
path loss, wDera is the path I2c>ss exponent and the shadowing ~ Mm; Ms
satisfiesE[S|5 | < oo andE[Sg5 ] < oo, and by thermal noise Kmi Ksi Ky
with variances?. We finally assume that all MBSs and SAPs B Be: B

use a zero forcing (ZF) scheme for both transmission and
reception, due to its practical simplicity [44]

Tm; Ts; Tb
Cbr @
B. Energy Efficiency Sp; S

We consider the power consumption due to transmission and

Power per area; rate per area; energy efficiency

Downlink rate on macro cells, small cells, and back-
haul

Uplink rate on macro cells, small cells, and backhaul
Transmit power for MBSs, SAPs, and UEs
Backhaul transmit power for MBSs and SAPs

Analog circuit power consumption at macro cells and
small cells

Encoding power per bit on macro cells, small cells,
and backhaul

Decoding power per bit on macro cells, small cells,
and backhaul

PPPs modeling locations of MBSs, SAPs, and UEs
Spatial densities of MBSs, SAPs, and UEs
Association probabilities for MBSs and SAPs
Number of transmit antennas per MBS and SAP

UEs served per macro cell and small cell; SAPs per
MBS on backhaul

Load on macro cells, small cells, and backhaul

Fraction of time in DL for macro cells, small cells,
and backhaul

Fraction of bandwidth for backhaul; path loss expo-
nent

Shadowing on radio access link and wireless back-
haul

signal processing operations performed on the entire mitwo
therefore energy-efficiency tradeoffs will be such thatisgs

. POWER CONSUMPTION

at the MBSS an(:] SAPs aredno_t counteracted by mcreaseqin this section, we model in detail the power consumption
consumption at the UEs, and vice versa [6], [49]. We ¥ the heterogeneous network with wireless backhaul.

identify three main contributions to the power consumptibn
the heterogeneous network, namely the consumption on m
cells, small cells, and backhaul links. Consistent with/jmes
work [49]-[52], we account for the power consumption du
to transmission, encoding, decoding, and analog circiits.
detailed model for the power consumption of the HetNet will
be given in Section Il

Let P[%] be the total power consumption per area, which
includes the power consumed on all links. We denote b
R[] the sum rate per unit area of the network, i.e., the tot
number of bits per second successfully transmitted perrequa

meter. The energy efficiency = % is then defined as the

number of bits successfully transmitted per joule of energy
spent [49], [53]. For the sake of clarity, the main notations

used in this paper are summarized in Table I.

pd

approximation.

2Many frequency planning possibilities exist for MBSs and®3Awhere the

Since each UE associates with the base station, i.e., MBS
aSFOSAP, that provides the largest average received power, th
robability that a UE associates to a MBS or to a SAP can be
espectively calculated as [54]

2
AmPE
Am = g—tg (1)
APy + AP
AP
A = (2)

=T =z =2
Am Py + APyt

In the remainder of the paper, we make use of the following

Assumption 1: We approximate the number of UEs, the
optimal solution is traffic load dependent. Though a norelsannel allocation number of SAPs associated to a MBS, and the number of UEs

is justified for highly dense scenarios [36]-{38], in someesaa co-channel gg5gciated to a SAP by constant valuss,, K, and K,

deployment may be preferred from an operator’s perspedcinee MBSs and
SAPs can share the same spectrum thus improving the spetifration ratio
[39].

3We note that different SAPs and MBSs may have different ifdiownlink
resource partitions for their associated UEs. Since theegate interference is
affected by the average value of such partitions, we assweae &ind uniform
uplink/downlink partitions.

4Note that the results involving the machinery of random iratneory

respectively, which are upper bounds imposed by practical
antenna limitations at MBSs and SAPs
The assumption above is motivated by the fact that the

5The number of base station antennas imposes a constrainé omaximum
number of UEs scheduled for transmission. In fact, undezalinprecoding,

can be adjusted to account for different transmit precodedsreceive filters, the number of scheduled UEs should not exceed the numbert@fras, in

imperfect channel state information, and antenna coiveld#t5]-[48].

order for the achievable rate not to be significantly degitd@®]-[57].



P = )\m [Tumt+(1_Tm) KmPut+me+PmaMm+PuaKm+Tme (Pmc+Pud) Rl?lL + (1_Tm) Km (Pmd+Puc) REL]
+ s [T6Pat+ (1= 75) Ks P+ Psg + Poa Mo+ Pua K + 7Kg (Pse+ Paa) ROY+ (1 — 73) K (Psa+ Pue) RY™] 4+ A [ Panb
+(1_Tb) Kstb + PnlaMm+KszPsa+TbeKs (Pn10+Psd) REL+(1_Tb) Kst (Pn1d+Psc) REL} . (10)

number of UEsSV,, served by a MBS has distribution [54] attached to the MBS antennas, such as converter, mixer, and
3.5 filters, P,, is the power consumed by circuits to run a single-
3.5%5T(n + 3.5) (Aij’;u) @) antenna UE. Under this model, the total power consumption
T(3.5)n! (1 + 3_5)\m/)\u)n+3.5 on the macro cell can be written as

