
1

Modeling and Performance Analysis of

Clustered Device-to-Device Networks

Mehrnaz Afshang, Student Member, IEEE,, Harpreet S. Dhillon, Member, IEEE

and Peter Han Joo Chong, Member, IEEE

Abstract

Device-to-device (D2D) communication enables direct communication between proximate devices

thereby improving the overall spectrum utilization and offloading traffic from cellular networks. This

paper develops a new spatial model for D2D networks in which the device locations are modeled as

a Poisson cluster process. Using this model, we study the performance of a typical D2D receiver in

terms of coverage probability under two realistic content availability setups: (i) content of interest for a

typical device is available at a device chosen uniformly at random from the same cluster, which we term

uniform content availability, and (ii) content of interest is available at the kth closest device from the

typical device inside the same cluster, which we term k-closest content availability. Using these coverage

probability results, we also characterize the area spectral efficiency (ASE) of the whole network for the

two setups. A key intermediate step in this analysis is the derivation of the distributions of distances

from a typical device to both the intra- and inter-cluster devices. Our analysis reveals that an optimum

number of D2D transmitters must be simultaneously activated per cluster in order to maximize ASE.

This can be interpreted as the classical tradeoff between more aggressive frequency reuse and higher

interference power. The optimum number of simultaneously transmitting devices and the resulting ASE

increase as the content is made available closer to the receivers. Our analysis also quantifies the best

and worst case performance of clustered D2D networks both in terms of coverage and ASE.
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I. INTRODUCTION

Enabling direct communication between devices located in close proximity, termed device-to-

device (D2D) communications, has several benefits compared to the conventional approach of

communicating through a base station in a cellular network [2]–[5]. First, the spectral efficiency

of the direct link is typically much higher due to a smaller link distance. Second, this circumvents

the need to establish an end-to-end link through a base station, thereby offloading traffic from

cellular networks. Third, while the D2D network can be visualized as an ad hoc network, it

incurs a much lower protocol overhead due to the assistance it gets from the existing cellular

network. All these benefits make it an attractive component for both the current 4G and the

future 5G networks [5]–[7]. Clearly, content centric nature of D2D communication opens up

several exciting possibilities that were not quite possible with traditional cellular architecture.

This is primarily driven by the spatiotemporal correlation in the content demand [8]–[10]. In

particular, when a device downloads a popular file, it can deliver it locally to its proximate

devices whenever they need them [11]–[13]. We term each such set of proximate devices as a

cluster. The performance of a typical D2D link within each cluster will mainly depend upon

where the content of interest is available with respect to the typical receiver and the number of

other D2D links active in the network. Comprehensive modeling and performance analysis of

this clustered D2D network using tools from stochastic geometry is the main goal of this paper.

A. Motivation and Related Work

Modeling and analysis of D2D communication has taken two main directions in the literature.

The first one focuses on characterizing the scaling of per-device throughput as a function of

the network size; see [12]–[14] for a small subset. To maintain analytical tractability, protocol

model is typically assumed under which the transmission between two devices is successful

only if (i) the distance between them is smaller than a certain predefined value, and (ii) there

are no other active transmitters in the immediate neighborhood of the receiver. While these

assumptions are somewhat restrictive, more general results are typically obtained by means of

extensive simulations. The second direction, which is also more relevant to our work, focuses on

characterizing metrics, such as the distribution of per-device throughput and coverage probability,

using tools from stochastic geometry under more general physical layer models in which the

metrics are defined in terms of the actual received powers from the desired and interfering
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devices, as opposed to Euclidean distances that appear in the protocol model discussed above.

While stochastic geometry has successfully been applied to study various aspects of ad hoc and

cellular networks over the past decade; see [15]–[20] for a small subset, it has also been used

more recently to study D2D networks [21]–[29]. We discuss these works in more detail next.

Mode selection in D2D-enabled uplink cellular networks where traffic can be offloaded from

the cellular network to the D2D network is studied in [21]–[23]. Interference management

between the cellular and D2D networks is investigated in [24]–[28]. The performance of the

multicast transmission wherein each D2D transmitter (D2D-Tx) has a common massage for

all the intended D2D receivers (D2D-Rxs) inside the cluster is analyzed in [29]. The common

approach in all these works is to model the locations of the the D2D-Txs as a Poisson Point

Process (PPP) while two approaches are considered for modeling the locations of the D2D-

Rxs. In the first approach, to lend analytical tractability, the network is modeled using a Poisson

Dipole Process (PDP) where the D2D-Rxs are located at a fixed distance from the D2D-Txs [21],

[24]–[28]. Although this is a good first order model, the assumption of fixed link distance is

quite restrictive. This assumption is relaxed by assuming that the intended D2D-Rx is uniformly

distributed within a circle around its serving D2D-Tx [22], [23], [29]. However, neither of

these stochastic geometry-based approaches captures the possibility of having multiple proximate

devices any of which can act as a serving device for a given device, which is quite fundamental to

D2D networks [11]–[13]. In this paper, we address these shortcomings by developing a new and

more realistic spatial model for D2D networks in which the devices form clusters. We consider

out-band D2D in which D2D and cellular transmissions do not interfere with each other. More

details of the model along with the other main contributions of this paper are provided next.

B. Contributions and Outcomes

Realistic tractable model for D2D networks. We develop a new and more realistic way of

modeling D2D networks in which the device locations are modeled as a Poisson cluster process,

in particular a variant of a Thomas cluster process [15]. This is unlike the popular approaches

where the device locations are assumed to be uniform over the plane, such as in the PPP and

PDP models discussed above. The proposed model captures the fact that a given device typically

has multiple proximate devices any of which can potentially act as a serving device. Using tools

from stochastic geometry, we characterize the performance of this D2D network for two content
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Fig. 1: Proposed D2D cluster model where devices are normally distributed around each cluster center.

availability scenarios: (i) uniform content availability, where the content of interest for a typical

device is available at a device chosen uniformly at random from the same cluster, and (ii) k-

closest content availability, where the content of interest is available at the kth closest device to

a typical device inside the same cluster. It should be noted that while Poisson cluster process has

been used in the literature to model wireless networks, in particular see [30], the performance

analysis is usually performed at a point that may not necessarily be a part of the point process.

Unlike this scenario, we perform analysis at a typical device, which by definition is a part of the

cluster process. This setup brings forth new technical challenges, e.g., the need to characterize

the distribution of distances from the typical device to other devices, as discussed below.

New distance distributions enabling ASE and coverage probability analysis. We derive exact

expressions for coverage probability of a typical device and ASE of the whole network for

the two scenarios described above. Several closed-form bounds and approximations are also

derived. As intermediate results, we characterize the distributions of the distances of the typical

device to its serving device and intra- and inter-cluster interfering devices in the two cases.

The key enabler of our analysis is the observation that conditioned on the appropriate random

variables, the distances from a typical device to any other randomly chosen device in a Thomas

cluster process are independent and Rician distributed. The k-closest content availability case

additionally requires the use of order statistics in order to characterize the serving distance

distribution and a more careful treatment of the intra-cluster interference field. Using these
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distributions, we derive Laplace transforms of both intra- and inter-cluster interference powers,

using which the coverage probability and ASE are characterized.

System design insights. Our analysis leads to several system design guidelines. First, it reveals

the existence of the optimal number of links that must be activated per cluster in order to max-

imize ASE. This can be interpreted as the classical tradeoff between more aggressive frequency

reuse and higher interference power. The optimum number of simultaneously active links per

cluster and the resulting ASE increase as the content is made available closer to the receivers.

For typical operational regimes of interest for D2D networks, our results reveal that significant

gains can be achieved by activating optimum number of links compared to strictly orthogonal

strategy in which only one link per cluster is active. The kth closest content availability strategy

also allows to characterize the best and worst case performances of a clustered D2D network in

terms of coverage probability and ASE by tuning the value of k, where the best and worst cases

correspond to the when the content is available at the closest and farthest device, respectively.

