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Sum-rate maximization for energy harvesting nodes

with a generalized power consumption model
Maria Gregori, Miquel Payaró, Senior Member, IEEE, and Daniel P. Palomar, Fellow Member, IEEE

Abstract—This paper considers a network of Energy Har-
vesting Wireless Nodes (EHWNs) transmitting simultaneously in
a Gaussian interference channel and investigates a distributed
power allocation algorithm that maximizes the sum-rate. The
power consumption model is based on a series of step functions
that allow to model, among others, radio frequency circuits
being on/off and the startup power consumption of the trans-
mitter. After showing that the sum-rate maximization problem
is nonsmooth, nonconvex, and NP-hard, the Iterative Smooth
and Convex approximation Algorithm (ISCA) is proposed, which
successively approximates the step functions by proper smooth
functions to obtain a sequence of smooth nonconvex problems
that can be solved by means of the Successive Convex Ap-
proximation (SCA) method. It is demonstrated that the ISCA
distributedly converges to a stationary solution of the sum-rate
maximization problem. For the particular case of point to point
communications, the numerical results show that the ISCA is
able to avoid bad stationary solutions performing close to the
globally optimal solution. The performance of the ISCA is also
evaluated in the interference channel and with real solar energy
harvesting.

Index Terms—Energy harvesting, Gaussian interference chan-
nel, circuitry power consumption, step functions, nonconvex
optimization, sum-rate maximization.

I. INTRODUCTION

Energy Harvesting Wireless Nodes (EHWNs) are battery

operated devices that exploit current energy harvesting tech-

nologies, e.g., a solar panel or a piezoelectric generator, to

recharge their batteries. Since the output powers provided

by energy harvesters are generally low, EHWNs are criti-

cally affected by their energy availability and must adopt

energy saving policies. For example, reducing the transmission

range by implementing multiple hops or switching “off” the

device when the transmission conditions are not adequate.

Accordingly, EHWNs generally operate at low transmission

powers that might be comparable to other sinks of power

consumption at the transmitter, which include, among others,

the consumption of the radio frequency circuits being on and

the startup power consumption of the transmitter [1].

In this context, efficient transmission strategies must be

designed taking into account the limited energy availability
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of EHWNs. Transmission strategies can be classified into

two well defined categories, namely, offline and online. The

offline strategies assume that the transmitter has full knowledge

of the energy harvesting process and channel state, which

is a realistic assumption when the channel is static and the

energy source is controllable or predictable (e.g., in wireless

power transmission scenarios or with solar panels). Contrarily,

online transmission strategies consider only causal knowledge

of these processes at the transmitter. Although the offline

assumption is, in some cases, idealistic, it has been broadly

used in the literature (e.g., [2]–[5], and references therein)

because it can be used as a benchmark for the later design

and evaluation of online transmission strategies.

Traditional power allocation polices, e.g., the famous clas-

sical waterfilling [6] for non-harvesting devices and its re-

cent (offline) generalization for EHWNs, named directional

waterfilling [2], assume that the transmission power is the

unique energy sink at the transmitter. This is a reasonable

assumption when the transmission range is large (because the

radiated power dominates over other energy sinks), but it no

longer holds when the transmission range is short, e.g., as

occurs in energy efficient network topologies. In this context,

several authors have recently considered a more realistic power

consumption model [1], which accounts for the cost of having

the transceiver “on”, αt . Accordingly, the total consumed

power is p + αtH (p), where p denotes the radiated power

and H (x) is the unit step function defined for x ∈ R+ as1

H (x) =


0 if x = 0,

1 if x > 0.
(1)

By using this power consumption model, the works in [4],

[7]–[14] derived transmission strategies in different point to

point scenarios. The power allocation that maximizes the

mutual information for a non-harvesting node was derived in

[7] and [8]. Optimal policies for an EHWN operating in a

static and fading continuous time channel were derived in

[9] and [4], respectively. In contrast, [12]–[14] studied the

optimal offline resource allocation for an EHWN operating

in a discrete time channel and showed that the step functions

can be replaced by additional optimization variables, namely,

indicator variables, which must belong to the set {0, 1}. Integer

relaxation was then used to obtain an upper bound on the

1Notation: R+ denotes the set of nonnegative real numbers. Vectors and
vector valued functions are denoted by lower case boldface letters, i.e., v and
φ(v), respectively. (vu )U

u=1
defines a column vector obtained by stacking the

column vectors v1, . . . , vU and [v]k returns the k-th element of the vector v.
Symbol � (�) denotes the component-wise “smaller (greater) than or equal
to” inequality. Finally, [x]ba , max{a, min{x, b } }.
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achievable mutual information and a feasible solution that

tends to the optimal when the number of streams and channel

accesses grow without bound [14].

To the best of our knowledge, few works have considered

the interference channel for EHWNs. The two-user Gaussian

interference channel was studied in [11], [15], [16] from an

information theory perspective. The transmission scheme that

maximizes the sum-rate was derived in [15] by using the time-

sharing argument, while [16] explored energy cooperation

among transmitters to enlarge the rate region. Among these

works, only [11] considered the energy consumed in the

circuitry when the transmitter is “on”. In contrast to the

aforementioned works, [17] considered an arbitrary number

of transmitter-receiver pairs with Gaussian distributed signals

and derived the Nash equilibrium of the game that is obtained

when each user aims at maximizing its own rate.

Similarly, in this paper, we consider T energy harvesting

transmitters that simultaneously transmit Gaussian distributed

signals to their respective receivers. In contrast to [17], where

the objective of each transmitter-receiver pair is to maximize

its own rate, the objective of this paper is to devise a distributed

power allocation algorithm that aims at maximizing the net-

work sum-rate. Additionally, we consider a general power

consumption model that can carefully account for the different

sources of power consumption in each transmitter, such as

radio frequency circuits being on/off and the startup power

consumption associated to off-on transitions. Mathematically,

this power consumption model contains additions and products

of step functions and, to the best of our knowledge, has not

been considered before in the literature. In this context, the

major contributions of this paper are:

• Formulating the sum-rate maximization problem in the

interference channel by considering (i) energy harvesting

at the transmitter nodes, and (ii) a generalized power

consumption model that accepts products of step func-

tions. This generic formulation allows for the first time

to model certain energy sinks (e.g., the startup power

consumption). Hence, by addressing this problem, the

contributions of this paper are two-fold. First, it addresses

an open problem for energy harvesting devices in the

interference channel. Second, it expands the existing algo-

rithms in the literature by refining the energy consumption

model at the transmitters; for example, the works [4], [7],

[8], [12]–[14] in point to point links (both for harvesting

and non-harvesting nodes) as well as [18] in the Gaussian

interference channel for non-harvesting transmitters.

• Proposing a distributed algorithm, namely, the Iterative

Smooth and Convex approximation Algorithm (ISCA),

that addresses the nonsmooth and nonconvex sum-rate

maximization problem. The ISCA successively approx-

imates the step functions by smooth functions in order

to derive a smooth nonconvex optimization problem that

can be solved by the Successive Convex Approximation

(SCA) method [19]. The main advantages of the proposed

approach with respect to the use of indicator variables

with integer relaxation are: (i) it applies to nonconvex

objective functions; (ii) it accepts products of step func-

tions (note that if the step functions were replaced by

additional indicator variables as in [14], the resulting

relaxed problem would still be nonconvex due to products

of optimization variables); and (iii) the problem can be

solved in a distributed way under very mild assumptions.

We believe that the ISCA may shed light on solving other

problems that contain step functions.

• Proving that the ISCA converges to a stationary solution

of the original nonsmooth nonconvex sum-rate maximiza-

tion problem.

• Evaluating the performance of the ISCA numerically for

two different scenarios. First, we consider a point to

point link, and show that the stationary point obtained

with the ISCA achieves almost the same sum-rate than

the asymptotically optimal solution obtained in [14].

Second, we consider multiple transmitters simultaneously

operating in an interference channel, and evaluate the

performance of the ISCA when solar energy is harvested.

