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Abstract—This paper studies how to maximize a spectrum
database operator’s expected revenue in sharing spectrum to
secondary users, through joint pricing and admission control of
spectrum resources. A unique feature of our model is the consid-
eration of the stochastic and heterogeneous nature of secondary
users’ demands. We formulate the problem as a stochastic dy-
namic programming problem, and present the optimal solutions
under both static and dynamic pricing schemes. In the case of
static pricing, the prices do not change with time, although the
admission control policy can still be time-dependent. In this case,
we show that a stationary (time-independent) admission policy
is in fact optimal under a wide range of system parameters. In
the case of dynamic pricing, we allow both prices and admission
control policies to be time-dependent. We show that the optimal
dynamic pricing can improve the operator’s revenue by more
than 30% over the optimal static pricing, when secondary users’
demands for spectrum opportunities are highly elastic.

Index Terms—Spectrum Pricing, Admission Control, Station-
ary Policies, Stochastic and Heterogeneous Demands.

I. INTRODUCTION

DATABASE-ASSISTED spectrum sharing is a promising
approach to improve the utilization of limited spectrum

resources [2], [3]. In such an approach, primary licensed
users (PUs) report their spectrum usage patterns to a spectrum
database, which uses the primary activity records to coordinate
the opportunistic spectrum access of secondary unlicensed
users (SUs). Several government regulators, such as the FCC
in the US and the Ofcom in the UK, strongly advocate such an
approach (e.g., for the sharing of TV white space) due to its
high reliability compared to sensing. Under such an approach,
the database can effectively coordinate SUs’ accesses, by mit-
igating these SUs’ mutual usage conflicts and controlling the
potential conflicts with PUs. Though researchers have made
significant research progress in addressing various technical
issues of spectrum database (e.g., database system manage-
ment and spectrum allocation [4]–[7]), very few studies looked
at the economic issue of spectrum database (e.g., [5]–[7]).
Without a proper economic mechanism, the database operator
may not have enough incentives to coordinate the spectrum
sharing process. This motivates us to explore the revenue
maximization problem for a spectrum database, in particular,
the admission control of SUs and pricing of idle spectrum
resources.

Part of the results appeared in IEEE WiOpt, May 2014 [1].
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There are two key challenges when considering such a
revenue maximization problem for the database operator. First,
SUs’ demands can be heterogeneous in terms of spectrum
occupancy. For example, a large file (e.g., video) downloading
takes minutes or even hours to finish (hence we call heavy-
traffic), while sending a short text message or accessing
location-based services can be completed in seconds (hence we
call light-traffic). Second, SUs’ demands are often randomly
generated over time. The heterogeneity and randomness make
it difficult for the operator to accurately predict future demands
and make proper resource allocation decisions. However, these
two issues have not been fully considered in the previous
literature (e.g., [5]–[7]).

To address the above two challenges, we propose a joint
spectrum pricing and admission control scheme for the
database operator to maximize its expected revenue. The
optimization is over the time period during which the spectrum
channel is available for SUs to opportunistically access due to
the lack of PU activities. The period is divided into several
time slots, and the database operator needs to determine the
optimal prices for different types of SUs (e.g., in heavy-
and light-traffic types) in each time slot. These prices can
be fixed (static pricing) or vary over time (dynamic pricing),
and will affect how SUs request to access the spectrum.
However, pricing alone may not be enough to mitigate the
conflicts between multiple SUs who want to access to the
limited spectrum at the same time. The operator also needs
to determine the optimal admission control policy to control
the total demand. The pricing and admission decisions need
to be jointly optimized in order to achieve the maximum
performance.

To our best knowledge, this is the first work that jointly
prices and allocates the spectrum resource in a dynamic
setting to serve heterogeneous and stochastic SU demands. We
formulate the operator’s revenue maximization problem as a
stochastic dynamic programming problem, which is in general
challenging to solve. Our main results and key contributions
are summarized as follows.
• Optimal static pricing and dynamic admission policies.

We first constrain ourselves to the simple and widely
used approach of static pricing, meanwhile allow dynamic
time-dependent admissions. We show that the complex
optimal dynamic admission policy often degenerates to
a threshold-based stationary (time-independent) policy
under a wide range of system parameters. For the scenario
where a stationary policy is not optimal, we propose an
algorithm to numerically compute the optimal admission
policy.
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• Optimal dynamic pricing and dynamic admission poli-
cies. We further allow the prices to dynamically change
over time based on different SUs’ stochastic demands.
Although the optimal prices and admission decisions
are coupled, we are able to compute the optimal policy
through a proper price-and-admission decomposition in
each time slot. Similarly, we show that the optimal ad-
mission policy often degenerates to a stationary admission
policy under a wide range of system parameters. By com-
paring the optimal pricing and admission policies under
both static and dynamic pricing schemes, we show that
the dynamic pricing scheme can significantly improve the
database operator’s revenue (by more than 30%) when
SU’s demands are highly elastic. We also compare our
dynamic pricing policy with a heuristic algorithm [27] as
the benchmark in terms of the revenue.

We start our analysis by considering a simple case involving
two types of SUs: a light-traffic SU who wants to access a
channel for one time slot, and a heavy-traffic SU who needs
to access a channel for two consecutive time slots. We further
extend our analysis and optimal algorithm design to the more
general case where (i) there are an arbitrary number of SU
types, and (ii) each type of SU may access a channel for an
arbitrary number of time slots.

The rest of the paper is organized as follows. We introduce
the model and problem in Section III, assuming two SU types
and a heavy-traffic SU will occupy the channel for two con-
secutive time slots. In Section IV, we formulate and solve the
optimal static pricing and dynamic admission control problem.
In Section V, we further consider the joint optimization of
dynamic pricing and dynamic admission control problem. In
Section VI, we extend our model and results to the case of an
SU’s arbitrary time slots occupancy and the case of multiple
types of SUs. We show the simulation results in Section VII.
Finally, we conclude the paper and discuss the future work in
Section VIII.

II. RELATED WORK

There are several recent results focusing on the spectrum
pricing issues of a spectrum database (e.g., [5]–[7]). These
studies focused primarily on the static pricing with complete
information in the spectrum database system, without consid-
ering the heterogeneous and stochastic SU demands as in our
work. Besides the studies on spectrum database economics,
there are also some recent related studies on secondary spec-
trum sharing and allocation (e.g., [8]–[11]), which focused
primarily on static pricing and static access control. The focus
of our study is the pricing and dynamic admission control
with time domain heterogeneity. This is a practically important
issue that has not been explicitly addressed in existing studies.

There has been a rich literature on static or dynamic
pricing of resources in Internet, communication networks, and
transportation networks. Under static pricing, the pricing de-
cisions do not change over time (e.g., [5]–[16]). The literature
on dynamic pricing focuses primarily on dynamic pricing
decisions of selling a given stock of items by a deadline (e.g.,
[17], [18]), and in particular, pricing decisions of airline seats

and hotel rooms booking (e.g., [19], [20]). However, in our
work spectrum has its unique features to be priced and used.
Unlike a traditional product, the unused spectrum resource
cannot be stored and is immediately wasted. SUs’ demands
are also heterogeneous over time. The time-sensitive feature
of spectrum and the demand heterogeneity make our model
and analysis fundamentally different from prior studies.

The literature on dynamic pricing of wireless resources
only emerged recently (e.g., [21]–[23]). Song et al. in [21]
studied the network revenue maximization problem by using
dynamic pricing for multiple flows in a wireless multi-hop
network. Ha et al. in [22] proposed time-dependent pricing
to decrease customers’ congestion cost. Ma et al. in [23]
proposed time and location based pricing for mobile data
traffic. However, none of these prior studies focused SUs’
stochastic and random spectrum demands. We tackle this issue
by jointly considering admission control and pricing, and
characterize the conditions under which the often complicated
optimal pricing and admission decisions degenerate to the
stationary pricing and admission schemes.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a database operator who records PUs’ activities
and knows a channel that will not used by PUs during a set
N = {1, · · · , N} of consecutive time slots, similar as in [2]–
[4].1 The database operator wants to maximize its revenue
through selling the temporary spectrum opportunities to the
SUs. The duration of this whole time period depends on the
type of PU traffic, and is known in advance as the PUs need
to register all traffic with the database (e.g., [2]–[4]).

SUs randomly arrive and request channel access at the
beginning of each time slot. To gain clear insights into the
admission policies of SUs, we first assume that there are
two types of SUs depending on the length of the channel
access time. A light-traffic SU only needs to use the channel
for one time slot, and a heavy-traffic SU needs to occupy
two consecutive time slots. In Section VI, we will extend
our analysis to the case where a heavy-traffic SU occupies
more than two consecutive time slots, and we will show that
our main results do not change. We will further consider the
general case of multiple types of SUs in terms of spectrum
occupancy.

If an SU is admitted in n ∈ N , the database operator will
charge the SU either rl(n) or rh(n), depending on whether it is
a light- or heavy-traffic SU. SUs are price-sensitive, and their
demand probabilities of requesting the spectrum after arriving
are non-increasing in the prices.2 Since we consider a single

1In this paper we focus on the optimal joint pricing and admission control
of a single channel, which is already quite mathematically challenging. We
may use our results in a multi-channel scenario, if the admission and pricing
of each channel is done independently. The more general case of the joint
consideration of multiple channels will be left as a future work.

2We in fact consider two different arrival processes. The first process
describes how the SUs arrive at the system, which can be any process such
that there is at least one arrival at the beginning of each time slot. One example
of such processes is the deterministic arrival in each time slot. The second
process characterizes how the arrived SUs request spectrum access from the
database. Such a process depends on the prices set by the operator, as a higher
price will reduce the demand from SUs.
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Fig. 1. Database operation in N time slots. At the beginning of each time slot,
the database operator announces prices for incoming SUs. After observing the
realized demands, the database operator then makes the admission decision
and inform the selected SU to access. The notation (Sn, Xn, Yn) denotes
the resultant channel occupancy and two SU types’ demand realizations (will
be explained in Subsection IV-A).

channel case, the database operator can admit at most one
SU (light- or heavy-traffic) in any time slot. Once an SU’s
service request is rejected by the database, it will leave the
system without waiting. This corresponds to the case where
SUs have delay-intolerant applications such as VoIP and video
conferencing.

Fig. 1 summarizes the database’s operations in our model.
At the beginning of each time slot n ∈ N , the database
operator first announces prices rl(n) and rh(n) for the light-
and heavy-traffic SU types, respectively. Then SUs observe
the price update and randomly arrive with the probabilities
affected by the prices. Finally, the database operator admits at
most one SU to the channel (if the channel is available) and
rejects the other SUs (if any). After these three phases, the
admitted SU will transmit data over the channel during the
rest of the slot.3

In addition to the prices charged by the operator, the
wireless channel condition will also influence each SU’s
request for the spectrum. From each individual SU’s per-
spective, an SU’s wireless channel condition will influence
its achievable transmittd data volume and utility, hence will
determine whether he is willing to accept the price and request
spectrum access. From the database operator’s perspective,
the demand probability of each type of SUs (i.e., those who
are willing to accept the prices) will influence the operator’s
expected revenue. Hence, the operator needs to consider SUs’
evaluation of the channel condition and their average demand
when optimizing the pricing. In Sections IV and V, we
will consider a demand probability function that decreases
in prices, where the demand elasticity parameter incorporates
the impact of the channel statistics. Due to page limit, we put
the detailed channel modeling, analysis, and simulation results
into Appendix A.

To maximize the expected revenue, the database operator
wants to jointly optimize spectrum prices and admissions over
all N time slots. In this optimization problem, the database
operator’s decision of admitting a heavy-traffic SU will prevent
admitting a light/heavy-traffic SU (if available) in the next time
slot, hence the operation decisions over time are coupled. We

3We assume that the signaling overhead is small in each time slot, since
only the price and admitted SU’s information is sent from the database to SUs,
and SUs only send 1-bit binary demand type information to the database.

will model the problem as a stochastic dynamic programming
problem, and propose the optimal admission policies under
static pricing in Section IV and under dynamic pricing in
Section V, respectively. In both sections, we allow dynamic
admission decisions over time. Notice that static pricing is a
special case of dynamic pricing, and is widely used in industry
due to its simplicity and low complexity. Hence, we are
interested in exploring the benefits that the flexible dynamic
pricing may bring beyond the simplified static pricing. Then
we can provide insights into which pricing and admission
scheme the database operator should choose and under what
conditions.

IV. OPTIMAL STATIC PRICING AND DYNAMIC ADMISSION

We first consider the case of static pricing, where prices do
not change over time. It will serve as a benchmark and help
us quantify the performance gain by using dynamic pricing
in Section V. With static pricing, the database only needs to
optimize and announce prices once at the beginning of time
slot 1, and keeps the prices fixed for the rest N −1 time slots,
i.e., rl(n) = rl and rh(n) = rh for each time slot n ∈ N .

We will formulate the revenue maximization problem with
static pricing and dynamic admission as a stochastic dynamic
programming problem. In Subsections IV-A to IV-C, we will
formulate and solve the optimal admission control problem
through backward induction, given any fixed prices. In Sub-
section IV-D, we will optimize the static prices, considering
the admission policies developed in Subsections IV-A to IV-C.

A. Admission Control Formulation under Fixed Prices

Given fixed prices rl and rh, we now optimize the channel
admission decision in each time slot. Such optimization not
only considers the channel availability and SU demands in the
current time slot, but also considers SU demands in future
time slots. We will formulate it as a stochastic dynamic
programming problem.

We first define the system state as follows.
Definition 1 (System State): The system state in time slot

n is (Sn, Xn, Yn). Here, Sn denotes the number of remaining
occupied time slots at the beginning of time slot n. Since Sn ∈
{0, 1}, Sn also indicates the binary channel state, where Sn =
0 denotes that the channel is available for admission in time
slot n, and Sn = 1 otherwise. The parameter Xn = 1 denotes
that at least one light-traffic SU arrives at the beginning of
the time slot (and is willing to pay for price rl), and Xn = 0
otherwise. The parameter Yn is defined similarly as Xn but for
the heavy-traffic SUs. We define the SU demand probabilities
in time slot n as pl = Pr{Xn = 1} and ph = Pr{Yn = 1},
respectively. As prices are unchanged over time, pl and ph are
the same for all time slots.

The system state changes over time, depending on the
channel admission decisions and SUs’ demand realizations
over time. The feasible set of admission actions in each time
slot depends on the current system state. Formally, we define
the state-dependent feasible admission action set as follows.

Definition 2 (Admission Action Set): The set of feasible
admission actions in time slot n is a state-dependent set
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An(Sn, Xn, Yn). When Sn = 1, i.e., the current time slot
is not available for new admission as we are still serv-
ing the heavy-traffic SU from the last time slot, we have
An(1, Xn, Yn) = {0} for all possible (Xn, Yn). When Sn =
0, the admission action set depends on which type of SUs’
demands in the current time slot. If no SUs request in time
slot n (i.e., (Xn, Yn) = (0, 0)), the set of actions is still
An = {0}. If both light- and heavy-traffic SUs demand, i.e.,
(Xn, Yn) = (1, 1), then we can either serve no SU, a light-
traffic SU, or a heavy-traffic SU, and thus the set of actions
is An = {0, 1, 2}. To summarize,

An(0, Xn, Yn) =


{0}, if (Xn, Yn) = (0, 0),
{0, 1}, if (Xn, Yn) = (1, 0),
{0, 2}, if (Xn, Yn) = (0, 1),
{0, 1, 2}, if (Xn, Yn) = (1, 1).

(1)

We further define the specific admission decision in time
slot n as an ∈ An(Sn, Xn, Yn).

Now we are ready to introduce the state dynamics. When
Sn = 1, we will not admit any SU, hence in the next time
slot Sn+1 = Sn−1 = 0, as the remaining occupied time slots
decreases by one. When Sn = 0, the channel availability of
the next time slot only depends on the action an. If we admit
the light-traffic SU with an = 1, then the channel is available
in the next time slot (as the remaining occupied time slot is 0),
i.e., Sn+1 = an−1 = 0. If we admit the heavy-traffic SU with
an = 2, it will occupy two time slots (time slots n and n+1).
This means that at the beginning of time slot n + 1, we will
have the number of remaining occupied time slot to be 1, i.e.,
Sn+1 = an−1 = 1. At the beginning of time slot n+2, there
is no SU occupying the channel, hence Sn+2 = Sn+1−1 = 0
and time slot n+ 2 is available for admission. To summarize,
we derive the following state dynamics.

Lemma 1 (State Dynamics): The dynamics of the system
state component Sn for each time slot n ∈ N satisfies the
following equation:

Sn+1 = (Sn + an(1− Sn)− 1)+, (2)

where (x)+ := max(0, x), and Sn ∈ {0, 1} for each n ∈ N .
Lemma 1 captures the change of remaining occupied time

slots. The system state components (Xn, Yn) are the realiza-
tions of SU demands in the current time slot, and do not
depend on the action an in previous time slots. The key
notations we introduced so far are listed in Table I.

