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Energy Harvesting Transmitters that Heat Up:

Throughput Maximization under Temperature

Constraints

Omur Ozel Sennur Ulukus Pulkit Grover

Abstract

Motivated by damage due to heating in sensor operation, we consider the throughput optimal

offline data scheduling problem in an energy harvesting transmitter such that the resulting temperature

increase remains below a critical level. We model the temperature dynamics of the transmitter as a

linear system and determine the optimal transmit power policy under such temperature constraints as

well as energy harvesting constraints over an AWGN channel.We first derive the structural properties

of the solution for the general case with multiple energy arrivals. We show that the optimal power

policy is piecewise monotone decreasing with possible jumps at the energy harvesting instants. We

derive analytical expressions for the optimal solution in the single energy arrival case. We show that,

in the single energy arrival case, the optimal power is monotone decreasing, the resulting temperature

is monotone increasing, and both remain constant after the temperature hits the critical level. We then

generalize the solution for the multiple energy arrival case.

I. INTRODUCTION

In many wireless sensor applications, temperature increase caused by sensor operation has

to be carefully managed. For example, wireless sensors implanted in the human body have to

be designed such that the temperature due to their operationdoes not cause any threat for the

metabolism. A line of medical research started by Pennes in 1948 [1] explores the temperature

dynamics due to electromagnetic radiation in conjunction with heat losses to the environment

and dissipation of heat in the tissue. In the context of sensors that communicate data, temperature
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sensitivity varies depending on the type of tissue. For a given specific tissue, it is recommended

that the temperature does not exceed a critical level, in order to prevent damage to the tissue.

This necessitates careful scheduling of data transmission[2]. This problem arises in various

types of body area sensor networks, see e.g., [3]–[5] and references therein. Finally, temperature

increase in a sensor is a threat for the proper operation of the hardware itself [6]–[9]. In this

context, the electric power that feeds the amplifier circuitry has to be carefully scheduled so as

to avoid permanent damage in the circuit.

In order to obtain design principles with regard to temperature sensitivity of such systems,

determining transmission schemes under a safe temperaturethresholdTc is a useful objective. In

this paper, we consider data transmission with energy harvesting sensors under such temperature

constraints. Data transmission with energy harvesting transmitters has been the topic of recent

research [10]–[17]. In particular, throughput maximization under offline and online knowledge

of the energy arrivals is considered in these references forsingle-user and multi-user energy

harvesting communication systems. In [18]–[22], this problem is investigated under imperfections

such as battery energy leakage, charge/discharge inefficiency, and presence of processing costs.

In the current paper, we aim to bridge physical heat dissipation with data transmission in energy

harvesting communication systems. When the sole purpose isto maximize the throughput, the

transmitter may generate excessive heat while utilizing the energy resource. In a temperature

sensitive application, the heat accumulation caused by thetransmission power policy has to be

explicitly taken into account. In such a case, heat generated in the transmitter circuitry causes a

form of “information-friction” [23]. We study the effect ofthis “friction” in a deadline constrained

communication of an energy harvesting transmitter over an AWGN channel. For simplicity, we

use transmit power as a proxy for hardware power. That is, we assume that the energy dissipated

by the power amplifier dominates other energy sinks in the circuitry. More work is needed to

understand full implications of communication circuitry’s energy in this context. Our formulation

also relates to [24] in that the cumulative effect of heat generated in the hardware affects the

communication performance.

We determine the throughput optimal offline power scheduling policy under energy harvesting

and temperature constraints. Our thermal model is based on aview of the transmitter’s circuitry as

a linear heat system where transmit power is an input as in [1], [7], [9], [24]. We impose that the
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temperature does not exceed a critical levelTc. Consequently, we obtain a convex optimization

problem. We solve this problem using a Lagrangian frameworkand KKT optimality conditions.