The remainder of the paper is structured as follows. In Sec-

tion II, the sum-rate maximization problem for a network of

EHWNs is formulated. In Section III, the smooth and convex

approximations of the step functions are given. In Section IV,

the ISCA is presented for a general power consumption model,

which is particularized in Section V to the power consumption

model used in [14]. The performance of the ISCA in terms

of achieved rate and computational complexity is numerically

evaluated in Section VI. Finally, the paper is concluded in

Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Gaussian interference channel composed of

T transmitter and receiver pairs sharing the same band over

single-input single-output frequency-selective links composed

of K parallel subcarriers. Transmission takes place during N

time slots of duration Ts , where, at the n-th slot, the channel

power gain from transmitter t, t = 1, . . . ,T , to receiver r,

r = 1, . . . ,T , at the k-th subcarrier is denoted by htr (k, n).

We do not consider interference cancellation techniques in

order to avoid the need of having a centralized control or

coordination in the network and, accordingly, we treat the

multiuser interference as additive noise. Thus, assuming that

Gaussian signaling is used, the rate of user t depends on its

radiated power, pt ∈ R
KN
+

, pt = (ptn )N
n=1
, ptn = (pt (k, n))K

k=1

and on the transmission power of all the other transmitters, i.e.,

p−t = (pt′ )
T
t′,t=1

, as

rt (pt, p−t ) =

N∑

n=1

K∑

k=1

log
*..,
1 +

pt (k, n)ht t (k, n)

σ2
t (k) +

∑

t′,t
pt′ (k, n)ht′t (k, n)

+//-
,

(2)

where σ2
t (k) denotes the noise power at the t-th receiver and

k-th subcarrier.2

We consider that transmitters can harvest energy from the

environment to recharge their batteries. As it is commonly

done in the literature [2], we characterize the energy harvesting

process with a packetized model. Thus, a packet of energy

2We consider that each channel varies sufficiently slowly, so that the
information theoretical results are meaningful.
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Fig. 1. Representation of the energy harvesting process at the t -th transmitter.

Table I
WEIGHTS AND INNER FUNCTIONS OF C1

t n AND C2
t n

s 1 . . . K K + 1 K + 2 K + 3

wt s βt αt γt −γt

φt s1 pt (s, n)
∑K

k=1
pt (k, n)

∑K
k=1

pt (k, n)
∑K

k=1
pt (k, n − 1)

φt s2 - - -
∑K

k=1
pt (k, n)

︸                                                                                          ︷︷                                                                                          ︸
︸                               ︷︷                               ︸

C1
tn

C2
tn

containing Et j Joules is harvested at the beginning of the et j -

th channel access3, j = 1, . . . , Jt , with Jt denoting the total

number of harvested energy packets at transmitter t. The initial

battery level is modeled as the first harvested packet Et1 at

et1 = 1 and the battery capacity is assumed to be infinite. We

use the term epoch τt j to denote the set of channel accesses

between two consecutive energy arrivals, i.e., τt j = {et j , et j +

1, . . . , et ( j+1) −1} with et (Jt +1) = N+1 so that the last epoch is

well defined. A temporal representation is given in Fig. 1. Note

that this packetized model can capture any continuous energy

harvesting profile by considering that all the energy harvested

within a certain slot is aggregated in an energy packet that

arrives at the beginning of the subsequent slot.

The transmission strategy pt must satisfy the energy causal-

ity constraints, which impose that the battery level must

be nonnegative or, equivalently, that the energy cumulatively

expended by the end of the ℓ-th, ℓ = 1, . . . , Jt , epoch is not

greater than the energy cumulatively harvested, i.e.,

[Bt (pt )]ℓ ,

ℓ∑

j=1

Et j

︸  ︷︷  ︸
Harvested energy

−Ts

ℓ∑

j=1

∑

n∈τt j

Ctn (pt )

︸                   ︷︷                   ︸
Expended energy

≥ 0, ∀ℓ, t,

(3)

where Ctn (pt ) denotes the power consumption model at

transmitter t and slot n.

Since EHWNs operate at low energy levels, the power

consumption model must account not only for the transmission

radiated power but also for the other energy sinks. In [14], the

power consumption of transmitter t at slot n was modeled as

C1
tn (ptn ) = *,

K∑

k=1

pt (k, n)+-
︸           ︷︷           ︸
Transmission power

+ αtH *,
K∑

k=1

pt (k, n)+-
︸                  ︷︷                  ︸

Power consumption per active slot

+

K∑

k=1

βtH (pt (k, n)),
︸             ︷︷             ︸

Power consumption per active stream

(4)

3Since the transmission strategy can only be changed in a channel use
basis, we consider that, independently of the energy packet arrival instant, it
becomes available for the transmitter at the beginning of the next channel use.

were the constant αt ≥ 0 models the energy consumption

associated to the different components of the radio frequency

chain when the transceiver is “on”; and βt ≥ 0 accounts for the

additional cost of activating a certain subcarrier. As a result

of considering these energy sinks, the optimal transmission

strategy alternates between “off” and “on” cycles; however,

due to the startup time of the transceiver, “off-on” transitions

also entail energy consumption [20] that can be accounted by

refining the previous model as

C2
tn (pt (n−1), ptn ) = C1

tn (ptn )

+ γt *,1 − H *,
K∑

k=1

pt (k, n − 1)+-+-H *,
K∑

k=1

pt (k, n)+-
︸                                                        ︷︷                                                        ︸

Startup power consumption

, (5)

where γt ≥ 0 denotes the startup power consumption at

transmitter t;
(

1 −H
(∑K

k=1
pt (k, n − 1)

))

is one when the

channel access n − 1 is “off”, H
(∑K

k=1 pt (k, n)
)

is one when

the n-th channel access is “on”, and their product takes value

one when an “off-on” transition occurs.

In this work we consider a general power consumption

model of the form:

Ctn (pt ) = *,
K∑

k=1

pt (k, n)+-
︸           ︷︷           ︸

Transmission power

+

St∑

s=1

wt s

Qt s∏

q=1

H (φt sq (pt ))

︸                          ︷︷                          ︸
Remaining power sinks

, (6)

where wt s , 0 is a given weight; St ∈ N is the number of

summands containing step functions; Qt s ∈ N stands for the

number of factors of the s-th summand; and φt sq : RK×N
+

→

R+ must be concave, Lipschitz continuous, and continuously

differentiable. Note that C1
tn and C2

tn are particular cases of Ctn
in (6); the associated weights and inner functions, φt sq (pt ),

are given in Table I, where C1
tn has St = K+1 summands, and

C2
tn has St = K+3. Observe that a different power consumption

model can be used for each of the network nodes, which can be

specified when the network is being deployed and one knows

the different energy sinks of each node.

Our objective is to design a distributed offline power al-

location strategy that maximizes the sum-rate of a network

of EHWNs transmitting simultaneously in the Gaussian in-

terference channel. As mentioned in the introduction, offline

strategies assume non-causal knowledge of the harvested en-

ergy at the transmitters, which is realistic when the energy

source is predictable. Note that if the offline power allocation

can be computed distributedly by the network nodes, then

it can be updated when a substantial change in the energy

harvesting prediction is observed. Additionally, for scenarios

where energy cannot be predicted, the offline solution can be

used as a benchmark to evaluate online policies. The offline

sum-rate maximization problem is

(P̂) : max
p

T∑

t=1

rt (pt, p−t ) (7a)

s.t.
}

, P̂
Bt (pt ) � 0Jt , ∀t = 1, . . . ,T (7b)

pt ∈ Pt, ∀t = 1, . . . ,T (7c)
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where p , (pt )
T
t=1

, and Pt = {pt : pt � 0KN, pt � pmax
t }

with pmax
t , ((pmax

t (k, n))K
k=1

)N
n=1

limits the maximum transmit

power. The classical power constraint does not appear directly

in the formulation (as it happens in non-harvesting systems

with a fixed energy budget) but in the so-called energy causal-

ity constraints (7b) since energy is created and consumed over

time.