We are now ready to introduce the revenue maximization
problem. We define a policy π = {an(Sn, Xn, Yn),∀n ∈ N}
as the set of decision rules for all possible states and time
slots, and we let Π = {An(Sn, Xn, Yn),∀n ∈ N} be the
feasible set of π. Given all possible system state vectors S =
{Sn,∀n ∈ N}, X = {Xn,∀n ∈ N}, and Y = {Yn,∀n ∈
N}, the database operator aims to find an optimal policy π∗

(from the set of all admission policies Π) that maximizes the
expected total revenue from time slot 1 to N . Formally, we

TABLE I
KEY NOTATIONS

Symbols Physical Meaning

N = {1, · · · , N} Set of time slots
(Sn, Xn, Yn) System state in time slot n

an(Sn, Xn, Yn) and an Admission action in time slot n
An(Sn, Xn, Yn) Set of feasible admission actions in time slot n

r(an) Immediate revenue by the admission action an
Rn(Sn, Xn, Yn, an) Total revenue from time slot n to N

E[R∗n(Sn, Xn, Yn)] and R̄∗n(Sn) Optimal expected future revenue from n to N
π∗(Sn, Xn, Yn) Optimal admission strategy in time slot n

π∗ = {π∗(Sn, Xn, Yn), n ∈ N} Optimal admission policy for all time slots
R∗n(rl, rh) Total revenue from n to N as a function of prices
rl(n), rh(n) Price for light/heavy-traffic SUs in time slot n

R̄n(rl(n), rh(n)) Expected future revenue from time slot n to N

pl(rl(n)), ph(rh(n))
Probabilities of having at least one light- and

heavy-traffic SU requesting spectrum in n
kl, kh Demand elasticity of light/heavy-traffic SUs

I = {1, · · · , I} Set of SUs’ types in the multiple types case
X(i)

n , ∀i ∈ I Demand of type-i SUs in time slot n

define Problem P1 as follows.

P1: Revenue Maximization by Dynamic Admission

maximize EπX,Y [R(S,X,Y ,π)] (3)

subject to an(Sn, Xn, Yn) ∈ An(Sn, Xn, Yn),∀n ∈ N ,
(4)

Sn+1 = (Sn + an(1− Sn)− 1)+,∀n ∈ N \ {N},
(5)

variables π = {an(Sn, Xn, Yn),∀n ∈ N}, (6)

where the expectation in the objective function is taken over
SUs’ random requests (X,Y ).

We proceed to analyze Problem P1 by using backward
induction [24]. After SUs’ demands Xn and Yn are realized
in time slot n, the operator makes the admission action
an to maximize the total revenue by considering future SU
demands. We define the total revenue from time slot n to N as
Rn(Sn, Xn, Yn, an). The total revenue computed in time slot
n has two parts: i) the immediate revenue r(an) for the current
admission action an, where r(an) = 0, rl, or rh if an = 0,
1, or 2, respectively; and ii) the expected future revenue from
time slot n+1 to N , i.e., E[Rn+1(Sn+1, Xn+1, Yn+1)], where
the expectation is taken over the SUs’ possible demands in the
next time slot n+1, i.e., (Xn+1, Yn+1).4 Then the optimization
problem of time slot n in the backward induction process is

R∗n(Sn, Xn, Yn) = maxan∈An
Rn(Sn, Xn, Yn, an), (7)

where the revenue’s dynamic recursion is

Rn(Sn,Xn,Yn,an)=r(an)+ E[R∗n+1(Sn+1,Xn+1,Yn+1)].
(8)

As a boundary condition in the last time slot N , we have
R∗N (SN , XN , YN , aN ) = r(aN ), as there is no future spec-
trum opportunity and revenue collection after time slot N .

The maximum expected revenue from time slot n to
N is denoted by EXn,Yn [R∗n(Sn, Xn, Yn)], which is a
part of the revenue and will be utilized for admission

4In this paper, the expectation E[R∗n(Sn, Xn, Yn)] is always taken over
SU requests (Xn, Yn),∀n ∈ N , unless otherwise mentioned.
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decision-making in previous time slots. Since the expectation
EXn,Yn [R∗n(Sn, Xn, Yn)] is taken over all possible SU de-
mand combinations (Xn, Yn), we rewrite it as R̄∗n(Sn),∀n ∈
N for simplicity. We derive the expected total revenue
Rn(Sn, Xn, Yn, an) by adding the immediate revenue as a
result of action an and the corresponding expected future
revenue R̄∗n+1(Sn+1) (if an = 0 or 1, i.e., no admission
or admitting a light-traffic SU) or R̄∗n+2(Sn+2) (if an = 2,
i.e., admitting a heavy-traffic SU), considering all possible SU
demands (Xn, Yn) in time slot n:

Rn(Sn, Xn, Yn, an) = (1− pl)(1− ph)[0 + R̄∗n+1(Sn+1)]

+ pl(1− ph)[rl + R̄∗n+1(Sn+1)]

+ (1− pl)ph[(0 + R̄∗n+1(Sn+1)) · 1{an=0}

+ (rh + R̄∗n+2(Sn+2)) · 1{an=2}]

+ plph[(rl + R̄∗n+1(Sn+1)) · 1{an=1}

+ (rh + R̄∗n+2(Sn+2)) · 1{an=2}], (9)

which can be computed according to (7) and (8) recursively
and backwardly from time slot N to n. Later, we will calculate
Rn(Sn, Xn, Yn, an) by setting the specific values of an in
the last two terms of (9) according to the different admission
strategies for time slot n.

Next, we will solve the dynamic programming problem
using (7)-(9).

B. Optimal Dynamic Admission Control

By using backward induction [24], we start with the final
time slot N and derive the optimal decisions slot by slot back.
In time slot n, the admission decision is made by comparing
the corresponding total revenues Rn(Sn, Xn, Yn, an) for dif-
ferent admission an in time slot n.

Based on the above discussions, we propose the optimal
dynamic admission control policy in Algorithm 1. More
specifically, this control policy π∗(Sn, Xn, Yn) is developed
by solving Problem P1 using standard backward induction
mentioned earlier. In the following Cases I-III, we formally
compare the immediate revenue plus the expected future
revenue to make admission decisions (i.e., rh + R̄∗n+2(Sn+2),
rl + R̄∗n+1(Sn+1), and 0 + R̄∗n+1(Sn+1)):
• In Case I (lines 5-6) of Algorithm 1, it is more beneficial

for the operator to admit a heavy-traffic SU (if it exists)
than a light-traffic SU.

• In Case II (lines 7-8) of Algorithm 1, it is more beneficial
for the operator to admit a light-traffic SU (if it exists)
than a heavy-traffic SU.

• In Case III (lines 9-10) of Algorithm 1, it is more
beneficial for the operator to only admit a light-traffic
SU (if it exists).

By the principle of optimality [24], π∗ =
{π∗(Sn, Xn, Yn), n ∈ N} is the optimal solution, as
shown in the following proposition.

Proposition 1: Algorithm 1 solves Problem P1 and com-
putes the optimal admission policy π∗.

The proof of Proposition 1 is given in Appendix B. Note that
the optimal policy π∗ is a contingency plan, which contains
the optimal admission policy in each time slot n ∈ N for

Algorithm 1: Optimal Admission Control Policy
1: Set n = N, R̄∗N+1 = 0
2: The optimal admission for N is a∗N = XN and R̄∗N = plrl
3: for n = N − 1, · · · , 2, 1 do
4: Calculate R̄∗n+1(Sn+1) using (9).
5: if rh + R̄∗n+2(Sn+2) ≥ rl + R̄∗n+1(Sn+1) then
6: if Yn = 1, then an = 2; if Yn = 0, Xn = 1, then an = 1; otherwise

an = 0.
7: else if R̄∗n+1(Sn+1) < rh + R̄∗n+2(Sn+2) < rl + R̄∗n+1(Sn+1) then
8: if Xn = 1, then an = 1; if Xn = 0, Yn = 1, then an = 2; otherwise

an = 0.
9: else

10: if Xn = 1, then an = 1; otherwise an = 0.
11: end if
12: end for
13: return the optimal admission policy π∗

any system state. After deriving the optimal policy, we can
implement the policy forwardly from time slots 1 to N , after
observing SUs’ demand realizations. Furthermore, the optimal
admission policy π∗ may change over time, since the revenue
values of Cases I-III depend on both the prices and the price-
dependent demand probabilities.

C. Stationary Admission Policies

The optimal admission control solution in Algorithm 1 does
not have a closed-form characterization and the system still
needs to check a huge-size table created from the algorithm
after knowing the realizations of SU random demands. This
motivates us to focus on a class of low complexity stationary
admission policies, where the admission rules do not change
over time (while the actual admission decisions might change
over time). We will characterize the conditions under which
these stationary admission policies are optimal.

Recall that there are three possible admission strategies in
each time slot, depending on the values of rh + R̄∗n+2(Sn+2),
rl + R̄∗n+1(Sn+1), and 0 + R̄∗n+1(Sn+1). For a particular time
slot n, for example, if rh+R̄∗n+2(Sn+2) > rl+R̄

∗
n+1(Sn+1) >

0+ R̄∗n+1(Sn+1), we prefer to serve the heavy-traffic SU type
rather than the light-traffic one or not serving anyone (i.e.,
the admission priority follows Λ(2) > Λ(1) > Λ(0)). Here,
we define the function Λ(an) to capture the priority order
of the admission action an ∈ {0, 1, 2}. Due to the fact rl +
R̄∗n+1(Sn+1) > 0 + R̄∗n+1(Sn+1) and serving a light-traffic
SU is better than serving no one, there are a total of three
reasonable admission priority orders, i.e., Λ(2) > Λ(1) >
Λ(0), Λ(1) > Λ(2) > Λ(0), and Λ(1) > Λ(0) > Λ(2). We
discuss them one by one next.

Table II shows the three stationary policies that we will
discuss. Recall that when Sn = 1 (i.e., channel is still occupied
in the current time slot), we have a∗n = 0 (not admitting any
SU) for any values of Xn and Yn. Table II only focuses on the
case of S = 0. The three rows/sub-tables, namely, Tab.II–HP :
aHP∗n , Tab.II–LP : aLP∗n , and Tab.II–LD: aLD∗n , represent the
Heavy-Priority (i.e., Λ(2) > Λ(1) > Λ(0)), Light-Priority
(i.e., Λ(1) > Λ(2) > Λ(0)), and Light-Dominant (i.e.,
Λ(1) > Λ(0) > Λ(2)) admission policies, respectively. For
each policy, we will derive the conditions of the static prices
rl and rh, under which the policy achieves the optimality of
Problem P1.
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TABLE II
THREE STATIONARY ADMISSION POLICIES

Admission Policies System states (Sn, Xn, Yn)
(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1)

Tab.II–HP : aHP∗
n 0 2 1 2

Tab.II–LP : aLP∗
n 0 2 1 1

Tab.II–LD: aLD∗
n 0 0 1 1

We first analyze the Heavy-Priority admission policy (in
Tab.II–HP : aHP∗n ,∀n ∈ N ). Under this policy, we will serve
a heavy-traffic SU (an = 2) whenever possible (Yn = 1),
and only serve a light-traffic SU (an = 1) when there is only
a light-traffic SU (Xn = 1 and Yn = 0).5 Such a stationary
policy is optimal if the following two conditions hold for each
and every time slot n ∈ {1, · · · , N − 1},

rh + R̄∗n+2(0) ≥ 0 + R̄∗n+1(0), (10)
rh + R̄∗n+2(0) ≥ rl + R̄∗n+1(0). (11)

Inequality (10) shows that serving a heavy-traffic SU who
occupies two consecutive time slots leads to a higher expected
total revenue than serving no SU in the current time slot.
Inequality (11) shows that serving a heavy-traffic SU leads
to a higher expected total revenue than serving a light-traffic
SU in the current time slot. Since (11) ensures (10), we only
need to consider (11).

Similarly, we can derive the condition under which the
Light-Priority admission policy (in Tab.II–LP : aLP∗n ) is op-
timal, i.e., 0 + R̄∗n+1(0) < rh + R̄∗n+2(0) < rl + R̄∗n+1(0)
for all n ∈ {1, · · · , N − 1}. Under this policy, we will
admit a light-traffic SU whenever possible (Xn = 1), and
admit a heavy-traffic SU otherwise (Xn = 0 and Yn = 1).
Finally, we can derive the condition under which the Light-
Dominant admission policy (in Tab.II–LD: aLD∗n ) is optimal,
i.e., rh+ R̄∗n+2(0) ≤ 0+ R̄∗n+1(0) for all n ∈ {1, · · · , N−1}.
Under this policy, we will choose to admit a light-traffic SU
(an = 1) whenever possible (Xn = 1), and will never admit
any heavy-traffic SU, as it leaves no room to accept a light-
traffic SU in the next time slot.

To summarize the above analysis, we have the following
theorem. Recall that rh/rl denotes the ratio between the prices
charged to the heavy-traffic and the light-traffic SUs, and pl
and ph are the demand probabilities defined in Subsection
IV-A.

Theorem 1: A stationary admission policy becomes the
optimal policy to solve Problem P1 if one of the following
condition is true:
• The Heavy-Priority admission policy aHP∗n in Tab.II–HP

for all n ∈ N is optimal if rh/rl ≥ 2pl+(1−pl)/(1−ph).
• The Light-Priority admission policy aLP∗n in Tab.II–LD

for all n ∈ N is optimal if pl ≤ rh/rl ≤ 1 + pl.
• The Light-Dominant admission policy aLD∗n in

Tab.II–LP for all n ∈ N is optimal if rh/rl < pl.
The proof of Theorem 1 is given in Appendix C. The

theorem shows that each of the three stationary policies is

5Notice that such discussion is only meaningful for time slot 1 to N − 1,
as in the last time slot N we will always admit a light-traffic SU whenever
possible.

rh
rl

∞
2pl +

1−pl
1−phpl 1 + pl0

I: Light-Dominant Admission Policy

II: Light-Priority Admission Policy

III: Algorithm 1

IV: Heavy-Priority Admission Policy

Fig. 2. Optimal stationary admission policies for all price ratio rh/rl values
(regimes I, II, and IV).

optimal within a particular range of the price ratio rh/rl.
Fig. 2 illustrates the results of Theorem 1 graphically. In this
figure, we divide the feasible range of the price ratio rh/rl
into four regimes, among which in three regimes (I, II, and
IV) the stationary policies are optimal. We are able to further
characterize the closed-form optimal total revenues for these
three regimes, and the details can be found in Appendix C. It
is clear that a larger value of rh/rl gives a higher preference
to the admission of a heavy-traffic SU. In regime III, we have
to use Algorithm 1 to compute the optimal admission policy.

After analyzing the optimal admission control decisions
from time slot N to 1 in the backward induction, we now
optimize the initial pricing decision at the beginning of time
slot 1.

D. Optimal Static Pricing

Under static pricing, the database operator optimizes and
announces the prices rh and rl in time slot 1, and do not
change these prices for the remaining N − 1 time slots. As
explained in Section III, we consider the general case where
prices will affect SU demands during each time slot. As a
concrete example, we consider the widely used linear demand
function in economics [25], where the probability of an SU
of type i ∈ {l, h} requesting the spectrum resource in a time
slot is pi(ri) = 1− kiri, where 0 ≤ ri ≤ rmax

i = 1/ki.6 The
parameters kl and kh characterize the demand elasticity of the
light-traffic and the heavy-traffic SUs, respectively, and larger
values of kl and kh reflect higher price sensitivities.7

By using the three stationary admission policies in Theorem
1, we are able to derive three closed-form objective R∗n, n ∈ N
as a function of prices rl and rh. Next we optimize the prices
that maximize the total revenue R∗1 in Problem P1.

Proposition 2: Consider the case rh/rl ≥ 2pl + (1 −
pl)/(1 − ph), in which the heavy-priority admission policy
is optimal as shown in Theorem 1. The optimal static pricing
(r∗l , r

∗
h) is the optimal solution to the following problem

maximize R∗1(rl, rh), (12)
subject to rh/rl ≥ 2pl + (1− pl)/(1− ph), (13)

0 ≤ rl ≤ rmax
l , 0 ≤ rh ≤ rmax

h , (14)
variables rl, rh, (15)

6Changing to some common nonlinear functions are unlikely to change
the key results. This is because the optimal static pricing can be solved in
Proposition 2, even for nonlinear demand functions, we can still search the
optimal static pricing.

7In practice, the price elasticity parameters can be estimated according
to the market survey or historical data about demand responses (e.g., [26]).
By doing multiple independent repeated trials, the operator can estimate the
demand elasticities.
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where

R∗1(rl, rh) = N
(
plrl+(1−pl)phrh

1−(plph−ph)

)
+
(

(plph−ph)(rh−plrl)
1−(plph−ph)

)
(plph−ph)(1−(plph−ph)N )

1−(plph−ph) . (16)

The proof of Proposition 2 is given in Appendix D. The
same conclusion holds for the other two cases shown in
Theorem 1, and the details are provided in Appendix C. The
function R∗1(rl, rh) turns out to be non-convex in general, and
the optimal prices cannot be solved in closed form. However,
notice that the key benefit of static pricing is that it does not
need to be recomputed and updated frequently over time, thus
we can compute the optimal static prices offline once and the
high computational complexity is not a major practical issue.

V. OPTIMAL DYNAMIC PRICING AND DYNAMIC
ADMISSION

In Section IV, we have considered the static pricing and
dynamic admission control problem. Now we consider the
case of dynamic pricing, where the prices vary over time.
In the following, we will formulate the dynamic pricing and
dynamic admission control problem, aiming at deriving the
optimal dynamic pricing and admission policies.