DL
whereT'(-) is the gamma function. Lek,, be a limit on the ~ Fm = Tm P +(1=Tm) Kin Pt +7im Kin (Prne + Pua) By
number of users that can be served by a MBS, the probabilityt- Pyt + P Mo + Paa K+ (1= 7 ) K ( Prd + Pac ) ROV

P(Ny =n) =

that a MBS serves less thdf,, UEs is given by @)
Ku=1 3.555T(n + 3.5) ( A )3-5 Through a similar appr(_)ach, the power consumption on each
P (N < Kp) = Am A small cell and backhaul link can be written as

= T(3.5)n! (1 + 3.5 m/ )" "7

Ps:TsPst+(1_Ts)KsPut+Psf+TsKs(Psc+Pud)R£L

3.5 Km—1
2Am F(TL+35) 3.5%° + PsaMs + Poa K + (1 _Ts) K (Psd +Pue) RJ" (8)
< > @) s
Au n! I'(3.5)
n=0 and
which rapidly tends to zero a§— grows. This indicates that , _ DL
in a practical network with a high density of UEs, i.e., wheréDb = TP + (1= 1) Ko P 7 K K (Prne + Pra) REL
Au > Am, each MBS serve&,, UEs with probability almost T PmaMm + KpMPsa + (1 — 1) Kp K (Pna + Fee) By,
one. A similar approach can be used to show fhgV, < )
Ks) =~ 0 andP(Ny, < Kp,) ~ 0 whenh, > An andAs > Am,  respectively, the analog circuit power consumption in (9)
respectively, and therefore each SAP serki@dJEs and each accounts for power spent on out of band SAPs. In the above
MBS servesk}, SAPs on the backhaul with probability a|m05bquations,PSt is the transmit power on a small celP,,;, and
one. . . Py, are the powers transmitted by MBSs and SAPs on the
In the following, we use the power consumption mod@jackhaul, andPs; and P, are the small-cell equivalents of
introduced in [49], which captures all the key contribudn Pyt and Py,,. Moreover,RP™ and RU" denote the DL and

the power consumption of signal processing operationss ThiL_ rates for each SAP-UE pair, arféP™ and RV denote the
model is flexible since the various power consumption valugg and UL rates for each wireless backhaul link.

can be tuned according to different scenarios. We note thaiye can now write the total power consumption of the

the results presented in this paper hold under more genefaterogeneous network with wireless backhaul.

conditions and apply to different power consumption models | emma 1: The power consumption per area in a heteroge-

[58], [59]. neous network with wireless backhaul is given(b§) shown
Under the previous assumption, and by using the modeldg the top of this page.

[49], we can write the power consumption on each macro cell  proof: Equation (10) follows from (7), (8), (9), and by

link as follows noting that under Assumption 1 the average power consump-
P = 7o Pt + (1 — 7n) KinPag + T K (Pane + Pag) RPV tion per area can be expressedfas- Py Am + Ps)s + PoAm.

+ Pue + (1 = 7n) K (Pma + Pue) Ry" ®) -
where P,,; and P, are the DL and UL transmit power from IV. RATES AND ENERGY EFFICIENCY

the MBS and theK,, UEs, respectivelyp;,. is the analog  |n this section, we analyze the data rates and the energy
circuit power consumptionf,. and Pq are encoding and efficiency of a HetNet with wireless backhaul, and we provide
decoding power per bit of information for MBS, whifé,. and  simulations that verify the accuracy of our analysis. Rarti
Pyq are encoding and decoding power per bit of informatiofarly, we combine tools from stochastic geometry and random
for UE, and Rp" and RJ" denote the DL and UL rates for matrix theory to derive the uplink and downlink rates of nzacr
each MBS-UE pair. The analog circuit power can be modelegdils, small cells, and wireless backhaul. The resultirajyesis
as [49] is tractable and captures the effects of multiantenna tnaas
Poc = Pt + PoaMu + PoaKo 6) siqn, fading, shadowing, and ra_ndor_n net\/\_/ork topolpgy. By
using the framework developed in this section, we will show
where P, ¢ is a fixed power accounting for control signalsthat the energy efficiency of a HetNet is sensitive to the load
baseband processor, local oscillator at MBS, cooling systeconditions of the network, irrespective of the infrasturet
etc., Py, is the power required to run each circuit componenised, and that a two-tier HetNet can achieve a significant
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energy efficiency gain over a one-tier network if the backhau 2 & (K 2
bandwidth is optimally allocated. Unless otherwise stated Cax(2,t) = o Z (n) [B (15K —nto.n— )
the analytical expressions provided in this section arattig n=l 9
approximations of the actual data rates. For a better rélggab - B <(1 + i) s K—n+—n— —ﬂ (14)
most proofs and mathematical derivations have been relégat tK @ @
to the Appendix. With Gy = am+as (Pot/Pue)’, and B(z;y, 2) = [T 71 (1—
t)*~Ldt the incomplete Beta function.