The problem in (7) has the following major difficulties: first,

it is nonsmooth, nonconvex, and NP-hard, which was shown

in [21] for a simpler scenario; and second, it is key that the

solution can be computed distributedly by the network nodes

to adjust their strategies when strong variations of the energy

harvesting profile are observed. In this context, we propose

the ISCA that is able to distributedly compute a stationary

solution of the sum-rate maximization problem in (7). The

details of the ISCA are presented in Section IV. By now, it is

important to know that the ISCA is composed of two loops:

the outer loop performs a Successive Smooth Approximation

(SSA) of the step functions so that, at each iteration, a smooth

nonconvex problem that approximates (7) is derived; then, the

inner loop solves this smooth nonconvex problem by means

of the SCA algorithm proposed in [19].

III. APPROXIMATIONS OF THE STEP FUNCTION

The objective of this section is twofold: (i) to design a

smooth approximation of the unit step function in (1), which

is used in the outer loop of the ISCA; and (ii) to derive a

convex approximation of the smooth approximation in (i) that

can be handled by the SCA algorithm in the inner loop. The

later approximation, (ii), has to satisfy some tight technical

requirements in order to guarantee convergence, as listed in

[19, Assumption 3], that intrinsically couple the design of the

approximations in (i) and (ii) because depending on the chosen

smooth approximation, it might be either easy or extremely

difficult to later find an accurate convex approximation. In this

context, we can easily derive a convex approximation if the

smooth approximation is: (C1) differentiable and (C2) decom-

posable as the summation of concave and convex functions.

A. Smooth approximation of the step function

In this section, we present a smooth approximation of the

step function that satisfies (C1)-(C2).

1) Single step function: We approximate H (x) in (1) with

the function Hρ : R+ → [0, 1], defined as

Hρ (x) = 1 − e
− x

ρ , (8)

where ρ > 0 is a parameter that controls how good the

approximation is (the smaller the value of ρ the better the

approximation) as illustrated in Fig. 2. Additionally, it can be

easily shown that limρ→0Hρ (x) = H (x).

2) Product of step functions: In practice, it is also possible

to encounter products of step functions as happens with the

startup power consumption in (5). For illustrative reasons,

we first consider a single product of step functions, i.e.,

H (x1)H (x2), and later, in Lemma 1, we present a smooth

approximation of higher order products. We approximate the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

 

 
H(x)

ρ = 0.1

ρ = 1

ρ = 10

Fig. 2. Representation of Hρ (x) in (8) for different values of the approxi-
mation control parameter ρ.

0
5

10

0

5

10
0

0.2

0.4

x1

ρ = 10

x2 0
5

10

0

5

10
0

0.5

1

x1

ρ = 1

x2 0
5

10

0

5

10
0

0.5

1

x1

ρ = 0.1

x2

Fig. 3. Representation of the smooth approximation of H (x1)H (x2), i.e.,
Hρ (x1, x2) in (9) for different values of the approximation control parameter
ρ.

product of step functions H (x1)H (x2) with the function

Hρ : R2
+
→ [0, 1], defined as

Hρ (x1, x2) = Hρ (x1)Hρ (x2) = 1 + e
−

x1+x2
ρ

︸        ︷︷        ︸
Convex

−e
−

x1
ρ − e

−
x2
ρ

︸           ︷︷           ︸
Concave

.

(9)

This approximation is depicted in Fig. 3, where it is observed

that the approximation improves when the control parameter

ρ is reduced. This is clearly observed for ρ = 0.1, where the

approximation of the product of step functions takes value 0

at the axes and close to 1 elsewhere.4

Lemma 1. Given a set of variables xq ∈ R+, q = 1, . . . ,Q,

and x = [x1, . . . , xQ]T, then the product of Q step functions,
∏Q

q=1
H (xq ), can be approximated by the differentiable func-

tion Hρ : R
Q
+
→ [0, 1], defined as

Hρ (x) =1 +
∑

i∈E

∑

0< j1 · · ·< ji ≤Q

e
−

∑i
k=1

x jk
ρ

︸                                 ︷︷                                 ︸
Convex

−
∑

i∈O

∑

0< j1 · · ·< ji ≤Q

e
−

∑i
k=1

x jk
ρ

︸                              ︷︷                              ︸
Concave

, (10)

where E and O are a partition of the set {1, . . . ,Q} that

take the even and odd elements, respectively; and ρ > 0 is

the parameter that controls the approximation. Additionally,

limρ→0Hρ (x) =
∏Q

q=1
H (xq ).

Proof: The function Hρ (x) in (10) is obtained simply

by expanding the product
∏Q

q=1
Hρ (xq ). Since e−x/ρ is dif-

ferentiable so it is Hρ (x). The concavity and convexity of

4Note that, for compactness in the notation, we use Hρ to denote both the
smooth approximation of the single step and the product of step functions.
Throughout the paper, we distinguish between them by the dimension of the
argument.
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the different terms follows by noting that e−x/ρ is a convex

function. Finally, limρ→0Hρ (x) =
∏Q

q=1
limρ→0Hρ (xq ) =

∏Q

q=1
H (xq ).

Note that in the inner summations the values of ji take

all the possible combinations of i elements from the set

{1, . . . ,Q}; accordingly, each of these sums contains
(
Q
i

)

terms.

B. Convex approximation of the smooth step function

In this section, we derive a convex approximation of the

smooth step function, Hρ (φ(x)), around the point x0 for a

given transformation φ (whose component functions are all

concave), which is denoted as H̆ρ (x; x0,φ).

1) Convex approximation of the single step function:

We first consider the convex approximation of the single

step function in (8), Hρ (φ(x)), which, from the rules of

function composition, is a concave function [22]. Thanks to

this concavity, it is easy to show that its linearization at the

point x0, i.e., H̆ρ (x; x0, φ) = 1 + ξρ (x; x0, φ), is a convex

function that satisfies the requirements in [19, Assumption 3],

which for completeness are given in Appendix A. We have

defined ξρ (x; x0, φ) as the linearization of the concave term,

−e
−φ (x)

ρ , around the point x0, i.e.,

ξρ (x; x0, φ) ,
∇xφ(x0)

ρ
e
−

φ (x0)

ρ (x − x0) − e
−

φ (x0)

ρ . (11)

2) Convex approximation of products of step functions:

Similarly, by linearizing the concave terms of the smooth prod-

uct of step functions, we can obtain a convex approximation of

Hρ (φ(x)) that satisfies the requirements in [19, Assumption

3].

Lemma 2. Let φ , [φ1, . . . , φQ]T with φq being concave,

Lipschitz continuous, and continuously differentiable, then the

function

H̆ρ (x; x0, φ) =1 +
∑

i∈E

∑

0< j1 · · ·< ji ≤Q

e
−

∑i
k=1

φ jk
(x)

ρ

︸                                   ︷︷                                   ︸
Convex

+

∑

i∈O

∑

0< j1 · · ·< ji ≤Q

ξρ *,x; x0,

i∑

k=1

φ jk
+-

︸                                       ︷︷                                       ︸
Linear

(12)

is a convex approximation of Hρ (φ(x)) around the point x0

that satisfies the required conditions in [19, Assumption 3],

where ξρ is given in (11).

Proof: See Appendix A.

Remark 1. Using smooth approximations of step functions

to deal with its discontinuity is not a new concept in the

literature; it has been used before to approximate the cardi-

nality operator (or ℓ0 norm), e.g., see [23] and [24]. However,

to the best of our knowledge this is the first paper that

derives an approximation for the product of step functions that

takes into account the SCA requirements in [19, Assumption

3]. Note that the smooth approximation is not unique, for

instance a logarithmic approximation could be used (e.g,

Hρ (x) = log(1+ x/ρ)/log(1+ xMAX/ρ) with xMAX denoting

the maximum possible value of the argument x). The key

properties of the proposed approximation are: (i) it easily gen-

eralizes to products of step functions (products of logarithms

are no longer concave and the approximation would be difficult

to convexify); and (ii) the proposed smooth approximation is

more accurate than the logarithmic approximation under the

same value of ρ (the logarithmic approximation above needs to

reduce much more parameter ρ to be accurate, i.e., ρ≪ 10−20,

which leads to numerical problems due to the finite precision

of the solvers).