A. Dynamic Pricing-and-Admission Problem Formulation

Now we further study the general case of dynamic pricing,
where the database operator has the flexibility of chang-
ing prices over time. The database operator’s goal is to
compute the optimal prices r∗l = {r∗l (n), n ∈ N} and
r∗h = {r∗h(n), n ∈ N}, and the optimal admission policy
π∗ = {a∗n(Sn, Xn, Yn), n ∈ N} for all time slots and system
states to maximize its expected revenue, i.e.,

P2: Joint Dynamic Pricing and Dynamic Admission

maximize EπX,Y [R(S,X,Y ,π, rl, rh)] (17)

subject to an(Sn, Xn, Yn)∈An(Sn, Xn, Yn),∀n ∈ N ,
(18)

Sn+1 = (Sn + an(1− Sn)− 1)+,∀n ∈ N \ {N},
(19)

0 ≤ rl(n) ≤ rmax
l ,∀n ∈ N , (20)

0 ≤ rh(n) ≤ rmax
h ,∀n ∈ N , (21)

variables {π, rl, rh}. (22)

We can again use backward induction to solve Problem P2
in each time slot. Different from Section IV, we need to jointly
determine the prices and the admission decisions from time
slot N to 1. The subproblem in each time slot n ∈ N is

P3: Pricing-and-Admission Subproblem in time slot n

maximize Rn
(
rl(n), rh(n), an(Sn, Xn, Yn)

)
(23)

subject to an(Sn, Xn, Yn) ∈ An(Sn, Xn, Yn), (24)
0 ≤ rl(n) ≤ rmax

l , (25)
0 ≤ rh(n) ≤ rmax

h , (26)
variables {an(Sn, Xn, Yn), rl(n), rh(n)}. (27)

TABLE III
THREE ADMISSION STRATEGIES IN TIME SLOT n

Admission Strategies in time slot n Conditions

Heavy-Priority Strategy (HP):
an = (2−Xn)Yn +Xn

rh(n) + R̄∗n+2≥rl(n) + R̄∗n+1

Light-Priority Strategy (LP): an =
Xn · 1{Yn=0} + (2−Xn) · 1{Yn=1}

0+R̄∗n+1<rh(n)+R̄∗n+2<rl(n)+R̄∗n+1

Light-Dominant Strategy (LD): an=Xn rh(n) + R̄∗n+2 ≤ 0 + R̄∗n+1

The expression of Rn can be similarly derived by using the
derivation procedure of (9), except that the demand probabil-
ities pl and ph are functions the prices rl(n) and rh(n), i.e.,
pl(rl(n)) and ph(rh(n)), respectively. The key challenge of
solving Problem P3 is the coupling between the pricing and
admission decisions in each time slot. Next we will propose
a decomposition approach for the two decisions that helps us
solve Problem P3 in each time slot n.

B. Decomposition of Pricing and Admission in Each Time Slot
First we want to clarify the difference between an admission

strategy and an admission policy. An admission strategy spec-
ifies the admission actions for a particular time slot n, while
an admission policy applies to all time slots in N (e.g., those
in Table II). Here we will focus on the admission strategy, as
we only study Problem P3 for a particular time slot n.

Next we consider all possible admission control strategies
for a time slot n, as shown in Table III. In this table, HP stands
for heavy-priority strategy, LP stands for light-priority strategy,
and LD stands for light-dominant strategy. Each strategy is
accompanied by a condition of the total revenue from time
slot n to N . The strategy is optimal for time slot n if the
corresponding condition holds.

Let us take the heavy-priority strategy (HP) as an example to
explain our decomposition approach. In this strategy, we will
serve a heavy-traffic SU (an = 2) whenever possible (Yn = 1),
and only serve a light-traffic SU (an = 1) if there is no heavy-
traffic SU (Xn = 1 and Yn = 0). Summarizing these cases
together, the decision under the heavy-priority strategy can
be written as an = (2 − Xn)Yn + Xn. The corresponding
condition for the heavy-priority strategy in Table III shows
that the total revenue of admitting a heavy-traffic SU is no
less than that of admitting a light-traffic SU. The conditions
for the other two admission strategies (LP and LD) can be
derived similarly.

Using the result in Table III, we can solve Problem P3 in
the following two steps:
• Price optimization under a chosen admission strategy:

Assume that one of the three admission strategies in Table
III will be used in time slot n, we optimize prices rl(n)
and rh(n) to maximize the expected total revenue.

• Admission strategy optimization: Compare the maximized
expected total revenues (from slot n to N ) under the three
admission strategies with the optimized prices, and pick
the best admission strategy and pricing combination that
leads to the largest revenue.

Notice that the above decomposition method is for each time
slot n ∈ N . The above decomposition procedure guarantees
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that we obtain the optimal solution of the joint problem P3
for the following reason. First, the three possible admission
strategies in each time slot are exhaustive and mutually exclu-
sive, in the sense that the optimal pricing decision in time slot
n guarantees that there is only one strategy that is optimal to
adopt in this time slot, depending on the conditions in Table
III. Second, if one-out-of-the-three admission strategies is
optimal to adopt in time slot n, there must exist an associated
optimal pricing accordingly that maximizes the total revenue.
We thus conclude that the two-step decomposition procedure
is guaranteed to solve Problem P3 optimally.

Next, we will derive the closed-form optimal pricing under
each of the three admission strategies, respectively. We will
conduct the admission strategy optimization in Subsection
V-C.

1) Optimal Pricing under Heavy-Priority Strategy:
Given HP strategy chosen in time slot n, we derive the
expected total revenue RHPn

(
rHPl (n), rHPh (n)

)
by setting

an = 2 and an = 2 in the last two terms of (9), respectively,
where the probabilities pl(rHPl (n) and ph(rHPh (n)) can also
be modeled as the linear function in Subsection IV-D.8 Notice
that the database operator may not always use HP in future
time slots.

In order to optimize the prices, the database operator needs
to solve the following problem.

P4: Optimal Pricing for time slot n under HP

maximize RHPn
(
rHPl (n), rHPh (n)

)
(28)

subject to rHPh (n) + R̄∗n+2 ≥ rHPl (n) + R̄∗n+1, (29)

0 ≤ rHPl (n) ≤ rmax
l , (30)

0 ≤ rHPh (n) ≤ rmax
h , (31)

variables rHPl (n), rHPh (n). (32)

Constraint (29) guarantees that the heavy-priority admission
strategy is optimal in time slot n, where R̄∗n+2 and R̄∗n+1

are determined by the optimal solutions to Problem P3 in
time slots n + 2 and n + 1. Since the optimization problem
P4 is a continuous function over a compact feasible set, the
maximum is guaranteed to be attainable. It is easy to show
that Problem P4 is not a convex optimization problem due to
the three-order polynomial objective function. Thus, a solution
satisfying KKT conditions may be either a local optimum or
a global optimum of Problem P4. Hence, we need to find all
solutions satisfying KKT conditions, and then compare these
solutions to find the global optimum.

We will first examine the feasible region of Problem P4
based on any possible prices rHPl (n) and rHPh (n). It turns out
that the feasible region is a polyhedron in a two-dimensional
plane. Fig. 3 shows the feasible region. According to the
value of rmax

h , the feasible region has two possible cases. The
optimal solution can only be either the interior points inside
the feasible region or the extreme points on the boundary. As
such, we only need to check whether all the possible extreme

8The linear function only contributes to the explicit expression of the
optimal pricing solution. From the proof of Proposition 3, we know that the
optimal pricing can be derived with general demand functions, but not in
terms of closed form.

rHPh (n)

rHPl (n)

rHP
h (n) = rHP

l (n) + R̄∗n+1 − R̄
∗
n+2

small rmax
h

large rmax
h

rmax
l0

F
F

Fig. 3. The feasible region F of Problem P4. There are two possible shapes
according to the values of rmax

h . The interior points, the red dots, and the
line segments between them are all possible solutions.

points and the interior points satisfying KKT conditions are
local optima. We skip the details (which can be found in
Appendix E) due to space limit, and summarize the optimal
pricing results in the following proposition.

Proposition 3: The optimal pricing in time slot n under the
HP strategy is summarized in Table IV, which depends on the
values of R̄∗n+1 − R̄∗n+2 and kh/kl. The closed-form optimal
pricing solutions in Table IV are given as follows, respectively,

IHP0 :

{
rHPl (n) = 1

2kl

rHPh (n) =

(
1

4kl
+ 1

kh
+R̄∗n+1−R̄

∗
n+2

)
2

,

EHP2 :

{
rHPl (n) = 1

kh
+ R̄∗n+2 − R̄∗n+1

rHPh (n) = 1
kh

,

and EHP1 :

 rHPl (n) =
−(R̄∗n+1−R̄

∗
n+2)+

√
(R̄∗n+1−R̄∗n+2)2+ 3

klkh

3

rHPh (n) =
2(R̄∗n+1−R̄

∗
n+2)+

√
(R̄∗n+1−R̄∗n+2)2+ 3

klkh

3

.

The proof of Proposition 3 is given in Appendix E. In
Table IV, IHP0 , EHP1 , and EHP2 represent the unique opti-
mal solution in different cases (i.e., one interior point solu-
tion and two extreme point solutions). “N/A” represents the
cases where the combinations of conditions are infeasible.
For example, when 4/3 ≤ kh/kl < 3, it follows that
R̄∗n+1 − R̄∗n+2 > (4kl − 3kh)/(4khkl); when kh/kh ≥ 3,
we have R̄∗n+1 − R̄∗n+2 ≥ (2 −

√
1 + kh/kl)/kh. Hence, the

corresponding cell is labeled as “N/A”.
Tables IV shows the optimal dynamic pricing in each time

slot n under the HP strategy. Given the demand elasticities kl
and kh, the solution will be uniquely given by one of the three
cases of R̄∗n+1 − R̄∗n+2 regimes. In Subsection V-C, we will
propose an algorithm to compute R̄∗n+1− R̄∗n+2 iteratively for
all time slots.

2) Optimal Pricing under Light-Priority Strategy:
Given LP strategy chosen in time slot n, we derive the ex-
pected total revenue RLPn

(
rLPl (n), rLPh (n)

)
by setting an = 2

and an = 1 in the last two terms of (9), respectively. The
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TABLE IV
OPTIMAL PRICING UNDER HEAVY-PRIORITY STRATEGY

R̄∗n+1 − R̄∗n+2

≤ 4kl−3kh
4khkl

 4kl−3kh
4khkl

,
2−
√

1+
kh
kl

kh

 ≥
2−
√

1+
kh
kl

kh

kh
kl

< 4
3

IHP
0 EHP

1 EHP
2

4
3
≤ kh

kl
< 3 N/A EHP

1 EHP
2

kh
kl
≥ 3 N/A N/A EHP

2

database operator needs to solve the following problem.

P5: Optimal Pricing for time slot n under LP

maximize RLPn
(
rLPl (n), rLPh (n)

)
(33)

subject to rLPh (n) + R̄∗n+2 ≤ rLPl (n) + R̄∗n+1, (34)

rLPh (n) + R̄∗n+2 ≥ R̄∗n+1, (35)

0 ≤ rLPl (n) ≤ rmax
l , (36)

0 ≤ rLPh (n) ≤ rmax
h , (37)

variables rLPl (n), rLPh (n). (38)

Constraints (34) and (35) guarantee that the light-priority
strategy is optimal in time slot n.

The analysis for Problem P5 is similar to that for Problem
P4, due to the similar structures of the two problems. We thus
have Proposition 4 as follows.

Proposition 4: The optimal solution to Problem P5 can also
be summarized in a table as in Table IV, only with different
conditions in the rows and the columns and expressions of
ILP0 , ELP1 and ELP2 .

Due to space limitation, the proof of Proposition 4 and the
detailed solutions can be found in Appendix F.

3) Optimal Pricing under Light-Dominant Strategy:
Given LD strategy chosen in time slot n, we derive the ex-
pected total revenue RLDn

(
rLDl (n), rLDh (n)

)
by setting an = 0

and an = 1 in the last two terms of (9), respectively. The
database operator needs to solve the following problem.

P6: Optimal Pricing for time slot n under LD

maximize RLDn
(
rLDl (n), rLDh (n)

)
(39)

subject to rLDh (n) + R̄∗n+2 ≤ 0 + R̄∗n+1, (40)

0 ≤ rLDl (n) ≤ rmax
l , (41)

0 ≤ rLDh (n) ≤ rmax
h , (42)

variables rLDl (n), rLDh (n). (43)

Unlike the HP and the LP cases, we can derive the optimal
prices under LD in closed-form.

Proposition 5: The optimal prices in time slot n under the
LD strategy are given by the interior point solution ILD0 :

rLDl (n) =
1

2kl
, rLDh (n) = min(R̄∗n+1 − R̄∗n+2, r

max
h ). (44)

The proof of Proposition 5 is given in Appendix G. We have
analyzed the price optimization under any chosen admission
strategy. Next, we will compare the expected total revenues
RHP∗n , RLP∗n , and RLD∗n to pick the optimal pricing-admission
strategy.

Algorithm 2: Optimal Dynamic Pricing and Admission
Policy

1: Set n = N + 1, R̄∗N+1 = 0

2: Set r∗l (N), r∗h(N) by (44) and R̄∗N by R̄LD
N (r∗l (N), r∗h(N)).

3: for n = N − 1, · · · , 2, 1 do
4: Derive rHP∗

l (n), rHP∗
h (n), RHP∗

n by Table IV.
5: Derive rLP∗

l (n), rLP∗
h (n), RLP∗

n by Prop. 4.
6: Derive rLD∗

l (n), rLD∗
h (n) and RLD∗

n by (44).
7: R̄∗n ← max{RHP∗

n , RLP∗
n , RLD∗

n } and
r∗l (n), r∗h(n)← arg max{RHP∗

n , RLP∗
n , RLD∗

n }.
8: if r∗l (n), r∗h(n) = rHP∗

l (n), rHP∗
h (n) then

9: The heavy-priority strategy is optimal.
10: else if r∗l (n), r∗h(n) = rLP∗

l (n), rLP∗
h (n) then

11: The light-priority strategy is optimal.
12: else
13: The light-dominant strategy is optimal.
14: end if
15: end for
16: return Pricing-Admission policy r∗ and π∗.

C. Optimal Dynamic Pricing and Admission Policies

After deriving the optimal prices under each admission
strategy, we can now compare the corresponding revenues and
choose the best admission strategy for time slot n. We need
to do this for each of the N time slots. We show this process
in Algorithm 2, which involves the previous solutions (Table
IV, Proposition 4, and Equation (44)). More specifically, the
algorithm iteratively computes the prices and revenues under
the three admission strategies, respectively, and then selects the
optimal prices and the corresponding admission strategy which
lead to the largest revenue (lines 3 to 15). The complexity of
Algorithm 2 is low and in the order of the total time slots
O(N), as it only needs to check the tables and Equation (44)
we derived. We summarize the optimality result as follows.

Theorem 2: The dynamic prices r∗ = {r∗(n),∀n ∈
N} and the dynamic admission policy π∗ =
{a∗n(Sn, Xn, Yn),∀n ∈ N} derived in Algorithm 2 are
the unique optimal solution to Problem P2.

The proof of Theorem 2 is given in Appendix H. Note
that the optimal prices and admission policy form a con-
tingency plan that contains information about the optimal
prices and admission decisions at all the possible system states
(Sn, Xn, Yn) in any time slots n ∈ N . To implement the
optimal policy from time slot 1 to N , the database operator
needs to decide the actual admission actions according to the
realizations of random demands and the transition of system
states. More specifically, at the beginning of each time slot
n, the operator first announces prices r∗(n) according to r∗

and checks the actual demands (Xn, Yn). Then, the admission
decisions are determined by checking the optimal policy π∗

and the state component Sn is updated accordingly.

VI. EXTENSIONS

The analysis of the simplified case in Sections III to V
paves the way for the analysis of the general case of multiple
types of SUs. Next, we will first consider the case of arbitrary
spectrum occupancies of two SU types, and then the general
case of more than two SU types.
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A. Extension to Arbitrary Spectrum Occupancies of Two SU
Types

In Sections III to V, we have assumed that a heavy-traffic
SU occupies 2 consecutive time slots. Now we proceed to
consider the general case where a heavy-traffic SU occupies M
consecutive time slots. The channel occupancy of a light-traffic
SU is still normalized to a unit time slot. Naturally, we have
2 ≤ M ≤ N . Following similar notations as in Section III,
in order to characterize the spectrum occupancy information
over time, we define Sn as the number of remaining occupied
time slots before making the admission action an in time slot
n, where Sn ∈ {0, 1, · · · ,M − 1}. At the beginning of time
slot n, we first check the SU occupancy of the current time
slot, i.e.,

Sn =

{
1, · · · ,M − 1, if time slot n is occupied,
0, if time slot n is idle.

(45)

For example, if M = 3 and we start admitting a heavy-
traffic SU in time slot n, then Sn+1 = 2, Sn+2 = 1, and
Sn+2 = 0. If we define the possible admission action as
an = 0 (admitting no SU), an = 1 (admitting a light-
traffic SU), and an = M (admitting a heavy-traffic SU), then
the dynamics of the system state in (2) still holds here, i.e.,
Sn+1 = (Sn+an(1−Sn)−1)+,∀n ∈ {1, · · · , N−1}, and we
define the whole system state in time slot n as (Sn, Xn, Yn)
similarly as in Section IV. The problem formulation turns
out to be the same as Problem P1. As a result, the optimal
admission policy can also be computed similarly as Algorithm
1.

1) Stationary Admission Policy under Static Pricing: When
we analyze the static pricing for this general case, a new
challenge is to understand that under which combination
of system parameters the stationary admission policies are
optimal, which is different from those in Subsection IV-C.
Next we take the “Heavy-Priority Admission Policy” as an
example, and derive the condition of the parameters pl, ph,
rl, and rh, under which the stationary admission policy is
optimal under static pricing.

