arXiv:1509.00836v1 [cs.IT] 2 Sep 2015

Energy Harvesting Transmitters that Heat Up:
Throughput Maximization under Temperature

Constraints

Omur Ozel Sennur Ulukus Pulkit Grover

Abstract

Motivated by damage due to heating in sensor operation, weider the throughput optimal
offline data scheduling problem in an energy harvestingstratter such that the resulting temperature
increase remains below a critical level. We model the teatpee dynamics of the transmitter as a
linear system and determine the optimal transmit powercpalnder such temperature constraints as
well as energy harvesting constraints over an AWGN chanielfirst derive the structural properties
of the solution for the general case with multiple energyvals. We show that the optimal power
policy is piecewise monotone decreasing with possible girapthe energy harvesting instants. We
derive analytical expressions for the optimal solutionhe single energy arrival case. We show that,
in the single energy arrival case, the optimal power is mometdecreasing, the resulting temperature
is monotone increasing, and both remain constant afteretim@erature hits the critical level. We then

generalize the solution for the multiple energy arrivalecas

. INTRODUCTION

In many wireless sensor applications, temperature inereasised by sensor operation has
to be carefully managed. For example, wireless sensorsammgad in the human body have to
be designed such that the temperature due to their operdties not cause any threat for the
metabolism. A line of medical research started by Penne948 11] explores the temperature
dynamics due to electromagnetic radiation in conjunctiotin imeat losses to the environment

and dissipation of heat in the tissue. In the context of sentb@t communicate data, temperature
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sensitivity varies depending on the type of tissue. For amgspecific tissue, it is recommended
that the temperature does not exceed a critical level, ierota prevent damage to the tissue.
This necessitates careful scheduling of data transmidgpnThis problem arises in various
types of body area sensor networks, see €.3.,[[B]-[5] ardartes therein. Finally, temperature
increase in a sensor is a threat for the proper operationeohéndware itself[J6]:]9]. In this
context, the electric power that feeds the amplifier cirguitas to be carefully scheduled so as
to avoid permanent damage in the circuit.

In order to obtain design principles with regard to tempegtsensitivity of such systems,
determining transmission schemes under a safe tempethteshold’, is a useful objective. In
this paper, we consider data transmission with energy sangesensors under such temperature
constraints. Data transmission with energy harvestingstratters has been the topic of recent
research[[10]=[17]. In particular, throughput maximieatiunder offline and online knowledge
of the energy arrivals is considered in these referencesifgle-user and multi-user energy
harvesting communication systems.[In|[18]2[22], this fpeabis investigated under imperfections
such as battery energy leakage, charge/discharge inetficiand presence of processing costs.

In the current paper, we aim to bridge physical heat dissipatith data transmission in energy
harvesting communication systems. When the sole purposensaximize the throughput, the
transmitter may generate excessive heat while utilizireg éhergy resource. In a temperature
sensitive application, the heat accumulation caused byrémsmission power policy has to be
explicitly taken into account. In such a case, heat gengiatéhe transmitter circuitry causes a
form of “information-friction” [23]. We study the effect dhis “friction” in a deadline constrained
communication of an energy harvesting transmitter over AHGAl channel. For simplicity, we
use transmit power as a proxy for hardware power. That is,ssarae that the energy dissipated
by the power amplifier dominates other energy sinks in theudny. More work is needed to
understand full implications of communication circuiggnergy in this context. Our formulation
also relates to[[24] in that the cumulative effect of heategated in the hardware affects the
communication performance.

We determine the throughput optimal offline power schedufiolicy under energy harvesting
and temperature constraints. Our thermal model is based/iewaof the transmitter’s circuitry as

a linear heat system where transmit power is an input as jifi{lL][9], [24]. We impose that the



temperature does not exceed a critical I€¥el Consequently, we obtain a convex optimization
problem. We solve this problem using a Lagrangian framevemdk KKT optimality conditions.
We first derive the structural properties of the solution tfeg general case of multiple energy
arrivals. Then, we obtain closed form solutions under alsimgmergy arrival. For the general
case, we observe that the optimal power policy may make juahplse energy arrival instants,
generalizing the optimal policies in [10], [11]. Betweeneagy harvests, the optimal power is
monotonically decreasing. We establish for the case of glesianergy arrival that the optimal
power policy monotonically decreases, corresponding &atpre monotonically increases, and
both remain constant when the critical temperature is mcfhen, we consider the case of
multiple energy arrivals. We observe that the propertieshef solution for the single energy
arrival case are guaranteed to hold only in the last epocheofriultiple energy arrival case. In
the remaining epochs, the temperature may not be monotah¢hantransmitter may need to
cool down to create a temperature margin for the future,afeéhergy harvested in the future is
large. We illustrate possible cases and obtain insightardegg the optimal temperature pattern

in the multiple energy arrival case.

[I. THE MODEL

We consider an energy harvesting transmitter node placeah ianvironment as depicted in

Fig.[d. The node harvests energy to run its circuitry and lesgly send data to a receiver.

A. Channel Model

The received signal’, the inputX, fading levelh and noiseZ are related as
Y =VhX +Z 1)

where Z is additive white Gaussian noise with zero-mean and unitae. In this paper, the
channel is non-fading, i.eh = 1. We use a continuous time model: A scheduling interval has
a short duration with respect to the duration of transmissiod we approximate it g, ¢ + dt]
where dt denotes infinitesimal time. I, ¢ + dt|, the transmitter decides a feasible transmit
power level P(t) and £ log (1 + P(t)) dt bits are sent to the receiver, where the baségfis

2. To be precise, the underlying physical signaling is in itz time and the scalings in SNR

and rate due to bandwidth and the base of the logarithm aom&eguential for the analysis.
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Fig. 1. The model representing an energy harvesting wielesle placed in an environment that has constant tempef&tur

B. Energy Harvesting Model

As shown in Fig[R, the initial energy available in the battet time zero isE,. Energy
arrivals occur at timegsy, so,...} in amounts{Ey, F,, ...} with s = 0. We call the time
interval between two consecutive energy arrivalsegoch D is the deadlineE; and s; are
known offline and are not affected by the heat due to transoms&et 4(t) = max{k : s, < t}
andN be the number of energy arrivals in the interfalD) and by convention we lety,; = D.