IV. THE ITERATIVE SMOOTH AND CONVEX

APPROXIMATION ALGORITHM

In this section, we propose the ISCA that is composed of

two loops as shown in Fig. 4. The outer loop indexed by ς,

performs a SSA of (7), deriving, at each iteration, a nonconvex

smooth problem (P̃ς ), obtained by using the approximation

of the step functions in Lemma 1 given the approximation

control parameter ρς . Initially, we set ρ1 ≫ 0 so that the

resulting problem is smooth (e.g., ρ1
= 5), reducing the

impact of the ISCA initial point, p1, over the final stationary

solution to (7), p̂. Then, the inner loop, indexed by ν, uses

the SCA in [19] to determine a stationary solution, p̃ς , of

(P̃ς ). Next, a termination condition is checked: if it is satisfied,

which implies that the approximation of the step functions is

tight enough, the ISCA concludes that a good solution of the

original problem (7) is p̂ = p̃ς ; otherwise, a new outer iteration

starts by reducing the approximation control parameter, which

improves the approximation of the step functions. At each

iteration, we use a warm start, i.e., a feasible initial point for

the inner loop is obtained that resembles the stationary solution

of the previous outer iteration. In the following sections, we

present more details on the ISCA.

A. The outer loop: Successive smooth approximation of the

step functions

In this section, we formulate the smooth problem, (P̃ς ), at

the ς-th outer loop iteration. This problem, in spite of being

nonconvex, has an inherently high degree of convexity, which

is exploited by the inner loop:

(P̃ς ) : max
p

T∑

t=1

rt (pt, p−t ) (13a)

s.t.
}

, P̃ςB
ς
t (pt ) � 0Jt , ∀t = 1, . . . ,T (13b)

pt ∈ Pt, ∀t = 1, . . . ,T (13c)

where

[B
ς
t (pt )]ℓ ,

ℓ∑

j=1

[
Et j−Ts

∑

n∈τt j

(
(

K∑

k=1

pt (k, n)
)

+

St∑

s=1

wt sHρς

(

φt s (pt )
)

)]
, ℓ = 1, . . . , Jt ;

Hρ is given in (10); and φt s (pt ) is a vector function defined

as φt s (pt ) = [φt s1(pt ), . . . , φt sQt s
(pt )]

T.
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SSA
(P̃ς )

p1 ∈ P̂ ∩ P̃1

ς := 1

Find a
feasible initial point:

pς1 ∈ Pς

ν := 1 SCA
(P̆ςν )

pςν p̃ς

Stop?
yes

p̂

Improve the approximation:
set ρς : ρς < ρς−1 ς:= ς + 1

Outer loop

Inner loop (Algorithm 1)

ν := ν + 1

No

Fig. 4. Block diagram of the ISCA.

B. The inner loop: Nonconvex optimization of smooth prob-

lems with SCA

Among the algorithms that converge to stationary solutions

of smooth nonconvex problems (e.g., gradient-based descend

schemes [25], SCA algorithms [18], [19], [26], feasible se-

quential quadratic programming [27], parallel variable distri-

bution [28], etc.), we have selected the algorithm in [19] for

the inner loop because it has the following main advantages:

(i) it accepts nonconvex constraints; (ii) it exploits any degree

of convexity present in the problem, which results in a much

faster convergence; (iii) it can be solved in a distributed way

under very mild assumptions; and (iv) it includes as special

cases SCA-based algorithms, such as (proximal) gradient

or Newton type method, block coordinate (parallel) descent

schemes and difference of convex functions methods.

The algorithm proposed in [19] is based on SCA and

consists on solving a sequence of strongly convex inner ap-

proximations of the nonconvex smooth problem. Under some

structural assumptions, the algorithm converges to a stationary

solution. These assumptions enforce a specific structure of:

(i) the original nonconvex smooth problem [19, Assumption

1]; (ii) the convex approximation of the objective function

[19, Assumption 2]; and (iii) the convex approximation of the

constraints [19, Assumption 3]. In order to use the algorithm

in [19] in our inner loop, we need to satisfy these structural

requirements.

It can be easily shown that the smooth problem in (13)

satisfies the structural requirements in [19, Assumption 1].

Since the objective function is nonconvex, we need to derive

a proper convex approximation. To do so, we exploit the

“partial” concavity of the rate of a certain user, rt (pt, p−t ),

with respect to its own transmission power pt . Hence, we

approximate the objective function in (13) around the current

iterate pςν
= ((p

ςν
t (k, n))K

k=1
)N
n=1

as
∑T

t=1 r̆t (pt ; pςν ), where

r̆t (pt ; pςν ) = rt (pt, p
ςν
−t ) + π

ςνT
t (pt − p

ςν
t ) −

bt

2
| |pt − p

ςν
t | |

2.

The term π
ςν
t linearizes the rate functions of the users

t ′ , t with respect to pt , i.e., π
ςν
t , ((π

ςν

tkn
)K
k=1

)N
n=1
=

∑

t′,t ∇pt
rt′ (pt′, p−t′ )

���pςν
with

π
ςν

tkn
=

∑

t′,t

−SN R
ςν

t′
(k, n)ht t′ (k, n)

MUI
ςν

t′
(k, n)(1 + SN R

ςν

t′
(k, n))

; (14)

SN R
ςν
t (k, n) ,

ht t (k,n)p
ςν
t (k,n)

MUI
ςν
t (k,n)

and MUI
ςν
t (k, n) , σ2

t (k) +

∑

t′,t p
ςν

t′
(k, n)ht′t (k, n) are the signal to interference plus

noise ratio and the multiuser interference-plus-noise power

experienced by user t given the power profile pςν . The term
bt

2
| |pt − p

ςν
t | |

2 with bt ≥ 0 is a proximal regularization

term that relaxes the convergence conditions of the inner loop

algorithm and enhances the convergence speed [18].

Accordingly, the strongly convex problem that has to be

solved in the ν-th inner loop iteration, which approximates

the smooth problem (P̃ς ) around the current iterate, pςν , is

(P̆ςν ) : max
p

T∑

t=1

r̆t (pt ; pςν ) (15a)

s.t.

, P̆ςνB̆

ςν
t (pt ; p

ςν
t ) � 0Jt , ∀t (15b)

pt ∈ Pt, ∀t (15c)

with

[B̆
ςν
t (pt ; p

ςν
t )]ℓ ,

ℓ∑

j=1

[
Et j − Ts

∑

n∈τt j

(
(

K∑

k=1

pt (k, n)
)

(16)

+

∑

s∈S+t

wt sH̆ρς (pt ; p
ςν
t ,φt s ) +

∑

s∈S−t

wt sH̆
−
ρς (pt ; p

ςν
t , φt s )

)]
,

where S+t = {s ∈ {1, . . . , St } : wt s > 0} and S−t = {s ∈

{1, . . . , St } : wt s < 0}; H̆ρ is given in Lemma 2; and H̆−ρ is

defined as H̆ρ but swapping the odd and even sets. We have

defined H̆−ρ because the negative weights invert the concavity

or convexity of the terms of the smooth step function.

Additionally, since the objective function and constraints of

the different transmitters are decoupled, the problem decouples

into T subproblems one for each transmitter-receiver pair,

which leads to a distributed resource allocation strategy that

requires very limited feedback as presented later. Accordingly,

each transmitter must solve the following problem at each

inner loop iteration:

(P̆
ςν
t ) : maximize

pt

r̆t (pt ; pςν ) (17a)

subject to
}

, P̆
ςν
t

B̆
ςν
t (pt ; p

ςν
t ) � 0Jt , (17b)

pt ∈ Pt . (17c)

Since (P̆
ςν
t ) is a strongly convex problem, its unique

solution, p̆
ςν
t , can be easily determined by classical convex

optimization algorithms, e.g., interior point methods [22].