) Proof: See Appendix A. O

A. Analysis We note that in the downlink, due to the maximum received

Under dynamic TDD [42], [43], transmissions are corrupte@OWer association, interfering base station cannot betddca
by DL interference from other MBSs and SAPs, and b§loser to the typical user than the tagged base station, i.e.
UL interference from UEs that associated with other MBS €xclusion region exists where the distance between a UE
and SAPs. Specifically, the UL interference from UEs th&nd the interfering base stations is bounded away from zero.
associated with MBSs follow a homogeneous PPP with densttgwever in the uplink, because of the PPP deployment as-
(1 — 7m)AmKm, and similarly, the UL interference fromSumption, an interfering base station can be located artytr
UEs that associated with SAPs follow a homogeneous PPIpse to a typical MBS, i.e., the distance between a MBS
with density (1 — ;)\ K. By the composition theorem [60], @nd the interfering base stations can be arbitrarily sntall.
we have the UL interfering UEs follow a PPP with densitjh€ following, we treat the latter as a composition of three
M= (1= 7)) AmKm + (1 — 7o) AKo. independent PPPs with different spatial densities. We then

By noting that in practice, MBS can equip a large numb&btain the macro cell uplink rate as follows.
of antennas, we use random matrix theory tools to obtain theLemUma 3: The uplink rate on a macro cell is given (35),

DL rate on a macro cell link. with v, = (1 = B ) Min Pra.

Lemma 2: The downlink rate on a macro cell is given by Eroof: See Appendix B. . .
(11), where§ = 2/, am = AmmE[S3], a5 = ATE[SI] Unlike the macro cell, due to the relatively small number of
\- 1 - ’ m T m Dl s S Dl

X = (1= 7o) Am Ko + (1 — 1) A K, while 2, f1 (1), and antennas at the SAPs, random matrix theory tools cannot be
Coxc(2,1) are given respectively as follows employed to (_:alculate the _ratg on a small cell. We therefore
’ use the effective channel distribution as follows.
Lemma 4: The downlink rate on a small cell is given by
(16), whereAy = M, — K+ 1, and f_(t) is given as

fr.(t) = G0t texp (—Gt’), t >0

Pmt (1 - Bm) (Gm)%
Bl (1+2)
fr.(t) = Gmox®Lexp (—Gmx‘;) , >0

D _

m

(12)

)

(13) (17)
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5 5
X exXp <—TmamCa_,Km (2Pmt, t) (%) — 755Co, k. (2Pt t) (Z;;St) )fLm (t)dtdz. (25)
Rplepp = (1—G)(1—¢p) / / zln2 —e ZV“‘/t)
X exp (—)\qu[SD] / h ﬁdu) Fro(t)dtdz (26)
o 1+4z7tus/Py
with Gy = as + am (Pt /Pst)‘s. the energy efficiency tradeoffs remain valid irrespectif/éhe
Proof: See Appendix C. [0 scheme used.
Following a similar approach as the one in Lemma 3, we By combining the previous results, we can now write the
can obtain the uplink rate on a small cell. data rate per area in a heterogeneous network with wireless
Lemma 5: The uplink rate on a small cell is given l§y8) backhaul.
on the top of previous page. Lemma 8: The sum rate per area in a heterogeneous

Proof: The proof is similar to the one in Lemma 3 and'etwork with wireless backhaul is given by
it is omitted. [ DL UL
We now derive downlink and uplink rates on the wireles& = B(Km/\m + KS)‘S) {Am {TmRm + (1= 7m) By }

backhaul of a heterogeqeous network as_follows. _ A, [TS min {REL7 REL} +(1—7)min {REL7 RELH}
Lemma 6: The downlink rate on the wireless backhaul is 23
given by(19), whereai, = An7mE[SS], f1,(t) and P are (23)
given as where B is the total available bandwidth, an®P™, RUL,
RPL, RV RPE and RYY are given in(11), (15), (16), (18).
_ —1 _ 1) s 1 4lg s Ll b y y y s
Fry (8) = andt™ " exp( ;bt ), t>0 (20) (19), and (22), respectively.
D _ Pup(1 — Bb)ab. (21) Proof: See Appendix F. O
Bpl'(1+1/6) We finally obtain the energy efficiency of a heterogeneous
network with wireless backhaul, defined as the number of bits
Proof: See Appendix D. 1 successfully transmitted per joule of energy spent.
Lemma 7: The uplink rate on the wireless backhaul is given Theorem 1: The energy efficiency of a heterogeneous
by (22), wherevV = (1 — B,) My, Pap. network with wireless backhaul is given by
Proof: See Appendix E. a B (KmAm + Ko\

Remark 1: In Lemma 6 and Lemma 7, we use ZF a8 = p 35— b (Am {TngL +(1- Tm)R}iIlL}
the precoding and receiving scheme, which is suboptimal DL ) UL UL
compared to the block diagonalization (BD) and can resuttin s [TS min {Rs Ry } + (1 = 75) min {Rs Iy H )
lower data rate achievable on the wireless backhaul [56]][5 (24)
However, the rate achievable under ZF is tractable, wheteas
the best of the authors’ knowledge no closed form expression  Proof: The result follows from Lemma 1 and Lemma 8
available for the rate achievable by BD. Furthermore, wewghoand by noting that the energy efficiency is obtained as the rat
in Fig. 2 that the rate gap is limited, and that the rates unddsetween the data rate per area and the power consumption per
BD and ZF follow a similar trend. Therefore, our findings orarea. O
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RPlpp = ép(1— / / . 1=
¥pp = &p(1 — Cp) o Jo zIn2 (l—l—ZPstt*l/Ks)As