Power scheduling policy?(t) is subject to energy causality constraints as:
t h(t)
/ P(r)dr <Y E;,  Vtel0,D] (2)
0 i=0

C. Thermal Model

In our thermal model, we use the transmit power as a measureatf dissipated to the

environment. In particular, we model the temperature dyosrf the system as follows:

%T(t) =aP(t) = b(T(t) - T.) +c (3)

where P(t) is the transmit power policy ané(t) is the temperature at time 7, is the constant
temperature of the environment that is not affected by tlaiihg effect due to the transmit power
level P(t). a andb are non-negative constantsrepresents the cumulative effect of additional
heat sources and sinks and it can take both positive andivegaiues. In the following, we

consider the case of no extra heat source or sink,d=.0.
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Fig. 2. EnergyE; becomes available for data transmission at tineD is the deadline.

Our thermal model in(3) is intimately related to the therrmaldel in [7], [9] where hardware
heating is modeled as a first ordBC' heat circuit. In particular, thermal dynamics of a power
controlled transmitter due to its amplifier power consummptisee e.g./[25]) could be modeled
as in [3). We also refer the reader {o1[24] for a related hgatiodel. Our thermal model is
also related to the well-known Pennes bioheat equatibnVj&].assume, for simplicity, that the
spatial variation in temperature is not significant and éetlne general case of spatial temperature
variations as future work.

From (3), the solution of (¢) for any givenP(¢) with the initial conditionT’(¢') at timet’ is:
T(t) = e bt ( / t ) (aP(7) + bT,) dr + T(t’)) (4)
v
By insertingt’ = 0 in (@), we get (c.f.[[24, Eq. (3)]):
T(t)=e™" ( /0 t e’ (aP(7) + bT,) dr + T(O)) (5)

The temperature should remain below a critical temperalyre.e., 7'(t) < T., where we
assume thafl, > 7T.. Let us definel; £ T, — T,, which is the largest allowed temperature
deviation from the environment temperature. Typicallytiah temperature i, i.e., initially the
temperature is stabilized at the constant environment éeatpre7,. From [B), usingl'(t) < T.

andT(0) = T., we get the following equivalent condition for the temparatconstraint:
t
/ ae” P(r)dr < Tse", vt € [0, D] (6)
0

Note that the temperature constraints[ih (6) and the eneaggadity constraints if{2) do not
interact. Due to the heat generation dynamics governedhyw@ observe in[{6) that the cost
of power increases exponentially in time (i.e., the mukéipin front of P(7) is exponential in

7) while the heat budget also increases exponentially in {ireg the upper bound on the right

hand side of[(6) is exponential i).



[1l. PROBLEM FORMULATION

Offline throughput maximization problem over the inter{@l|D] under energy causality and

temperature constraints with initial temperatdi@) = 7. is:

D
1
—log (1+ P(7))d
P(t)r,n f?[(o,D] /0 2 og(1+ P(7))dr

t
S.t. /aebTP(T)dTSTgebt, vt
0

t h(t)
/ P(r)dr <Y E;, Wt 7)
0 i=0

where the space of actions is the set of measurable funcfighsdefined over the interval
[0, D]. Note that[(¥) is a convex functional optimization problem.

The Lagrangian forl{7) is:

L— /0 ) % log (1 + P(t)) dt — /0 ) ( /O 0 P(r)dr — T5ebt) dt

/ODg()(/ dr%E)dt (8)

Taking the derivative of the Lagrangian with respecti@) and equating to zero:

_ e /D AT)dT — /DB(T)dT =0 9
1+ P(t) : : B
which gives
1 +
P(t —1 10
(t) = [ft 7)dT + ebtf AT ] (10)
In addition, the complementary slackness conditions are:
t
A(t) </ ae” P(1)dr — T(gebt) =0, Vt (11)
0
¢ h(t)
B(t) / P(r)dr =Y E;| =0, Vt (12)
0 i=0

In (@) and [(11){(AR)A(¢) > 0 andfg(t) > 0 are distributions that are allowed to have impulses and
their total measure ovg0, D] interval are not both zero, i. efo T)dt >0 or fo T)dt > 0,

in order to prohibitP(¢) from being unbounded. We note that (9) ahd] (ED-(lZ) are S¥2CY



and sufficient conditions since the problem is convex. THet®m is unique almost everywhere
as the objective function is strictly concave.

We note that the problem in](7) could be solved by using cakulf variations. Se€ [7]
for application of calculus of variations for a similar ptelm to (7). As another alternative,
we note that[([7) could equivalently be solved by using a Hamidn approach from optimal
control theory. In particular, we can cast the probleniing3)an optimal control problem with
pure state constraints [26]. In this case, the state of tBtesyis the tupléT'(t) B(t)] where
B(t) = fot P(7)dr is the total energy expenditure by the timé&he inputisP(t) for 0 <t¢ < D.

This problem is in the following form:
b
P(t){ng[(o’m /0 5 log (14 P(7))dr
d d
— —B(t) = fo(T,B, P
dt ) dt (t) f2( y L2 )
gl(T7 B7t) < 07 92(T7 But) < 0 (13)

st. 2T(t) = fi(T, B, P)

where f,(T, B, P) = aP — b(T — T.) and f5(T, B, P) = P while ¢,(T,B,t) =T — T, and
g2(T,B,t) = B — Z?:(tg E;. Note thatg, and g, do not depend on the inpu?. With these
selections, optimization probler (13) is in the same fornthas stated in[[26, Egs. (2.1)-(2.6)].

In this case, Hamiltonian is
H(T, B, P Doy t) = Slog (14 P) = M(OA(T, B.P) = W(Of(TB.P)  (14)
and the corresponding Lagrangian is
Ly(T, B, P\, Ay, t) = H(T, B, P, A, Ao, t) — 1 (8) g1 (T, B, t) — 1a(t)go(T, B,t)  (15)

where ), (t) and \,(¢) are the co-state trajectories;(t) and v, (t) are multiplier functions. We
note that Pontryagin’s maximum principle is necessary arfticient in this case sincé (IL3) is
a concave maximization problem. One can derive the equival®f necessary and sufficient
conditions for this optimal control problem to those in (9)da(11)-[12).

In the following, we proceed with the Lagrangian formulatim (8) and the corresponding

optimality conditions in[(R) and_(11)-(12).



IV. GENERAL PROPERTIES OF ANOPTIMAL POLICY

In this section, we obtain the structural properties of tipginoal power scheduling policy
using the optimality conditions. In the following lemma3(t) refers to the optimal policy and
T(t) is the resulting temperature unless otherwise stated.