However, since the solution to (P̆
ςν
t ) has to be computed
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Algorithm 1 The inner loop: SCA of (P̃ς )

Input: pς1 ∈ P̃ς , aςν > 0.
Initialization: Set ν := 1.
Step 1: If a termination condition is satisfied: STOP.
Step 2: For every user t ∈ [1, T ], find p̆

ςν
t that is the unique optimal

solution of the strongly convex problem (P̆
ςν
t ).

Step 3: Update the iterate: p
ς (ν+1)
t = p

ςν
t + a

ςν
(

p̆
ςν
t − p

ςν
t

)

, ∀t .

Step 4: ν := ν + 1 and go to Step 1;

at each inner loop iteration, it is key to derive (if possible)

a closed form solution in order to reduce the computational

complexity of the ISCA. Section V derives an efficient solution

for the power consumption model C1
tn in (4).

The SCA-based inner loop algorithm is presented in Algo-

rithm 1 [19]. The algorithm uses the unique optimal solution

to (P̆
ςν
t ), p̆

ςν
t , to determine the initial point of the following

iteration, p
ς(ν+1)
t , which is computed as a convex combination

of p̆
ςν
t and the previous iterate p

ςν
t .

Theorem 1 ([19]). Given the smooth nonconvex problem (P̃ς ),

suppose that one of the two following conditions holds:

a) The step size aςν is such that 0 < infν aςν ≤ supν aςν ≤

amax ≤ 1 and 2cr̆ ≥ amaxL∇r , where cr̆ is the constant

of uniform strong convexity of
∑T

t=1 r̆t (pt ; pςν ) and L∇r is

Lipschitz continuity constant of
∑T

t=1 ∇prt (pt, p−t ).

b) (i) P̃ς is compact; (ii) p̆ςν is regular for every possible

initial point pς1 ∈ P̃ς ; and (iii) the step size aςν is such that

aςν ∈ (0, 1], aςν → 0, and
∑

ν aςν
= +∞.

Then every regular limit point of {p̆ςν }∞
ν=1

is a stationary

solution of (P̃ς ). Furthermore, none of such points is a local

minimum.

C. Determining a feasible initial point for the inner loop.

The inner loop in Algorithm 1 requires a feasible initial

point, i.e., pς1 ∈ P̃ς . The stationary solution to (P̃ς−1) cannot

be directly used since, in most of the cases, is not feasible, i.e.,

p̃ς−1
< P̃ς . Finding the projection of p̃ς−1 to the nonconvex

feasible set P̃ς would require to solve a nonconvex problem,

which is not practical because we need something simple and

fast. There are many heuristic approaches to find the initial

feasible point; the simplest and most general option, which in

practice works well, is to move from p̃ς−1 towards the ISCA

initial point, p1, which is required to belong to P̂ ∩ P̃1. It

can be easily shown that if p1 ∈ P̂ ∩ P̃1, then there exists a

step length, dς , such that an initial feasible point is obtained,

i.e., pς1
, p̃ς−1

+ dς (p1 − p̃ς−1) ∈ P̃ς . Given the power

consumption models C1
tn and C2

tn in (4) and (5), we can select

p1
= 0.

Depending on the specific power consumption model one

may find better ways to obtain the initial feasible point for the

inner loop. For example, given the power consumption model

C1
tn , it can be shown that the steepest descent direction of a

given energy causality constraint is a descend direction of the

remaining ones. Hence, the feasible initial point can be found

by successively moving in the steepest descend direction of

the unfulfilled energy causality constraints.

D. Convergence of the ISCA and distributed implementation

Now, the details of all the building blocks of the ISCA

have been introduced. The following lemma characterizes the

relations between the feasible sets of the outer loop problems,

P̃ς , with respect to the feasible set of the original problem,

P̂.

Lemma 3. (a) The sequence of feasible sets of the smooth

problems {P̃ς }N converges to P̂ in the Painlevé-Kuratowski

sense [29], i.e., limς→∞ P̃
ς → P̂ . (b) If the step function

weights are all positive, wt s > 0, ∀t, s, then we have that

P̂ ⊆ P̃∞ ⊂ · · · ⊂ P̃ς+1 ⊂ P̃ς ⊂ · · · ⊂ P̃1. (c) If the weights

are all negative, wt s < 0, ∀t, s, then P̃1 ⊂ · · · ⊂ P̃ς ⊂ P̃ς+1 ⊂

. . . P̃∞ ⊆ P̂.

Proof: See Appendix B.

Next, we analyze the convergence of the ISCA.

Theorem 2. (a) Let p̃⋆ς be a global solution of (P̃ς ), then

every cluster point of the sequence {p̃⋆ς } converges to a

globally optimal solution of (P̂). (b) Every cluster point of

the sequence {p̃ς } converges to a stationary solution of the

problem (P̂).

Proof: See Appendix C.

In general, we cannot obtain the globally optimal solution of

(P̂) as the problems (P̃ς ) are nonconvex and we are not able

to obtain their globally optimal solution, p̃⋆ς . However, from

the previous theorem, we guarantee that the ISCA converges

to a stationary solution of the original problem (P̂) for any

decreasing sequence of {ρς }. The rate at which the approxi-

mation parameter ρ is reduced affects the ISCA performance

and its computational complexity. If ρ is reduced at a very

fast rate in the outer loop, then the algorithm might converge

to a worse stationary solution. Contrarily, if ρ is reduced at a

very slow rate, the algorithm generally converges to a better

stationary solution, but the computational complexity of the

algorithm increases due to the elevated number of outer loop

iterations. In the numerical experiments, we have observed a

wide range of sequences {ρς } that achieve a good trade-off

between performance and computational complexity.

In order to compute the solution in a distributed manner,

which is meaningful when the channel is static in time and

the energy harvesting process is predictable, the following

signalling is required so that the remaining transmitters can

compute the weights π
ςν

tkn
: (i) at each outer loop iteration,

each transmitter has to broadcast the feasible initial point of

the inner loop; and (ii) at each inner loop iteration, each

transmitter t solely has to broadcast ∇p−t rt (pt, p
ςν
−t ), which

can be computed with the local measurements of the signal

to interference plus noise ratio and the multiuser interference.

Note that the energy causality constraints are not fulfilled until

convergence of the ISCA. Accordingly, it is required that the

nodes have a backup battery to be used for this transitory

regime, which can be recharged with the harvested energy.

Remark 2. Note that if a different rate function is employed,

the ISCA can be used by deriving a proper convex approxi-

mation of the objective function.
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V. THE ISCA ALGORITHM FOR C1
tn IN (4)

In this section, we focus on the power consumption model

C1
tn in (4) and derive a closed form solution of the inner loop

problem.

As it has been mentioned in Section IV, at each inner loop

iteration, the t-th transmitter must solve (17) to obtain the

update direction. Given the power consumption model C1
tn ,

we have

[B̆
ςν
t (pt ; p

ςν
t )]ℓ =

ℓ∑

j=1

[
Et j

−
∑

n∈τ j

(

ε
ςν
t (n) +

K∑

k=1

ϕ
ςν
t (k, n)pt (k, n)

)
]
,

with

ϕ
ςν
t (k, n) =Ts

(

1 +
αt

ρς
e
−

∑K
k=1

p
ςν
t (k,n)

ρς +

βt

ρς
e
−p

ςν
t (k,n)

ρς
)

(18)

ε
ςν
t (n) = Tsαt *,1 − *,1 +

∑K
k=1 p

ςν
t (k, n)

ρς
+- e

−1
ρς

∑K
k=1

p
ςν
t (k,n) +-

+Ts βt

K∑

k=1

(

1 −

(

1 +
p
ςν
t (k, n)

ρς

)

e
−1
ρς

p
ςν
t (k,n)

)

,

where the constants ϕ
ςν
t (k, n) and ε

ςν
t (n) are obtained after

linearizing the step functions at the current iterate, p
ςν
t .