II. SYSTEM MODEL

We assume that each device has a certain content that can be requested by the other devices

in the same cluster and the devices across clusters need not communicate. This can be justified

in a practical setup from multiple perspectives, two of which are: (i) the inter-cluster distances

will be typically much larger than the intra-cluster distances between devices, thus making it

easier to communicate within a given cluster, and (ii) the devices in one cluster may not have

information that is of interest to the devices in the other clusters. For example, devices forming

a cluster in a sports bar are more likely to be interested in sports-related content as opposed to

devices in an academic setting, such as a library, where the nature of popular content may be

entirely different. While the tools developed in this paper can be extended to handle the case

where communication across clusters is allowed, it is not in the scope of this paper and is left

as a promising future work. We now discuss the key modeling details for this setup.

A. Spatial Setup and Key Assumptions

The locations of the devices are modeled by a Poisson cluster process, where the parent point

process is modeled by a PPP Φc with density λc, and the offspring point processes (one per

parent) are conditionally independent [31]. The union of all the offspring points constitutes a
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Poisson cluster process. The parent and offspring points will be henceforth referred to as the

cluster centers and the cluster members (or simply devices), respectively. The cluster members

are assumed to be independent and identically distributed (i.i.d.) according to a symmetric normal

distribution with variance σ2 around each cluster center x ∈ Φc. Therefore, the density function

of the device location y ∈ R2 relative to a cluster center is

fY (y) =
1

2πσ2
exp

(
−‖y‖

2

2σ2

)
. (1)

If the number of devices in each offspring process, i.e., cluster, were Poisson distributed, this

process is simply a Thomas cluster process [15]. However, to simplify certain order statistics

arguments in the sequel, we assume that the total number of devices per cluster is fixed and

equal to N . As will be evident from the discussion below, the number of simultaneously active

devices will still be different across clusters, thereby providing sufficient generality to the model.

The proposed model is illustrated in Fig. 1. The set of all devices in a cluster x ∈ Φc, denoted

by N x, is partitioned randomly into two subsets: (i) set of possible transmitting devices denoted

by N x
t , and (ii) set of possible receiving devices denoted by N x

r . The set of simultaneously

transmitting devices in this cluster is denoted by Bx ⊆ N x
t , where |Bx| is assumed to be Poisson

distributed with mean m̄ conditioned on |Bx| ≤ |N x
t |. Note that in the limiting case, about half of

the devices in each cluster will transmit to the other half. Therefore, for notational convenience,

we assume that the total number of transmitting devices per cluster is limited to M = N/2.

This can be easily relaxed in case one wants to allow all N devices to be transmitting in a

certain application. Without loss of generality, we perform analysis for a typical device, which

is a randomly chosen device in a randomly chosen cluster, termed representative cluster, inside

the network. Assuming the cluster center of the representative cluster to be located at x0 ∈ Φc,

the typical device by definition is in N x0
r . Due to the stationarity of this process, we assume that

the typical device is located at the origin. Since the performance of the D2D link to this receiver

depends upon where in the cluster is the data available, we consider following two setups to

model content availability in the representative cluster:

1) Uniform content availability. The content of interest for the typical device is available at

a device that is chosen uniformly at random from the set N x0
t in the same cluster.

2) k-closest content availability. The content of interest to the typical device is located at
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its kth closest device from the set N x0
t in the same cluster. By tuning the value of k, the

content can be biased to lie closer (small k) or farther (large k) from the typical device.

After fixing the location of the serving device as per one of the strategies above, the intra-cluster

interfering devices are sampled uniformly at random from the remaining M − 1 devices in N x0
t

in the representative cluster. Since a representative cluster has a serving device by definition,

for concreteness we assume that the number of interfering devices is Poisson distributed with

mean m̄ − 1, which means that a total of m̄ devices are active on average in this cluster.

Similarly, the inter-cluster interfering devices are sampled uniformly at random from the set of

transmitting devices of each cluster, such that the number of active devices in each cluster is

Poisson distributed with mean m̄ conditioned on the total being less than M .

B. Channel Model

Recall that the cluster center of the representative cluster is assumed to be located at x0 ∈ Φc.

Assume that D2D-Tx of interest (serving transmitter) is located at y0 inside that cluster. The

distance of this D2D-Tx from the typical device (D2D-Rx of interest) is denoted by r = ‖y0+x0‖,

where r is a realization of random variable R whose distribution depends upon the content

availability strategy as discussed in detail in the sequel. Assuming transmit power of each device

to be Pd, the received power at D2D-Rx of interest is

P = Pdh0‖x0 + y0‖−α, (2)

where h0 ∼ exp(1) is i.i.d. exponential random variable which models Rayleigh fading and α is

path loss exponent. Incorporating shadowing is left as a promising direction of future work. To

define interference field, it is useful to define the set of all simultaneously active D2D-Txs as:

Ψm = ∪x∈ΦcBx, (3)

where recall that Bx is the set of simultaneously active D2D-Txs inside a cluster x ∈ Φc. In this

network, the total interference caused at the D2D-Rx of interest can be written as the sum of two

independent terms: (i) intra-cluster interference caused by the interfering D2D-Txs inside the

representative cluster, and (ii) inter-cluster interference caused by simultaneously active D2D-

Txs outside the representative cluster. Recalling that the D2D-Tx of interest is located at y0 with
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respect to the cluster center x0, the intra-cluster interference power can be expressed as:

ITx−cluster =
∑

y∈Bx0\y0

Pdhyx0
‖x0 + y‖−α. (4)

Similarly, the interference from the simultaneously active D2D-Txs outside the representative

cluster, x0, at the D2D-Rx of interest can be expressed as:

IΨm\Tx−cluster =
∑

x∈Φc\x0

∑
y∈Bx

Pdhyx‖x+ y‖−α. (5)

Denoting the total interference power experienced by the typical device by IΨm and recalling

the serving distance to be r = ‖y0 + x0‖, the SIR experienced by the typical device is

SIR(r) =
Pdh0r

−α

IΨm

=
Pdh0r

−α

IΨm\Tx−cluster + ITx−cluster

. (6)

For notational simplicity, we assume that the system operates in the interference limited regime,

i.e., the background noise is negligible compared to the interference and is hence ignored. This

means that the transmit power term cancels in the SIR expression above and can hence be

ignored, i.e., we can set Pd = 1 without any loss of generality. For a quick reference, the

notation used in this paper is summarized in Table I.

III. DISTRIBUTION OF THE DISTANCES

This is the first main technical section of the paper where we characterize the distributions of

the distances from the typical device to various intra- and inter-cluster devices. These distance

distributions will be used in the analysis of coverage probability and ASE in the next section. We

first focus on the unordered case in which we characterize the distribution of the distances from

a typical device to a device chosen uniformly at random in a given cluster x ∈ Φc. Using this,

we characterize the inter-cluster distance distributions for both the content availability cases, and

serving and intra-cluster distance distributions for the uniform content availability case. We then

analyze the ordered case in which the distances from a typical device to the devices of a given

cluster x ∈ Φc are ordered in the increasing order. Using this, we characterize the serving and

intra-cluster distances to the typical device in the k-closest content availability case.

Before going into more technical details, we define the functional forms of the probability

density functions (PDFs) of the Rayleigh and Rician distributed random variables, which will
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TABLE I: Summary of notation

Notation Description
Φc;λc Independent PPP modeling the locations of D2D cluster centers; density of Φc

N x Set of devices inside the cluster centered at x ∈ Φc

N = |N x| Total number of devices per cluster (assumed same for each cluster)
N x

t ;N x
r Subsets of N x denoting the set of possible transmitting and receiving devices

Bx ⊆ N x
t ; m̄ Set of simultaneously active devices inside the cluster with mean m̄

Sxt Set of distances from the typical device to the inter-cluster devices
Bx0 ⊆ N x0

t ; m̄ Set of simultaneously active devices inside the cluster with mean m̄ in the cluster x0 ∈ Φc

Sx0
t Set of distances from the typical device to the intra-cluster devices

Ψm = ∪x∈φcBx Set of all simultaneously active devices in the D2D cluster network
M = |N x

t | Number of maximum possible transmitting devices per cluster, M = N/2
σ2 Scattering variance of the cluster member locations around each cluster center
Pd Transmit power of each device engaged in D2D communications
α Path loss exponent for all wireless links; α > 2
hyx Channel power gain under Rayleigh fading where hyx ∼ exp(1)

Pc; β; ASE Coverage probability; target SIR; area spectral efficiency

significantly simplify the notation in the rest of this section.