We first derive the structural properties of the solution forthe general case of multiple energy

arrivals. Then, we obtain closed form solutions under a single energy arrival. For the general

case, we observe that the optimal power policy may make jumpsat the energy arrival instants,

generalizing the optimal policies in [10], [11]. Between energy harvests, the optimal power is

monotonically decreasing. We establish for the case of a single energy arrival that the optimal

power policy monotonically decreases, corresponding temperature monotonically increases, and

both remain constant when the critical temperature is reached. Then, we consider the case of

multiple energy arrivals. We observe that the properties ofthe solution for the single energy

arrival case are guaranteed to hold only in the last epoch of the multiple energy arrival case. In

the remaining epochs, the temperature may not be monotone and the transmitter may need to

cool down to create a temperature margin for the future, if the energy harvested in the future is

large. We illustrate possible cases and obtain insights regarding the optimal temperature pattern

in the multiple energy arrival case.

II. THE MODEL

We consider an energy harvesting transmitter node placed inan environment as depicted in

Fig. 1. The node harvests energy to run its circuitry and wirelessly send data to a receiver.

A. Channel Model

The received signalY , the inputX, fading levelh and noiseZ are related as

Y =
√
hX + Z (1)

whereZ is additive white Gaussian noise with zero-mean and unit-variance. In this paper, the

channel is non-fading, i.e.,h = 1. We use a continuous time model: A scheduling interval has

a short duration with respect to the duration of transmission and we approximate it as[t, t+ dt]

where dt denotes infinitesimal time. In[t, t + dt], the transmitter decides a feasible transmit

power levelP (t) and 1
2
log (1 + P (t)) dt bits are sent to the receiver, where the base oflog is

2. To be precise, the underlying physical signaling is in discrete time and the scalings in SNR

and rate due to bandwidth and the base of the logarithm are inconsequential for the analysis.
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Fig. 1. The model representing an energy harvesting wireless node placed in an environment that has constant temperature Te.

B. Energy Harvesting Model

As shown in Fig. 2, the initial energy available in the battery at time zero isE0. Energy

arrivals occur at times{s1, s2, . . .} in amounts{E1, E2, . . .} with s0 = 0. We call the time

interval between two consecutive energy arrivals anepoch. D is the deadline.Ei and si are

known offline and are not affected by the heat due to transmission. Let h(t) = max{k : sk < t}

andN be the number of energy arrivals in the interval[0, D) and by convention we letsN+1 = D.

Power scheduling policyP (t) is subject to energy causality constraints as:

∫ t

0

P (τ)dτ ≤
h(t)
∑

i=0

Ei, ∀t ∈ [0, D] (2)

C. Thermal Model

In our thermal model, we use the transmit power as a measure ofheat dissipated to the

environment. In particular, we model the temperature dynamics of the system as follows:

d

dt
T (t) = aP (t)− b(T (t)− Te) + c (3)

whereP (t) is the transmit power policy andT (t) is the temperature at timet. Te is the constant

temperature of the environment that is not affected by the heating effect due to the transmit power

level P (t). a and b are non-negative constants.c represents the cumulative effect of additional

heat sources and sinks and it can take both positive and negative values. In the following, we

consider the case of no extra heat source or sink, i.e.,c = 0.
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Fig. 2. EnergyEi becomes available for data transmission at timesi. D is the deadline.

Our thermal model in (3) is intimately related to the thermalmodel in [7], [9] where hardware

heating is modeled as a first orderRC heat circuit. In particular, thermal dynamics of a power

controlled transmitter due to its amplifier power consumption (see e.g., [25]) could be modeled

as in (3). We also refer the reader to [24] for a related heating model. Our thermal model is

also related to the well-known Pennes bioheat equation [1].We assume, for simplicity, that the

spatial variation in temperature is not significant and leave the general case of spatial temperature

variations as future work.

From (3), the solution ofT (t) for any givenP (t) with the initial conditionT (t′) at timet′ is:

T (t) = e−b(t−t′)

(
∫ t

t′
eb(τ−t′) (aP (τ) + bTe) dτ + T (t′)

)

(4)

By insertingt′ = 0 in (4), we get (c.f. [24, Eq. (3)]):

T (t) = e−bt

(
∫ t

0

ebτ (aP (τ) + bTe) dτ + T (0)

)

(5)

The temperature should remain below a critical temperatureTc, i.e., T (t) ≤ Tc, where we

assume thatTc > Te. Let us defineTδ , Tc − Te, which is the largest allowed temperature

deviation from the environment temperature. Typically, initial temperature isTe, i.e., initially the

temperature is stabilized at the constant environment temperatureTe. From (5), usingT (t) ≤ Tc

andT (0) = Te, we get the following equivalent condition for the temperature constraint:

∫ t

0

aebτP (τ)dτ ≤ Tδe
bt, ∀t ∈ [0, D] (6)

Note that the temperature constraints in (6) and the energy causality constraints in (2) do not

interact. Due to the heat generation dynamics governed by (3), we observe in (6) that the cost

of power increases exponentially in time (i.e., the multiplier in front of P (τ) is exponential in

τ ) while the heat budget also increases exponentially in time(i.e., the upper bound on the right

hand side of (6) is exponential int).
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III. PROBLEM FORMULATION

Offline throughput maximization problem over the interval[0, D] under energy causality and

temperature constraints with initial temperatureT (0) = Te is:

max
P (t), t∈[0,D]

∫ D

0

1

2
log (1 + P (τ)) dτ

s.t.
∫ t

0

aebτP (τ)dτ ≤ Tδe
bt, ∀t

∫ t

0

P (τ)dτ ≤
h(t)
∑

i=0

Ei, ∀t (7)

where the space of actions is the set of measurable functionsP (t) defined over the interval

[0, D]. Note that (7) is a convex functional optimization problem.

The Lagrangian for (7) is:

L =

∫ D

0

1

2
log (1 + P (t)) dt−

∫ D

0

λ(t)

(
∫ t

0

aebτP (τ)dτ − Tδe
bt

)

dt

−
∫ D

0

β(t)





∫ t

0

P (τ)dτ −
h(t)
∑

i=0

Ei



 dt (8)

Taking the derivative of the Lagrangian with respect toP (t) and equating to zero:

1

1 + P (t)
− ebt

∫ D

t

λ(τ)dτ −
∫ D

t

β(τ)dτ = 0 (9)

which gives

P (t) =

[

1
∫ D

t
β(τ)dτ + ebt

∫ D

t
λ(τ)dτ

− 1

]+

(10)

In addition, the complementary slackness conditions are:

λ(t)

(
∫ t

0

aebτP (τ)dτ − Tδe
bt

)

= 0, ∀t (11)

β(t)





∫ t

0

P (τ)dτ −
h(t)
∑

i=0

Ei



 = 0, ∀t (12)

In (9) and (11)-(12),λ(t) ≥ 0 andβ(t) ≥ 0 are distributions that are allowed to have impulses and

their total measure over[0, D] interval are not both zero, i.e.,
∫ D

0
λ(τ)dτ > 0 or

∫ D

0
β(τ)dτ > 0,

in order to prohibitP (t) from being unbounded. We note that (9) and (11)-(12) are necessary
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and sufficient conditions since the problem is convex. The solution is unique almost everywhere

as the objective function is strictly concave.

We note that the problem in (7) could be solved by using calculus of variations. See [7]

for application of calculus of variations for a similar problem to (7). As another alternative,

we note that (7) could equivalently be solved by using a Hamiltonian approach from optimal

control theory. In particular, we can cast the problem in (7)as an optimal control problem with

pure state constraints [26]. In this case, the state of the system is the tuple[T (t) B(t)] where

B(t) =
∫ t

0
P (τ)dτ is the total energy expenditure by the timet. The input isP (t) for 0 ≤ t ≤ D.

This problem is in the following form:

max
P (t), t∈[0,D]

∫ D

0

1

2
log (1 + P (τ)) dτ

s.t.
d

dt
T (t) = f1(T,B, P ),

d

dt
B(t) = f2(T,B, P )

g1(T,B, t) ≤ 0, g2(T,B, t) ≤ 0 (13)

where f1(T,B, P ) = aP − b(T − Te) and f2(T,B, P ) = P while g1(T,B, t) = T − Tc and

g2(T,B, t) = B −∑h(t)
i=0 Ei. Note thatg1 and g2 do not depend on the inputP . With these

selections, optimization problem (13) is in the same form asthat stated in [26, Eqs. (2.1)-(2.6)].