We first note that the temperature level never drops béelpwin particular, if the initial

temperature is between, andT,, the temperature at all times will remain betweEnandT..

Lemma 1 7, < T'(t) < T. whenever the initial temperature & < 7'(0) < T..

Proof: From (3), sinceP(t) > 0 we haveZT(t) > 0 wheneverT'(t) = T.. The constraint
T(t) < T. is satisfied by any feasible policy ial(7H

The following lemma states that if the temperatdrg) is constant, then the powe?(¢) is
constant also (while it is not true the other way around, ssarnd B), and that if the temperature

hits the maximum allowed levél,, then the power must be below a threshold.

Lemma 2 WhenevefT'(t) is constant over an interval C [0, D], P(t) is also constant over
that interval. If the temperature hits the levElat ¢ = ¢, thenP(t,+¢) < % for all sufficiently

smalle > 0.

47(t) = 0 and from [B), P(t) is also constant in the same

Proof: If 7'(t) is constant in/, %

interval. If T'(t;) = T.. for somet,, € [0, D), thenZT'(t, +¢) < 0 and from [B),P(t; +¢) < L2,
[

The following lemma shows that if the powét(t) is a monotone increasing function, then
so is the temperatur&(¢). We first prove this result for piecewise constant functiand then
generalize it to arbitrary functions. We note that a patéicinstance of a monotone increasing
piecewise constant power is observed in the solution of theughput maximization problem

without temperature constrain{s [10].

Lemma 3 If P(¢) is a monotone increasing piecewise constant function, fghis monotone

increasing. More generally, iP(¢) is a monotone increasing function, so7%t).

Proof: We first prove the first statement of the lemma which is coresmith piecewise constant

functions. Let us start with the case of a single constantgpaxalue for the entire duration of



communication, i.e.P(t) = p for t € [0, D]. From [5), we have:

( e’ (ap + bT,) dr + T(0 )) (16)
( ap + V1) —1) +T(0)) (17)
_ %p ( (0)=T.—7p Tp) e (18)

For T'(0) = T, (18) is a monotone increasing functiontofin particular,7'(t) < T, + $p. Now,
let us consider the case @ff constant power levels for the duration of communicatioa.,, i.
P(t) = p; over the intervall;_q, ;) wherep; < p;4; foralliand0=Iy, <, <...<Iyy=D
where M > 1 is the number of intervals. In this case, we havetfer [I;_,, [;):

@) =T + %pi + (T([z‘—l) —T. - %pz) et limy) (19)

whereT'(I;_,) < T. + ¢pi—1. Hence, the coefficient of *(=Li-1) in (@9) has a negative sign as
T(li—1) —Tc — $pi < § (pi-1 — pi) < 0. This proves thafl'(¢) is monotone increasing.

To generalize this result for any monotone increasing foncP(t), we obtain any monotone
increasing simple approximation [27] d?(¢), denoted asP,(t), such thatP;(t) < P(t) <

. < P,(t) for all t € [0,D] and P,(t) — P(t) pointwise. For example, one can select
P,(t) = P(Iyu-1y) for t € [I-1), In;) and I,,; = (z —1) fori=1,...,2" Let us call the
resulting temperaturé), (t). Hence,e” P, (t) < ebtPg(t) <...<e"P,(t) for all t € [0, D] and

e P,(t) — e’ P(t) pointwise. By monotone convergence theorén [27], we have
t t
/ e’ P,(1)dr — / " P(r)dr, Vt€0,D] (20)
0 0

Accordingly, T,,(t) — T'(t) pointwise and we have

%Tn(t) = aP,(t) — b(Tu(t) — T.) — ;ZtT() aP(t) —b(T(t)—T.), ¥t € [0,D] (21)

SinceP,(t) is a monotone increasing piecewise constant function, frandirst part of the proof,
T,(t) is monotone increasing, i.ef7,(t) = aP,(t) — b(T,(t) — T.) > 0. Since 4T,(t) —
47(t) pointwise, this impliestT'(t) > 0, i.e., T(t) is monotone increasing as wel

The next lemma shows that if the temperature remains canetem an interval, then that

level could only beT, or T,, i.e., any other temperature cannot be a stable temperature
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Lemma 4 If T'(¢) is constant over an interval C [0, D], then that constant level could only

beT, or T..

Proof: AssumeT'(t) is constant ovef. Without loss of generality, assume that there is no energy
arrival in the interval/, and otherwise lef be the portion of the interval without any energy
arrivals. By Lemmal2P(t) is constant over. If P(¢) =0 over I, thenT'(t) = T, from @). If
P(t) # 0, we have from[(T0)

1
B ftD B(T)dT + ebt ftD A(T)dT

P(t) —1 (22)

where(t) = 0 over the intervall by (12) sinces(t) > 0 implies energy constraint is tight and
P(t) = 0. Therefore,ftD B(r)dr = B is constant ovel. If T(t) < T., then by [(I1),A(¢) = 0
over [ and henceftD A(7)dr = C'is constant ovel. However, this make$ (22) a time varying
function oft because of the” term in the denominator, and this contradicts the fact th@j is
constant. Finally, ifC' = 0, this means that the temperature constraint is never tiglthis case,
the piecewise constant power policy [n [10] is optimum, ane temperature is monotonically
increasing from Lemmal 3, and therefore, cannot be a conetamtan interval.ll

The following lemma states that at the end of the commurdnagession either the harvested

energy is exhausted or the critical temperature is reached.

Lemma 5 At t = D, either the temperature constraint or the energy causalpstraint or

both are tight.

Proof: If neither of the constraints are tight, then the power goltt) could be increased over
a set of non-zero Lebesgue measure in the last epoch. Thilysincreases the throughput,
contradicting the optimalityl

The following lemma shows that the optimal power should benotonically decreasing

between energy harvests.

Lemma 6 P(t) is piecewise monotone decreasing except possibly at thgyeagival instants.

In particular, it is monotone decreasing between consgeugnergy harvests.