Definition 1 (Rayleigh distribution). The PDF of the Rayleigh distributed random variable is

Raypdf(a;σ2) = fA(a) =
a

σ2
exp

(
− a2

2σ2

)
, a > 0, (7)

where σ is the scale parameter of the distribution.

Definition 2 (Rician distribution). The PDF of the Rician distributed random variable is

Ricepdf(a, b;σ2) = fA(a|b) =
a

σ2
exp

(
−a

2 + b2

2σ2

)
I0

(
ab

σ2

)
, a > 0, (8)

where I0(.) is the modified Bessel function with order zero and σ is the scale parameter.

A. Distance Distributions in the Unordered Case

Lets start our discussion with the intra-cluster distances by focusing on the representative

cluster. Denote by Sx0
t , the set {Si}i=1:M of distances from the typical device to the set of

possible transmitting devices N x0
t in the cluster x0 ∈ Φc, where si = ‖x0 + y‖ is the realization

of Si. The ordering in this case is arbitrary, which means Si ∈ Sx0
t will be interpreted as the

distance from the typical device to a device chosen uniformly at random from N x0
t . Whenever

this interpretation is clear, we will drop index i from si and Si. Characterizing the marginal
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distribution of S is quite straightforward. Since x0 and y are i.i.d. Gaussian random variables with

variance σ2, x0 +y is also Gaussian with variance 2σ2. Therefore, S is Rayleigh distributed with

probability density function (PDF) fS(s) = Raypdf(s; 2σ2). However, this does not completely

characterize Sx0
t because it doesn’t capture the fact that the distances from intra-cluster devices

to the typical device {‖x0 + y‖} are correlated due to the common factor x0. That being said, if

we condition on the location of the cluster center x0 relative to the typical device, the distances in

the set Sx0
t are i.i.d. since the device locations are i.i.d. around the cluster center by assumption.

This conditional distribution is characterized in the following Lemma. In the proof, we show that

instead of conditioning on the location x0, a “weaker” conditioning on the distance ν0 = ‖x0‖,

suffices. Therefore, the statement of the Lemma is presented in terms of ν0.

Lemma 1 (Distribution of i.i.d. sequence Sx0
t ). Conditioned on the distance ν0 = ‖x0‖, the PDF

of an element S chosen uniformly at random from the i.i.d. sequence Sx0
t is

fS(s|x0) = fS(s|ν0) = Ricepdf(s, ν0;σ). (9)

Proof: See Appendix A.

Remark 1 (Serving and intra-cluster distances for uniform content availability). As discussed

above, the M elements of Sx0
t are i.i.d. with the distribution characterized by Lemma 1. For

the uniform content availability case, one of the elements of Sx0
t is chosen uniformly at random

as the serving distance, and the rest correspond to the distances to the possible intra-cluster

interfering devices. Since the elements of Sx0
t were “unordered” and the selection of serving

device was done uniformly at random, all these distances are i.i.d. and follow Rician distribution

given by (9). The results are stated formally as Corollaries of Lemma 1 below.

Corollary 1 (Uniform content availability: serving distance). For the uniform content availability

case, the conditional PDF of the serving distance r = ‖x0 + y0‖, conditioned on the distance

ν0 = ‖x0‖ between the cluster center and the typical device, is fR(r|ν0) = Ricepdf(r, ν0;σ).

Corollary 2 (Uniform content availability: intra-cluster interferer distance). For the uniform

content availability case, the distances from the intra-cluster interfering devices to the typical

device {w = ‖x0 + y‖,∀y ∈ Bx0 \ y0} are conditionally i.i.d., conditioned on ν0 = ‖x0‖, with
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each distance following the PDF given by fW (w|ν0) = Ricepdf(w, ν0;σ).

We now look at the distribution of the distances from inter-cluster devices to the typical

device. Recall that in both the content availability strategies, the inter-cluster interfering devices

are chosen uniformly at random from the set of transmitting devices N x
t in each cluster x ∈ Φc.

Therefore this discussion is applicable to both the strategies. Denoting the distances from inter-

cluster interfering devices of the cluster x ∈ Φc to the typical device by Sxt , it can be shown

that the elements of Sxt are conditionally i.i.d., conditioned on the distance ν = ‖x‖ form the

typical device to the cluster center x ∈ Φc. It follows on the same lines as Lemma 1, except

that conditioning here is on ν = ‖x‖ and not ν0 = ‖x0‖. The result is formally stated below.

Lemma 2 (Inter-cluster interferer distance distribution). Conditioned on the distance ν = ‖x‖

between the cluster center x ∈ Φc and the typical device, the distances from the inter-cluster

interfering devices to the typical device {u = ‖x + y‖,∀y ∈ Bx} are i.i.d. with each element

following the PDF given by fU(u|ν) = Ricepdf(u, ν;σ).

Proof: Recall that every y ∈ Bx is an independent zero-mean Gaussian random variable.

Hence conditional on the common distance ν = ‖x‖ between the cluster center x ∈ Φc and the

typical device, the distances {u = ‖x + y‖,∀y ∈ Bx} ≡ Sxt are i.i.d. and the conditional PDF

of each element of Sxt can be derived on the same lines as Lemma 1.

B. Distance Distributions in the Ordered Case

While the unordered case was sufficient to handle the uniform content availability strategy and

the inter-cluster interfering distances in both the strategies, we need to consider the “ordered case”

to handle the serving and intra-cluster interfering distances in the k-closest content availability

strategy. For this analysis, consider the set of distances {Si}i=1:M , denoted by Sx0
t , from the

previous subsection, that denotes the “unordered” distances from the typical device to the set

of possible transmitting devices N x0
t in the cluster x0 ∈ Φc with sampling distribution fS(s|ν0)

given by Lemma 1. Different from the previous subsection, we order the elements of Sx0
t in

terms of the increasing distance from the typical device and denote them by {S(i)}i=1:M , where

S(1) ≤ ... ≤ S(k)... ≤ S(M). In this case the serving distance R corresponds to S(k) whose

distribution can be derived using order statistics. The result is presented in the following Lemma.
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Lemma 3 (k-closest content availability: serving distance). For the k-closest content availability

strategy, the conditional distribution of serving distance, conditioned on ν0 = ‖x0‖, is

fR(r|ν0) =
M !

(k − 1)!(M − k)!
FS(r|ν0)k−1(1− FS(r|ν0))M−kfS(r|ν0), (10)

with fS(r|ν0) = Ricepdf(r, ν0;σ) derived in Lemma 1 being the conditional PDF of S, and

FS(r|ν0) = 1 − Q1(ν0

σ
, r
σ
) being the conditional cumulative distribution function (CDF), where

Q1(a, b) is the Marcum Q-function defined as Q1(a, b) =
∫∞
b
te−

t2+a2

2 I0(at)dt.

Proof: In Lemma 1, we showed that the unordered sequence of distances {Si}i=1:M is

conditionally i.i.d. with conditional PDF of each element given by fS(r|ν0). The result simply

follows from the PDF of the kth order statistic of this sequence of i.i.d. random variables [32,

eqn. (3)].

We next characterize the distances from the interfering devices to the typical device in the

k-closest content availability strategy. In comparison to the uniform content availability strategy,

this is more involved since the kth closest device is fixed a priori as the serving device and

hence cannot act as an interferer. To address this issue, we divide the set of simultaneously

active devices into three subsets, Bx0 ≡ {Bx0
in , y0,Bx0

out}, where the serving device is located at

a distance s(k) = ‖x0 + y0‖ from the typical device, and Bx0
in (Bx0

out) denote the set of devices

that are closer (farther) to the typical device compared to the serving device. We show that

conditional on the distance ν0 = ‖x0‖, the distances from the typical device to the devices in

Bx0
in are i.i.d. and their distribution is characterized in the Lemma below. The same holds for

the devices in Bx0
out. This i.i.d. property will play a major role in the exact analysis of Laplace

transform of intra-cluster interference in k-closest content availability case in the next section.