In this case, Hamiltonian is

H(T,B, P, λ1, λ2, t) =
1

2
log (1 + P )− λ1(t)f1(T,B, P )− λ2(t)f2(T,B, P ) (14)

and the corresponding Lagrangian is

LH(T,B, P, λ1, λ2, t) = H(T,B, P, λ1, λ2, t)− ν1(t)g1(T,B, t)− ν2(t)g2(T,B, t) (15)

whereλ1(t) andλ2(t) are the co-state trajectories;ν1(t) andν2(t) are multiplier functions. We

note that Pontryagin’s maximum principle is necessary and sufficient in this case since (13) is

a concave maximization problem. One can derive the equivalence of necessary and sufficient

conditions for this optimal control problem to those in (9) and (11)-(12).

In the following, we proceed with the Lagrangian formulation in (8) and the corresponding

optimality conditions in (9) and (11)-(12).
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IV. GENERAL PROPERTIES OF ANOPTIMAL POLICY

In this section, we obtain the structural properties of the optimal power scheduling policy

using the optimality conditions. In the following lemmas,P (t) refers to the optimal policy and

T (t) is the resulting temperature unless otherwise stated.

We first note that the temperature level never drops belowTe. In particular, if the initial

temperature is betweenTe andTc, the temperature at all times will remain betweenTe andTc.

Lemma 1 Te ≤ T (t) ≤ Tc whenever the initial temperature isTe ≤ T (0) ≤ Tc.

Proof: From (3), sinceP (t) ≥ 0 we have d
dt
T (t) ≥ 0 wheneverT (t) = Te. The constraint

T (t) ≤ Tc is satisfied by any feasible policy in (7).�

The following lemma states that if the temperatureT (t) is constant, then the powerP (t) is

constant also (while it is not true the other way around, see Lemma 3), and that if the temperature

hits the maximum allowed levelTc, then the power must be below a threshold.

Lemma 2 WheneverT (t) is constant over an intervalI ⊆ [0, D], P (t) is also constant over

that interval. If the temperature hits the levelTc at t = th, thenP (th+ǫ) ≤ Tδb

a
for all sufficiently

small ǫ > 0.

Proof: If T (t) is constant inI, d
dt
T (t) = 0 and from (3),P (t) is also constant in the same

interval. If T (th) = Tc for someth ∈ [0, D), then d
dt
T (th+ ǫ) ≤ 0 and from (3),P (th+ ǫ) ≤ Tδb

a
.

�

The following lemma shows that if the powerP (t) is a monotone increasing function, then

so is the temperatureT (t). We first prove this result for piecewise constant functionsand then

generalize it to arbitrary functions. We note that a particular instance of a monotone increasing

piecewise constant power is observed in the solution of the throughput maximization problem

without temperature constraints [10].

Lemma 3 If P (t) is a monotone increasing piecewise constant function, thenT (t) is monotone

increasing. More generally, ifP (t) is a monotone increasing function, so isT (t).

Proof: We first prove the first statement of the lemma which is concerned with piecewise constant

functions. Let us start with the case of a single constant power value for the entire duration of
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communication, i.e.,P (t) = p for t ∈ [0, D]. From (5), we have:

T (t) = e−bt

(
∫ t

0

ebτ (ap + bTe) dτ + T (0)

)

(16)

= e−bt

(

(ap + bTe)

b

(

ebt − 1
)

+ T (0)

)

(17)

= Te +
a

b
p+

(

T (0)− Te −
a

b
p
)

e−bt (18)

For T (0) = Te, (18) is a monotone increasing function oft. In particular,T (t) ≤ Te +
a
b
p. Now,

let us consider the case ofM constant power levels for the duration of communication, i.e.,

P (t) = pi over the interval[Ii−1, Ii) wherepi < pi+1 for all i and0 = I0 < I1 < . . . < IM = D

whereM > 1 is the number of intervals. In this case, we have fort ∈ [Ii−1, Ii):

T (t) = Te +
a

b
pi +

(

T (Ii−1)− Te −
a

b
pi

)

e−b(t−Ii−1) (19)

whereT (Ii−1) ≤ Te +
a
b
pi−1. Hence, the coefficient ofe−b(t−Ii−1) in (19) has a negative sign as

T (Ii−1)− Te − a
b
pi ≤ a

b
(pi−1 − pi) < 0. This proves thatT (t) is monotone increasing.