Proof: We prove the statement by contradiction. Assume that foresowterval [t,, t5], P(t)

is strictly monotone increasing, and that the interialto] does not contain an energy arrival
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. . . "2 p(r)dr
instant. Define a new power policy d&%.,(t) = ft1t2_(t1)

overt € [ty,tz] and P, (t) = P(t)
otherwise.P,.,(t) satisfies the energy causality constraint[ih (7) siftg,(t) uses the same
amount of energy a$’(t) over [t1, ;] and the energy constraint fd?(¢) is not tight in this
interval. P,.,,(t) also satisfies the temperature constraint. To see this, stenfite thatP,..,(t)

satisfies the following inequality (see |28, Theorem on pZ]R0

to to
/ a€" Py (T)dT < / ae” P(1)dr (23)
t1 t1
as bothP(t) ande” are monotone increasing. In addition, sinéé&) is temperature feasible:
t1
/ ae” P(1)dr < Tyebh (24)
0t2
/ ac” P(1)dr < Tse (25)
0

Combining [28) and(25), we conclude that.,,(t) satisfies the temperature constraint at ¢,:

to t1 to
/ a6bTPnew(7')d7':/ a6bTPnew(7')d7'—|—/ aebTPnew(T)dT (26)
0 0
t1 tztl
§/ aebTP(T)dT—i—/ ae’™ P()dr (27)
0 t1
< Tsebt (28)

Additionally, the temperature constraint is satisfiedtfor ¢, sinceP,.,,(t) and P(t) are identical
for t > t, and P(t) is temperature feasible. Hence, we need to show Ehat(¢) satisfies the
temperature constraint for alle (¢,,t;) to establish the temperature feasibility 8f..,(¢). That
is, we need to show:
t1 t
/o ae’ P(7)dr + /t1 a€" Prew (T)dT < Tye®,  t € (t1,t5) (29)
Since P,.,,(t) = p is constant oveft,, ts], we have:

t
/ a€" Prew(T)dT = %p (ebt — ebtl) , L E [t to] (30)
t1

Using [30) in [29) and since” > 0, (29) takes the following equivalent form:

t1
e (/ ae” P(1)dr — %pebtl) + %p <T; (32)
0
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Note that the left hand side of {31) is either monotone ingirepor monotone decreasing in
t as it is a linear function ot=". Since the inequality((31) holds at= ¢, andt = ¢, as
P,..(t) satisfies the temperature constraint at those points, welwdm thatP,.,(¢) satisfies
the temperature constraint for alk [¢4,t5]. In addition, P,..,(t) yields higher throughput than
P(t) due to the concavity of logarithm. This contradicts the myatity of P(¢). The proof holds
even whert;, t5] includes an energy arrival instant provided that the eneegsality constraint
is not tight at that instantll

Next, we show that discontinuities in the power level coutdyaccur in the form of positive

jumps, and only at the instances of energy harvests.

Lemma 7 If there is a discontinuity inP(¢), it is a positive jump and it occurs only at the

energy arrival instants. The temperatufét) is continuous throughout th@, D] interval.

Proof: Sincee® is a continuous function of, A(t) > 0 and 3(¢) > 0, any jump inP(¢) has to
be positive due td_(10). Any positive jump at instants otlh@nts, violates monotonicity ofP(t)
within each epoch due to Lemméa 6. Due fid (5), the resultingogeature?’(¢) is continuous
throughout thg0, D] interval. B

By Lemmd.Y, we can takg(¢) in the form5(t) = Zj\’:ﬁl 3;0(t—s;) without loss of optimality,
whereg; > 0, j = 1,...,N + 1, are finitely many Lagrange multipliers corresponding te th
energy causality constraints at the energy harvestinguist; and the deadlinesy; = D.

The next lemma shows, for an arbitrary feasible politf), that if the temperature reaches

the critical levelT, at somet;, then the power just beforg must be larger than a threshold.

Lemma 8 If T'(t,) = T. for somet;, € [0, D), then P(t;, —¢) > T%b for all sufficiently small

e > 0.
Proof: SinceT'(t;) = T., we have:
th
/ ae” P(1)dr = Tsebn (32)
0
We combine[(6) with[(32) to get

th
/ ae’™ P(r)dr > Ty (" — &), vt € [0, ] (33)
t
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which implies in view of the continuity ofP(¢) (except for the finitely many energy arrival
instants) proved in Lemnid 7 that(t, — ¢) > %2 for all sufficiently smalle > 0. B
We next state the continuity of the optimal power polieft) at points when it hits the critical

temperaturel..

Lemma 9 If T'(t,) = T. for somet;, € [0, D) then P(t) is continuous at; and P(t;) = %t

a

Proof: The proof follows from Lemmal2 and Lemrha 8 and the fact thattieg jumps inP(t)
are not allowed due to Lemnia W

Next, we show that when the temperature hits the bound@grit has to return tdr..

Lemma 10 WhenevefT (t;) = T. for somet, < D, there existg > t; such that7'(t) = T..

Proof: Assume that?’(¢,) = T. for somet, < D andT(t) < T, for all ¢, < t < D. By
Lemmald,P(t,) = L. From [3) withT'(t;,) = T.., the constrain(t) < 7. becomes:

t

/t ae”” P(r)dr < Ty (" — "), t,<t<D (34)

h
SinceT'(t) < T. in t, <t < D, only energy causality constraint is active and thg) for
t, <t < D is the piecewise constant monotone power allocatior_in. [00] the other hand,
P(t) = L satisfies[(34) with equality for atl. Therefore, we must havB(t) = ¢ < L2 for all
t € (ty,ty, + d) for somed > 0. However, this contradict®(¢;,) = % since there cannot be a
negative jump inP(¢) by Lemmay.

The following lemma identifies the exact conditions where plower P(t) makes a jump.

Lemma 11 If there is a jump inP(t), it occurs only at an energy arrival instant, when the

battery is empty and the temperature is strictly belbw

Proof: Due to the slackness conditions in1M0)(12), a jump ocduegher the battery is empty
or the temperature constraint is tight, i.€(¢) = T.. By Lemma®,P(¢) is continuous whenever
T(t) = T.. Therefore, a jump iNP(t) occurs at an energy arrival instant, when the battery is
empty andl'(t) < 7,.. &

We finally remark that energy may have to be wasted as aggeegse of energy may cause

temperature to rise above the critical level.
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V. OPTIMAL POLICY IN THE SINGLE ENERGY ARRIVAL CASE

In this section, we consider a single epoch whéreunits of energy is available at the
transmitter at the beginning. We first develop further gstrtad properties for the optimal power

control policy in this specific case and then obtain the smtut

A. Properties of an Optimal Policy

The next lemma shows that, if the power falls below a certaieshold at an intermediate point

and remains under that threshold until the deadline, thehatld remain constant throughout.