Lemma 4. Given the power consumption model C1
tn , the

optimal solution to (17), p̆
ςν
t (k, n), n ∈ τt j , is obtained in

closed form and is given in (19) at the top of next page, where

γ
ςν⋆
t (k, n) = −π

ςν

tkn
+ λ̄

ςν⋆

t j
ϕ
ςν
t (k, n), λ̄

ςν⋆

t j
=

∑Jt
ℓ= j
λ
ςν⋆

tℓ
with

{λ
ςν⋆

tℓ
}
Jt
ℓ=1

being the optimal Lagrange multipliers associated

to the energy causality constraints in (15b), which can be com-

puted efficiently similarly to [3], [30, FSA]. Additionally, if we

do not include the proximal regularization term, i.e., bt = 0,

we obtain the following iterative directional waterfilling like

solution:

p̆
ςν
t (k, n) =


1

γ
ςν⋆
t (k, n)

−
MUI

ςν
t (k, n)

ht t (k, n)


pmax
t (k,n)

0

. (20)

Proof: See Appendix D.

From the expression in (20), we can get some intuition on

the solution. First, if the water level, γ
ςν⋆
t (k, n)−1, is smaller

than MUI
ςν
t (k, n)/ht t (k, n), then it is preferable to turn off the

(k, n)-th subchannel. Second, the water level decreases with

the interference produced to other users, which is quantified in

the term −π
ςν

tkn
. This implies that the users will try to reduce

the interference as much as possible to increase the sum-

rate. Third, the water level depends on ϕ
ςν
t (k, n) in (18), i.e.,

the partial derivative of the smooth energy consumption with

respect to pt (k, n) evaluated at the current iterate p
ςν
t (k, n).

Accordingly, if the power of a certain subchannel is small,

p
ςν
t (k, n) → 0, the derivative of the smooth step functions

is large, and the water level is penalized; vice versa if the

power is large the water level is rewarded. Note that these

penalizations or rewards are weak at the initial ISCA iterations,

because the approximation of the step functions is smooth, but

they gain in importance as the ISCA iterations go by. Finally,

the water level is a function of the Lagrange multipliers that

depend on the energy availability of the node in a similar way

than in the directional waterfilling solution [2].

Note that the ISCA can be applied to a broad class of

problems. In the following remarks, we use the ISCA to

derive stationary solutions of power allocation problems that,

to the best of our knowledge, have not been yet derived in the

literature.

Remark 3 (Transmission power only). Consider the sum-rate

maximization problem of a network of energy harvesting

nodes, where the unique source of energy consumption is the

transmission power (αt = 0, βt = 0, γt = 0). Then, the

inner loop of the ISCA (or the algorithm in [19]) can be

used to determine distributedly a stationary solution, where

the solution to the ςν-th inner loop problem is

p̆
ςν
t (k, n) =


1

−π
ςν

tkn
+ λ̄

ςν⋆

t j
Ts

−
MUI

ςν
t (k, n)

ht t (k, n)


pmax
t (k,n)

0

, n ∈ τt j .

Remark 4 (Power consumption model C2
tn). Consider the

problem of maximizing the sum-rate given the power con-

sumption model C2
tn . Then, the ISCA determines distributedly

a stationary solution, where the inner loop problem must be

solved by numerical methods since it does not accept a closed

form solution. Additionally, the power allocation strategy in a

point to point link is obtained by particularizing T = 1, which

implies that π
ςν

tkn
= 0,∀k, n.

Remark 5 (Non-harvesting nodes). Finally, consider the sum-

rate maximization problem of a network of non-harvesting

nodes given any power consumption model of the form (6).

Then, the ISCA distributedly determines a stationary power

allocation policy, where the strongly convex problem that has

to be solved at each inner loop iteration is (17) given that

Jt = 1,∀t, which imposes a sum-power constraint.

VI. RESULTS

In this section, we numerically evaluate the performance

of the ISCA in terms of achieved rate and computational

complexity of the algorithm. The most similar work is [14] that

considered the problem of maximizing the mutual information

in a point to point link with the power consumption model C1
tn .

Accordingly, in order to have some benchmark with which to

compare the performance of the ISCA, we first particularize

the solution derived in the previous section to the case T = 1.

The remaining system parameters have been set as follows.

We have considered N = 50 channel accesses of duration

Ts = 20 ms in which symbols are transmitted through K = 2

parallel streams. The power consumption constants are set to

αt = γt = 150 mW and βt = 10 mW . A Rayleigh fading

channel has been considered with unit mean channel power

gain. The energy harvesting process is modeled as a compound

Poisson process as done in [2], where the arrival instants

follow a Poisson distribution with rate 1
10

and the energy in the

packets is drawn from a uniform distribution and normalized

by the total harvested energy that varies along the x-axis of

Figs. 5-7. The initial point of the ISCA is set to zero, and the

approximation control parameter is ρς = 0.5ρς−1 with ρ1
= 5.
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p̆
ςν
t (k, n) =

[
1

2

(

p
ςν
t (k, n) −

MUI
ςν
t (k, n)

ht t (k, n)

)

−
1

2bt

(

γ
ςν⋆
t (k, n)−

√[
γ
ςν
t (k, n) − bt

(

p
ςν
t (k, n) +

MUI
ςν
t (k, n)

ht t (k, n)

)]2

+ 4bt

)] pmax
t (k,n)

0

,

(19)
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Fig. 5. Achieved rate versus total harvested energy.

We have not used the proximal regularization term, bt = 0,

and the inner loop step size is aςν
= aς(ν−1) (1− 10−3aς(ν−1) )

with aς0
= 1, ∀ς.

We consider two classes of strategies. On the one hand, we

consider strategies that use the power consumption model C1
tn

(i.e., strategies that disregard the startup power consumption,

γt = 0), which can be based either on the use of indicator

variables or on the use of the ISCA: (i) the indicator variables

based strategies are an upper bound of the solution, IV-UB

(γt = 0), and a feasible solution that performs close to the

upper bound IV (γt = 0) and were derived in [14]; (ii) the

ISCA based strategies are ISCA-FSA (γt = 0) that uses the

closed form solution derived in Lemma 4, where the Lagrange

multipliers are obtained by using the FSA algorithm in [3], and

ISCA-BM (γt = 0) that solves (17) using the barrier method

given that γt = 0. On the other hand, we consider strategies

that account for the startup power consumption (i.e., strategies

that use the power consumption model C2
tn), ISCA-BM, which

solves (17) using the barrier method, and the strategies IV

and ISCA-FSA, which scale IV (γt = 0), and ISCA-FSA (γt =

0) until the energy causality constraints with startup power

consumption are satisfied.

In this setup, Fig. 5 shows the achieved rate versus total

harvested energy. First, we observe that the stationary solution

provided by the ISCA strategies is close to the global optimum

since the gap with the upper bound, IV-UB (γt = 0), is small.

Second, the ISCA based solutions perform slightly better

than the feasible strategy IV (γt = 0). Finally, as expected,

the strategies that consider the startup power consumption

achieve a lower sum-rate, where the stationary solution ISCA-

BM performs better than the other strategies that consider the

startup power consumption.

Fig. 6 shows the percentage of the total harvested energy

that is expended in the circuitry. The percentage of energy

spent in the circuitry is much higher at low harvested energies,

where the cost for turning on a subchannel is a high fraction

of the total available energy, and decreases in the high energy

regime, where the transmission power in each subchannel

increases. Additionally, at the high energy regime, the effect
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Fig. 6. Percentage of the total harvested energy expended in the circuitry.
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Fig. 7. Mean execution time versus total harvested energy.

of disregarding the startup power consumption does not have

a significant impact since most of the channel accesses are

active and, accordingly, there are a few off-on transitions.

Fig. 7 evaluates the computational complexity of the dif-

ferent algorithms. It is observed that the worst performance

is achieved by ISCA-BM, where most of the execution time

is spent in the computation of the gradient and the Hessian

required for the Newton method [22]; however, it also solves

a more complex problem than the strategies that disregard

the startup power consumption. Note that the performance of

the ISCA with the barrier method improves when the startup

power consumption is disregarded. Finally, it is important

to mention that when a closed form solution of the inner

loop problem is available, as happens with ISCA-FSA, the

computational complexity of the ISCA is dramatically reduced

outperforming the strategy based on indicator variables.