Lemma 4 (k-closest content availability: intra-cluster interferer distance). For the k-closest

content availability strategy,

a) the distances from the devices in the set Bx0
in to the typical device, i.e., {win = ‖x0+y‖}, are

conditionally i.i.d., conditioned on the serving distance r and the distance ν0 = ‖x0‖ between

the cluster center and the typical device, with each distance following the PDF

fWin
(win|ν0, r) =


fS(win|ν0)
FS(r|ν0)

, win < r

0, win ≥ r
, (11)
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where fS(win|ν0) = Ricepdf(win, ν0;σ), and FS(r|ν0) = 1−Q1(ν0

σ
, r
σ
), and

b) the distances from the devices in the set Bx0
out to the typical device, i.e., {wout = ‖x0 + y‖},

are conditionally i.i.d., conditioned on the serving distance r and the distance ν0 = ‖x0‖ between

the cluster center and the typical device, with each distance following the PDF

fWout(wout|ν0, r) =


fS(wout|ν0)
1−FS(r|ν0)

, wout > r

0 wout ≤ r
, (12)

where fS(wout|ν0) = Ricepdf(wout, ν0;σ), and FS(r|ν0) = 1−Q1(ν0

σ
, r
σ
).

Proof: See Appendix B.

IV. COVERAGE PROBABILITY AND ASE PERFORMANCE

Using the distance distributions derived in the previous section, we now derive the coverage

probability of the typical device and the ASE of the whole network for the two content availability

strategies. We begin our discussion with the uniform content availability strategy.

A. Uniform Content Availability

In this subsection, we focus on the case in which the content of interest for the typical device

is available at a device chosen uniformly at random in the representative cluster. As evident in

the sequel, we need the Laplace transforms of the intra- and inter-cluster interference powers as

the intermediate results for the coverage and ASE analysis. These are derived next.

1) Laplace Transform of Interference: We start by deriving exact expressions and several

bounds and approximations on the Laplace transform of intra-cluster interference.

Lemma 5 (Laplace transform of intra-cluster interference). Under uniform content availability,

the conditional Laplace transform of the intra-cluster interference power given by (4), condi-

tioned on the distance ν0 = ‖x0‖ between the cluster center and the typical device is

LITx−cluster
(s|ν0) =

M−1∑
k=0

(∫ ∞
0

1

1 + sw−α
fW (w|ν0)dw

)k (m̄− 1)ke−(m̄−1)

k!ξ
, (13)

with ξ =
∑M−1

j=0
(m̄−1)je−(m̄−1)

j!
. For M � m̄, the above expression reduces to

LITx−cluster
(s|ν0) = exp

(
−(m̄− 1)

∫ ∞
0

sw−α

1 + sw−α
fW (w|ν0)dw

)
, (14)
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where fW (w|ν0) is given by Corollary 2.

Proof: See Appendix C.

Remark 2. Note that the assumption M � m̄, under which a simplified expression is derived

in the above Lemma, is applicable when the number of simultaneously active devices per cluster

is much smaller compared to the cluster size. As discussed in the sequel, this is also the regime

in which the network performance in terms of ASE will be usually optimized, especially for the

uniform content availability case. Therefore, the simpler expression will be treated as a proxy

of the exact expression for the derivation of simpler bounds and approximations.

While Lemma 5 provides an exact expression for the Laplace transform of intra-cluster

interference, it is usually desirable to derive simple but tight approximations and bounds whenever

possible to draw useful system design insights, which we do next. First we derive an approxi-

mation for the Laplace transform of intra-cluster interference under the following assumption.

Assumption 1 (Uncorrelated intra-cluster distances). Recall that the distances between intra-

cluster devices and typical device, denoted by Sx0
t , are correlated due to the common factor

x0. However, the coverage analysis can be simplified significantly if this correlation is ig-

nored, which we do as a part of this assumption. More formally, we assume that the serving

and intra-cluster interferer distances are i.i.d. Rayleigh distributed with marginal distributions

fR(r) = Raypdf(r; 2σ2) and fW (w) = Raypdf(w; 2σ2), respectively. In other words, we do not

condition on the distance ν0 = ‖x0‖, which simplifies the coverage analysis by allowing separate

deconditioning on the serving and intra-cluster interferer distances as discussed in the sequel.

Under the above assumption, the Laplace transform of intra-cluster interference at the typical

device is stated as a the following Corollary of Lemma 5.

Corollary 3 (Approximation). Under Assumption 1, the Laplace transform of intra-cluster

interference at the typical device is

L̃ITx−cluster
(s) = exp

(
−(m̄− 1)

∫ ∞
0

sw−α

1 + sw−α
fW (w)dw

)
, (15)

where fW (w) = Raypdf(w; 2σ2).



15

By applying Jensen’s inequality on the result of Lemma 5, we also provide a closed form

lower bound on the Laplace transform of intra-cluster interference in the next Corollary.

Corollary 4 (Lower bound). The lower bound on Laplace transform of intra-cluster interference

at the typical device is

LITx−cluster
(s) ≥ exp

(
−(m̄− 1)

4σ2
s

2
α

2π/α

sin(2π/α)

)
. (16)

Proof: See Appendix D.

We will use this result along with the lower bound on the Laplace transform of inter-cluster

interference (will be derived later in this section) to derive a closed form approximation for

coverage probability and ASE. The results will provide insights into several system design

guidelines. We now state the exact result for the Laplace transform of inter-cluster interference.

Lemma 6 (Laplace transform of inter-cluster interference). The Laplace transform of inter-

cluster interference experienced at the typical device, given by (5), is

LIΨm\Tx−cluster
(s) = exp

(
− 2πλc

∫ ∞
0

(
1−

M∑
k=0

(∫ ∞
0

1

1 + su−α
fU(u|ν)du

)k m̄ke−m̄

k!η

)
νdν

)
,

(17)

with η =
∑M

j=0
m̄je−m̄

j!
. For M � m̄, the above expression reduces to

LIΨm\Tx−cluster
(s) = exp

(
− 2πλc

∫ ∞
0

(
1− exp

(
− m̄

∫ ∞
0

su−α

1 + su−α
fU(u|ν)du

))
νdν

)
, (18)

where fU(u|ν) given by Lemma 2.

Proof: See Appendix E.

Remark 3. Recall that the inter-cluster interfering devices are chosen uniformly at random

from each cluster in both the content availability strategies, which means that the above result

is applicable for both the uniform and k-closest content availability strategies.

Under the assumption M � m̄, a closed form lower bound for the Laplace transform of

inter-cluster interference can be derived, which is stated next.

Corollary 5 (Lower bound). Using (18) from Lemma 6, the following lower bound on the
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Laplace transform of inter-cluster interference experienced by a typical device can be derived:

LIΨm\Tx−cluster
(s) ≥ exp

(
−πλcm̄s

2/α 2π/α

sin(2π/α)

)
. (19)

Proof: See Appendix F.

2) Coverage Probability: The coverage probability is formally defined as the probability that

SIR experienced by the typical device exceeds a certain pre-determined threshold β for successful

demodulation and decoding at the receiver. It is mathematically expressed as:

Pc = ER [P{SIR(R) > β |R}] . (20)

Using the Laplace transform expressions of intra- and inter-cluster interference powers derived

so far in this section, an exact expression for Pc is derived in the following Theorem.

Theorem 1 (Coverage probability). Using Laplace transform of intra- and inter-cluster inter-

ference, given respectively by Lemmas 5 and 6, the coverage probability is

Pc =

∫ ∞
0

∫ ∞
0

LIψm\Tx−cluster
(βrα)LITx−cluster

(βrα|ν0)fR(r|ν0)fV0(ν0)drdν0, (21)

where fV0(ν0) = Raypdf(ν0;σ2).

Proof: From the definition of coverage probability, we have

Pc = ER
[
P
{

h0x0r
−α

IΨm\Tx−cluster + ITx−cluster

> β
∣∣∣R}]

(a)
= ER

[
E
[
exp

(
−βrα(IΨm\Tx−cluster + ITx−cluster)

) ∣∣∣R]] ,
where (a) follows from Rayleigh fading assumption. The result now follows from the indepen-

dence of intra-cluster and inter-cluster interference, followed by de-conditioning over R given

ν0 using the serving link distance distribution given by Corollary 1, followed by de-conditioning

over ν0, which is simply a Rayleigh distributed random variable due to the position being sampled

from a Gaussian distribution in R2 around each cluster center.