Proposition 6: The optimal policy for solving the revenue
maximization Problem P1 degenerates to the heavy-priority
stationary admission policy when price ratio between the
heavy-traffic SU and the light-traffic SU is larger than a
threshold θHPth (pl, ph), i.e.,

rh/rl > θHPth (pl, ph), (46)

where the threshold ratio θHPth (pl, ph) can be determined by
solving the following:

rh+R̄∗n+M = rl+R̄∗n+1,∀n ∈ {1, 2, · · · , N−M+1}. (47)

The proof of Proposition 6 is given in Appendix I. We
give the proof sketch as follows. First, we derive the expected
revenue R̄∗n as a function of rl, rh, pl, ph, given the heavy-
priority stationary admission policy. Second, we determine
rh/rl in terms of pl, ph, and n, by plugging R̄∗n+1 and
R̄∗n+M into the condition (47), i.e., rh/rl = f(pl, ph, n).
Third, we denote f(pl, ph, n) as θHPth (pl, ph, n), and derive
the final threshold θHPth (pl, ph) by optimizing θHPth (pl, ph, n)

over n ∈ {1, 2, · · · , N − M + 1}. It thus follows that the
heavy-priority stationary admission policy is optimal to solve
the operator’s revenue maximization problem if (46) holds.
Proposition 6 shows that our analysis in Section IV also
applies to the general case. We can also derive the threshold
condition for the light-priority admission policy by considering
R̄∗n+1 ≤ rh+ R̄∗n+M ≤ rl+ R̄∗n+1, and the light-dominant ad-
mission policy by considering rh + R̄∗n+M < R̄∗n+1 similarly.
The related analysis are similar to Theorem 1. We skip the
detailed analysis due to space constraints.

2) Dynamic Pricing and Performance Evaluation: The
analysis under dynamic pricing is also similar to that in Section
V, where we decompose the problem into three subproblems
in each time slot. We show the main result in the following
proposition, by focusing on the heavy-priority strategy for the
illustration purpose.

Proposition 7: Given an arbitrary value of spectrum oc-
cupancy M , the optimal dynamic pricing under the heavy-
priority strategy is the same as that in Proposition 3 and Table
IV, once we replace R̄∗n+1 − R̄∗n+2 by R̄∗n+1 − R̄∗n+M .

The proof of the proposition is given in Appendix J.
Proposition 7 shows that the previous analysis for dynamic
pricing can be directly extended to the arbitrary occupancy
case.

B. Extension to Multiple Types of SUs

1) Model and Problem Formulation: In this subsection, we
further extend the analysis in Sections IV to V and Subsection
VI-A to the case with a total of I types of SUs seeking
for spectrum access, including one type of light-traffic SUs
and I − 1 types of heavy-traffic SUs who occupy 2, 3, · · · , I
consecutive time slots, respectively. We use I = {1, 2, · · · , I}
to denote the set of SU types. To analyze the stationary
admission policy, we need to compare a total of I + 1
admission choices (including no admission) as in the analysis
in Section IV and Subsection VI-A. The difference is that
there are two revenue constraints for each policy in Section
IV and Subsection VI (e.g., (10) and (11)), while there are
I+1 revenue constraints here. We continue the procedure and
derive the associated thresholds, then determine the stationary
admission policy by comparing the price relations with those
thresholds.

More specifically, we define the prices charged to all types
of SUs as R = {ri,∀i ∈ I}, where ri is the price charged to
a type-i SU for using the spectrum resource. Let the demand
probabilities of all types of SUs be P = {pi,∀i ∈ I}, and
the realizations of all types of SUs’ demands in time slot n
be X

(i)
n ,∀i ∈ I, n ∈ N . Given ri ∈ R and pi ∈ P , the

expected total revenue in time slot n is the summation of the
immediate revenue (as a result of the immediate action an)
and the expected future revenue R̄∗n+1(Sn+1) (if an = 0 with
no admission) or R̄∗n+i(Sn+i) (if an = i, admitting a type-i
SU), considering all possible SU demands (X

(1)
n , · · · , X(I)

n )
in time slot n. The detailed expression is given in (48).

At the beginning of time slot n, we determine the op-
timal admission decision by comparing the total revenue
of admitting a particular type of SU, which involves both
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Rn(Sn, X
(1)
n , · · · , X(I)

n , an)

=
I∏
i=1

(1− pi)[0 + R̄∗n+1(Sn+1)] +
I∑
i=1

pi
I∏
j 6=i

(1− pj)[(0 + R̄∗n+1(Sn+1)) · 1{an=0} + (ri + R̄∗n+i(Sn+i)) · 1{an=i}]

+
I∑
i=1

I∑
j 6=i

pipj
I∏

k 6=i,j
(1− pk)[(0 + R̄∗n+1(Sn+1)) · 1{an=0} + (ri + R̄∗n+i(Sn+i)) · 1{an=i} + (rj + R̄∗n+j(Sn+j)) · 1{an=j}]

+ · · ·+
I∏
i=1

pi

(
(0 + R̄∗n+1(Sn+1)) · 1{an=0} +

I∑
i=1

(ri + R̄∗n+i(Sn+i)) · 1{an=i}

)
. (48)

the immediate revenue ri and the maximum expected future
revenue R̄∗n+i(Sn+i). Given SUs’ demands in time slot n, if
the optimal decision is no admission (an = 0) due to a more
profitable type of SU in the next time slot, the total revenue
in time slot n is 0 + R̄∗n+1(Sn+1). To summarize, the optimal
decision in time slot n is

a∗n = arg max
an∈I∪{0}

{
0 + R̄∗n+1(Sn+1),

(ri + R̄∗n+i(Sn+i)) · 1{X(i)
n =1},∀i ∈ I}. (49)

The above argument reveals a backward induction algorithm
of determining the optimal admission decision in each time
slot, which is similar to Algorithm 1. We are interested in the
optimality of the stationary admission policies as discussed in
Subsection IV-C.

2) Stationary Admission Policies under Static Pricing: We
first consider a type-i and a type-j SU (i > j > 1) who seek to
occupy arbitrarily consecutive time slots i and j, respectively.
In this case, the priority of admitting a particular type of SUs
depends on the values of ri+R̄∗n+i, rj+R̄∗n+j , and 0+R̄∗n+1.
For a particular time slot n, for example, if ri + R̄∗n+i > rj +
R̄∗n+j > 0+R̄∗n+1, we prefer to serve the type-i SU type rather
than the type-j SU (i.e., the admission priority follows Λ(i) >
Λ(j) > Λ(0)). By specifying the values of an according to
this admission priority in (48), we determine the differences
R̄∗n+j − R̄∗n+i and R̄∗n+1 − R̄∗n+j similarly as Theorem 1 and
Proposition 6. The threshold that guarantees the condition ri+
R̄∗n+i > rj+R̄∗n+j > 0+R̄∗n+1 can be derived by solving this
condition. Further, by optimizing the derived threshold over all
time slots n ∈ N , we derive the final threshold that guarantees
the optimality of the admission priority Λ(i) > Λ(j) > Λ(0)
for all time slots. Hence, this admission priority becomes one
of the stationary admission policies. Similarly, the thresholds
for the other five admission priorities can be determined by
solving the corresponding revenue conditions.

The above discussions can be generalized to the case of
multiple types of SUs as follows. For a particular time slot n,
for example, if the revenue conditions satisfy rI + R̄∗n+I >
rI−1 + R̄∗n+I−1 > · · · > r1 + R̄∗n+1 > 0 + R̄∗n+1, the
admission priority follows Λ(I) > Λ(I − 1) > · · · >
Λ(1) > Λ(0). By specifying the values of an according to
this admission priority in (48), we determine the difference
R̄∗n+j − R̄∗n+I ,∀j ∈ {1, · · · , I − 1} similarly as Theorem 1
and Proposition 6, respectively. We then proceed to derive the
thresholds such that the revenue conditions hold for all time
slots. These thresholds guarantee that the admission priority

Λ(I) > Λ(I−1) > · · · > Λ(1) > Λ(0) is optimal for all time
slots, and hence it becomes a stationary admission policy.

Proposition 8: Given the set I of I types of SUs, there
are (I + 1)! admission priorities. For each admission priority,
there exist thresholds of the price ratios such that the optimal
admission priority for a time slot is optimal for all time slots
(corresponding to an optimal stationary admission policy).

The proof of Proposition 8 is given in Appendix K.
Proposition 8 shows that the threshold-based stationary policy
still holds in the general scenario, and there exist (I + 1)!
thresholds9 for all types of SUs I, which are completely
determined by the values of {0 + R̄∗n+1, ri + R̄∗n+i,∀i ∈ I}
in each time slot. Recall that in Subsection IV-C, we should
have (2 + 1)! stationary admission policies. However, due to
the fact r1 + R̄∗n+1 > 0 + R̄∗n+1, finally we have a total of
(2+1)!

2! = 3 stationary admission policies.
3) Optimal Dynamic Pricing and Dynamic Admission: In

the dynamic pricing setting, the joint pricing and admission
problem in time slot n can be formulated similarly as Problem
P3 in Section V, by changing the objective function to (48).
Since there are I + 1 possible revenues in (49) and we need
to determine their value orders, there are (I + 1)! admission
strategies (admission priorities) as in Proposition 8. We follow
the same pricing-admission decomposition procedure to trans-
form the joint problem into (I+1)! subproblems corresponding
to the (I + 1)! admission strategies in this time slot. As such,
we can also derive the optimal pricing for maximizing the
revenue in each time slot by solving those subproblems as
we did in Section V, and then choose the admission strategy
that leads to the largest revenue as shown in Algorithm 2.
The analysis procedure is identical with that in the previous
scenario. The only difference is that there are I rather than two
constraints (revenue conditions) in each optimization problem
when assuming a particular admission strategy, hence it will be
more complicated to optimize the prices in each subproblem.

VII. SIMULATION RESULTS

In this section, we provide the simulation results to illustrate
our key insights regarding the performances of the dynamic
admission control under both static pricing and dynamic
pricing. We first illustrate the stationary admission policies
for the dynamic admission control under static pricing and

9To determine the specific admission strategy (priority) in each time slot,
we need to sort the I+ 1 revenues in (49) to the corresponding order. Hence,
we have a I + 1 permutation of I + 1, which involves (I + 1)! admission
strategies (priorities).
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Fig. 4. Optimal choices of admission policies for different values of
elasticity parameters kl and kh. The yellow (Light-Dominant Admission
Policy), cyan (Light-Priority Admission Policy), and blue (Heavy-Priority
Admission Policy) regimes represent three stationary admission policies, i.e.,
I, II, and IV regimes in Fig. 2, respectively. The brown (Nonstationary Policy)
regime requires “Algorithm 1” to compute the optimal policy.

dynamic pricing, respectively. We then compare the revenue
improvement of dynamic pricing over static pricing under a
wide range of system parameters.

A. Optimal Static Pricing and Stationary Admission Policy

In Subsection IV-D, we derived the optimal static pricing by
first assuming that one of the stationary admission policies is
optimal. Recall that the three conditions in Theorem 1 are
characterized by the price ratio rh/rl. Given any demand
elasticities kl and kh (hence any rh/rl relation with respect to
pl and ph), it is natural to ask whether the optimal static pricing
satisfies one of the conditions in Theorem 1, so that it is indeed
optimal to choose a stationary admission policy after we
optimize the static prices. Fig. 4 illustrates the corresponding
result, showing when a stationary admission control policy is
optimal under the optimal static prices for particular system
parameters kl and kh. As we can see, except the small brown
(Nonstationary Policy) regime which corresponds to regime
III in Fig. 2, the stationary policies are optimal in most cases.

B. Optimal Dynamic Pricing and Stationary Admission Policy

In Subsection V-C, we have shown that in the most general
case of dynamic pricing and dynamic admission control,
the optimal admission strategies in different time slots may
be different. On the other hand, it would be interesting to
study under what system parameters the optimal admission
decisions of different time slots (under dynamic pricing) will
coincide with one of the stationary admission policies defined
in Table II.

Recall that in our system model, as long as we adopt the
linear demand functions, the system only has two parameters
kl and kh, and the other parameters (e.g., probabilities pl and
ph) are determined by kl and kh. Fig. 5 illustrates the optimal
admission and pricing decisions under dynamic pricing. We
can see that the optimal admission strategies in Algorithm
2 degenerate to stationary admission policies in most cases,
and it is only optimal to switch between different admission
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Fig. 5. Optimal admission policies under dynamic pricing over N = 100
time slots. The yellow (LD Policy and Dynamic Pricing), cyan (LP Policy
and Dynamic Pricing), and blue (HP Policy and Dynamic Pricing) regimes
are the three stationary admission policies, i.e., I, II, and IV regimes in Fig.
2, respectively. The brown (Nonstationary Policy) regime requires Algorithm
2 to compute the optimal policy.

strategies (HP, LD, and LP) in a small regime (the brown
regime in Fig. 5).

Observation 1: Under a wide range of system parameters
kl and kh, the optimal admission decisions developed in
Algorithm 2 (with the optimized optimal dynamic prices)
degenerate to stationary admission policies over all time slots.

When the stationary admission policy is optimal, we have
the following claims.
• If light-traffic SUs are much more price-sensitive than

heavy-traffic SUs (i.e., kl is significantly larger than kh),
the optimal dynamic pricing degenerates to the heavy-
priority admission policy which is stationary over time.

• If heavy-traffic SUs are much more sensitive to prices
than light-traffic SUs (kl is significantly less than kh),
the optimal dynamic pricing degenerates to the light-
dominant admission policy which is stationary over time.

• If both light- and heavy-traffic SUs’ sensitivities kl and
kh are comparable, the optimal dynamic pricing degen-
erates to the light-priority admission policy which is
stationary over time.

C. Performance Comparison of Optimal Dynamic Pricing
with Optimal Static Pricing

In addition to the optimal pricing and admission policies,
it is also important to compare the performance of dynamic
pricing with that of static pricing. The key benefit of static
pricing is that it does not change over time. Unlike static
pricing, the advantage of dynamic pricing is to achieve the
maximum operator revenue. However, dynamic pricing has
a higher implementational complexity. Next, we compare
the optimal revenue of optimal dynamic pricing obtained in
Theorem 2 with that of optimal static pricing obtained in
Subsection IV-D. Fig. 6 shows the revenue improvement of
dynamic pricing over static pricing under different demand
elasticity values (kl and kh). Here, we set the total time
slots N = 100, so that the time horizon is long enough to
approximate the time-average performance.
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Fig. 6. The revenue improvement of dynamic pricing over static pricing for
different kl and kh distributions.

Observation 2: As shown in Fig. 6, dynamic pricing out-
performs static pricing by more than 30% when both types
of SUs are sensitive to prices (i.e., both kl and kh are high).
When both types of SUs are not price-sensitive (i.e., kl and
kh are low), dynamic pricing only leads to limited revenue
improvement (less than 10%) than static pricing, and it is better
to adopt static pricing due to its low complexity.

The above comparison is based on the assumption that
heavy-traffic SUs request two consecutive time slots. In Sec-
tion VI, we have extended the model to arbitrary spectrum
occupancies. Hence, it is also interesting to show the com-
parison with more spectrum occupancies. Fig. 7 shows the
revenue improvement of dynamic pricing over static pricing
with three consecutive time slots occupancy of heavy-traffic
SUs (M = 3). We can see that dynamic pricing significantly
outperforms static pricing when SUs’ demands are highly
elastic, which is similar to Observation 2. Comparing with Fig.
6 with M = 2, the difference here is that a larger value of
M reduces the benefit of dynamic pricing. For example, when
kl ∈ (90, 120) and kh ∈ (60, 70), the revenue improvement of
dynamic pricing over static pricing is more than 30% in Fig. 6,
but is only around 10% in Fig. 7. The intuition is that a larger
spectrum occupancy reduces the flexibility of dynamic pricing,
since more slots will be occupied and cannot be dynamically
allocated to new demands. Consider the extreme case M = N ,
then all slots will be occupied when admitting a heavy-traffic
SU initially and dynamic pricing degenerates to static pricing.
This implies that as the channel occupancy gap between the
two SU types increases, it becomes increasingly attractive for
the operator to choose the simple static pricing approach in
order to achieve a close-to-optimal revenue.

D. Performance Comparison with a Related Study

We numerically compare the revenue obtained by our policy
with that obtained by the heuristic switch-over policy moti-
vated by [27], which in our context admits a heavy-traffic
SU only if half of the price charged to heavy-traffic SUs is
no smaller than the price charged to light-traffic SUs, i.e.,
rh/2 ≥ rl. The result (in Appendix L due to page limit) shows
that the smaller difference of the demand elasticities between
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Fig. 7. The revenue improvement of dynamic pricing over static pricing
for different kl and kh distributions. Here, the spectrum occupancy M = 3,
while M = 2 in Fig. 6.

SUs will lead to larger revenue improvements. In general, our
proposed scheme outperforms the policy in [27] significantly
in terms of the obtained revenue.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we consider a spectrum database operator’s
revenue maximization problem through joint spectrum pricing
and admission control. We incorporate the heterogeneity of
SUs’ spectrum occupancy and demand uncertainty into the
model, and consider both the static and the dynamic pricing
schemes. In static pricing, we show that stationary admission
policies can achieve optimality in most cases. In dynamic
pricing, we compute optimal pricing through a proper pricing-
and-admission decomposition in each time slot. Furthermore,
we show that dynamic pricing significantly improves revenue
over static pricing when SUs are sensitive to prices change.
Finally, we show that when the gap of the channel occupation
length between two types of SUs increases, the gap between
static pricing and dynamic pricing shrinks.

In the future work, we will consider the pricing and ad-
mission control of multiple channels. In this case, SUs may
request different spectrum-time chunks in a two-dimensional
time and frequency plane. One challenge is how to solve this
Markov Decision Process (MDP), where the system state and
state dynamics are much more complicated. We may further
consider delay tolerant SUs who are willing to wait in queues
if not admitted immediately, and use the queueing based MDP
to analyze the pricing and admission decisions for such a
scenario.
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APPENDIX A
IMPACT OF WIRELESS CHANNEL CONDITIONS

In this section, we incorporate the wireless channel condi-
tions into our model. We generalize our model based on such
a new consideration. We show that as the average channel gain
increases, SUs are more willing to buy the spectrum for any
given price, and accordingly motivates the operator to increase
the price to increase its revenue.