2P \° »P 5
K:t> — Tm@m Ca, K, (#Pst, t) ( K:t) ) fr.(t)dtdz. (28)

X exp (—Tsas Co k. (2P, t) <

e < fry(t)dt N s1 [ 1—e Gsu
R, =(1-3G)(1 - 1-— / —— | exp | —MTE[S, —————du | dz 29
Fop = (1= G)(1 = &p) Ty 0 (2Pt [Spl 11 tal P (29)
_ —zvP 5
§BCsz oo (I—e ’ 2P
Ry¥pp = K2 Jy /o TZ)GXP —abCa, i, M, (2Fmb, t) ol fr, (t)dtdz (30)
2
UL _ (1 —&B) (b My /OO e 7 /OO =t
Ry Fpp = K. . ame ), (1 e~ )fLU(t)dt
M [e'e] —1/5 n _ pGpu
M, P /M) (1
xexpd —(1-m) apky 3 ( >/ (20”0 P/ M) ( - Vi b s (31)
—\"/Jo (1+ zu='/9Py, /M) ™"

Equation (24) quantifies how all the key features of a hetero- Proof: The proof is similar to the one in Lemma 3 and
geneous network, i.e., interference, deployment strategg it is omitted. O
capability of the wireless infrastructure componentsetfthe Lemma 11: Under FDD, the downlink rate on a small cell
energy efficiency when a wireless backhaul is used to forwagdgiven by(28).
traffic into the core network. Several numerical resultsebas Proof: The proof is similar to the one in Lemma 4 and
on (24) will be shown in Section V to give more practicait is omitted. O
insights into the energy-efficient design of a heterogeseou Lemma 12: Under FDD, the uplink rate on a small cell is
network with wireless backhaul. In Section IV-C, we providgiven by(29).

simulations to validate the analysis presented in thisi@ect Proof: The proof is similar to the one in Lemma 5 and
it is omitted. O
B. Rate Analysis of FDD network Lemma 13: Under FDD, the downlink rate on the wireless

Our results are general and hold under both time divisid¥ckhaul is given by30). _
duplex (TDD) and frequency division duplex (FDD). In fact, . Proof: The proof is similar to the one in Lemma 6 and
TDD and FDD are equivalent in that they all divide up th& iS omitted. _ - u
spectrum orthogonally [61]. In this section, we show the L€mma 14: Under FDD, the uplink rate on the wireless
extension of our framework to the case of FDD, where Q@ckhaul is given by31). _
portion & of the radio access spectrum is assigned to the Proof: The proof is similar to the one in Lemma 7 and
downlink, and the remaining fractiofl — ¢p) is assigned It IS omitted. U
to the uplink. Similarly, on the wireless backhaul, a franti
&g is reserved for the downlink, and the remaining fractio@. Validation

(1 —¢p) is reserved for the uplink. In addition, in order e now show simulation results that confirm the accuracy
to increase the spectral efficiency, we consider a decouplgdine analysis provided in this section. In our simulations
UL/DL association, where the downlink UEs are associateg cq|is operate under dynamic TDD, the locations of MBSs,
with the base station that provides the largest receivecepowsaps, and UEs are generated as PPPs, and the typical UE
and the uplink UEs are associated with the closest MBSs j@r|gcated at the origin. We use the following values for the
SAPs. As such, the rate of DL macro cell, UL macro cell, Dlgymber of antennas and the transmit powldr; — 100, M, =

small cell, UL small cell, and the wireless backhaul can be p . _ 47 8dBm, andP,; = 23.7dBm.

written as follows. . In Fig. 2 we compare the rate on the wireless backhaul under

~ Lemma 9: Under FDD, the downlink rate on a macro celly|ock diagonalization (BD) and zero forcing (ZF), respeety,

is given by(25) in the previous page. with different numbers of SAPs. Although ZF achieves a lower
Proof: See Appendix G. “J rate than BD, the rate gap is limited as the antenna number

~ Lemma 10: Under FDD, the uplink rate on a macro cell groys, and the rates under BD and ZF follow a similar trend.
is given by(26) in the previous page, wherg; (t) is given Therefore, the conclusions drawn in this paper on the energy

as efficiency tradeoffs remain valid irrespective of the sckem
fro(t) = 6Gt° L exp (-Gt°), used. | |
G = (A + Am) TE[S)]. 27) Fig. 3 compares the simulated macro cell downlink rate

to the analytical result obtained in Lemma 2 with different
antenna numbers at the MBS. The downlink rate is plotted
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and zero forcing, with different numbers of SAPs. and femto cells, respectively, versus fraction of bandwig allocated to the
backhaul, under different load conditions.