Fig. 8 shows the violation of the original nonsmooth energy

causality constraints (7b) produced by the stationary solution

of each smooth nonconvex problem, which is computed as

the Euclidean norm of the nonfulfilled constraints. To obtain

Fig. 8, we have reduced the approximation control parameter

slightly slower to have more points, i.e., ρς = 0.8ρς−1 with

ρ1
= 5. As expected, when the outer loop iterations go by and

the approximation control parameter is reduced, the violation

of the original nonsmooth energy causality constraints is

reduced.

Next, we evaluate the ISCA for the case of having T = 3
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Fig. 9. Sum-rate achieved in the interference channel when T = 3 for different
average power gains of the interference links.

simultaneous transmitter-receiver pairs. Since the optimal so-

lution is unknown for T > 1, the performance of the ISCA is

evaluated with respect to the idealistic case of having multiple

non-interfering point to point links with the upper bound

obtained with indicator variables IV-UB in [14]. As before,

we consider a time window of 1 s where the total harvested

energy of transmitters 1-3 is 2, 1.5 and 3 Joules, respectively.

For the direct links, we have considered a Rayleigh fading

channel with unit mean channel power gain. In this context,

Fig. 9 evaluates the achieved rate for different average channel

power gains of the interference links. It is observed that when

the channel power gain of the interference links is close to

zero, the performance of the ISCA is close to the idealistic

case of having multiple non-interfering point to point links.

However, as the channel power gain of the interference links

increases, the sum-rate of the ISCA is reduced.

Finally, we evaluate the performance of the ISCA for

realistic solar energy harvesting profiles. We consider T = 2

transmitters with a solar panel of 30% efficiency and di-

mensions of 45 cm × 45 cm and 63 cm × 63 cm. The

data from the harvested energy is obtained from [31] and is

depicted in Fig. 10. We consider that the continuous harvested

energy is first stored in a super-capacitor and then transferred
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Fig. 10. Harvested energy using solar panels at the different hours of the day.

Table II
CHANNEL POWER GAINS

k = 1,∀n t ′ = 1 t ′ = 2

t = 1 0.875 18.152

t = 2 3.838 1.681

k = 2,∀n t ′ = 1 t ′ = 2

t = 1 0.328 2.392

t = 2 4.765 1.063
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Fig. 11. Power allocation obtained for the ISCA algorithm under the solar
energy harvesting depicted in Fig. 10.

at every hour transition to the rechargeable battery to be

used for transmission. The total transmission time is one

day that is divided in transmission slots of 15 minutes. We

consider K = 2 subcarriers. The channel power gains in each

subcarrier, ht t′ (k, n), are given in Table II and are assumed

to be static in time. The power consumption constants are

set to αt = 100 µW, βt = 10 µW, and γt = 0. In this

context, Fig. 11 depicts the transmission power obtained with

the ISCA for each node and subcarrier. It is observed that both

nodes transmit solely at subcarrier k = 1, where the direct link

is better. At 7 am both nodes start harvesting energy. Then,

node 2 starts transmitting, while node 1 remains off to avoid

generating interference. From 8 to 11, node 1 transmits and 2

switches off; this occurs because in this time interval node 1

harvests more energy. The nodes alternate transmission cycles

in a time division fashion from 11 to 13. Finally, from 13 until

midnight both nodes transmit simultaneously at a constant

power.

VII. CONCLUSIONS

In this paper, we have studied the offline sum-rate max-

imization problem of a Gaussian interference channel com-

posed of EHWNs by considering a general power consumption

model that is composed of step functions. We have proposed

the ISCA, a distributed power allocation algorithm that is

based on SSA of the step functions to derive a sequence of

smooth nonconvex problems that can be solved by means of

SCA. It has been shown that the ISCA converges to station-

ary solutions of the original optimization problem, which is

nonsmooth, nonconvex, and NP-hard. The numerical results

have first focused on point to point communications in order

to have benchmarks to evaluate the performance of the ISCA.

In this setup, we have shown that the ISCA is able to avoid bad

stationary solutions performing close to the globally optimal

solution and reduces the complexity of existing algorithms.

The performance of the ISCA has been also evaluated using

real solar energy harvesting traces. It has been observed that

the power allocation obtained with the ISCA naturally tries

to avoid interference to maximize the network sum-rate. In

conclusion, the ISCA is a powerful offline power allocation
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algorithm able to compute stationary solutions in the Gaussian

interference channel for a broad class of power consumption

models, which was not possible with existing algorithms. In

this context, the ISCA can be used to evaluate novel online

policies that do not require non-causal knowledge of the

harvested energy.

APPENDIX

A. Proof of Lemma 2

In the following lines, we show that H̆ρ (x; x0, φ) satisfies

all the requirements imposed from [19, Assumption 3] that

are:

Assumption 1. The function H̆ρ (·; ·,φ) : X × Y → R must

satisfy [19, Assumption 3] for all φ: A1) H̆ρ (·; x0, φ) is convex

on X for all x0 ∈ Y; A2) H̆ρ (x; x,φ) = Hρ (φ(x)), for all

x ∈ X; A3) Hρ (φ(x)) ≤ H̆ρ (x; x0,φ) for all x ∈ X and

x0 ∈ Y; A4) H̆ρ (·; ·,φ) is Lipschitz continuous on X × Y;

A5) ∇xH̆ρ (x0; x0,φ) = ∇xHρ (φ(x0)), for all x0 ∈ Y; A6)

∇xH̆ρ (·; ·,φ) is continuous on X ×Y; where ∇xH̆ρ (x0; x0, φ)

denotes the partial gradient of H̆ρ (x; x0,φ) with respect to x

evaluated at (x0; x0,φ).

First note that since the component functions of φ are

all concave and e
−x
ρ is convex and decreasing, the function

e
−

∑i
k=1

φ jk
(x)

ρ is convex [22], which proves the convexity of

the terms in (12). Accordingly, A1 is satisfied because H̆ρ

is the addition of convex and affine terms. Since H̆ρ (·; x0, φ)

is obtained after linearizing the concave terms of Hρ (φ(·)), it

follows that H̆ρ (·; x0,φ) is a global over estimator that has

the same value and gradient at x0. Hence, conditions A2,

A3, and A5 are also satisfied. Finally, since e
−x
ρ is Lipschitz

continuous, H̆ρ (·; ·,φ) is also Lipschitz continuous.

B. Proof of Lemma 3

Note that the difference between P̃ς+1 and P̃ς is due to the

reduction of the approximation control parameter (ρς+1 < ρς )

in the energy causality constraints. It can be easily shown

that: (i) Hρ is strictly decreasing in ρ (for x > 0) and (ii)

Hρ (x) ≤
∏Q

q=1
H (xq ), ∀x ∈ R

Q
+

, ρ > 0. Accordingly, when

all the weights are positive, we have from (i) that the smooth

energy causality constraints are tightened when the approx-

imation control parameter is reduced, i.e., P̃ς+1 ⊂ P̃ς,∀ς.

Additionally, from (ii), the energy causality constraints are

relaxed when using the smooth approximation, we have that

P̂ ⊆ P̃ς . This proves (b). The proof of (c) follows similarly

by noting that when all the weights are negative the original

energy causality constraints are tightened.

To prove (a), we define the sets P̃
ς
+

and P̃
ς
− in (21) at the top

of next page, where S+t and S−t are defined as in (16). Note

that P̃
ς
+

approximates the positive step functions only and P̃
ς
− ,

the negative ones. Similarly than in the proofs of (b) and (c) it

follows that P̃
ς+1
+
⊂ P̃

ς
+
,∀ς and P̃

ς
− ⊂ P̃

ς+1
− ,∀ς. Additionally,

following the same arguments, we have that P̃
ς
− ⊂ P̃

ς ⊂ P̃
ς
+

.