Lemma 12 If 0 < P(t) < L for ¢ € [t;, D], then P(t) is constant oveft,, D].

Proof: AssumeP(t) is not constant oveft;, D]. Let E, ft T)dr > 0. Define a new

policy Pew(t) = DEt [t1, D] and Pnew( ) = P(t) otherW|se.P,ww(t) is both energy
and temperature feasible. Energy feasibility holds by tonton asF,.,, and P have the same
energy overlt;, D|. Temperature feasibility also holdgi(¢;) < T, since P(t) is temperature
feasible and as;”- < L, we haveT(t) < T, for all ; < ¢t < D from (8). Now, by
Jensen’s inequality’,.,,(t) achieves strictly larger throughput sinkg is strictly concave. This
contradicts the optimality oP(¢). Hence,P(t) =c¢ >0 for t € [t;, D]. 1

The following lemma states that the power has to remain eohstt the Ieve[% when the

temperature reaches the critical level

Lemma 13 Let# € [0, D] denotemin{t € [0, D] : T(t) = T.}. If #' < D, then P(t) = % for
all t e [t', D.

Proof: By Lemmal[®,P(#') = £2. By Lemmal®,P(t) is monotone decreasing, and thus<
P(t) < L for ¢ <t < D. By LemmalI2,P(t) = c for all t € [/, D]. By Lemmal7,P(t) is
continuous and thereforé(¢) = £ for all ¢t € [t', D]. B

The following lemma states that the optimal power is alwaygér than a constant value

determined by the fixed system parameters.

Lemma 14 The optimal policyP(t) satisfies:

P(t) > min {T%b, %} , Vte|0,D] (35)
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Proof: If the temperature constraint is not tight, then the problkediuces to the energy con-
strained problem in which cage&(t) = £. If the temperature constraint is tigtt(¢) is monotone
decreasing by Lemmia 6 and when the temperature level red¢hd3(t) remains atT%b by
LemmalIB. HenceP(t) > 2. W

The following lemma shows that, since the power is alwaygdarthan a constant value,

battery energy level is never zero, except possibly at tlzelldee.

Lemma 15 In an optimal policy, energy in the battery is non-zero exqegssibly att = D.

Proof: By Lemmall4#, the optimal power is always larger than a pasitenstant. Thus, the
battery energy does not drop to zel.
The following lemma shows that the temperature is monotareeasing throughout the

transmission duration, and also is a concave function of.tim

Lemma 16 The temperature with the optimal power policy is monotoresiasing and concave.

Proof: If the temperature constraint is never tight, then the oatipower level is%, and from
Lemmal3, the temperature is monotone increasing. Concavityis case follows from the
concavity of the explicit expression if_(18) wiffi(0) = 7.. Now, assume that the temperature

constraint is tight at = D. By LemmalI#,P(t) > 2. From [3), we have:

‘il_f — aP(t) — b(T(t) — T.) (36)
> a%b —b(T(t) —T.) (37)
=b(T, —T(t)) >0 (38)

asT(t) < T. by the temperature constraint. Sin€¥t) is monotone decreasing by Lemina 6
andT'(t) is monotone increasing, frorﬂSG‘}% is monotone decreasing, proving the concavity

of T'(t) in this case.l

B. Optimal Policy

In view of Lemmallb, the energy constraint can be tight only at D. Therefore, the

corresponding Lagrange multiplier is a single variab(e) = 56(t — D). From Lemma167 (¢)



16

is monotone increasing. Due to Lemind 13, wHé&n) reachesr, power level has to remain at
%. Accordingly, we denote the instant when the temperatuaehes?, ast,.

1) Sufficiently Large Energytn this case, the energy constraint is never tight, and 0. In
view of Lemmalb, the temperature constraint is tight at D.

First, consider the case thd@l is sufficiently large so that there exists < D such that
T(ty) = T.. Fort € [0,ty), T(t) < T, and from [(11),\(¢) = 0. From [10), whert € [0, ;) we
have P(t) = e " — 1 whereC = ft? A(T)dr > 0. Since att = t, the temperature reachés,
from Lemmal1B, we havé’(t) = %b for t € [to, D]. Then, the optimal power has the form:

P(t) = (ée‘bt - 1) (u(t) — ult — to)) + T%bu(t — t) (39)

whereu(t) is the unit step function. Now, from Lemra B(¢) is continuous at, andC' should

be chosen accordingly. In particuldr,= (mlH) e~ The following Lagrange multipliei(t)
verifies [39):
A(t) = Le_btu(t —to) + i&(t — D) (40)
(22 +1) RNC Y

The corresponding optimal temperature patternOfet ¢ < t, is:

Tsb
T(t)=a 222 +1) ettt 4 Lot 2 (41)
a b b
andT(t) =T, for to <t < D. We note that, satisfies:
T, 1 1 Tsb
Dp ) e — o= [ 22 1) gt (42)
a b b a

so thatT'(tg) = T.. Hence,T'(t) monotonically increases till it reach&$, which is consistent
with LemmalT6.

Next, consider the case that < t,. In this case,

P(t) = ée‘bt —1 (43)
whereC' = W and \(t) = C§(t — D). Therefore, the optimaP(t) in this case is

P(t) = % ((% - %) e’ — %) e —1 (44)
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We also remark that, level that satisfied (42) monotonically increases Viiith To see this,

we rearrangel (42) as follows:

1 1
1 b ) o — 4
b < (T%b n 1) € ) t() 0 ( 5)

Let us define a multi-variable real functian(t,, T5) as the left hand side of (#5) and denote a
specific solution asg}, for fixed T;. It is easy to see thaf (¥5) always has a solutipfor fixed

Ts. To see this, we evaluate the derivative with respedi, tas:

0 1
—w(ty, Ty) = € ™
ot 1o 1) (1)

That is,w(ty, T5) is monotone decreasing withh. At to = 0, w(ty, T5) > 0 while w(ty, T5) —

—1<0, V>0 (46)

—oo ast, grows. In view of the continuity ofu(t,, 75), there exists &, such thatu(ty, 7s) = 0.
Additionally, we observe in[(45) that for fixet}, w(ty,T5) monotonically increases witfi.
Therefore, ifw(t§,75) = 0, then, due to monotone increasing property with respect;to
w(ty, Ty) > 0 for Ty > Ts. Hence, forty* such thatw(t;*, T;) = 0, we havety* > ¢} due to
monotone decreasing property with respectgto