25 : :
—8— Sim.: M, =20, K, =5 08
—+— Ana.. M\, =20, K, =5

Lo T n = v
SE —— S|m...M,,, =100, K, =25 & o7k
e My, = 100, Ky = 25 ES
o) ]
§ 2 -§ 0.6
= ]
= f 05t
s S
3 c
S \ S oaf
D ©
D 15) il
G 15 8 oo
8 T
& £ o2}
= =1

O oaf
1{ ! ! !
30 35 40 45 50 | J
MBS transmit power [ [dBm] ¥ 01 o0z 03 04 05 06 07 08 09

Load on the backhaulj,

Fig. 3. Comparison of the simulations and numerical redoftsmacro cell

downlink rate. Fig. 5. Optimal fraction of bandwidth to be allocated to theekhaul versus
load on the backhaul, for various values of the number of U&EsSAP, K.

versus the transmit power at the MBSs. The figure shows
that analytical results and simulations fairly well mattiis  |ognormal distributed asg = 10 and Sp = 1075, where

confirming the accuracy of Lemma 2. Xg ~ N(0,0%) and Xp ~ N(0,03), with op = 3dB
and op = 6dB, respectively [62]. In addition, we set the
V. NUMERICAL RESULTS backhaul transmit power equal to the radio access power,

In this section, we provide numerical results to show howe., Py, = P, Pss = Pst. All other system and power
the energy efficiency is affected by various network paranset consumption parameters are set as folloRg; = 47.8dBm,
and to give insights into the optimal design of a heterogasedor pico cell SAPsP,; = 30dBm, for femto cell SAPP,, =
network with wireless backhaul. As an example, we consid28.7dBm, P,y = 17dBm, P,, = 1W, for pico cell SAPs
two different deployment scenarios, namely (i) a densealepl FPs. = 0.8W, for femto cell SAPP,, = 0.8W, Py, = 0.1W
ment of low-power SAPs with a small number of antennaf32]; P = 225W, for pico cell SAPsP; = 7.3W, for
here denoted afemto cells and (i) a less dense deploymenfemto cell SAPsP; = 5.2W [58], [59]; Pne = 0.1W/Gb,
of larger and more powerful SAPs, here denotegias cells P,q = 0.8W/Gb, P, = 0.2W/Gb, Py = 1.6W/Gb,
and we refer tdight load and heavy loadconditions as the P,. = 0.3W/Gb, P,,q = 2.4W/Gb [49].
ones of a network wittf,, = s = B, = 0.25 and0.9 < G, In Fig. 4, we compare the energy efficiency of heteroge-
Bs, Bv < 1, respectively. We consider a network operating ateous networks that use pico cells and femto cells, respec-
2GHz, we set the path loss exponentdo= 3.8 to model tively, under various load conditions and for different fomms
an urban scenario, the shadowifg and Sp are set to be of the bandwidth allocated to the wireless backhaul. Thedigu
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Fig. 6. Energy efficiency of a heterogeneous network thas yseo cells Fig. 7. Energy efficiency versus number of SAPs per MBS undeious
and femto cells, respectively, versus power allocated éohi@ckhaul, under bandwidth allocation schemes.
different load conditions.

In Fig. 7, we plot the energy efficiency of the network versus

shows that femto cell and pico cell deployments exhibit Eimi the number of SAPs per MBS. We consider four scenarios: (i)
performance in terms of energy efficiency. Moreover, Fig. dptimal bandwidth allocation, where the fraction of bandkkvi
shows that the energy efficiency of the network is highly, for the backhaul is chosen as the one that maximizes
sensitive to the portion of bandwidth allocated to the backh the overall energy efficiency; (ii) proportional bandwidih
and that there is an optimal value ¢f which maximizes the location, where the fraction of bandwidth allocated to the
energy efficiency of the HetNet. The optimal valuepfis not backhaul is equal to the fraction of load on the backhaul,
affected by the network infrastructure, i.e., it is the sdore i.e., §, = % [41]; (iii) fixed bandwidth allocation,
pico cells and femto cells. However, the optingalincreases where the bandwidth is equally divided between macro-and-
as the load on the network increases. In fact, when more U&sall-cell links and wireless backhaul, i.€, = 0.5; and
associate with each SAPs, more data need to be forwardis) one-tier cellular network, where no SAPs or wireless
from MBSs to SAPs through the wireless backhaul in ord&ackhaul are used at all, and all the bandwidth is allocated
to meet the rate demand. In summary, the figure shows thatthe macro cell link, i.e.(;,, = 0. Fig. 7 shows that in a
irrespective of the deployment strategy, an optimal backhawo-tier heterogeneous network there is an optimal number o
bandwidth allocation that depends on the network load can 84Ps associated to each MBS via the wireless backhaul that
highly beneficial to the energy efficiency of a heterogeneoonsaximizes the energy efficiency. Such number is given by a
network. tradeoff between the data rate that the SAPs can provide to

In Fig. 5, we plot the optimal valug;’ for the fraction the UEs and the total power consumption. This figure also
of bandwidth to be allocated to the backhaul as a functiomdicates that if the wireless backhaul is not supported,wel
of the load on the backhaub,. We consider femto cell a two-tier HetNet with wireless backhaul can be worse than
deployment for three different values of the number of UBs pa single tier cellular network in terms of energy efficiency.
SAP, K.. Consistently with Fig. 4, this figure shows that thédowever, when the backhaul bandwidth is optimally allodate
optimal fraction of bandwidtlg;; to be allocated to the wirelessthe HetNet can achieve a significant energy efficiency gain
backhaul increases @ or K increase, since the load on theover a one tier deployment.
wireless backhaul becomes heavier and more resources are
needed to meet the data rate demand. VI. CONCLUDING REMARKS