From [29, Exercise 4.3], we have that the limits of the sets

P̃
ς
+

and P̃
ς
− exists (the inner and outer limits are equal) and

are P̃
ς
+
→ P̂ and P̃

ς
− → P̂. This leads to P̃ς → P̂, which

proves (a).

C. Proof of Theorem 2

Let us write the original optimization problem (P̂) as

minp f̂ (p) with f̂ : RN×K×T → R∪{∞}, f̂ (p) = r (p)+ IP̂ (p),

where r (p) = −
∑T

t=1 rt (pt, p−t ) and IΩ(x) is the indicator

function of a given set Ω with IΩ(x) = 0 if x ∈ Ω and

IΩ(x) = ∞ otherwise. Similarly, we write the smooth problem,

(P̃ς ), as minp f̃ ς (p) with f̃ ς (p) = r (p) + IP̃ς (p).

Lemma 5. f̃ ς (p) epi-converges to f̂ (p), f̃ ς (p)
e
→ f̂ (p) (epi-

convergence is defined in [29]).

Proof: From the convergence of the feasible sets in

Lemma 3 and [29, Proposition 7.4 f], we have that IP̃ς

e
→ IP̂ .

Given that r (p) is continuous and finite, the lemma is readily

proven by using [29, Exercise 7.8 a].

Since the sets P̃ς and P̂ are closed and nonempty and

r (p) is continuous, it follows that the functions f̃ ς and f̂ are

proper, lower semi-continuous, and eventually level-bounded

[29]. Then, the proof of the statement in (a) readily follows

by using Lemma 5 and [29, Theorem 7.33].

Next, we prove the statement in (b). We will demonstrate

that a given cluster point, p̃, of the sequence {p̃ς }N converges

to a stationary solution of (P̂) and the same procedure can

be applied to every cluster point of the sequence. Thus,

there exists a suitable subsequence N ′ ⊆ N such that

limN ′∈ς→∞ p̃ς
= p̃.

First of all, note that if ∇r (p̃) = 0, then necessarily p̃ is

a stationary solution of (P̂). Otherwise, if ∇r (p̃) , 0, then p̃

is a stationary solution if and only if p̃ is a local (or global)

minimum of f̂ in the boundary of the feasible set P̂. Thus, we

need to show that when ∇r (p̃) , 0, then p̃ ⊂ argminC(p̃,δ) f̂ ,

{p ∈ C(p̃, δ) | f̂ (p) = infC(p̃,δ) f̂ }, where C(p̃, δ) denotes a

closed ball around the point p̃ with radius δ > 0. Similarly,

let O(p̃, δ) denote the open ball centered at p̃ with radius δ.

From the continuity of ∇r, we know that there is a suffi-

ciently large index ς̄ ∈ N ′ such that ∇r (p̃ς ) , 0 ς ≥ ς̄. Then,

similarly as before, we know that the points p̃ς , ∀ς ≥ ς̄,

correspond to local minimums of f̃ ς at the boundary of P̃ς ,

i.e., p̃ς ⊂ argminC(p̃ς,δς ) f̃ ς , ∀ς ≥ ς̄. Then, there exist

arbitrary small constants δ > 0 and ǫ > 0 and a sufficiently

large index ¯̄ς ∈ N ′, ¯̄ς ≥ ς̄, such that the points p̃ς satisfy

that p̃ς ⊂ argminC(p̃,δ) f̃ ς and p̃ς ⊂ argminO(p̃,δ+ǫ) f̃ ς for all

ς ≥ ¯̄ς, or, equivalently,

inf
O(p̃,δ+ǫ)

f̃ ς = inf
C(p̃,δ)

f̃ ς = f̃ ς (p̃ς ), ∀ς ≥ ¯̄ς. (22)

The existence of δ and ǫ satisfying (22) follows from the

differentiability of r (p). Then, from [29, Proposition 7.29] and

Lemma 5, we know that lim infς (infC(p̃,δ) f̃ ς ) ≥ infC(p̃,δ) f̂

and

lim sup
ς

(

inf
O(p̃,δ+ǫ)

f̃ ς
)

= lim sup
ς

(

inf
C(p̃,δ)

f̃ ς
)

(23)

≤ inf
O(p̃,δ+ǫ)

f̂ ≤ inf
C(p̃,δ)

f̂ .

Combining these two results, we have that infC(p̃,δ) f̃ ς →

infC(p̃,δ) f̂ .

Next, we show that p̃ is a stationary solution of the original

problem. Recall that p̃ς ⊂ argminC(p̃,δ) f̃ ς , ∀ς ≥ ¯̄ς and
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P̃
ς
+
,

pt ∈ Pt :

ℓ∑

j=1

Et j − Ts

∑

n∈τt j

(
(

K∑

k=1

pt (k, n)
)

+

∑

s∈S+t

wt sHρς (φt s (pt )) +
∑

s∈S−t

wt s

Qt s∏

q=1

H (φt sq (pt ))

) ≥ 0,∀ℓ = 1, . . . Jt ,∀t


P̃

ς
− ,


pt ∈ Pt :

ℓ∑

j=1

Et j − Ts

∑

n∈τt j

(
(

K∑

k=1

pt (k, n)
)

+

∑

s∈S−t

wt sHρς (φt s (pt )) +
∑

s∈S+t

wt s

Qt s∏

q=1

H (φt sq (pt ))

) ≥ 0,∀ℓ = 1, . . . Jt ,∀t


(21)

that these sets are nonempty by [29, Theorem 1.9]. Similarly,

argminC(p̃,δ) f̂ is nonempty. Thus, we have

f̂ (p̃)≤ lim inf
ς

f̃ ς (p̃ς ) ≤ lim sup
ς

f̃ ς (p̃ς ) (24)

= lim sup
ς

inf
C(p̃,δ)

f̃ ς ≤ inf
C(p̃,δ)

f̂ , (25)

where the first inequality follows from the definition of epi-

convergence [29, Proposition 7.2] and the last one from (23).

Accordingly, we have that f̂ (p̃) = infC(p̃,δ) f̂ . Thus, whenever

∇r (p̃) , 0, we have that p̃ is a local minimum of f̂ on the

boundary of the feasible set, i.e., p̃ ⊂ argminC(p̃,δ) f̂ . Thus, p̃

is a stationary solution of (P̂).

D. Proof of Lemma 4

We proof Lemma 4 by using the KKT sufficient optimal-

ity conditions. The Lagrangian of the problem in (17) is

L
ςν
t (pt,λ

ςν
t ) = rt (pt, p

ςν
−t )+π

ςνT
t (pt −p

ςν
t )−

bt

2
| |pt −p

ςν
t | |

2
+

λ
ςνT
t B̆

ςν
t (pt ; p

ςν
t ), where λ

ςν
t are the Lagrange multipliers as-

sociated to the energy causality constraints in (17b). Taking the

derivative of the Lagrangian with respect to pt (k, n), n ∈ τt j ,

and equating to zero, we obtain p̆
ςν
t (k, n) as given in (26) at

the top of next page, where γ
ςν
t (k, n) = −π

ςν

tkn
+ λ̄

ςν

t j
ϕ
ςν
t (k, n)

with λ̄
ςν

t j
=

∑J
ℓ= j
λ
ςν

tℓ
; and p̄

ςν
t (k, n) is obtained as the solution

of the following quadratic equation

ht t (k, n)

ht t (k, n) p̄
ςν
t (k, n) + MUI

ςν
t (k, n)

=

γ
ςν
t (k, n) + bt (p̄

ςν
t (k, n) − p

ςν
t (k, n)). (27)

From [32, Lemma 35] (with Hk :=
ht t (k,n)

MUI
ςν
t (k,n)

, τ := bt ,

ck := p
ςν
t (k, n), µ̃k := γ

ςν
t (k, n)), the previous equation has

the following properties: (i) both roots are real, one root is

always negative, and the other is nonnegative; (ii) both roots

are decreasing in γ
ςν
t (k, n); and the nonnegative root is given

by (19). Finally, note that if the proximal step is zero, bt = 0,

then (20) follows directly from the first order equation in (27).
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