3) Area Spectral Efficiency: The ASE simply denotes the average number of bits transmitted

per unit time per unit bandwidth per unit area. Assuming that all the D2D-Txs use Gaussian

codebooks for their transmissions, we can use Shannon’s capacity formula to define ASE =
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λ log2(1+β)Pc, where λ is the density of the active transmitters and Pc is the coverage probability

of the typical device. The result specialized to our setup is given in the following theorem.

Proposition 1. The ASE of the clustered D2D network under uniform content availability is

ASE = m̄λc log2(1 + β)Pc, (22)

where Pc is given by (21) and m̄λc represents the average density of simultaneously active

D2D-Txs inside the network.

Remark 4 (Optimum number of simultaneously active links). Note that there is a clear tradeoff

between link efficiency and cluster interference. While more active links means potentially higher

ASE, it also increases interference significantly. ASE can, in principle, be maximized as

ASE∗ = max
m̄∈1,...,M

m̄λc log2(1 + β)Pc. (23)

By solving this ASE optimization problem numerically, we will demonstrate the existence of an

optimal value of m̄ that maximizes the ASE in the numerical results section.

4) Bounds and approximations: After characterizing coverage and ASE exactly, we now focus

on tight bounds and approximations that will result in easy-to-compute expressions providing

useful system design guidelines. First, we derive coverage probability under Assumption 1.

Corollary 6 (Coverage probability approximation). Under Assumption 1, the coverage proba-

bility of the typical device in the uniform content availability case is

Pc =

∫ ∞
0

L̃ITx−cluster
(βrα)LIψm\Tx−cluster

(βrα)fR(r)dr, (24)

where fR(r) = Raypdf(r; 2σ2), L̃ITx−cluster
(βrα) is the Laplace transform of intra-cluster inter-

ference under Assumption 1 given by (15), and LIψm\Tx−cluster
(βrα) is the Laplace transform of

inter-cluster interference given by (18).

Proof: The proof follows on the same lines as Theorem 1, except the fact that due to

Assumption 1, there is no conditioning on ν0 (dependence in the intra-cluster distances is

ignored), which allows to decondition on the serving and intra-cluster interfering distances

separately.
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In the numerical result section, we show that this easy-to-compute approximation is also very

tight. To gain more insights into the behavior of this clustered network, we derive closed form

approximations for both coverage and ASE in the following corollaries.

Corollary 7 (Coverage: closed-from approximation). The closed form approximation for the

coverage probability of a typical device in uniform content availability case is

Pc '
1

(4πλcσ2m̄+ m̄− 1)β
2
α

2π/α
sin(2π/α)

+ 1
. (25)

Proof: The proof follows from the expectation of the lower bounds provided in (16) and (19)

when s = βrα, with respect to the marginal distribution of serving link distance fR(r) =

Raypdf(r; 2σ2). This is an approximation because of independent de-conditioning over serving

link and intra-cluster interferer distance distributions.

Corollary 8 (ASE: closed-form approximation). The ASE in this case can be approximated as

ASE ' m̄λc

(4πλcσ2m̄+ m̄− 1)β
2
α

2π/α
sin(2π/α)

+ 1
. (26)

Proof: The proof follows from the definition of the ASE when Pc is substituted by (25).

In the numerical results sections, we show that these closed-form expressions provide sur-

prisingly tight approximations for both coverage and ASE. Based on these two approximations

(Corollaries 7 and 8), we make the following two observations: (i) ASE and Pc are decreasing

functions of σ2, which means that the coverage probability and ASE will increase if the devices

form more dense clusters around cluster centers, as opposed to more spread-out clusters, and

(ii) increasing density of cluster centers has a conflicting effect on the coverage probability and

ASE: coverage decreases and ASE increases, which means that the density of cluster centers can

be increased to enhance ASE as long as the coverage probability remains acceptable.

B. k-Closest Content Availability

In this setup, we extend the analysis to the case where content of interest is available at kth

closest transmitting device to the typical device. Recall that by tuning the value of k, the content

can be biased to lie closer (small k) or farther (large k) from the typical device. The best and

worst case performances can be characterized by setting k = 1 and k = M , respectively. Similar
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to the previous subsection, we begin by deriving the Laplace transform of interference.

1) Laplace transform of interference: Using the distance distributions derived in Section III-B,

the exact expression for the Laplace transform of intra-cluster interference is derived in the

Lemma below. As discussed in the previous section, this case is significantly more involved than

the uniform content availability case due to the way the serving device is selected.

Lemma 7 (Laplace transform of intra-cluster interference). Under k-closest content availability,

the conditional Laplace transform of the intra-cluster interference power given by (4), condi-

tioned on ν0 = ‖x0‖, is LITx−cluster
(s, r|ν0) =

M−1∑
n=0

gm∑
l=0

(
n

l

)
pl(1− p)n−l 1

I1−p(n− gm, gm + 1)
Kin(s, r|ν0)lKout(s, r|ν0)n−lpn (27)

with, Kin(s, r|ν0) =

∫ r

0

1

1 + sw−αin

fWin
(win|ν0, r)dwin

Kout(s, r|ν0) =

∫ ∞
r

1

1 + sw−αout

fWout(wout|ν0, r)dwout,

where gm = min(n, k − 1), p = k−1
M−1

, pn = (m̄−1)ne−(m̄−1)

n!ξ
with ξ =

∑M−1
j=0

(m̄−1)je−(m̄−1)

j!
, I1−p

is regularized incomplete beta function, fWin
(win|ν0, r) and fWout(wout|ν0, r) are given by (35)

and (12) respectively. Note that here zero to the zero power is defined as one.

Proof: See Appendix G.

Corollary 9 (Best link: 1st closest). The Laplace transform of intra-cluster interference for best

link, i.e., k = 1, under condition of m̄�M reduces to

LITx−cluster
(s, r|ν0) = exp

(
−(m̄− 1)

∫ ∞
r

sw−αout

1 + sw−αout

fWout(wout|ν0, r)dwout

)
, (28)

where fWout(wout|ν0, r) is given by (12).

Corollary 10 (Worst link: M th closest). The Laplace transform of intra-cluster interference for

worst link, i.e., k = M , under condition of m̄�M reduces to

LITx−cluster
(s, r|ν0) = exp

(
−(m̄− 1)

∫ r

0

sw−αin

1 + sw−αin

fWin
(win|ν0, r)dwin

)
, (29)
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where fWin
(win|ν0, r) is given by (35) .

2) Coverage Probability Analysis: Using the serving distance distribution derived in Lemma 3

and the inter- and intra-cluster interference Laplace transforms derived respectively by Lemmas 6

and 7, the exact expression for the coverage probability in this case is derived below.

Theorem 2 (k-closest content availability: coverage probability). The coverage probability of

the typical device for the k-closest content availability strategy is

Pc =

∫ ∞
0

∫ ∞
0

LIψm\Tx−cluster
(βrα)LITx−cluster

(s, r|ν0)fR(r|ν0)fV0(ν0)drdν0, (30)

where fR(r|ν0) is the serving distance distribution given by (10), fV0(ν0) = Raypdf(ν0;σ2), and

the inter- and intra-cluster interference Laplace transforms are given by Lemmas 6 and 7.

Proof: The proof follows on the same line as Theorem 1 and is hence skipped.

3) Area Spectral Efficiency: Unlike uniform content availability, where each active receiver

selects a serving device uniformly at random from its cluster, defining ASE for the k-closest

content availability strategy is more involved because different devices may have a different

value of k for their serving devices depending upon the scheduling strategy. Since we are not

characterizing scheduling policies explicitly, the information about k for each device is not

known. Therefore, we derive ASE for a simpler case in which all active receivers connect to the

kth closest device, with k being the same for all the devices. Two special cases of interest are (i)

k = 1: all devices connect to the closest device from the set of possible transmitting devices in

their clusters, and (ii) k = M : all devices connect to the farthest devices from the set of possible

transmitting devices in their clusters. The ASE for this setup is given by the following Theorem.

Proposition 2 (k-closest content availability: ASE). The ASE for this setup is

ASE = m̄λc log2(1 + β)Pc, (31)

where Pc is given by (30) and m̄λc represents the average density of simultaneously active

D2D-Txs. The maximum and minimum ASE is achieved for k = 1 and k = M , respectively.