2) Energy Limited CaseNote that the optimal power policies in the energy uncoirstich
cases in[(39) and(#4) have finite energies. If the availabrgy £ is larger than the corre-
sponding energy level in_(B9) and_{44), then the solutionsisna(39) and[(44). Otherwise, the

energy constraint is active and the Lagrange multiplies is 0. From [10), we have:

1
B B+ ebt ftD NT)dT

P(t) -1 47)

We first note that there is a critical energy lev@l,;;;.; such that if £ < E..ca, then

constant power policyP(t) = % is optimal. This critical level is:

T5b DebD
a etP —1

(48)

Ecritical -

This is the critical level below which the temperature caast is not tight by the constant power
allocation P(t) = £. The expression i (48) is evaluated framl(18) by insertii{g) = 7., and
requiring7'(D) < T.. When E < E...;icas A(t) = 0 Since temperature constraint is never tight.

In this case,s = ELH E..itica 1S the maximum energy level for which a constant power level
D
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is optimal. If P(t) = Zeritical T(¢) is monotone increasing ovés, D] and reacheq, att = D.
If £ > E..uca, the constant power Iev@%ﬁal does not satisfy the temperature constraint. We
note from [48) thatE., ;... increases with the deadlinB. Therefore, there exists a deadline
level D for which D > D implies F < E..i;i.w @nd hence constant power policy is optimal.

An alternative way of observing the behavior of the optimaliqy is to fix the available
energyF andT, and vary the critical temperatui@. In this case, there is a critical temperature
limit 7™ for which P(t) = £ is optimal whenevefl, > T/

limit __ o=
LM =1+ bD ebD

(49)

which again is evaluated frorh_(18) witfi(0) = T.. In the following, we consideF > E.,isica
or T, < T!m so that both energy and temperature constraints are tigtiteaend of the
communication session.

Again, we consider two possibilities: temperature comstraecomes tight at & < D, and
temperature constraint becomes tighttat D. In both cases, the energy constraint becomes
tight att = D.

First, consider the case that < D: Due to [11),A(¢) = 0 for ¢ € [0,¢y) and from [ID), we
get:

1

PO =g -

(50)

whereC = ft? A(r)dr > 0. Additionally, P(t) = £ for the remaining portion of the epoch in
view of Lemma[IBJ, is such that fort > to, P(t) = 2 and T'(ty) = T.. Since P(t,) = 2

we have:

1 T

B+ Cebto a +1 (51)

Similarly, for T'(¢y) = 7., we have from[(5) withl'(0) = T.:

to 1
([ (« (e 1) v e ) = )

Finally, the energy constraint has to be satisfied -atD:

fo 1 Tsb
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No energy constraint £ = oo
,I

TC < TClmm
_-T

Tc > Tlimit
No temperature constraint £ < Eiicqr o ¢
oo T~ \'\‘
to D t to to D 4
(a) FixedT. and varyingE. (b) Fixed E and varyingT-.

Fig. 3. The optimal power policy in the single energy arrigake for different energy and deadline constraints.
If there existsty, < D for (51)-(53), thenP(1) is:

P(t) = (m% - 1) (ult) —ult — 1)) + 2t ~ o)

In this case, the corresponding Lagrange multiplier is:
A(t) = bCe 2=ty (t — tg) + Ceto=PI5(t — D) (54)

Otherwise, when no such < D exists, the temperature constraint is tight onlytat= D.

In this case,P(t) is as in [BD) fort € [0, D] wheres andC' have to satisfy:

—bD P bt 1
€ (/0 (& (CL (m - 1) + bTe) dt + Te) = TC (55)

b 1
[ (i 1) 59

The corresponding Lagrange multiplieri$t) = Cé(t — D).

Depending on the energ¥ and the critical temperaturé,, the optimal power scheduling
policy P(t) varies according to the plots in Figl 3. For smalland fixed7, or for large T,
and fixed £, a constant power policy is optimal. For moderate and ldfgeéhe optimal power
policy is exponentially decreasing and may hit the poweell&f. Note thatt, level at which
temperature touches the critical level decrease§.as decreased and aS is increased. In
particular, for fixedT, the level oft, is bounded below by the solution fé&f = oo whereas for

fixed F, ty goes to0 asT, approacheq’,.
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VI. OPTIMAL PoLICY FOR MULTIPLE ENERGY ARRIVALS

In this section, we extend the solution to the case of matgrergy arrivals. We start with
extending the properties observed for the single energyahrcase when initial temperature
T(0) is different fromT,. The following lemma generalizes Lemnidd 6] 13 16 for deec
of an arbitrary7’(0).

Lemma 17 Assume that the initial temperatui®0) is in the rangel, < 7'(0) < T, instead
of T'(0) = T, and consider the single energy arrival casB(t) is monotone decreasing. Let
tn € [0, D] denotemin{t € [0, D] : T'(t) = T.}. If t;, < D, thenP(t) = L forall ¢ € [t,, D] and

the temperature is monotone increasing and concavé/(0f = 7., then P(t) = min { &2, £1,

Proof: If T(0) is in the rangel, < T(0) < T. then, instead of[(6), we have the following

temperature constraint:
t
/ ae’ P(t)dr < Tse" —T,, Vt €0, D] (57)
0

whereT, = T(0) — T, > 0. Note thatTse" — T, > 0 for all ¢ € [0, D], i.e., the right hand
side of [5Y) is always non-negative. The argument in Lerhims \lid in the presence of the
additional term7, in (87), and therefore®(t) is monotone decreasing.

The second claim follows from the argument in Lemma 13. Intipalar, in addition to
Lemmal®, Lemma-12 directly extends with the constrain{in).(bience, the result follows by
applying the argument in Lemnial13.