Now we introduce the detailed channel model. We assume
a block-fading channel, where an SU’s channel condition
remains fixed during a time slot, and can change independently
across time slots. We assume that different SUs’ channel

processes are statistically identical, but different SUs will still
have different channel realizations. Let Ml and Mh be the
sets of light-traffic and heavy-traffic SUs, respectively. We
denote the channel realization of SU m in time slot n as
Zm[n], where m ∈Ml ∪Mh and n ∈ N .

Given the channel realization Zm[n] in time slot n and the
length of each time slot T , the achievable total transmitted
data (in nats) of a light-traffic SU m ∈Ml in time slot n is

δm = Tw ln
(

1 + PmaxZm[n]
n0w

)
,∀m ∈Ml. (50)

Here w is the channel bandwidth, Pmax is SU’s maximum
transmission power, n0 is the noise power per unit bandwidth.
Similarly, given the channel realizations Zm[n] and Zm[n+1]
in time slots n and n+1, the achievable total transmitted data
(in nats) of a heavy-traffic SU m ∈ Mh by occupying time
slots n and n+ 1 is

δm = Tw ln
(

1 + PmaxZm[n]
n0w

)
+ Tw ln

(
1 + PmaxZm[n+1]

n0w

)
,∀m ∈Mh.

(51)

We further denote the light-traffic SU’s utility in time slot
n as

Um(Zm[n]) = η · δm,m ∈Ml, (52)

where η is SUs’ evaluation for per unit data. A heavy-traffic
SU’s utility in time slots n and n+ 1 is10

Um(Zm[n], Zm[n+ 1]) = η · δm,m ∈Mh. (53)

Next we consider the impact of channel conditions on
SUs and the operator, respectively. An SU’s wireless channel
condition will influence its achievable data volume and utility,
hence will determine whether he is willing to accept the
price and request spectrum access. Meanwhile, the demand
probability of each type of SUs (i.e., those who are willing
to accept the prices) will influence the operator’s expected
revenue. Hence, the operator needs to consider SUs’ evaluation
of the channel conditions and their aggregate demand when
optimizing the pricing. Next we discuss these issues in details.

From an SU’s point of view, it will choose to request
the spectrum access if and only if its utility is no less than
the price (rl or rh) charged by the operator in time slot n.
More specifically, for light-traffic and heavy-traffic SUs, the
conditions for them to request the channel access are

Um(Zm[n]) ≥ rl,∀m ∈Ml and Um(Zm[n]) ≥ rh,∀m ∈Mh,
(54)

respectively. If there are two light-traffic SUs arriving in the
same time slot, it is possible that one SU requests access (as
its channel is good) and the other SU does not request (as its
channel is bad). This reflects the impact of channel conditions
on the SUs’ decisions.

From the operator’s point of view, the operator com-
putes the admission policy offline, based on the statistics
of SUs’ ergodic channel processes (which are assumed to
be statistically identical across all SUs). More specifically,
in time slot n, each type of SUs’ utilities follow some

10This is due to the consecutive occupancy of a heavy-traffic SU if admitted.
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distribution, due to the random channel realizations of the
SUs. Such a distribution is a function of the price. We thus
define the demand probability as a function of the aggregate
demand level and the price. That is, we denote the de-
mand probability as φi

(
E{Zm[n],∀m∈Mi}Um(Zm[n]), ri

)
, i ∈

{l, h}, which is increasing in the average utility level
E{Zm[n],∀m∈Mi}Um(Zm[n]) and decreasing in the operator’s
price ri. We use the parameter k̂i to denote the price sensitivity
with respect to the price ri, and the parameter ki to capture
the price sensitivity with respect to both the channel statistics
and price. Similar to [1, Ch.3], our paper presents a linear
demand probability function, i.e.,

φi
(
E{Zm[n],∀m∈Mi}Um(Zm[n]), ri

)
= 1

E{Zm[n],∀m∈Mi}Um(Zm[n])

(
E{Zm[n],∀m∈Mi}Um(Zm[n])−k̂iri

)
= 1− k̂i

E{Zm[n],∀m∈Mi}Um(Zm[n])ri = 1−kiri, i ∈ {l, h},m ∈Mi,

(55)
Here, we use a proper scaling factor
1/E{Zm[n],∀m∈Mi}Um(Zm[n]) to ensure that the demand
probability is 1 when the price ri is 0. (In other words, we
consider the case where there are always demands when there
is no cost of using the spectrum.) As we can see, the demand
elasticity ki has taken into account the impact of the channel
statistics.

[1] A. Mas-Colell, M. D. Whinston, and J. R. Green,
“Microeconomic Theory,” Oxford Univ. Press, New York,
1995.

Next, we show the simulation results on the impact of the
wireless channel states. Recall that our theoretical results apply
to the case where the arrival process of each type of SUs
belongs to the class of processes with at least one SU arrival
at the beginning of each time slot. In the simulations, we
consider a special case of the deterministic arrival process,
such that there is exactly one heavy-traffic SU and one light-
traffic SU arriving at the beginning of each time slot. Each SU
has a different channel realization and may or may not request
the spectrum, depending on the relationship between its utility
obtained by using the channel and the charged price. More
specifically, the system works as follows. At the beginning of
each time slot, SUs arrive and observe their channel states.
Then each SU makes the request decision according to its
own channel state and the charged price. If there is one or
more SUs requesting to access the channel in a time slot,
the operator makes the admission decision. In this numerical
example, we fix the price ratio such that the stationary heavy-
priority admission policy is optimal for all time slots, and
illustrate the results in Figure 1. Subfigure 1 shows the random
channel realizations over time, which influence SUs’ request
decisions over time in Subfigure 2. Subfigure 3 shows the
operator’s admission decisions accordingly. We can see that
the wireless channel states indeed affect SUs’ requests for the
channel after arriving. By comparing the first two subfigures
that have similar patterns, we can see that better channel
conditions lead to more requests. The operator’s admission
decisions verify the optimality of the stationary heavy-priority
admission policy, which admits a heavy-traffic SU whenever
possible, and only admits a light-traffic SU when there is only

a light-traffic SU.
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Fig. 8. Impact of the wireless channel states. The first subfigure shows
the channel states of the two types of SUs, which is randomly generated
and belongs to [0, 2]. The second subfigure shows the request decisions after
observing the channel states, where the heavy-traffic SU needs to consider
the channel gains in two consecutive time slots. The last subfigure shows the
operator’s optimal admission decisions, where 2 represents admitting a heavy-
traffic SU, 1 represents admitting a light-traffic SU, and 0 represents admitting
nobody. Notice that if a heavy-traffic SU is admitted in a time slot, then the
next time slot cannot admit any SU, due to the consecutive occupancy of two
adjacent time slots by the admitted heavy-traffic SU.

APPENDIX B
PROOF FOR PROPOSITION 1

Proposition 1: Algorithm 1 solves Problem P1 and com-
putes the optimal admission policy π∗.

Proof: The optimal admission policy π∗ is derived by
using the standard backward induction algorithm for solving
dynamic programming problems. According to the principle
of optimality in the standard textbook [24], we know that the
backward induction algorithm in Cases I-III of Algorithm 1 is
optimal for solving our dynamic programming problem.

APPENDIX C
PROOF FOR THEOREM 1

Theorem 1 (Optimality of Stationary Admission Policies):
A stationary admission policy becomes the optimal policy to
solve Problem P1 if one of the following conditions is true:
• The Heavy-Priority admission policy aHP∗n in Tab.II–HP

for all n ∈ N is optimal if rh/rl ≥ 2pl+(1−pl)/(1−ph).
• The Light-Priority admission policy aLP∗n in Tab.II–LP

for all n ∈ N is optimal if pl ≤ rh/rl ≤ 1 + pl.
• The Light-Dominant admission policy aLD∗n in

Tab.II–LD for all n ∈ N is optimal if rh/rl < pl.
In the following, we will prove Theorem 1 item by item

(from Item 1 up to Item 3).

A. Proof for Item 1 in Theorem 1

Item 1: The Heavy-Priority admission policy aHP∗n in
Tab.II–HP for all n ∈ N is optimal if rh/rl ≥ 2pl + (1 −
pl)/(1− ph).
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In order to prove Item 1, we start with the following lemma.

Lemma 1: The optimal policy of solving Problem 1 is the
stationary policy in (Tab.II–HP : aH∗n ), if ∀n = 1, ..., N − 1,

rh
rl
> θHPth (n), (56)

where the threshold,

θHPth (n) =
1 + ph + pl(1− ph) + 2plph(−ph)N−n−1

1 + ph(−ph)N−n−1
. (57)

Proof: In the last section, we have defined the maxi-
mized expected future revenue from time slot n to N as
EXn,Yn [R∗n(Sn, Xn, Yn)]. Since the expectation is taken over
all the user arrival combinations (Xn, Yn), we rewrite it
as R̄∗n(Sn),∀n ∈ N for simplification. Besides, when the
channel is occupied, i.e., Sn = 1, we have a∗n = 0 for any
value of Xn, Yn, and n. So we will only focus on the case
(S,X, Y ) = (0, X, Y ) in the following. Thus we only need to
consider R̄∗n(0),∀n ∈ N .

Note that the boundary condition in (4) is R̄∗N+1(·) = 0 for
any values of SN+1, XN+1, and YN+1. Besides, R̄∗N (0) =
plrl with respect to XN for any value of YN . Then for 1 ≤
n ≤ N − 1, we have

R̄∗n(0) = (1− pl)(1− ph)(0 + R̄∗n+1(0))

+ (1− pl)ph(rh + R̄∗n+2(0))

+ pl(1− ph)(rl + R̄∗n+1(0)) + plph(rh + R̄∗n+2(0))

= (1− ph)R̄∗n+1(0)

+ phR̄
∗
n+2(0) + plrl(1− ph) + phrh. (58)

Rearranging the terms of this equality yields

R̄∗n(0)− R̄∗n+1(0)− plrl(1− ph) + phrh
1 + ph

= −ph
(
R̄∗n+1(0)− R̄∗n+2(0)− plrl(1− ph) + phrh

1 + ph

)
= −p2

h

(
R̄∗n+2(0)− R̄∗n+3(0)− plrl(1− ph) + phrh

1 + ph

)
= · · ·

= (−ph)N−n
(
R̄∗N (0)− R̄∗N+1(0)− plrl(1− ph) + phrh

1 + ph

)
.

(59)
From (59), we derive the similar equations for n + 1, n +
2, · · · , N as follows.

R̄∗n+1(0)− R̄∗n+2(0)− plrl(1− ph) + phrh
1 + ph

= (−ph)N−n−1
(
R̄∗N (0)− R̄∗N+1(0)− plrl(1− ph) + phrh

1 + ph

)
.

...

R̄∗N (0)− R̄∗N+1(0)− plrl(1− ph) + phrh
1 + ph

= (−ph)0
(
R̄∗N (0)− R̄∗N+1(0)− plrl(1− ph) + phrh

1 + ph

)
.

(60)

By adding the above equations ((59) and (60)) and combining
the terms, we can further derive the general expression of
expected future revenue.

R̄∗n(0) = R̄∗N+1(0) + (N − n+ 1)
plrl(1− ph) + phrh

1 + ph

+
2plrlph − phrh

1 + ph

1− (−ph)N−n+1

1 + ph

= (N − n+ 1)
plrl(1− ph) + phrh

1 + ph

+
2plrlph − phrh

1 + ph

1− (−ph)N−n+1

1 + ph
. (61)

It is easy to check that when n = N and n = N + 1,
the expected revenue also satisfy (61), so (61) holds for all
1 ≤ n ≤ N + 1.

Substitute (61) into the heavy-priority admission condition
(6), for 1 ≤ n ≤ N − 1, we have

rh
rl
≥ 1 + ph + pl(1− ph) + 2plph(−ph)N−n−1

1 + ph(−ph)N−n−1
. (62)

This completes the proof.
With Lemma 1, we proceed to refine the threshold. The

result is shown in the following lemma.
Lemma 2: When the price ratio rh/rl is larger than the

threshold θHPth = 2pl + 1−pl
1−ph , the benefit of serving a

deterministic heavy-traffic SU is strictly larger than serving
one deterministic and another possible one light-traffic SU
for every time slot, i.e., the heavy-priority admission strategy
holds for all time slots.

Proof: As shown in Lemma 1, for 1 ≤ n ≤ N − 1,

θHPth (n) =
1 + ph + pl(1− ph) + 2plph(−ph)N−n−1

1 + ph(−ph)N−n−1
.

We consider two regimes as follows, depending on whether
N − n− 1 is even or odd, respectively.

• Even-numbered Regime: N − n− 1 = 2k, k ∈ N, then

θHPth (k)e =
1 + ph + pl(1− ph) + 2plph(−ph)2k

1 + ph(−ph)2k

= 2pl +
(1− pl)(1 + ph)

1 + (ph)2k+1
.

(63)
First, we consider the continuous version θHPth (x)e, and
take the first-order derivative w.r.t. x, i.e.,

(θHPth )′(x)e = −
2(1− pl)(1 + ph)p2x+1

h ln ph

(1 + p2x+1
h )2

≥ 0.

(64)
So θHPth (x)e is nondecreasing in x. So, let k →∞11, we
have θHPth (k)max

e = 2pl+(1−pl)(1+ph). Also note that
when k = 0, θHPth (k)min

e = 1 + pl.

11Since the available number of time slots is a finite number N , k cannot be
∞ accordingly. However, we want to derive the upper bound of θHP

th (n) with
an either big or small N . So, in order not to lose generality, we let k →∞
to get a big bound as much as possible. We will show that eventually the
upper bound is attained at a finite number which only depends on N .
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• Odd-numbered Regime: N −n−1 = 2k+ 1, k ∈ N, then

θHPth (k)o =
1 + ph + pl(1− ph) + 2plph(−ph)2k+1

1 + ph(−ph)2k+1

= 2pl +
(1− pl)(1 + ph)

1− p2k+2
h

.

(65)
Similarly, consider the continuous version θHPth (x)o, and
take the first-order derivative w.r.t. x, i.e.,

(θHPth )′(x)o =
2(1− pl)(1 + ph)p2x+2

h ln ph

(1− p2x+2
h )2

≤ 0. (66)

So θHPth (x)o is non-increasing in x. One can see that
when k = 0, we have θHPth (k)max

e = 2pl + 1−pl
1−ph ; and

when k →∞, θHPth (k)min
e = 2pl + (1− pl)(1 + ph).

Since 2pl + 1−pl
1−ph ≥ 2pl + (1 − pl)(1 + ph) ≥ 1 + pl for

pl, ph ∈ [0, 1], we conclude that the upper bound for the
threshold θHPth (n) is θHPth = 2pl + 1−pl

1−ph , as desired.
We can also see the upper bound is attained at n = N − 2

(i.e., k = 0 in the odd-numbered regime), which is completely
determined by the number of time slots N .

With Lemma 1 and Lemma 2,12 we conclude that Item 1 in
Theorem 1 readily holds. This completes the proof for Item
1.

B. Proof for Item 2 in Theorem 1

Item 2: The Light-Priority admission policy aLP∗n in
Tab.II–LP for all n ∈ N is optimal if pl ≤ rh/rl ≤ 1 + pl.

Proof: Also, the boundary condition in (4) is R̄∗N+1(·) =
0 for any values of SN+1, XN+1, and YN+1. Besides,
R̄∗N (0) = plrl with respect to XN for any value of YN . Then
for 1 ≤ n ≤ N − 1, we have

R̄∗n(0) = (1− pl)(1− ph)(0 + R̄∗n+1(0))

+ (1− pl)ph(rh + R̄∗n+2(0))

+ pl(1− ph)(rl + R̄∗n+1(0) + plph(rl + R̄∗n+1(0))

= (1− ph + plph)R̄∗n+1(0) + (1− pl)phR̄∗n+2(0)

+ plrl + (1− pl)phrh
= R̄∗n+1(0) + (−ph + plph)(R̄∗n+1(0)− R̄∗n+1(0))

+ plrl + (1− pl)phrh.
(67)

Rearranging these terms yields

R̄∗n(0)− R̄∗n+1(0)

= (−ph + plph)(R̄∗n+1(0)− R̄∗n+2(0))

+ (1− ph + plph)
plrl + (1− pl)phrh

1− ph + plph
. (68)

12Here the two lemmas are just used to prove Item 1 and only appear in
here. They have nothing to do with the lemmas in the submission.

Then,

R̄∗n(0)− R̄∗n+1(0)− plrl + (1− pl)phrh
1− (−ph + plph)

= (−ph + plph)
(
R̄∗n+1(0)− R̄∗n+2(0)− plrl+(1−pl)phrh

1−(−ph+plph)

)
= (−ph + plph)2

(
R̄∗n+2(0)− R̄∗n+3(0)− plrl+(1−pl)phrh

1−(−ph+plph)

)
= · · ·

= (−ph + plph)N−n
(
R̄∗N (0)− R̄∗N+1(0)− plrl+(1−pl)phrh

1−(−ph+plph)

)
= (−ph + plph)N−n

(
plrl − plrl+(1−pl)phrh

1−(−ph+plph)

)
= (−ph + plph)N−n

(
(−ph+plph)(rh−plrl)

1−(−ph+plph)

)
.