In Fig. 6, we plot the energy efficiency of the HetNet In this work, we undertook an analytical study for the
as a function of the MBS transmit power under differergnergy-efficient design of heterogeneous networks with a
deployment strategies and load conditions. The figure showseless backhaul. We used a general model that accounts
that the energy efficiency is sensitive to the MBS transnfior uplink and downlink transmissions, spatial multipleg;
power, and that there is an optimal value for the transmahd resource allocation between radio access links and back
power, given by a tradeoff between the data rate that thaul. Our results revealed that, irrespective of the depkayt
wireless backhaul can support and the power consumptistnategy, it is critical to control the network load in order
incurred. Under spatial multiplexing, the data rate of th® maintain a high energy efficiency. Moreover, a two-tier
network is affected by the number of scheduled UEs per baseterogeneous network with wireless backhaul can achieve a
station antenna, which we denote as the network load. Assignificant energy efficiency gain over a one-tier deploytmen
consequence, the network load affects the data rate, andaglong as the bandwidth division between radio access links
turn affects the energy efficiency. and wireless backhaul is optimally designed.
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The framework provided in this paper allows to explicitywhereasg,,  , and g, ., represent the effective small-scale
characterize the power consumption of the HetNet due to tfaeling from the interfering MBS:,,, and SAPz; to the origin,
signal processing operations in macro cells, small celig, arespectively, given by [63]
wireless backhaul, as well as the data rates and ultimdtely t
energy efficiency of the whole network. More generally, our ~ Jam.0 = > Kwhi Wa, > ~T(Km 1)  (31)

work helps to understand how all the key features of a hetero- UEUszy,
geneous network, i.e., interference, load, deploymeatesiy, 5ng
and capability of the wireless infrastructure componeaffect oo = Z Ko wa of? ~ T (Kq, 1) (32)

the energy efficiency when a wireless backhaul is used to
forward traffic into the core network.

This paper considered the current state-of-the-art cownbla By conditioning on the interference, wheti,, My, — oo
deployment of small cells with the macro cell tier. In thavith 8, = Kn/M, < 1, the SINR under ZF precoding
near future, an orthogonal, ultra-dense deployment of Ismabnverges to [45]

UEU L

cells could be used to further boost the network capacity P M

b : : : : DL ~DL _ mt - m 33
y targeting static users. Investigating up to what extent v, — Y — Iy S (33)

the wireless backhaul capability can support such ultrzsde (I + Lu+0%) 250 ¢

topology, and designing idle-mode mechanisms for an eRerGiheree; is the solution of the fixed point equation

efficient and sustainable ultra-dense deployment are dedar )

as concrete directions for future work. L, .. J
rect Hiure w —m =1t o =12, K (34)
APPENDIX “ m
A. Proof of Lemma 2 With_J = Zf:‘“l Lgi_’ujej‘l. By summing (34) overi we
The channel matrix between a MBS to ifs,, asso- °Ptain
ciated UEs can be written afl = LzH, where L = _ K
diag{Li "', ..., L' }, with L, = r®/S; being the path loss J= K M—mJ' (35)

from the MBS to itsi-th UE, wherer; is the corresponding
distance and; denotes the shadowingl = [hy, ..., hg, |T is
the K, x M., small scale fading matrix, with; ~ CA (0, T).

Solving the equation above results th= K,,M,,/(My, —
K.,), and by substituting the value of into (34) we can

The ZF precoder is then given BY = ¢FH*(HH*)~!, where have
€2 = 1/tr[(H*H) '] normalizes the transmit power [62]. In 1 Mw o (36)
the following, we use the notatio®V as ®" to denote the e My—-Kn

subsets of® that transmit in uplink and downlink, respectivelyyhich substituted into (33) yields

we further denoté/, as the set of UEs that are associated

with access pointz, and denotei as the transmitter that 5Dt _ (1 = Bm) M Pt . (37)
locates closest to the origin. Since the locations of MBS$ an T (Imu g I 4 02) Zf:“‘l L,

SAPs follow a stationary PPP, we can apply the Slivnyark’s

theorem [60], which implies that it is sufficent to evalugte t Notice that{L;, .}/ is an independent independent and
signal-to-interference-plus-noise ratio (SINR) of a ggiUE identically distributed (i.i.d.) sequence with finite firsbment,

at the origin. As such, by noticing that under dynamic TDDgiven by
every wireless link experiences interference from the dimkn

transmitting MBSs and SAPs, and from the uplink transnttin E[Lipu,] =T <1 + %) G < oo,
UEs, the downlink SINR between a typical UE at the origin
and its serving MBS can be written as by applying the strong law of large numbers (SLLN) to (37),
oL Pyl owfcm,o|2L@_HI, . we have
Tm = I 4 1, + o2 (28) DL _, (1 - ﬂm) Grlr1/6pmt s (38)
where h;_, is the small scale fadingw;_, is the ZF Tm BT (1+3)Ime+ T, +0%)

precoding vectorL; _ , denotes the corresponding path loss, As such, using the continuous mapping theorem and the

while I™" is the aggregate interference from other cells tl%mma in [64], we can compute the ergodic rate as
the MBS UE, andI, denotes the interference from UEs, ’ P 9
1 D
E [log, (1 +72")] = —E [m (1 + ”7‘“”

respectively given as follows
Ptz o PiGs. o " In2 Imu 4 T+ o2
I(I)Iéu _ Z t9zm, + Z tJxs, (29) )
P