Due to the dependence of Pc, given by (30), on k, ASE is also parameterized by k. As noted

above, this allows us to characterize the maximum and minimum ASE achievable in a network.
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4) Bounds and approximations: From Lemma 7, we note that the exact expression of intra-

cluster interference for general k involves two summations, which further complicates the nu-

merical evaluation of the exact coverage probability expression given in Theorem 2. Therefore,

we propose two simple but tight approximations. In the first approximation, we ignore the effect

of excluding the kth closest device (serving) from the field of possible interferers. This allows us

to assume that the intra-cluster interferers are chosen uniformly at random, resulting in the same

Laplace transform of intra-cluster interference that we had in the uniform content availability

case given in Lemma 5. The resulting approximation from coverage probability is given below.

Corollary 11 (k-closest content availability: coverage approximation). Using Laplace transform

of interference in (14) and (18), the coverage probability can be approximated as

Pc '
∫ ∞

0

∫ ∞
0

LIψm\Tx−cluster
(βrα)LITx−cluster

(βrα|ν0)fR(r|ν0)fV0(ν0)drdν0, (32)

where fR(r|ν0) given by (10) and fV0(ν0) = Raypdf(ν0;σ2).

Proof: The proof follows on the same lines as the proof of Theorem 1 and hence is skipped.

In addition to the assumption made while deriving Corollary 11, if we also ignore the

correlation among distances between intra-cluster devices to the typical device (see Assumption

1), we can use the simpler result for the Laplace transform of intra-cluster interference given by

Corollary 3. The resulting coverage probability approximation is stated next.

Corollary 12 (k-closest content availability: coverage approximation). Using the results of

approximation given by (15) and Laplace transform of inter-cluster interference in (18), the

coverage probability can be approximated as

Pc '
∫ ∞

0

L̃ITx−cluster
(βrα)LIψm\Tx−cluster

(βrα)fR(r)dr (33)

with, fR(r) =
M !

(k − 1)!(M − k)!
FS(r)k−1(1− FS(r))M−kfS(r),

where fS(r) = Raypdf(r; 2σ2), and FS(r) = 1− exp(− r2

4σ2 ).

In the numerical results section, we will show that both these approximations are remarkably
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Fig. 2: Coverage probability as a function of number of simultaneously active D2D-Txs in the uniform content
availability case when σ = 10 and λc = 150 clusters/km2.

tight and can in fact be treated as proxies of the exact result if needed.

V. RESULTS AND DISCUSSION

A. Uniform Content Availability

1) Validation of results: We first validate the analytical results and investigate the tightness

of various approximations derived for coverage probability in the uniform content availability

case. In all simulations, the locations of devices are drawn from a Poisson cluster process over a

50×50 km2 square region. The cluster centers are spatially distributed as a PPP, and the devices

are normally scattered around them. We set the SIR threshold for the successful demodulation

and decoding, β, as 0 dB. Comparing the analytical and the simulation results in Fig. 2, we note

that they are a perfect match, thereby validating our analysis. The results also show that the

approximation for coverage probability given by Corollary 6 is surprisingly tight. The closed-

form approximation given by Corollary 7 also provides a decent lower-bound.

2) Impact of inter- and intra-cluster interference on the coverage probability: We plot the

coverage probability in the presence of (i) only inter-cluster interference, (ii) only intra-cluster

interference, and (iii) total interference for different scattering variances in Fig. 3 and for different

densities of cluster centers in Fig. 5. It is easy to infer that the coverage probability of the typical

device is strongly dictated by the intra-cluster interference. Interestingly, the coverage probability

in the absence of inter-cluster interference is independent of the scattering variance in Fig. 3. This
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Fig. 3: Coverage probability versus number of simultane-
ously active D2D transmitters for λc = 150 cluster/km2

and different value of σ.
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Fig. 4: ASE versus number of simultaneously active D2D
transmitters for λc = 150cluster/km2 and different value
of σ.

is because scattering variance has two counter-balancing effects that cancel each other exactly:

decreasing scattering variance increases intra-cluster interference by reducing the link distances

to the interfering devices, and improves the desired link quality by again reducing the distance

to the serving device. For coverage probability in the absence of the intra-cluster interference, it

can be seen that the smaller scattering variance provides higher coverage probability, which is

also true for the coverage probability computed in the presence of both inter- and intra-cluster

interference. In comparison to the setup of Fig. 3, we decrease the cluster center density and

increase the scattering variance in Fig. 5. While smaller cluster-center density reduces inter-

cluster interference and hence improves coverage, increasing cluster variance reduces coverage

(as discussed above in the context of Fig. 3), which has a dominant effect in Fig. 5.

3) Optimum number of simultaneously active links: In Fig. 4, we present ASE as a function

of the number of simultaneously active D2D-Txs per cluster. While more simultaneously active

links may improve ASE, they may also increase interference significantly. Interestingly, it can be

seen that the optimal value of ASE is the same for a range of scattering variances. This is because

intra-cluster interference has a more dominant effect on this tradeoff compared to the inter-cluster

interference. Moreover, as shown in Fig. 3, the coverage probability in the absence of the inter-

cluster interference is independent of the scattering variance which leads to the same optimal

value for a range of scattering variances. It can also be seen that smaller scattering variances
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Fig. 5: Coverage probability versus number of active
D2D transmitters for σ = 50 and different value of λc.
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Fig. 6: ASE versus number of active D2D transmitters for
σ = 50 and different value of λc.

result in higher ASE, which highlights the importance of short range D2D communication. In

Fig. 6, we present ASE results for the clustered D2D network with a large scattering variance for

the different values of cluster center densities. By increasing the density of the cluster centers,

both the density of the simultaneously active transmitters inside the whole network, i.e., m̄λc, and

the inter-cluster interference are increased. While the former increases ASE, the latter decreases

it. However, since inter-cluster interference doesn’t have a dominant impact on the coverage

probability, and hence on ASE, ASE increases with the density of cluster centers. A common

observation in Fig. 4 and Fig. 6 is again the same optimal value for the average number of

simultaneously active D2D transmitters per cluster. As noted above, the intuition behind this

behavior is that the intra-cluster interference, which has a significant impact on the tradeoff, is

independent of both the scattering variance and the cluster center density.

B. k-closest Content Availability

1) Best and worst link analyses: After studying the performance of uniform content availabil-

ity strategy in the previous subsection, we now compare it with the kth closest content availability

strategy, in particular, its two special cases: (i) best link (k = 1) and worst link (k = M ) in

Figs. 7 and 8. We first note that the analytical and simulation results match perfectly, thereby

validating the analysis of the k-closest content availability case. Next, we notice that cluster
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Fig. 7: Coverage probability versus number of simultane-
ously active D2D transmitters for λc = 150 cluster/km2

and various values of transmitting cluster size M .
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Fig. 8: ASE versus number of simultaneously active D2D
transmitters for λc = 150 cluster/km2and various values of
transmitting cluster size M .
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Fig. 9: Coverage probability versus number of active
D2D transmitters for σ = 10 and M = 40.
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Fig. 10: Analytical result for ASE versus number of active
D2D transmitters for σ = 10 and M = 40.

size M (number of possible transmitting devices per cluster) has a conflicting effect on the

performance of best and worst link cases. This is simply because of “order statistics”: larger

cluster size M decreases the minimum serving distance (best link) and increases the maximum

serving distance (worst link). Another interesting observation can be made in Fig. 8, where the

ASE in the best link case increases (in the range considered) with the number of simultaneously

active links per cluster, thereby providing “scalability” to the D2D network.
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2) Tightness of the approximations: Recall that the exact expression of intra-cluster interfer-

ence for the k-closest content availability strategy derived in Lemma 7 involves two summations,

which complicates the numerical evaluation of the exact coverage probability expression of

Theorem 2. This motivated us to derive two approximations for the coverage probability in

Corollaries 11 and 12 by approximating the Laplace transform of intra-cluster interference.