(69)
And we can further derive the aggregate expected future
revenue, which is given by

R̄∗n(0) = R̄∗N+1(0) + (N − n+ 1)
plrl + (1− pl)phrh
1− (−ph + plph)

+

(
(−ph + plph)(rh − plrl)

1− (−ph + plph)

)
·

(−ph + plph)(1− (−ph + plph)N−n+1)

1− (−ph + plph)
. (70)

Similarly, (70) holds for all 1 ≤ n ≤ N + 1.
By substituting (70) into the light-priority admission con-

dition 0 + R̄∗n+1(0) < rh + R̄∗n+2(0) < rl + R̄∗n+1(0), we
have

pl ≤
rh
rl
< 1 + pl. (71)

This completes the proof.

C. Proof for Item 3 in Theorem 1

Item 3: The Light-Dominant admission policy aLD∗n in
Tab.II–LD for all n ∈ N is optimal if rh/rl < pl.

Proof: The initial conditions are R̄∗N+1(0) = 0 and
R̄∗N (0) = plrl. For 1 ≤ n ≤ N − 1, we have

R̄∗n(0) = (1− pl)(1− ph)(0 + R̄∗n+1(0))

+ (1− pl)ph(0 + R̄∗n+1(0))

+ pl(1− ph)(rl + R̄∗n+1(0))

+ plph(rl + R̄∗n+1(0))

= R̄∗n+1(0) + plrl. (72)

It follows that

R̄∗n(0)− R̄∗n+1(0) = plrl. (73)

Further, we have

R̄∗n(0) = R̄∗N+1(0) + (N − n+ 1)plrl = (N − n+ 1)plrl.
(74)

for all 1 ≤ n ≤ N + 1.
Substitute (74) into the light-dominant admission condition

rh + R̄∗n+2(0) ≤ 0 + R̄∗n+1(0), we have
rh
rl
< pl. (75)

This completes the proof.
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As such, Item 1, Item 2, and Item 3 in Theorem 1 all holds.
We thus complete the proof for Theorem 1.

In the next three appendices, we will solve the problems
and prove the lemmas and propositions in the dynamic pricing
section. Notice that we keep the index of each lemma (resp.
proposition) the same as that in the submission.

APPENDIX D
PROOF FOR PROPOSITION 2

Proof: Given the case where the heavy-priority admission
policy is optimal, we revisit the proof for Item 1 in Theorem
1 to show Proposition 2. By setting n = 1 in (25), we
immediately have the closed-form total revenue R∗1(rl, rh).
Then we can optimize the static prices rl and rh with the
expression R∗1(rl, rh). This completes the proof.

APPENDIX E
THE SOLUTION TO PROBLEM 4

A. Problem 4: Optimal Pricing for time slot n under HP

The objective of Problem 4 (i.e., P4) may not be always
concave and thus Problem 4 is not a convex optimization
problem. Thus any solution satisfying KKT conditions may be
only a local optimum of Problem 4. Despite this, we solve the
problem analytically by following two procedures: we first find
all local optimum solutions satisfying KKT conditions, and
then compare these solutions to pick up the global optimum.

We introduce the dual variable µ = (µa, µ
L
l , µ

R
l , µ

L
h , µ

R
h )

(µ � 0), and the associated Lagrangian L : R×R×R5 → R
is given by

L(rHPl (n), rHPh (n),µ)

= R̄HPn (rHPl (n), rHPh (n))

+ µa ·
(
rHPh (n) + R̄∗n+2 − rHPl (n)− R̄∗n+1

)
+ µLl r

HP
l (n)

+ µRl (rmax
l − rHPl (n)) + µLhr

HP
h (n) + µRh (rmax

h − rHPh (n)).
(76)

The optimality conditions, i.e., Karush–Kuhn–Tucker condi-
tions (KKT), are given by (77), (78), (79), (80), and (81).

∂L(rHPl (n), rHPh (n),µ)

∂rHPl (n)

∣∣∣(rHP∗
l (n),rHP∗

h (n),µ∗) = 0, (77)

∂L(rHPl (n), rHPh (n),µ)

∂rHPh (n)

∣∣∣(rHP∗
l (n),rHP∗

h (n),µ∗) = 0, (78)

µ∗a ·
(
rHP∗h (n) + R̄∗n+2 − rHP∗l (n)− R̄∗n+1

)
= 0,

µL∗l rHP∗l (n) = 0, µR∗l (rmax
l − rHP∗l (n)) = 0,

µL∗h rHP∗h (n) = 0, µR∗h (rmax
h − rHP∗h (n)) = 0,

(79)

µ∗ � 0, (80)

rHP∗h (n) + R̄∗n+2 ≥ rHP∗l (n) + R̄∗n+1,

0 ≤ rHP∗l (n) ≤ rmax
l , 0 ≤ rHP∗h (n) ≤ rmax

h .
(81)

They are stationarity, complementary slackness, dual feasibil-
ity, and primal feasibility, respectively. With KKT conditions,
we can search for local optimum solutions to the constrained
optimization Problem 4. We still need to find the global
optimum by examining all local optima.

To find out an optimal solution to Problem 4, we need to
first examine the feasible region of this problem based on

any possible parameter values. Then we only need to check
whether all the possible extreme points and the interior points
satisfying KKT conditions to be local optima. We leverage
the proof by contradiction to exclude most extreme point
solutions, either with one or two active constraints. The results
can be shown in Lemma 3.

B. Proof for Lemma 3
Lemma 3: There are only three possible solutions satisfying

the KKT conditions of P4: the interior point solution IHP0 :(
rHPIl (n), rHPIh (n)

)
, and two extreme point solutions EHP1 :(

rHPEl (n), rHPEh (n)
)

and EHP2 :
(
rHPE

′

l (n), rHPE
′

h (n)
)
.

Proof: We first consider the interior point solution. In this
case, no constraints are active, i.e., all constraints are strictly
inequalities. The solution rHPIl (n), rHPIh (n) can be given by

(1−ph(rHP∗h (n)))(p′l(r
HP∗
l (n))rHP∗l (n)+pl(r

HP∗
l (n)))=0,

− p′h(rHP∗h (n))R̄∗n+1 + p′h(rHP∗h (n))R̄∗n+2

+ pl(r
HP∗
l (n))rHP∗l (n)(−p′h(rHP∗h (n)))

+ p′h(rHP∗h (n))rHP∗h (n) + ph(rHP∗h (n)) = 0,

µ∗ = 0.
(82)

The condition is that all constraints are strictly inequalities.
Then we consider the extreme point solutions. In this case,

at least one constraint is active (one or two here). We further
look at the feasible region F , which is composed of five line
segments. Then F 6= ∅ iff rmax

h ≥ R̄∗n+1 − R̄∗n+2 ≥ 0.
rHPh (n)

rHPl (n)

rHPh (n) = rHPl (n)+R̄∗n+1−R̄∗n+2

rHPh (n) = rmax
h

rHPl (n) = rmax
l

rmax
h

rmax
l

0

F
F

rHPh (n)

rHPl (n)

rHPh (n) = rHPl (n)+R̄∗n+1−R̄∗n+2

rHPh (n) = rmax
h

rHPl (n) = rmax
l

rmax
h

rmax
l

0

F

F

(1) We claim that there exist at most four intersection
points on the boundary. So there exist at most four extreme
point solutions with two active constraints (Exactly two dual
variables are strictly positive.).

(i). If R̄∗n+1 − R̄∗n+2 < rmax
h < rmax

l + R̄∗n+1 − R̄∗n+2,
there exist three intersection points. (rHPE

′

l (n), rHPE
′

h (n)) =
(0, R̄∗n+1−R̄∗n+2), (0, rmax

h ), and (rmax
h +R̄∗n+2−R̄∗n+1, r

max
h ),

the corresponding dual variables are (µ∗a > 0, µL∗l > 0),
(µL∗l > 0, µR∗h > 0), and (µ∗a > 0, µR∗h > 0).
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For (rHPE
′

l (n), rHPE
′

h (n)) = (0, R̄∗n+1 − R̄∗n+2), we have
ph(rHP∗h (n)) + µ∗a = 0 according to (78), which is a contra-
diction.

For (rHPE
′

l (n), rHPE
′

h (n)) = (0, rmax
l ), we have (1 −

ph(rHP∗h (n)))pl(r
HP∗
l (n)) + µHP∗l = 0 according to (77),

which is also a contradiction.
For (rHPE

′

l (n), rHPE
′

h (n)) = (rmax
h +R̄∗n+2−R̄∗n+1, r

max
h ),

we have{
µ∗a = p′l(r

HP∗
l (n))rHP∗l (n) + pl(r

HP∗
l (n)),

µR∗h = −p′h(rmax
h )(−rHP∗l (n) + pl(r

HP∗
l (n))rHP∗l (n)) + µ∗a.

(83)
So, we need to check whether (µ∗a > 0, µR∗h > 0) holds.

(ii). If rmax
h ≥ rmax

l + R̄∗n+1 − R̄∗n+2, there are two
intersection points (rHPE

′

l (n), rHPE
′

h (n)) = (rmax
l , rmax

h ),
(rmax
l , rmax

l + R̄∗n+1 − R̄∗n+2) and the dual variables are
(µR∗l > 0, µR∗h > 0), (µ∗a > 0, µR∗l > 0).

For (rHPE
′

l (n), rHPE
′

h (n)) = (rmax
l , rmax

h ), this is not
possible a solution since pl(r

max
l ) = pl(r

max
l ) = 0. Then

we have p′l(r
max
l rmax

l ) = µR∗l < 0 according to (77), which
is a contradiction.

For (rHPE
′

l (n), rHPE
′

h (n)) = (rmax
l , rmax

l +R̄∗n+1−R̄∗n+2),
note that pl(r

max
l ) = 0. We have (1 − ph(rHP∗h (n))) ·

(p′l(r
HP∗
l (n))rHP∗l (n)) − µa − µR∗l = 0 according to (77),

which is impossible since the three terms are all negative.
Conclusion: We thus conclude that the only possi-

ble extreme point solution with two active constraints is
(rHPE

′

l (n), rHPE
′

h (n)) = (rmax
h + R̄∗n+2 − R̄∗n+1, r

max
h ) such

that (83) holds.
(2) We consider only one active constraint.
(i). If R̄∗n+1− R̄∗n+2 < rmax

h < rmax
l + R̄∗n+1− R̄∗n+2, F is

a triangle.
Case 1: µ∗a > 0 and others are all 0. The solution

(rHPEl (n), rHPEh (n)) is given by

(1− ph(rHP∗h (n))) · (p′l(rHP∗l (n))rHP∗l (n)

+ pl(r
HP∗
l (n)))− µ∗a = 0,

− p′h(rHP∗h (n))R̄∗n+1 + p′h(rHP∗h (n))R̄∗n+2

+ pl(r
HP∗
l (n))rHP∗l (n)(−p′h(rHP∗h (n)))

+ p′h(rHP∗h (n))rHP∗h (n) + ph(rHP∗h (n)) + µ∗a = 0,

rHP∗h (n) + R̄∗n+2 = rHP∗l (n) + R̄∗n+1,

0 < rHP∗l (n) < rmax
l , 0 < rHP∗h (n) < rmax

h .
(84)

Case 2: µL∗l > 0 and others are all 0. This is impossible.
Case 3: µR∗h > 0 and others are all 0. rHPEh (n) = rmax

h ,
and rHPEl (n) is given by

p′l(r
HP∗
l (n))rHP∗l (n) + pl(r

HP∗
l (n)) = 0,

µR∗h = −p′h(rmax
h )(R̄∗n+1 − R̄∗n+2

+ pl(r
HP∗
l (n))rHP∗l (n)− rmax

h ) > 0.

(85)

Then R̄∗n+1−R̄∗n+2 > rmax
h −pl(rHP∗l (n))rHP∗l (n), however,

R̄∗n+1 − R̄∗n+2 < rmax
h − rHP∗l (n). This is a contradiction.

(ii). If rmax
h ≥ rmax

l +R̄∗n+1−R̄∗n+2, F is a trapezoid. Then
other than the above three cases, there is another case.

Case 4: µR∗l > 0 and others are all 0. Then pl(rmax
l ) = 0,

we have (1−ph(rHP∗h (n)))·(p′l(rHP∗l (n))rHP∗l (n))−µR∗l = 0

TABLE IV
OPTIMAL PRICING UNDER HEAVY-PRIORITY STRATEGY

R̄∗n+1 − R̄∗n+2

≤ 4kl−3kh
4khkl

 4kl−3kh
4khkl

,
2−
√

1+
kh
kl

kh

 ≥
2−
√

1+
kh
kl

kh

kh <
4kl
3

IHP
0 EHP

1 EHP
2

4kl
3
≤ kh < 3kl N./A. EHP

1 EHP
2

kh ≥ 3kl N./A. N./A. EHP
2

according to (77), which is impossible since the three terms
are all negative.

Conclusion: We conclude that the only possible
extreme point solution with one active constraints
(rHPEl (n), rHPEh (n)) is given by (84).

According to the above analysis, we conclude that
the solution has THREE cases: rHPIl (n), rHPIh (n)
given by (82), (rHPE

′

l (n), rHPE
′

h (n)) given by (83),
and (rHPEl (n), rHPEh (n)) given by (84) such that the
corresponding condition holds. This completes the proof.

C. Proof for Proposition 3

Proposition 3: The optimal pricing in time slot n under
the HP strategy is summarized in Table IV, which depends
on the values of R̄∗n+1 − R̄∗n+2 and kh/kl. The closed-form
optimal pricing solutions IHP0 , EHP1 , and EHP2 in Table IV
are explicitly given as follows, respectively.

Proof: We substitute pl(r
HP∗
l (n)) = 1 − klr

HP∗
l (n)

and ph(rHP∗h (n)) = 1 − khr
HP∗
h (n) into the above KKT

conditions. Then the KKT conditions become

khr
HP∗
h (n)(1− 2klr

HP∗
l (n))− µ∗a + µHP∗l − µR∗l = 0,

kh(R̄∗n+1 − R̄∗n+2 + (1− klrHP∗l (n))rHP∗l (n))

+ 1− 2khr
L∗
h (n) + µ∗a + µL∗h − µR∗h = 0,

µ∗a ·
(
rHP∗h (n) + R̄∗n+2 − rHP∗l (n)− R̄∗n+1

)
= 0,

µL∗l rHP∗l (n) = 0, µR∗l (rmax
l − rHP∗l (n)) = 0,

µL∗h rHP∗h (n) = 0, µR∗h (rmax
h − rHP∗h (n)) = 0,

µ∗ � 0,

rHP∗h (n) + R̄∗n+2 ≥ rHP∗l (n) + R̄∗n+1,

0 ≤ rHP∗l (n) ≤ rmax
l , 0 ≤ rHP∗h (n) ≤ rmax

h .
(86)

The solutions can be summarized as follows.
(1) The interior point solution is given by

rHPIl (n) = 1
2kl
,

rHPIh (n) = 1
2

(
1

4kl
+ 1

kh
+ R̄∗n+1 − R̄∗n+2

)
,

µ∗ = 0.

(87)

We check the feasibility conditions. rHPIh (n) + R̄∗n+2 ≥
rHPIl (n) + R̄∗n+1 ⇒ R̄∗n+1 − R̄∗n+2 <

1
kh
− 3

4kl
. rHPIh (n) <

rmax
h ⇒ R̄∗n+1−R̄∗n+2 <

1
kh
− 1

4kl
. So the feasibility condition

is R̄∗n+1 − R̄∗n+2 <
1
kh
− 3

4kl
. We check −2klkhr

HPI
h (n) <

0, |∇2L| = 4klk
2
hr
HPI
h (n) − k2

h(1 − 2klr
HPI
l (n))2 > 0, so

the interior point solution is a maximum solution (if exists).
(2) The extreme point solutions are given as follows.
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The extreme point solution EHP2 : For
(rHPE

′

l (n), rHPE
′

h (n)) = (rmax
h + R̄∗n+2 − R̄∗n+1, r

max
h ),

{
µ∗a = 1− 2klr

HPE′

l (n) > 0,

µR∗h = −klkh(rHPE
′

l (n))2 − 2klr
HPE′

l (n) + 1 > 0.
(88)

which holds iff 0 < rHPE
′

l (n) <
−1+

√
1+

kh
kl

kh
, since

−1+
√

1+
kh
kl

kh
< 1

2kl
holds strictly. This implies that rmax

h +

R̄∗n+2 − R̄∗n+1 <
−1+

√
1+

kh
kl

kh
, i.e., R̄∗n+1 − R̄∗n+2 > rmax

h −
−1+

√
1+

kh
kl

kh
=

2−
√

1+
kh
kl

kh
.

The extreme point solution EHP1 : For
(rHPEl (n), rHPEh (n)), we have


rHPEl (n) =

−(R̄∗n+1−R̄
∗
n+2)+

√
(R̄∗n+1−R̄∗n+2)2+ 3

klkh

3 ,

rHPEh (n) =
2(R̄∗n+1−R̄

∗
n+2)+

√
(R̄∗n+1−R̄∗n+2)2+ 3

klkh

3 ,

µ∗a = khr
HPE
h (n)(1− 2klr

HPE
l (n)) > 0,

(89)

where the last one ⇔ R̄∗n+1 − R̄∗n+2 >
1
kh
− 3

4kl
. We check

the feasibility conditions. 0 < rHPEl (n) < rmax
l = 1

kl
⇒

R̄∗n+1 − R̄∗n+2 > 1
2

(
1
kh
− 3

kl

)
. 0 < rHPEh (n) < rmax

h =

1
kh
⇒ R̄∗n+1 − R̄∗n+2 <

2−
√

1+
kh
kl

kh
. Since 1

kh
− 3

4kl
>

1
2

(
1
kh
− 3

kl

)
, we conclude that the feasibility condition is

1
kh
− 3

4kl
< R̄∗n+1 − R̄∗n+2 <

2−
√

1+
kh
kl

kh
.