Finally, 7'(¢) is monotone increasing and concave due to the steps follawedmmallé. In
particular, if the temperature constraint is tightat D, P(t) > % Hence, [36)£(38) hold and
the temperature is monotone increasing and concavE((f = 7., then P(¢) = min { &2, £
due to the energy constraint. Note that the temperatureedees in casain {%b, % = %. [ |

As in the single epoch case, we will investigate the solutioder special cases. In particular,
we will investigate the solution according to the time whée temperature hits the critical
level. To this end, we specialize in an interyal, ¢5] such that7'(t) < T, for all ¢ € [t;,t,) and
T(ty) =T, where0 < t; < t; < D. Note that the temperatufg(t) is a continuous function of
t and hence there exist such intervals. We assume that theosoisi known in[0, ;) U (¢, D]

and we letT, < T'(t;) < T.. In this case, the solution ofl(7) over the interyal, 5] is equal
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to the solution of the following problem obtained by redirig the temperature constraint to be

satisfied at = ¢, only:

max / —log (14 P(7))dr

P(t), t€[t1,t2]

/ ae bTP YdT = Tsebtz — T,

=

(t)

P E;,  Vte [ty (58)

S—

J;M

whereT, = T(t,) — T. > 0. In (58), E; is determined as followsE, is the available energy in
the battery at time = ¢;. E;fori=1,...,N are the energy arrivals at instartse (ty, ).
B(t) is defined accordingly. While the times are exactly those in the original problem, the
amountsE; may be different from the original amounts as some energy bealeft for use in
the (t5, D] interval. For the following argument, whethél equals the original energy arrival
amount is not relevant and we lea¥e as arbitrary amounts. To obtain the solution [of] (58)
using this Lagrangian framework, it is necessary and safficio find NV + 2 variabless; > 0,

i=1,...,N+1andC > 0 such that

1

PO = | =5
Z B; + Cebt

+
—1] . tel5i1,5),i=1,...,N+1 (59)

with the corresponding slackness conditions. Therefarettfe ¢, ¢,] interval, the solution has
the structure in[(39), which is parameterized by finitely pnaagrange multipliers. In particular,
throughout an epoch over whidi(t) < 7., power level satisfie®(t) = [Bw = 1]+ for some
B >0 andC > 0 not both equal to zero. This also holds in a subinterval of pock over
which T'(t) < T.. In the following lemma, we show that in such an epoch, thepeneturel’(¢)

is unimodal.

+
Lemma 18 If P(t) = [m - 1] for ¢ € [ty,t,] for somes > 0 and C' > 0, the resulting

T'(t) is unimodal overjty, to].

Proof: From (4), we have fot € [ty, 5],

t 1 +
T(t) _ 6—b(t—t1) (/t 6b(7'_t1) (CL {m — ]_:| + bTe> dr + T(t1)> (60)
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First, we note that whe®(t) = 0, <7'(¢t) < 0 from @@). Hence, it suffices to show that¢) is

unimodal whenP(t) = m — 1 > 0. By evaluating the integral, we get
_ 9wy, (SO O bty
T(t) = 7ze " log ( Gacwn) (T(tl) T, + b) e +T. -3 (61)

We claim that7'(¢) in (€1) is unimodal fort > ¢,. Note that the derivative of'(¢) is

d I ael a B+ Ce AN
dtT(t) =e (5 erTintrs log 51 O b (T(tl) T, + b) e (62)

We letz = e, #; = ¢ and concentrate oR“c. — &log (;:gg) for + > x;. We note

that — & log ( 6*”) is a strictly monotone decreasing functionxofor = > x; > 0. In

B+C B+Cxy

particular, we have:

d ax a B+ Cx —Cx
L feg (L)) = (63)
dv \p+Czx C b+ Cxy (B+ Cx)

Thus,ﬁwebt 2 log (%) is strictly monotone decreasingfnAs -2 /3+cebt 2 Jog (%) >

0 att = t;, we conclude that the factor in(62) that multiplies* can take valu® at most once.

B—i—C’ebt
B+Ceb1

In particular, =2 /3+c Flea — ¢ log ( ) —b (T(tl) -7, + %) e can take positive or negative
values att = ¢;. If it is positive att = ¢4, it hits value0 at most once for > ¢;. If it is negative
att = t,, it stays negative throughout> ¢,. This proves thaf’(¢) is unimodal oveft;,t,]. B

In the following lemma, we show that, in an epogh, s;.1], the temperature cannot return

to 7. if it hits and falls belowT..

Lemma 19 If T'(t,) = T. and T'(t;, + A) < T, for someA > 0 where botht;, andt, + A are
in [s;,s;41], thenT'(t) < T. for all t € [t + A, si11].

Proof: By Lemmal9,P(t),) = T%b By Lemmal6, power is monotone decreasing in an epoch.
Therefore, if'(t,+A) < T., thenP(t,+A) < L2 and hence’(t) < L forall ¢ € [t,+A, s;41].
This, in turn, means thaf'(¢) < 7. for all t € [t, + A, s;41]. A

Next, we complete the unimodal structure of the temperatyrshowing that it has to be

monotone decreasing if it hits and falls bel@

Lemma 20 In an epoch(s;, s;11], if the temperature touches. at ¢, and falls below it, then

the temperature is monotone decreasingtjn s;1].
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Proof: By Lemmald9, ifT'(t, + A) < T, thenT'(t) < T, for all t € [t, + A, s;]. Therefore, we

have

Plt) = [m - 1] et Asi] (64)
for someps > 0 and C' > 0. By Lemmal18,7'(¢) is unimodal over € [t, + A, s;]. Therefore,
T(t) is monotone decreasindll

We next consider epocHs;, s;,1] and its subintervals over which(¢) < 7, and7'(t) = T...
By Lemmal18 and in view of the discussion arouhd (58), when&{e) < 7. over an epoch,
T(t) reaches its peak level over that epoch at only one instanoeseguently, ifl'(¢) < T,
for all t € [s;, s;+1], there are three possible cases. The first two possibilitiesthat?'(¢) is
monotone increasing or monotone decreasing throughoutpbeh. The third possible case is
that 7'(t) is monotone increasing if;, t;;] and monotone decreasing {it;, s;+1] for some
t1; € (si,8:41). Otherwise, T'(t) hits T, and T'(t) does not return td- if it falls below it due
to Lemmal1®. Therefore, if’(¢) hits 7, in an epoch(s;, s;11], then that epoch is divided into
three successive subintervdls, [;o, I;3 With I;; = [s;, ti1), Lia = [ta, ti2) @and ;3 = [t;e, s;41] fOr
somes; < t;; < t;z < s;11. T(t) is monotone increasing ovéf,, remains atl,. over I;; and is
monotone decreasing ovég. We finally note that if/’(t) < 7. att = D, thenT'(t) < T, for all
t € [0, D]. This follows from Lemma_10. In this case, the temperatunestr@int is never tight
and the optimal power policy is identical to the onelin!/[10].