These approximations are plotted along with the exact result in Fig. 9. We observe that both the

Corollaries provide reasonably tight approximations, which get even better for higher values of

k. The reason behind this trend is the fact that while deriving these approximations, we ignored

the effect of excluding the kth closest device (serving) from the field of possible interferers. The

effect of this approximation is more prominent at the small values of k.

3) Optimum number of simultaneously active link: As shown in Figs. 9 and 10, both coverage

probability and ASE increase significantly when the distance between the typical and serving

devices is reduced, i.e., the value of k is reduced. More interestingly, we note that the optimum

number of simultaneously active D2D-Txs that maximizes ASE also increases when the content

of interest is made available closer to the typical device (smaller value of k). This highlights the

importance of smarter content placement and scheduling in clustered D2D networks.

VI. CONCLUSION

In this paper, we developed the first comprehensive framework for D2D networks that is

capable of capturing the fact that devices engaging in D2D may have multiple proximate devices

any of which can act as a serving device. Modeling the device locations by a Poisson cluster

process, we considered two content availability strategies that dictate the choice of the serving

device: (i) uniform content availability: each device chooses its serving device uniformly at

random from its own cluster, and (ii) k-closest content availability: each device connects to its

kth closest device from its own cluster. Using tools from stochastic geometry, we derived exact

expressions and several easy-to-use approximations for the coverage probability and area spectral

efficiency. As a key intermediate step, we characterized the distributions of the distances from

the typical device to various intra- and inter-cluster devices. To the best of our knowledge, this

work is also the first to derive these distance distributions for the Thomas cluster process.

Based on the aforementioned analyses, several interesting system design insights can be drawn.

The most important amongst them is the existence of the optimal number of D2D transmitters
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that must be simultaneously activated in each cluster to maximize the area spectral efficiency.

This can be interpreted as the classical tradeoff between higher interference power and more

aggressive frequency reuse. Interestingly, we show that this optimal number of D2D transmitters

is not too sensitive to the system parameters in the uniform content availability case. On the other

hand, it increases significantly when the content of interest is biased to lie closer to the receivers

in the k-closest content availability strategy. This highlights the importance of smart content

placement and scheduling in these networks. Several other insights regarding the performance

of this system as a function of cluster center density and cluster variance are also provided.

This work has several extensions both from the D2D network modeling and cluster point

processes perspectives. For D2D network modeling, it is of interest to conduct measurement

campaigns to gather spatial data for various types of user clusters at different locations, such as

coffee shops, restaurants, airpots, and other hotspot zones, using which we can do data fitting

to find classes of cluster processes that closely resemble real-world clusters. From the analytical

perspective, an important extension would be to consider in-band network where devices use

the same spectrum that is used by the cellular system. This brings forth several interesting

coexistence issues, especially in the context of cluster point processes [33]. Another interesting

extension is to incorporate the effects of various content placement and content delivery strategies

in the proposed model. Incorporating the effect of scheduling in these clustered networks presents

another avenue of innovation. From the cluster point process perspective, it is important to derive

the distribution of distances from the typical device to other devices for other point processes of

interest, such as the Matérn cluster process. While the “trends” predicted in this work for D2D

networks are not likely to change with the choice of the cluster point process, these distance

distributions will facilitate analysis of more general wireless networks with clustered nodes.

APPENDIX

A. Proof of Lemma 1

Denote the location of a device chosen uniformly at random in the representative cluster by

z = x0 + y ∈ R2 and its distance from the typical device by s = ‖z‖ = ‖x0 + y‖ ∈ R+,

where x0 = (x1, x2) and z = (z1, z2). Using the fact that y is a zero mean complex Gaussian

random variable, it is easy to argue that z1 = N (x1, σ
2) and z2 = N (x2, σ

2) conditioned on
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x0 = (x1, x2). The conditional joint distribution of z1 and z2 can thus be obtained as

fZ(z1, z2|x0) =
1

2πσ2
exp

(
−(z1 − x1)2

2σ2
− (z2 − x2)2

2σ2

)
.

Since we are interested in the distribution of S = ‖Z‖, we define z1 = s cos θ and z2 = s sin θ,

where θ = tan−1
(
z2
z1

)
. Using the usual transformation approach, we first evaluate

fS,Θ(s, θ|x0) = fZ(z1, z2|x0)×
∣∣∣∣∂ (z1, z2

s, θ

)∣∣∣∣ ,
where ∂

(
z1,z2
s,θ

)
=

∣∣∣∣∣∣
∂z1
∂s

∂z1
∂θ

∂z2
∂s

∂z2
∂θ

∣∣∣∣∣∣ = s, using which fS,Θ(s, θ|x0) can be expressed as

fS,Θ(s, θ|x0) =
s

2πσ2
exp

(
−(s cos θ − x1)2

2σ2
− (s sin θ − x2)2

2σ2

)
(a)
=

s

σ2
exp

(
−s

2 + ν2
0

2σ2

)
1

2π
exp

(
sx1 cos θ + sx2 sin θ

σ2

)
,

where ν0 =
√
x2

1 + x2
2 = ‖x0‖. Now the conditional marginal distribution of S is fS(s|ν0) =∫ 2π

0

fS,Θ(s, θ|x0)dθ =
s

σ2
exp

(
−s

2 + ν2
0

2σ2

)∫ 2π

0

1

2π
exp

(
sx1 cos θ + sx2 sin θ

σ2

)
dθ︸ ︷︷ ︸

I0( sν0
σ2 )

,

where conditioning on ν0 = ‖x0‖ instead of x0 suffices. This completes the derivation of fS(s|ν0).

B. Proof of Lemma 4

The joint distribution of order statistics corresponding to the distances from intra-cluster

devices which are closer than serving device to the typical i.e., Bx0
in , conditioned on s(k) = r

and ν0 = ‖x0‖ is fS(1),...S(k−1)|S(k),ν0(s(1), ..., s(k−1)|s(k), ν0) =
fS(1),...,S(k)|ν0

(s(1),...,s(k)|ν0)

fS(k)
(s(k)|ν0)

, where

s(i) ≤ s(i+1). Here, the joint distribution is fS(1),...,S(k)|ν0(s(1), ..., s(k)|ν0)

(a)
=

∫
..

∫
M !

M∏
i=1

fS(s(i)|ν0)ds(k+1)...ds(M)

= M !
k∏
i=1

fS(s(i)|ν0)

∫
..

∫ M∏
i=k+1

fS(s(i)|ν0)ds(k+1)...ds(M)
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(b)
= M !

k∏
i=1

fS(s(i)|ν0)
1

(M − k)!

M∏
i=k+1

∫ ∞
s(k)

fS(s|ν0)ds

=
M !

(M − k)!

k∏
i=1

fS(s(i)|ν0)(1− FS(s(k)|ν0))M−k,

where (a) follows from the definition of the joint density function of M order statistics [34,

eqn. (2.10)] with sampling distribution fS(s|ν0), and (b) follows from the symmetry of
∏M

i=k+1 fS(s(i)|ν0)

[34, eqn. (2.12)]. Thus,

fS(1),...S(k−1)|S(k),ν0(s(1), ..., s(k−1)|s(k), ν0) =

M !
(M−k)!

∏k
i=1 fS(s(i)|ν0)(1− FS(s(k)|ν0))M−k

fS(k)
(s(k)|ν0)

(c)
= (k − 1)!

k−1∏
i=1

fS(s(i)|ν0)

FS(s(k)|ν0)
, s(i) ≤ s(i+1)

where (c) follows by using the serving link distribution fS(k)
(s(k)|ν0) given by (10) with r = s(k).

Note that there are (k − 1)! number of possible permutations of the ordered set {s(i)}i=1:k−1.

Since the interfering devices are chosen uniformly at random, the permutation term (k−1)! does

not appear in the conditional joint distribution of the unordered set {si}k−1
i=1 ,

fS1,...Sk−1|S(k),ν0(s1, ..., sk−1|s(k), ν0) =
k−1∏
i=1

fS(si|ν0)

FS(s(k)|ν0)
, si < s(k) (34)

The product of distributions with the same functional form fS(si|ν0)
FS(s(k)|ν0)

in the above expression

implies that the random variables of the unordered set {si,∀si ≤ s(k)} are i.i.d. Therefore, the

sampling distribution of a set of k − 1 i.i.d. random variables in the set {win = ‖x0 + y‖} is

fWin
(win|ν0, r) =


fS(win|ν0)
FS(r|ν0)

, win < s(k) = r

0, win ≥ r
. (35)

The derivation of fWout(wout|ν0, r) follows on the same lines and is hence skipped.