In conclusion, the optimal solution is given by (87), (88),
and (89) with R̄∗n+1 − R̄∗n+2 < 1

kh
− 3

4kl
(kh < 4kl

3 ),

R̄∗n+1− R̄∗n+2 >
2−
√

1+
kh
kl

kh
, and 1

kh
− 3

4kl
< R̄∗n+1− R̄∗n+2 <

2−
√

1+
kh
kl

kh
(kh < 3kl), respectively. Further, we have the

following conclusion. If kh > 3kl, the solution is given by
(88) only, and if 4kl

3 < kh < 3kl, the solution is given by (88)
and (89), and if kh < 4kl

3 , the solution is given by (87), (88),
and (89). This completes the proof.

Besides, the optimal values corresponding to each solution
are as follows. For (87), the optimal value is R̄∗n = R̄∗n+2 +
kh · (rHPIh (n))2; For (88), the optimal value is R̄∗n = R̄∗n+1 +

(1 − kl · rHPE
′

l (n))rHPE
′

l (n); For (89), the optimal value is
R̄∗n = R̄∗n+2 − klkh · rHPEh (n)(rHPEl (n))2 + rHPEh (n).

APPENDIX F
THE SOLUTION TO PROBLEM 5

A. Problem 5: Optimal Pricing for time slot n under LP

Based on the analysis in Problem P4, in Problem 5
(i.e., P5), we also introduce the dual variable µLP =
(µLPa , µLPb , µLPLl , µLPRl , µLPLh , µLPRh ) (µLP � 0), and the

associated Lagrangian L : R× R× R6 → R is given by

L(rLPl (n), rLPh (n),µLP )

= R̄LPn (rLPl (n), rLPh (n))

+ µLPa ·
(
rLPl (n) + R̄∗n+1 − rLPh (n)− R̄∗n+2

)
+ µLPb ·

(
rLPh (n) + R̄∗n+2 − R̄∗n+1

)
+ µLPLl rl(n) + µLPRl (rmax

l − rl(n))

+ µLPLh rh(n) + µLPRh (rmax
h − rh(n)). (90)

The KKT conditions are given by (91), (92), (93), (94), and
(95).

∂L(rLPl (n), rLPh (n),µLP )

∂rLPl (n)

∣∣∣(rLP∗
l (n),rLP∗

h (n),µLP∗) = 0,

(91)
∂L(rLPl (n), rLPh (n),µLP )

∂rLPh (n)

∣∣∣(rLP∗
l (n),rLP∗

h (n),µLP∗) = 0,

(92)

µLP∗a ·
(
rLP∗l (n) + R̄∗n+1 − rLP∗h (n)− R̄∗n+2

)
= 0,

µLP∗b ·
(
rLP∗h (n) + R̄∗n+2 − R̄∗n+1

)
= 0,

µLPL∗l rLP∗l (n) = 0, µLPR∗l (rmax
l − rLP∗l (n)) = 0,

µLPL∗h rLP∗h (n) = 0, µLPR∗h (rmax
h − rLP∗h (n)) = 0,

(93)

µLP∗ � 0, (94)

R̄∗n+1 ≤ rLP∗h (n) + R̄∗n+2 ≤ rLP∗l (n) + R̄∗n+1,

0 ≤ rLP∗l (n) ≤ rmax
l , 0 ≤ rLP∗h (n) ≤ rmax

h .
(95)

We now analyze the solutions that satisfying KKT condi-
tions. The results are shown in Lemma 4 and Proposition 4.
We provide the detailed proofs as follows, respectively.

B. Proof for Lemma 4

Lemma 4: Only three possible solutions satisfy the KKT
conditions of P5, i.e., the interior point solution ILP0 :(
rLPIl (n), rLPIh (n)

)
, and two extreme point solutions ELP1 :(

rLPEl (n), rLPEh (n)
)

and ELP2 :
(
rLPE

′

l (n), rLPE
′

h (n)
)
.

Proof: We first consider the interior point solution. In this
case, no constraints are active, i.e., all constraints are strictly
inequalities. The solution rLPIl (n), rLPIh (n) can be given by

p′l(r
LP∗
l (n))ph(rLP∗h (n))(R̄∗n+1−R̄∗n+2)+rLP∗l (n)p′l(r

LP∗
l (n))

+ pl(r
LP∗
l (n))− ph(rLP∗h (n))rLP∗h (n)p′l(r

LP∗
l (n)) = 0,

− (1− pl(rLP∗l (n)))p′h(rLP∗h (n))(R̄∗n+1 − R̄∗n+2)

+(1−pl(rLP∗l (n)))(p′h(rLP∗h (n))rLP∗h (n)+ph(rLP∗h (n)))=0,

µLP∗ = 0.
(96)

The condition is that all constraints are strictly inequalities.
Then we consider the extreme point solutions. In this case,

at least one constraint is active (one, two, or three here). We
further look at the feasible region FLP , which is composed of
six line segments. Then FLP 6= ∅ iff rmax

h ≥ R̄∗n+1−R̄∗n+2 ≥
0.
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rLPh (n)

rLPl (n)

rLPh (n) = rLPl (n)+R̄∗n+1−R̄∗n+2

rLPh (n) = R̄∗n+1−R̄∗n+2

rLPh (n) = rmax
l

rLPl (n) = rmax
l

rmax
h

rmax
l

0

FLP FLP

rLPh (n)

rl(n)

rLPh (n) = rLPl (n)+R̄∗n+1−R̄∗n+2

rLPh (n) = R̄∗n+1−R̄∗n+2

rLPh (n) = rmax
h

rLPl (n) = rmax
l

rmax
h

rmax
l

0

FLP
FLP

(1) We claim that there exist at most five intersection points
on the boundary. So there exist at most five extreme point
solutions with two or three active constraints.

(i). If R̄∗n+1 − R̄∗n+2 < rmax
h < rmax

l + R̄∗n+1 − R̄∗n+2,
there exist four intersection points. (rLPE

′

l (n), rLPE
′

h (n)) =
(0, R̄∗n+1 − R̄∗n+2), (rmax

l , R̄∗n+1 − R̄∗n+2), (rmax
l , rmax

h ), and
(rmax
h +R̄∗n+2−R̄∗n+1, r

max
h ), the corresponding dual variables

are (µLP∗a > 0, µLP∗b > 0, µLPL∗l > 0), (µLP∗b > 0, µLPR∗l >
0), (µLPR∗l > 0, µLPR∗h > 0), and (µLP∗a > 0, µLPR∗h > 0).

For (rLPE
′

l (n), rLPE
′

h (n)) = (0, R̄∗n+1 − R̄∗n+2), (µH∗a >
0, µH∗b > 0, µLPL∗l > 0), we have pl(0) +µLP∗a +µLPL∗l = 0
according to (91), which is impossible.

For (rLPE
′

l (n), rLPE
′

h (n)) = (rmax
l , R̄∗n+1 − R̄∗n+2),

(µLP∗b > 0, µLPR∗l > 0), we have p′l(r
max
l ) − µLPR∗l = 0

according to (91), which is also impossible.
For (rLPE

′

l (n), rLPE
′

h (n)) = (rmax
l , rmax

h ), (µLPR∗l >
0, µLPR∗h > 0), we have rmax

l p′l(r
max
l ) = µLPR∗l > 0, which

is a contradiction.
For (rLPE

′

l (n), rLPE
′

h (n)) = (rmax
h + R̄∗n+2 −

R̄∗n+1, r
max
h ), (µLP∗a > 0, µLPR∗h > 0), we have

(1 − pl(r
∗
l (n)))p′h(rmax

h )r∗l (n) − µLP∗a − µLPR∗h = 0
according to (92), which is also impossible.

(ii). If rmax
h ≥ rmax

l + R̄∗n+1− R̄∗n+2, there is another inter-
section point (rLPE

′

l (n), rLPE
′

h (n)) = (rmax
l , rmax

l + R̄∗n+1−
R̄∗n+2), and the dual variables are (µLP∗a > 0, µLPR∗l > 0).
We need to check the following condition{

µLP∗a = p′hr
max
l + ph > 0,

µLPR∗l = p′lr
max
l (1− ph) + µLP∗a > 0.

(97)

Conclusion: We conclude that the only possible extreme
point solution with more than one active constraints is
(rLPE

′

l (n), rLPE
′

h (n)) = (rmax
h + R̄∗n+2 − R̄∗n+1, r

max
h ) such

that (97) holds.
(2) We consider only one active constraint.
(i). If R̄∗n+1− R̄∗n+2 ≤ rmax

h < rmax
l + R̄∗n+1− R̄∗n+2, FLP

is a trapezoid.

TABLE V
OPTIMAL PRICING UNDER LIGHT-PRIORITY STRATEGY

R̄∗n+1 − R̄∗n+2

≥
2

√
1− kh

kl
−1

kh

 kl−3kh
2khkl

,
2

√
1− kh

kl
−1

kh

 ≤ kl−3kh
2khkl

kh <
kl
3

ILP
0 ELP

1 ELP
2

kl
3
≤ kh < 3kl

4
ILP
0 ELP

1 N./A.
kh ≥ 3kl

4
ILP
0 N./A. N./A.

Case 1: µLP∗a > 0 and others are all 0. The solution is given
by



− p′l(rLP∗l (n))rLP∗l (n)ph(rLP∗h (n))

+ p′l(r
LP∗
l (n))rLP∗l (n) + pl(r

LP∗
l (n)) + µLP∗a = 0,

(1− pl(rLP∗l (n)))(rLP∗l (n)p′h(rLP∗h (n))

+ ph(rLP∗h (n))− µLP∗a = 0,

rLP∗h (n) = rLP∗l (n) + R̄∗n+1 − R̄∗n+2.
(98)

Case 2: µLP∗b > 0 and others are all 0. Then rLP∗l (n) =
R̄∗n+1 − R̄∗n+2, we have (1 − pl(r

LP∗
l (n)))ph(rLP∗h (n)) +

µLP∗b = 0 according to (92), which is impossible.
Case 3: µLPR∗l > 0 and others are all 0. Then rLP∗l (n) =

rmax
l , we have µLPR∗l = −p2

h ·
p′l
p′h

+ p′l · rmax
l < 0 by the

following equations.

{
− p′lph(R̄∗n+1 − R̄∗n+2 − r∗h(n)) + p′lr

max
l − µLPR∗l = 0,

− p′h(R̄∗n+1 − R̄∗n+2 − r∗h(n)) + ph = 0.
(99)

Hence, it is not a solution.
Case 4: µLPR∗h > 0 and others are all 0. Then rLP∗h (n) =

rmax
h , we have −(1−pl)p′h(R̄∗n+1−R̄∗n+2−rmax

h )−µLPR∗h = 0
according to (92), which is impossible.

(ii). If rmax
l ≥ rmax

s + R̄∗n+1 − R̄∗n+2, FLP is a triangle.
Then only Cases 1, 2, and 3 need to be considered.

Conclusion: We conclude that the only possible extreme
point solution with one active constraints (rLPEl (n), rLPEh (n))
is given by (98).

According to the above analysis, we conclude that
the solution has THREE cases: (rLPIl (n), rLPIh (n))
given by (96), (rLPE

′

l (n), rLPE
′

h (n)) given by (97),
and (rLPEl (n), rLPEh (n)) given by (98). This completes the
proof.

C. Proof for Proposition 4

Proposition 4: The optimal solution to Problem P5 can also
be summarized in a table as in Table IV (i.e., Table V), only
with different conditions in the rows and the columns and
expressions of ILP0 , ELP1 and ELP2 .

Proof: We substitute pl(rLP∗l (n)) = 1 − klrLP∗l (n) and
ph(rLP∗h (n)) = 1−khrLP∗h (n) into the above KKT conditions.
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Then the KKT conditions become

− kl(1− khrLP∗h (n))(R̄∗n+1 − R̄∗n+2 − rLP∗h (n))

+ (1− 2klr
LP∗
l (n)) + µLP∗a + µLPL∗l − µLPR∗l = 0,

klkhr
LP∗
l (n)[R̄∗n+1 − R̄∗n+2 + 1

kh
− 2rLP∗h (n)]

− µLP∗a + µLP∗b + µLPL∗h − µLPR∗h = 0,

µLP∗a ·
(
rLP∗l (n) + R̄∗n+1 − rH∗h (n)− R̄∗n+2

)
= 0,

µLP∗b ·
(
rLP∗h (n) + R̄∗n+2 − R̄∗n+1

)
= 0,

µLPL∗l rLP∗l (n) = 0, µLPR∗l (rmax
l − rLP∗l (n)) = 0,

µLPL∗h rLP∗h (n) = 0, µLPR∗h (rmax
h − rLP∗h (n)) = 0,

µLP∗ � 0,

R̄∗n+1 ≤ rLP∗h (n) + R̄∗n+2 ≤ rLP∗l (n) + R̄∗n+1,

0 ≤ rLP∗l (n) ≤ rmax
l , 0 ≤ rLP∗h (n) ≤ rmax

h .
(100)

The solution can be summarized as follows.
(1) The interior point solution is given by

rLPIl (n) = kh
8

(
R̄∗n+1 − R̄∗n+2 − 1

kh

)2

+ 1
2kl
,

rLPIh (n) = 1
2

(
R̄∗n+1 − R̄∗n+2 + 1

kh

)
.

(101)

We check the feasibility conditions. rLPIh (n) + R̄∗n+2 ≥
R̄∗n+1 ⇒ R̄∗n+1− R̄∗n+2 <

1
kh

. rLPIh (n) + R̄∗n+2 ≤ rLPIl (n) +

R̄∗n+1 ⇒ R̄∗n+1 − R̄∗n+2 > − 1
kh

+ 2
√

1
k2h
− 1

klkh
. rLPIh (n) <

rmax
h ⇒ 1

kh
− 2
√

1
klkh

< R̄∗n+1 − R̄∗n+2 < 1
kh

+ 2
√

1
klkh

.

Besides, − 1
kh

+ 2
√

1
k2h
− 1

klkh
> 1

kh
− 2
√

1
klkh

with kh < kl.
So the feasibility condition is: −

1
kh

+ 2
√

1
k2h
− 1

klkh
< R̄∗n+1 − R̄∗n+2 <

1
kh
, if kh ≤ kl,

1
kh
− 2
√

1
klkh

< R̄∗n+1 − R̄∗n+2 <
1
kh
, if kh > kl.

(102)
We check −2kl < 0, |∇2L| > 0, so the interior point solution
is a maximum solution (if exists).

(2) The extreme point solutions are given as follows.
The extreme point solution ELP2 : (rLPE

′

l (n), rLPE
′

h (n)) =
(rmax
l , rmax

l + R̄∗n+1 − R̄∗n+2){
µLP∗a = −khrmax

l + 1− khrLPE
′

h (n) > 0,

µLPR∗l = 1− khrmax
l > 0.

(103)

⇒ R̄∗n+1− R̄∗n+2 <
1

2kh
− 3

2kl
, and R̄∗n+1− R̄∗n+2 <

1
kh
− 2

kl
.

Besides, rmax
l + R̄∗n+1 − R̄∗n+2 ≤ rmax

h ⇒ R̄∗n+1 − R̄∗n+2 ≤
1
kh
− 1

kl
⇒ kh < kl. Under this condition, we have 1

2kh
−

3
2kl

< 1
kh
− 2

kl
. We conclude that the feasibility condition is

R̄∗n+1 − R̄∗n+2 <
1

2kh
− 3

2kl
(kh < kl

3 ).
The extreme point solution ELP1 : For rLPEl (n), rLPEh (n),

we have

rLPEl (n) =
−(R̄∗n+1−R̄

∗
n+2)+

√
(R̄∗n+1−R̄∗n+2)2+ 3

klkh

3 ,

rLPEh (n) =
2(R̄∗n+1−R̄

∗
n+2)+

√
(R̄∗n+1−R̄∗n+2)2+ 3

klkh

3 ,

µLP∗a = −khklrLPEl (n)(rLPEl (n) + rLPEh (n))

+ klr
LPE
l (n) > 0,

(104)

where the last one ⇒ R̄∗n+1 − R̄∗n+2 < − 1
kh

+ 2
√

1
k2h
− 1

klkh
,

and kh < kl. Then − 1
kh

+ 2
√

1
k2h
− 1

klkh
> 0 ⇒ kh <

3
4kl.

We thus have kh < 3
4kl. We check the feasibility conditions.

0 < rLPEl (n) < rmax
l = 1

kl
⇒ R̄∗n+1−R̄∗n+2 >

1
2kh
− 3

2kl
. 0 <

rLPEh (n) < rmax
h = 1

kh
⇒ R̄∗n+1−R̄∗n+2 <

2
kh
− 1
kh

√
1 + kh

kl
.

Since 2
kh
− 1
kh

√
1 + kh

kl
> − 1

kh
+2
√

1
k2h
− 1

klkh
, we conclude

that the feasibility condition is 1
2kh
− 3

2kl
< R̄∗n+1 − R̄∗n+2 <

− 1
kh

+ 2
√

1
k2h
− 1

klkh
.

In conclusion, the optimal solution is given by (101), (103),
and (104) with the condition (102), R̄∗n+1−R̄∗n+2 <

1
2kh
− 3

2kl

(kh < kl
3 ), and 1

2kh
− 3

2kl
< R̄∗n+1 − R̄∗n+2 < − 1

kh
+

2
√

1
k2h
− 1

klkh
(kh < 3

4kl), respectively. If kh > 3kl
4 , the

solution is given by (101) only, and if kl
3 < kh <

3kl
4 , the

solution is given by (101) and (104), and if kh < kl
3 , the

solution is given by (101), (103), and (104). This completes
the proof.