In Fig.[4, we plot the optimal energy expenditure for diffetr@alues of critical temperature
level T.. We observe that &8, is decreased, the temperature budget shrinks and the taetugeer
constraint becomes more likely to be tight. In this casergnés spent faster not to create
high amounts of heat in the system. In general, there is aoef®tween causing unnecessary
heat in the system and maximizing the throughput. While weehfally characterized this
tension in the single energy arrival case, it needs to b&dureéxplored in the multiple energy
arrivals case. In particular, when a high amount of energives into the system during the
progression of communication, the transmitter has to accodate it by cooling down and
creating a temperature margin for future use. While maxmgithe throughput generally requires
using the energy in the system to the fullest extent, thestratter may have to waste energy due

to the temperature limit. We investigate this tension in etinal examples in the next section.
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Fig. 4. Energy expenditure with the optimal power policytwitultiple energy arrivals. In view of the temperature coaist,
asT. is decreased, the energy is spent faster subject to enenggplits

VIlI. NUMERICAL RESULTS

In this section, we provide numerical examples to illugtrdte optimal power policy and the
resulting temperature profile. For plots in Figs['b[16, 7 @hav@ seta = 0.1, b = 0.3, T, = 37
andT, = 38. Therefore, the critical power level %;—b = 3.

In Figs.[B andB, we consider the energy unlimited scenanithis case, the solution df (42)
is found ast, = 2.993. In Fig.[8, we setD = 2 < t, and we observe that the optimal power
policy is always above the IevJ;Lb. In this case, power strictly monotonically decreases avhil
temperature strictly monotonically increases with terapgee touching the critical level, at
the deadline. In Figl16, we set the deadlinelas= 3.5 > t,. We calculate that the energy
needed to have the power policy in Fig. 6/i5= 17.98. In other words, if the initial energy
is F > 17.98 then the power policy in Fid.16 is optimal. We observe that dp&imal power
level monotonically decreases to the Ie%;ﬁ and remains at that level afterwards. Similarly,
the temperature level rises #0 and remains at that level afterwards. Note that the throughp
and the energy consumption in Fig. 6 are higher with resmethdse in Fig[b. Parallel to this
observation, the monotone decrease is sharper in the paliey in Fig.[8 compared to that in

Fig.[B. Since the power level has to be stabilizee%ét the temperature increase cost paid for
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Fig. 5. Power, energy and temperature plots for unlimiteergynandD = 2 for the single epoch case.

achieving certain throughput is minimized if energy conption starts faster and drops later.
In Fig.[4, we set the deadline tb = 3.5 and the energy limit to& = 17.71. Note that this
energy level is slightly less than the energy of the poweicgah Fig.[8, which translates into
a right shift of the pointt,. In particular, we calculate, = 3.2 as the solution of[(31)-(53) in
this case. Similar to the effect of decreasing the deadlbs=ved in the comparison of Figs. 5
and[6, we observe that decreasing the energy level yietisamthempower policy. Power level
drops to%b and the temperature hifg. at a later time/; and both remain constant afterwards.
In Fig.[8, we consider the same system as in previous figurégstwo energy arrivals instead
of one and withD = 5. In patrticular, E, = 6.08 is available initially andE;, = 14.55 arrives at
time s; = 1.5. In this case, we calculatg = 3.9. The energy causality constraint is tight and the
power level makes a jump at the energy arrival instant. Nlod¢ the temperature is continuous

at the energy arrival instant even though its first derieats/ not. While the power level has a
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Fig. 6. Power, energy and temperature plots for unlimiteergynandD = 3.5 for the single epoch case.

smooth start, a sharper decrease is observed towards th&@nmedthe harvested energy has to
be fully utilized. In particular, the temperature incredsefore the energy arrival is kept to a
minimum level so as to have a higher heat budget for the laggergy that arrives later. The
temperature hitd, at¢ = 3.95 after which the power and temperature both remain constant.
Finally in Fig.[9, we illustrate a curious behavior in theioml policy. For this example, we set
a=0.1,b=1.1,7T, =37 andT, = 37.92. Initial energy iSE, = 25 and energy arrives at= 2
with amountE; = 17 and the deadline i® = 3.5. We observe that energy causality constraint
is tight att = 2 whereas it is not tight at= D meaning that some energy is wasted in order not
to cause excessive heat. The temperature generated imrthigyhput optimal power policy first
monotonically increases, hifg. at¢ = 1.31, remains there tilt = 1.66 and drops belov’,.. We
interpret the drop in the temperature in the first epoch asffart ¢o create temperature margin

for the high energy arrival in the next epoch. We calculate- 2.23 as the time after which
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Fig. 7. Power, energy and temperature plots for limited gné? = 17.71 and D = 2 for the single epoch case.

power level remains a?g—b = 10.12 and the temperature remainsiat Note that under unlimited
energy, temperature would Hit. at ¢ = 0.878. Due to the energy scarcity in the first epoch,
temperature hitg’, later and drops beloW,.. A common behavior we observe in each numerical
example is that temperature ultimately increases betwaenepochs where energy causality
constraint is tight. Further research is needed to qualtttiéyrelations between the amount of
temperature generated while performing optimally in teohshroughput. While monotonicity
of the temperature is lost when multiple energy harveststewxie note that monotonicity of the

temperature is guaranteed in the last epoch due to Lemina 17.

VIIl. CONCLUSIONS

We considered throughput maximization for an energy haingsransmitter over an AWGN

channel under temperature constraints. We used a linetgnsysodel for the heat dynamics
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Fig. 8. Power, energy and temperature plots for two energyaés, £y = 6.08 and £y = 14.55 att = 1.5 and D = 5.

and determined the throughput optimal power schedulingypoinder a maximum temperature
constraint by using a Lagrangian framework and the KKT ogtity conditions. We determined
for the single energy arrival case that the optimal poweicgos monotone decreasing whereas
the temperature is monotone increasing and both remairtasarafter the temperature hits the
critical level. We then generalized the solution for theeca$ multiple energy arrivals. While
monotonicity of the temperature is lost when multiple egengrvests exist, we observed that
the temperature ultimately increases while maximizing ttireughput. We also observed that
the main impact of the temperature constraints is to fatdifaster energy expenditure subject
to energy causality constraints. Additionally, even thougsing all of the available energy is
optimal for throughput maximization only, with temperatwonstraints, energy may have to be

wasted in order not to exceed the critical temperature.
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