C. Proof of Lemma 5

The Laplace transform of intra-cluster interference at the typical device is

LITX−cluster
(s|ν0) =E

[
exp

(
− s

∑
y∈Bx0\y0

hyx0
‖y + x0‖−α

)]
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=EBx0

[ ∏
y∈Bx0\y0

Ehyx0

[
exp

(
−shyx0

‖y + x0‖−α
) ]]

(a)
=EBx0

[ ∏
y∈Bx0\y0

1

1 + s‖y + x0‖−α
]

(b)
=

M−1∑
k=0

(∫
R2

1

1 + s‖y + x0‖−α
fY (y)dy

)k
× (m̄− 1)ke−(m̄−1)

k!ξ︸ ︷︷ ︸
P(K=k|K<M−1)

where (a) follows from the definition of Laplace transform along with the fact that channel gain

hyx0
∼ exp(1) (Rayleigh fading assumption), (b) follows from the fact that the locations of

intra-cluster devices, conditioned on x0 ∈ Φc, are independent and expectation over number of

interfering devices which are Poisson distributed conditioned on total being less than M − 1,

where ξ =
∑M−1

j=0
(m̄−1)je−(m̄−1)

j!
. Now under the assumption m̄� M , the Laplace transform of

intra-cluster interference reduces to

exp
(
− (m̄− 1)

∫
R2

s‖y + x0‖−α

1 + s‖y + x0‖−α
fY (y)dy

)
(36)

(a)
= exp

(
− (m̄− 1)

∫ ∞
0

sw−α

1 + sw−α
fW (w|ν0)dw

)
,

where (a) follows from the change of variable ‖x0 + y‖ → w, and converting coordinates from

Cartesian to polar by using distance distribution given by Corollary 2.

D. Proof of Corollary 4

Using conditional Laplace transform of intra-cluster interference in (36), the Laplace transform

of intra-cluster interference can be independently de-conditioned as follows:

LITX−cluster
(s) =

∫
R2

exp
(
− (m̄− 1)

∫
R2

s‖y + x0‖−α

1 + s‖y + x0‖−α
fY (y)dy

)
fY (x0)dx0

(a)
=

∫
R2

exp

(
−(m̄− 1)

∫
R2

s‖z‖−α

1 + s‖z‖−α
fY (z − x0)dz

)
fY (x0)dx0

(b)

≥ exp

(
−(m̄− 1)

∫
R2

∫
R2

s‖z‖−α

1 + s‖z‖−α
fY (z − x0)fY (x0)dx0dz

)
(c)

≥ exp

(
−(m̄− 1)

∫
R2

s‖z‖−α

1 + s‖z‖−α
sup
z∈R2

(fY ∗ fY )(z)dz

)
(d)
= exp

(
−m̄− 1

4πσ2

∫
R2

s‖z‖−α

1 + s‖z‖−α
dz

)
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= exp

(
−πm̄− 1

4πσ2
s

2
α

2π/α

sin(2π/α)

)
where (a) simply follows from change of variable x0 + y → z, (b) follows from Jensen’s

inequality, (c) follows from the convolution definition, and (d) from Young’s inequality [35].

E. Proof of Lemma 6

The Laplace transform of the aggregate interference from the inter-cluster interferers at the

typical device, LIΨm\Tx−cluster
(s) = E

[
exp

(
− s

∑
x∈Φc\x0

∑
y∈Bx hyx‖x+ y‖−α

)]
is equal to

= EΦc

[ ∏
x∈Φc\x0

EBx
[ ∏
y∈Bx

Ehyx
[
exp(−shyx‖x+ y‖−α)

] ]]
(a)
= EΦc

[ ∏
x∈Φc\x0

EBx
[ ∏
y∈Bx

1

1 + s‖x+ y‖−α
]]

(b)
= EΦc

[ M∑
k=0

(∫
R2

1

1 + s‖y + x‖−α
fY (y)dy

)k
P(K = k|K < M)

]
(c)
= exp

(
− λc

∫
R2

(
1−

M∑
k=0

(∫
R2

1

1 + s‖y + x‖−α
fY (y)dy

)k m̄ke−m̄

k!η

)
dx
)

(d)
= exp

(
− 2πλc

∫ ∞
0

(
1−

M∑
k=0

(∫ ∞
0

1

1 + su−α
fU(u|ν)du

)k
× m̄ke−m̄

k!η

)
νdν

)
, (37)

where (a) follows from expectation over hyx ∼ exp(1), (b) follows from the expectation over

number of interfering devices per cluster, (c) follows from the probability generating functional

(PGFL) of PPP [36], and (d) follows by converting from Cartesian to polar coordinates. Now,

under the assumption of m̄�M , the Laplace transform of inter-cluster interference is:

LIΨm\Tx−cluster
(s) = exp

(
− 2πλc

∫ ∞
0

(
1− exp

(
− m̄

∫ ∞
0

su−α

1 + su−α
fU(u|ν)du

))
νdν

)
.

F. Proof of Corollary 5

The lower bound can be derived as follows:

LIΨm\Tx−cluster
(s)

(a)

≥ exp
(
− 2πλc

∫ ∞
0

(
m̄

∫ ∞
0

su−α

1 + su−α
fU(u|ν)duνdν

))
(b)
= exp

(
− 2πλc

(
m̄

∫ ∞
0

su−α

1 + su−α
udu

))
(38)
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= exp

(
−πλcm̄s

2/α 2π/α

sin(2π/α)

)
where (a) follows from the exponential Taylor series expansion and the fact that 1−exp(−ax) ≤

a, a ≥ 0, and (b) follows from the Rician distribution property that
∫∞

0
fU(u|ν)νdν = u, where

fU(u|ν) is given by Lemma 2.

G. Proof of Lemma 7

The Laplace transform of interference from disjoint sets of intra-cluster interferers Bx0
in and

Bx0
out is LITx−cluster

(s, r|ν0)

= E

exp

−s
∑
y∈Bx0

in

hyx0
‖x0 + y‖−α +

∑
y∈Bx0

out

hyx0
‖x0 + y‖−α


(a)
= E

[ ∏
y∈Bx0

in

exp
(
−shyx0

‖x0 + y‖−α
) ∏
y∈Bx0

out

exp
(
−shyx0

‖x0 + y‖−α
) ]

(b)
= E

[ ∏
y∈Bx0

in

1

1 + s‖x0 + y‖−α
∏

y∈Bx0
out

1

1 + s‖x0 + y‖−α

]
(c)
= E

[ gm∑
l=0

(
n

l

)(
k − 1

M − 1

)l(
M − k
M − 1

)n−l
1

I1− k−1
M−1

(n− gm, gm + 1)︸ ︷︷ ︸
P(l|L≤gm)(∫ r

0

1

1 + sw−αin

fWin
(win|ν0, r)dwin︸ ︷︷ ︸

Kin(s,r|ν0)

)l(∫ ∞
r

1

1 + sw−αout

fWout(wout|ν0, r)dwout︸ ︷︷ ︸
Kout(s,r|ν0)

)n−l]

(d)
=

M−1∑
n=0

gm∑
l=0

P(l|L ≤ gm)Kin(s, r|ν0)lKout(s, r|ν0)n−l
(m̄− 1)ne−(m̄−1)

n!ξ
,

with gm = min(n, k − 1), and ξ =
∑M−1

j=0
(m̄−1)je−(m̄−1)

j!
, where (a) follows from the fact that

Bx0
in and Bx0

out are two disjoint sets, (b) follows from the definition of Laplace transform and the

fact that hyx0
∼ exp(1), (c) follows from the expectation over the number of devices in Bx0

in

and Bx0
out, where the number of devices in Bx0

in is truncated binomial distribution due to the fact

that l ≤ min(n, k− 1), along with the fact that distances from interfering devices to the typical

device conditioned on r and ν0 in each set are i.i.d., and (d) from the fact that number interfering

devices is Poisson distributed with mean m̄− 1 conditioned on the total being less than M − 1.
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