Kmme.o Ksts.o X0 072 mu
T EPR\im ¢ seep | = / s (1= e E[em B [ a2 (39)
0

and zIln?2

Put|hz,.0l? Due to the composition of independent PPPs and the dis-
I, = Z Lo o (30) placement theorem [30], the interferenkefollows a homo-
Tu €Y v geneous PPP with spatial density = (1 — 71) AmKm +
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(1 —75) AsK, and the corresponding Laplace transform MBS UEs and SAP UEs are modeled as two independent

given as [60] inhomogeneous PPP with intensity measure being
o 22 NE[SS | Pl 25 A (dx) = damz® ' [1 —exp (—Gmz®)],  (47)
E[e "] =exp | — asin () . (40) AU (d) = Sagz®! [1—exp (—Gm:r‘s)} . (48)
As for the Laplace transform af", the conditional Laplace The Laplace transform of the UE interference can then be
transform onL;, , can be computed as calculated as
Alm)
s (dx)
mu Pm 7Z1u — _ mu
E {e_“oc |Lim,o=t} :exp<—7mamCa,Km(szt,t)(ZK t) Ele ) exp( (1 = 7m) K / 1+ 2 196/Put
m m)
s Asu’ (dx)
b (1 —75) K
_Tsasca,KS(ZPmtat)(ZKt) ) . T / 1+Z 1x/Put>
- 0 1 _ —Gnu
(41) = exp (—/\uw]E[S%]/ e—ldu>
o 1+ z7tus /Py

Notice thatL;_ , has its distribution given by (13), and the
rate RPL given as

RO = (1—G) E [logy (1+700)] (42)

substituting (40) and (41) into (39), and deconditibg,_ ,
with respect to (13) we have the corresponding result.

(49)
As such, noticing that

Ryt = (1—G) E [log, (1+7m")] (50)
the result follows by substituting (46) and (49) into (45).

C. Proof of Lemma 4

. o _ . With a similar approach in the proof of Lemma 2, it is
Let us consider a UE transmitting in uplink to a typical MB%UﬁICIent to consider a typical UE that locates at the origin

Ipcated at therngAm’ Wh;Ch employs a ZF_recelve f_'h%u ~ and associates with an SAP, the corresponding downlink SINR
hy . (O .cu, houhy )" [62], the SINR is then given by can then be written as

—1 * 2 * N
PuLy ;|5 5. 00, DL _ Blbi, Wi o

Zu (43) ’75 ICS)E +Iu +O_2

WhereImbS denotes the interference from other cells recelvé’éﬁhere Wi.0 i the ZF precoding vector, and;; is the
at the MBS By conditioning on the interference, whefi99regate interference from other cells to the SAP UE, given

Ko, My — 00 With B = Ky /My < 1, the SINR above 25 follows

B. Proof of Lemma 3

21 —1

Zay0 (51)

AL
" IS A Lt 0?) o, 12

P. P,
converges to [45] U — stJzs,0 mtJm,0 52
_ w5 Rt X Rl ©?
_uL Pt Mm (1 — ﬁm)Lo G T € PP\ B Tm € Py
’Ym — Vm - ) a.s. ( )

Imbs [+ o2 By noting that|Ksh;:cs_owggs_p|2 ~ T'(As, 1) with Ay = M, —

By using the continuous mapping theorem [64], the upIin{fS +1 [14], we can write the rate of an SAP UE as [64]

ergodic rate can be calculated as
E [log2 1 + 7 / /

UL VLo
E [logy (1+74")] = o 2E [ln (1 + m)

—2122 —zIy,
zln2 } E[e ]

» x [1 (1+zPstt—1/Ks) ] fr(tydzdt.  (53)

1 _ e m
— // TQ)E[e_ZIU]E[ —mebﬁ}fL (t)dzdt. On one handE [e~*!:] is given in (40), on the other, by
oJo  FeT T denotingL,._ , = t, the conditional Laplace transform @f"

(45) can be derived as
The Laplace transform of"* can be computed as . 2P \°
. E {e_ZIOC Li.o= t] = exp| —75asCa, i, (2 Pet, t)( ht)
E [eidﬂ s} ‘ K
D(1+6) 5722° P, TEm 2P\’
—exp| - (1+40) 0m22° | Tmam P [ ;25 (140) — TmmCa. Ko (Pst, ) . (54)
sin(o7) F(Km)K;; Kom

rasPs HKS L(i45) ) As L;_, follows a distribution as (17), an&P™ is given as
T(K.)K? RYY = (1 - Gp) E [logy (1+12)] (55)

On the other hand, to consider the uplink interference froby substituting (40) and (54) into (53), and deconditioning
UEs, we use the result in [65] where the path loss froh;, ,, we have the desired result.
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D. Proof of Lemma 6 E. Proof of Lemma 7

We consider the signal received at theh antenna of a  Let us consider an SAP transmitting in uplink to a typical
typical SAP located at the origin, which is served by a MB®IBS located at the origin, which employs a ZF receive filter,
through the wireless backhaul and has the SINR given as the received SINR from th&™" antenna is then given by