Besides, the optimal values corresponding to each solution
are as follows. For (101), the optimal value is R̄H∗n = R̄∗n+1 +
klr

HI
l (n)2; For (103), the optimal value is R̄H∗n = R̄∗n+2 +

(1 − kh
kl

)rHE
′

h (n); For (104), the optimal value is R̄H∗n =

R̄∗n+1 + (1− klkhrHEh (n)rHEl (n)) · rHEl (n).

APPENDIX G
THE SOLUTION TO PROBLEM 6

A. Problem 6: Optimal Pricing for time slot n under LD

Similarly, in Problem 6 (i.e., P6), we introduce the dual
variable µLD = (µLDa , µLDLl , µLDRl , µLDLh , µLDRh ) (µLD �
0), and the associated Lagrangian L : R × R × R5 → R is
given by

L(rLDl (n), rLDh (n),µLD)

= R̄Sn(rLDl (n), rLDh (n))

+ µLDa · (R̄∗n+1 − rLDh (n)− R̄∗n+2)

+ µLDLl rl(n) + µLDRl (rmax
l − rl(n))

+ µLDLh rh(n) + µLDRh (rmax
h − rh(n)). (105)

The KKT conditions are given by (106), (107), (108), (109),
and (110).

∂L(rLDl (n), rLDh (n),µLD)

∂rLDl (n)

∣∣∣(rLD∗
l (n),rLD∗

h (n),µLD∗) = 0,

(106)
∂L(rLDl (n), rLDh (n),µLD)

∂rLDh (n)

∣∣∣(rLD∗
l (n),rLD∗

h (n),µLD∗) = 0,

(107)

µLD∗a ·
(
R̄∗n+1 − rLD∗h (n)− R̄∗n+2

)
= 0,

µLDL∗l rLD∗l (n) = 0, µLDR∗l (rmax
l − rLD∗l (n)) = 0,

µLDL∗h rLD∗h (n) = 0, µLDR∗h (rmax
h − rLD∗h (n)) = 0,

(108)

µLD∗ � 0, (109)

rLD∗h (n) + R̄∗n+2 ≤ R̄∗n+1,

0 ≤ rLD∗l (n) ≤ rmax
l , 0 ≤ rLD∗h (n) ≤ rmax

h .
(110)
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Now we are ready to analyze the solutions that satisfying
the above KKT conditions. We will show that the solution is
unique by Proposition 5.

Proposition 5: The optimal prices in time slot n under the
LD strategy are given by the interior point solution ILD0 :

rLDl (n) =
1

2kl
, rLDh (n) = min(R̄∗n+1 − R̄∗n+2, r

max
h ). (111)

We first prove the following lemma, and then proceed to
prove the proposition.

Lemma 5: The optimal pricing under the LD strategy is
uniquely given by the feasible interior point solution.

Proof: We first consider the interior point solution. In this
case, no constraints are active, i.e., all constraints are strictly
inequalities. The solution rLD∗l (n), rLD∗h (n) can be given by

p′l(r
LD∗
l (n))rLD∗l (n) + pl(r

LD∗
l (n)) = 0,

rLD∗h (n) = min{R̄∗n+1 − R̄∗n+2, r
max
h },

µLD∗ = 0.

(112)

Then we consider the extreme point solutions. In this case,
at least one constraint is active (one or two here). We further
look at the feasible region FLD, which is composed of four
line segments.

rLDh (n)

rLDl (n)

rLDh (n) = R̄∗n+1−R̄∗n+2

rLDh (n) = rmax
l

rLDl (n) = rmax
l

rmax
h

rmax
l

0

FLD FLD

rLDh (n)

rLDl (n)

rLDh (n) = R̄∗n+1−R̄∗n+2

rLDh (n) = rmax
l

rLDl (n) = rmax
l

rmax
h

rmax
l

0

FLD FLD

(1) We claim that there exist at most four intersection points
on the boundary. So there exist at most four extreme point
solutions with two active constraints.

(i). If R̄∗n+1 − R̄∗n+2 < rmax
h , there exist four inter-

section points. (rLDE
′

l (n), rLDE
′

h (n)) = (0, 0), (rmax
l , 0),

(rmax
l , R̄∗n+1 − R̄∗n+2), and (0, R̄∗n+1 − R̄∗n+2), the corre-

sponding dual variables are (µLDL∗l > 0, µLDL∗h > 0),
(µLDR∗l > 0, µLDL∗h > 0), (µLD∗a > 0, µLDR∗l > 0), and
(µLDL∗l > 0, µLD∗a > 0).

For (rLDE
′

l (n), rLDE
′

h (n)) = (0, 0), (µLDL∗l >
0, µLDL∗h > 0), we have R̄∗n+1 = R̄∗n+2, which is a con-
tradiction.

For (rLDE
′

l (n), rLDE
′

h (n)) = (rmax
l , 0), (µLDR∗l >

0, µLDL∗h > 0), we have p′l(r
max
l ) · rmax

l = µLDR∗l > 0
according to (106), which is also a contradiction.

For (rLDE
′

l (n), rLDE
′

h (n)) = (rmax
l , R̄∗n+1 − R̄∗n+2),

(µLD∗a > 0, µLDR∗l > 0), we have p′l(r
max
l )·rmax

l = µLDR∗l >
0 according to (106), which is also a contradiction.

For (rLDE
′

l (n), rLDE
′

h (n)) = (0, R̄∗n+1−R̄∗n+2), (µLDL∗l >
0, µLD∗a > 0), we have pl(0)+µLDL∗l = 0 according to (106),
which is a contradiction.

(ii). If R̄∗n+1 − R̄∗n+2 > rmax
h , another two intersection

points (rLDE
′

l (n), rLDE
′

h (n)) = (rmax
l , rmax

h ), (0, rmax
h ), and

the dual variables are (µLDR∗l > 0, µLDR∗h > 0), (µLDL∗l >
0, µLDR∗h > 0).

For (rLDE
′

l (n), rLDE
′

h (n)) = (rmax
l , rmax

h ), (µLDR∗l >
0, µLDR∗h > 0), we have −µLDR∗h = 0 according to (107),
which is a contradiction.

For (rLDE
′

l (n), rLDE
′

h (n)) = (0, rmax
h ), (µLDL∗l >

0, µLDR∗h > 0), we have pl(0) + µLDL∗l = 0, which is a
contradiction.

Conclusion: We conclude that no possible extreme point
solution exists with more than one active constraints.

(2) We consider only one active constraint.
(i). If R̄∗n+1 − R̄∗n+2 < rmax

h , FLD is a rectangle.
Case 1: µLDL∗l > 0 and others are all 0. Then we have

rLD∗l (n) = 0, we have pl(0) + µLDL∗l = 0, no solution.
Case 2: µLDL∗h > 0 and others are all 0. This is impossible

for (107).
Case 3: µLDR∗l > 0 and others are all 0. This is impossible

for (106) p′l(r
max
l ) · rmax

l = µLDR∗l > 0.
Case 4: µLD∗a > 0 and others are all 0. This is impossible

for (107).
(ii). If rmax

h < R̄∗n+1 − R̄∗n+2, FLD is a rectangle. Then
Cases 1, 2, and 3 are the same.

Case 4’: µLDR∗h > 0 and others are all 0. This is also
impossible for (107).

Conclusion: We conclude that there is also no possible
extreme point solution with one active constraint.

According to the above analysis, we conclude that the
solution is unique, which is given by (112). This completes
the proof.

B. Proof for Proposition 5

Given the above lemma (Lemma 5), we now proceed to
prove Proposition 5.

Proof: We substitute pl(r
LD∗
l (n)) = 1 − klr

LD∗
l (n)

and ph(rLD∗h (n)) = 1 − khr
LD∗
h (n) into the above KKT

conditions. Then the KKT conditions become

(1− 2klr
LD∗
l (n)) + µLDL∗l − µLDR∗l = 0,

− µLD∗a + µLDL∗h − µLDR∗h = 0,

µLD∗a ·
(
R̄∗n+1 − rLD∗h (n)− R̄∗n+2

)
= 0,

µLDL∗l rLD∗l (n) = 0, µLDR∗l (rmax
l − rLD∗l (n)) = 0,

µLDL∗h rLD∗h (n) = 0, µLDR∗h (rmax
h − rLD∗h (n)) = 0,

µLD∗ � 0,

rLD∗h (n) + R̄∗n+2 ≤ R̄∗n+1,

0 ≤ rLD∗l (n) ≤ rmax
l , 0 ≤ rLD∗h (n) ≤ rmax

h .
(113)
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The solution can be given by the first two equations in the
above KKT conditions.

rLD∗l (n) =
1

2kl
,

rLD∗h (n) = min{R̄∗n+1 − R̄∗n+2, r
max
h },

µLD∗ = 0.

(114)

Note that rLD∗l (n) does not influence the objective value. This
completes the proof.

Besides, the objective function is R̄LDn (rLDl (n)) = R̄∗n+1 +
pl(r

LD
l (n)) · rLDl (n) = R̄∗n+1 + (1 − klr

LD
l (n)) · rLDl (n),

where 0 ≤ rLDl (n) ≤ rmax
l . The second-order condition is

¨̄RLDn (rLDl (n)) = −2kl < 0, so the objective function is
concave for 0 ≤ rl(n) ≤ rmax

l . Besides, the feasible region
is convex. As such, the problem is a convex problem. The
optimal solution is given by the solution (114). Besides, the
optimal value is R̄LD∗n = R̄∗n+1 +

(
1− kl · 1

2kl

)
· 1

2kl
=

R̄∗n+1 + 1
4kl

.

APPENDIX H
PROOF FOR THEOREM 2

Proof: The dynamic prices r∗ and the dynamic admission
policy π∗ are derived by Algorithm 2, which is built upon the
backward induction algorithm for solving dynamic program-
ming problems. That is, we first optimally solve the revenue
maximization problem in a time slot, and then determine the
optimal pricing and admission solution backwards from time
sot N to 1, by comparing all candidate solutions in a time
slot. According to the principle of optimality [24], we know
that Algorithm 2 is optimal for solving our Problem P2.

APPENDIX I
PROOF FOR PROPOSITION 6

Proposition 6: The optimal policy for solving the revenue
maximization Problem P1 degenerates to the heavy-priority
stationary admission policy when price ratio between the
heavy-traffic SU and the light-traffic SU is larger than a
threshold, i.e.,

rh/rl > θHPth (pl, ph), (115)

where the threshold ratio θHPth (pl, ph) can be determined by
solving the following:

rh+R̄∗n+M = rl+R̄
∗
n+1,∀n ∈ {1, 2, · · · , N−M+1}. (116)

Proof: Eq. (116) is similar to (11) in Section IV-C.
By using the heavy-priority admission policy in all time
slots, we can derive the expected total revenue R̄∗n given
R̄∗n+1 and R̄∗n+M . The latter two are the expected future
revenues corresponding to the admission actions an = 0, 1
and an = M , respectively. We next derive the closed-form
expression of R̄∗n.

Note that at the beginning of time slots N−M+2 to N , we
cannot admit a heavy-traffic SU as it requires the consecutive
M time slots’ occupancy. As such, we consider two choices
an = 0 and an = 1 in the last two terms of (16), respectively,
and thus have the following initial conditions for n = N−M+

2, · · · , N + 1, i.e., R̄∗N+1 = 0, R̄∗N = plrl, · · · , R̄∗N−M+2 =
(M − 1)plrl. For 1 ≤ n ≤ N −M + 1, we have

R̄∗n = (1− ph)R̄∗n+1 + phR̄
∗
n+M + plrl(1− ph) + phrh

= R̄∗n+1 + plrl(1−ph)+phrh
1+(M−1)ph

− ph
(
R̄∗n+1 − R̄∗n+M − (M − 1)plrl(1−ph)+phrh

1+(M−1)ph

)
.

(117)

Subtracting and adding R̄∗n+2, R̄
∗
n+3, · · · , R̄∗n+M−1 in the last

term and rearranging terms will lead to

R̄∗n − R̄∗n+1 −
plrl(1−ph)+phrh

1+(M−1)ph

= −ph
(
R̄∗n+1 − R̄∗n+M − (M − 1)plrl(1−ph)+phrh

1+(M−1)ph

)
= −ph

(
R̄∗n+1 − R̄∗n+2 −

plrl(1−ph)+phrh
1+(M−1)ph

+ R̄∗n+2 − R̄∗n+3 −
plrl(1−ph)+phrh

1+(M−1)ph

+ · · ·+ R̄∗n+M−1 − R̄∗n+M −
plrl(1−ph)+phrh

1+(M−1)ph

)
.

(118)

This becomes a difference equation, and the corresponding
characteristic equation is 1 = −ph(α + α2 + · · · + αM−1).
By solving this equation for R̄∗n, we derive θHPth (pl, ph, n)
by plugging R̄∗n+1 − R̄∗n+M into rh − rl = R̄∗n+1 − R̄∗n+M .
The final threshold θHPth (pl, ph) is determining by optimizing
θHPth (pl, ph, n) over n ∈ {1, 2, · · · , N − M + 1}. This
shows that the derived threshold θHPth (pl, ph) guarantees rh +
R̄∗n+M ≥ rl+R̄∗n+1 for all time slots n ∈ {1, 2, · · · , N−M+
1}, which is the optimality condition for the heavy-priority
admission policy.

APPENDIX J
PROOF FOR PROPOSITION 7

Proposition 7: Given an arbitrary value of spectrum oc-
cupancy M , the optimal dynamic pricing under the heavy-
priority strategy is the same as that in Proposition 3 and Table
IV, once we replace R̄∗n+1 − R̄∗n+2 by R̄∗n+1 − R̄∗n+M .

Proof: From the proofs of Propositions 3-5, we know
that the analyses apply to an arbitrary value of spectrum
occupancy M , due to the same problem structures compared
with our previous problems (Problems 4-6). More specifically,
given an arbitrary M , the revenue maximization problem
under dynamic pricing and dynamic admission is the same
as Problems 2 and 3. Similarly, we can still use the decom-
position scheme to decompose the one-slot problem into three
subproblems as we did for solving Problem 3. As a result,
we solve the subproblem under the heavy-priority strategy
similarly as in Proposition 3 and Table IV, except that the
conditions in Proposition 3 and Table IV are given in terms
of R̄∗n+1 − R̄∗n+M .

APPENDIX K
PROOF FOR PROPOSITION 8

Proposition 8: Given the set I of I types of SUs, there
are (I + 1)! admission priorities. For each admission priority,
there exist thresholds of the price ratios such that the optimal
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admission priority for a time slot is optimal for all time slots
(corresponding to an optimal stationary admission policy).

Proof: As discussed in this section, in each time slot
n ∈ N , there are a total of I + 1 admission actions
I ∪ {0}, depending on the values of the I + 1 total revenues
{0+R̄∗n+1, ri+R̄

∗
n+i,∀i ∈ I}. For any two revenues ri+R̄∗n+i

and rj + R̄∗n+j , we denote the admission priority as i > j iff
ri + R̄∗n+i > rj + R̄∗n+j . This shows that we will admit a
type-i SU if it requests and only admit an arrived type-j SU
when there is no type-i SU. Hence, for all time slots, there
are (I + 1)! admission priorities that correspond to the value
relations of the I+ 1 revenues, since we need to choose I+ 1
ordered priorities from I + 1 actions.

For each admission priority, we first assume that this
admission priority is optimal for all time slots, and we thus
derive the expected total revenue R̄∗n,∀n ∈ N by specifying
the admission actions in (16). Then, there exists a threshold
such that the corresponding revenue conditions (ensuring the
optimality of the admission priority) hold. Finally, we optimize
the threshold over all time slots n ∈ N to obtain the final
thresholds (similar as the proof for Proposition 6). These
thresholds ensure that the admission priority is optimal for all
time slots. Hence, this admission priority becomes an optimal
stationary admission policy. This completes the proof.

APPENDIX L
PERFORMANCE COMPARISON WITH A RELATED STUDY

In this section, we compare our proposed scheme with the
related studies in the literature. After checking the related
studies on spectrum pricing and access control in the existing
literature, it seems that we are the first to study the spectrum
database operator’s optimal pricing and dynamic admission
control for heterogeneous secondary demands. In the more
general area of dynamic pricing and admission control, we
identify the following reference [1] ([27] in our manuscript)
which studied a related (but not the same) problem in the
operations research area.

[1] G. Y. Lin, Y. Lu, and D. D. Yao, “The Stochastic Knap-
sack Revisited: Switch-Over Policies and Dynamic Pricing”
Operations Research, vol. 56, no. 4, pp. 945-957, 2008.

In [1], the authors proposed the switch-over policies for
the stochastic knapsack problem with dynamic pricing, where
the policies start by accepting only demands associated with
the highest price, and switch to accepting demands with
lower prices as time goes by. This motivates us to consider
the following heuristic switch-over admission policy in our
context: the operator admits a heavy-traffic SU only if half of
the price charged to heavy-traffic SUs is no smaller than the
price charged to light-traffic SUs, i.e., rh/2 ≥ rl. We define
the revenue improvement of R1 over R2 as (R1 − R2)/R2.
Figure 2 shows the revenue improvement of our optimal dy-
namic pricing and dynamic admission policy over the heuristic
switch-over dynamic pricing and dynamic admission policy.
We can see that the revenue improvement depends on the
values of the demand elasticities. The smaller difference of
the demand elasticities between the heterogeneous SUs will
lead to larger revenue improvements. In general, our proposed

scheme outperforms the policy proposed in [1] significantly
(larger than 10%) in terms of the obtained revenue.
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Fig. 9. Revenue improvement of our proposed optimal policy over the
heuristic policy in [1].
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