—1 * 2
mb ‘hb kvb k’ Lzbo 56 fyglk — IPSbL;-rib|rb27khb"k| 3
? m + S + r
T (56) ( RIET

where v, denotes the ZF precoder, whilg, and I are
the aggregated interference from downlink transmitting34B

(64)

L _
o,k =

By conditioning on the interferendg, + I, WhenKb, M, —
oo with 8, = Ky Ms/M,, < 1, the SINR7 satisfies [45]

and uplink transmitting SAPs in the wireless backhaul, eesp Py, My (1 — Bp) L1
tively, with expression given as follows b APk = L0 g5, (65)
Y, P g Yo,k ™ Yo,k R
I, = Z _PwbGrmo (57) By using the continuous mapping theorem and the lemma in
T EPD\ Ky MsLy,, o0 [64], we have the following holds

and

0o —o%z
UL\ _ e -y
-y Mjbz% 0 (58) & lloga (14901 _/0 g (17e)
Ts00 x E [ef‘dﬂ E [efﬁm} dz. (66)

where g, » ~ I'(KyM;, 1) and g, ~ I'(Ms,1) are the On one hand, the Laplace transform Igf can be calculated
effective small scale fading from the interfering MBg, and as

SAP z; to the origin. .

By conditioning on the interferencg, + I, and by using D [e m}
a similar approach as the one in the proof of Lemma 2, when { rbabF(1+6)67r2P5bz5 HK"lMS’l (i+9) }
Ky, M, — oo with 8, = K, Mg/M,, < 1, the SINR in (56 = exp :
oot tas Bo = KM/ (56) sin(o7) (MoK)' T (MoKy)

z€DY

(67)
_ 5
VEL/C N WEL;C — Pmbl(l fb)ab a.s. (59) On the other, to consider the uplink interference from SAPs,
Bl (1+5) (02 + I + L) we use the result in [65] where the path loss from the
By using the continuous mapping theorem and the |emma?merfe_ring SAPs are modeled as an inhomogeneous PPP with
[64], we have the following holds intensity measure being
—022 Agm)(d:v) = dapa® ! [1 — exp (—ab:v‘s)} . (68)

E [log, (1 + 425 :/Ooe 1—e o
[ 2( b’k)] o 2In2 ( ) As such, the Laplace transform df in the uplink can be
xE[e *]E[e *™]dz.  (60) computed as

With the effective channel distribution available, we came E [Q,Zﬂ =exp(—(1—7,) Ky

pute the Laplace transform df as o 1

X 1- A( ™) (dz) | .
Ele™*"] /0 [ (1 4 zPypa=1 /M) ( )>

Mg—1
oy [ D+ 08)07%P th /\H2+6 (69)
sin(6m)T (M) M9 Since the uplink rate achievable on the wireless backhaul is
(61) given as

On the other hand, conditioning ab, , = t, we have the RUL = CszE [logy (1+4%)] (70)
conditional Laplace transform given as K ’

E [e‘”m|LA _ ﬂ the result then follows by substituting (67) and (69) int6)6

5
P
= exp <_Tbabca,Ksz (2P, t) (IZ( ]\; ) ) . (62) F. Proof of Lemma 8
b The average rate for a typical UE located at the origin is
Notice thatL;, , has its distribution as (20), and the downlinlgiven by

rate achievable on the wireless backhaul given as
R=AnRmn + ARs (71)

M,
RDL — Cb S
b K.

S

~DL
E [10%2 (1 + %,k)] (63) where R, and R, are the data rates when the UE associates

to a MBS and a SAP, respectively, given by
Lemma 6 then follows from substituting (61) and (62) into

(60), and deconditioning with respect to (20). Ry = T RPY + (1 — 7y )RUE (72)



and [

Ry = rymin { RD™, RD™} + (1 —7) min { R, RY™} . (73) 0
As each MBS and each SAP serv€,, and K, UEs,
respectively, the total density of active UEs is given le]
Ko m+ K. Let B be the available bandwidth, the sum rate
per area is obtained & = (K, A + K)\s) BR. Lemma 8
then follows from Lemmas 2 to 7 and by the continuoué?
mapping theorem. [13]

G. Proof of Lemma 9 (4]
We consider a typical UE that locates at the origin, notice

that under FDD, the wireless link experiences interference

from the downlink transmitting MBSs and SAPs. As sucH,lE’]

the SINR can be written as [16]
* 27 —1
DL _ Pmt|h§¢m_rowim70| Lim@ (74)
Vm,FDD - Icr)réu + o2 : [17]

By conditioning on the interference, wheld,,, M,, — oo
with 5, = Kn/M,, < 1, the SINR under ZF precoding[lg]
converges to [45]

D [29)

DL DL _
Ym,FDD ~ Ym,FDD = Imuij—lo—?’ a.s. (75) 20
ocC [21]

by using the continuous mapping theorem, and the lemma in
[64], we have the following

L) (1 — G_ZU‘E) 2
~DL —zIn

E [log, (1 +Ynrpp) ] /0 o 102 E [e } dz 23]

(76)
The result then follows by noticing tha@D%pp = &p(1 —  [24]
(b)E[logy (1 +725pp)], and by substituting (41) into (76).
[25]
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