To generalize this result for any monotone increasing function P (t), we obtain any monotone

increasing simple approximation [27] ofP (t), denoted asPn(t), such thatP1(t) ≤ P2(t) ≤

. . . ≤ Pn(t) for all t ∈ [0, D] and Pn(t) → P (t) pointwise. For example, one can select

Pn(t) = P (In(i−1)) for t ∈ [In(i−1), Ini) and Ini =
D
2n

(i− 1) for i = 1, . . . , 2n. Let us call the

resulting temperatureTn(t). Hence,ebtP1(t) ≤ ebtP2(t) ≤ . . . ≤ ebtPn(t) for all t ∈ [0, D] and

ebtPn(t) → ebtP (t) pointwise. By monotone convergence theorem [27], we have

∫ t

0

ebτPn(τ)dτ →
∫ t

0

ebτP (τ)dτ, ∀t ∈ [0, D] (20)

Accordingly,Tn(t) → T (t) pointwise and we have

d

dt
Tn(t) = aPn(t)− b (Tn(t)− Te) →

d

dt
T (t) = aP (t)− b (T (t)− Te) , ∀t ∈ [0, D] (21)

SincePn(t) is a monotone increasing piecewise constant function, fromthe first part of the proof,

Tn(t) is monotone increasing, i.e.,d
dt
Tn(t) = aPn(t) − b (Tn(t)− Te) ≥ 0. Since d

dt
Tn(t) →

d
dt
T (t) pointwise, this impliesd

dt
T (t) ≥ 0, i.e., T (t) is monotone increasing as well.�

The next lemma shows that if the temperature remains constant over an interval, then that

level could only beTe or Tc, i.e., any other temperature cannot be a stable temperature.
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Lemma 4 If T (t) is constant over an intervalI ⊆ [0, D], then that constant level could only

be Te or Tc.

Proof: AssumeT (t) is constant overI. Without loss of generality, assume that there is no energy

arrival in the intervalI, and otherwise letI be the portion of the interval without any energy

arrivals. By Lemma 2,P (t) is constant overI. If P (t) = 0 over I, thenT (t) = Te from (3). If

P (t) 6= 0, we have from (10)

P (t) =
1

∫ D

t
β(τ)dτ + ebt

∫ D

t
λ(τ)dτ

− 1 (22)

whereβ(t) = 0 over the intervalI by (12) sinceβ(t) > 0 implies energy constraint is tight and

P (t) = 0. Therefore,
∫ D

t
β(τ)dτ = B is constant overI. If T (t) < Tc, then by (11),λ(t) = 0

over I and hence
∫ D

t
λ(τ)dτ = C is constant overI. However, this makes (22) a time varying

function of t because of theebt term in the denominator, and this contradicts the fact thatP (t) is

constant. Finally, ifC = 0, this means that the temperature constraint is never tight.In this case,

the piecewise constant power policy in [10] is optimum, and the temperature is monotonically

increasing from Lemma 3, and therefore, cannot be a constantover an interval.�

The following lemma states that at the end of the communication session either the harvested

energy is exhausted or the critical temperature is reached.

Lemma 5 At t = D, either the temperature constraint or the energy causalityconstraint or

both are tight.

Proof: If neither of the constraints are tight, then the power policy P (t) could be increased over

a set of non-zero Lebesgue measure in the last epoch. This strictly increases the throughput,

contradicting the optimality.�

The following lemma shows that the optimal power should be monotonically decreasing

between energy harvests.

Lemma 6 P (t) is piecewise monotone decreasing except possibly at the energy arrival instants.

In particular, it is monotone decreasing between consecutive energy harvests.

Proof: We prove the statement by contradiction. Assume that for some interval [t1, t2], P (t)

is strictly monotone increasing, and that the interval[t1, t2] does not contain an energy arrival
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instant. Define a new power policy asPnew(t) =
∫ t2
t1

P (τ)dτ

t2−t1
over t ∈ [t1, t2] andPnew(t) = P (t)

otherwise.Pnew(t) satisfies the energy causality constraint in (7) sincePnew(t) uses the same

amount of energy asP (t) over [t1, t2] and the energy constraint forP (t) is not tight in this

interval.Pnew(t) also satisfies the temperature constraint. To see this, we first note thatPnew(t)

satisfies the following inequality (see [28, Theorem on p. 207]):

∫ t2

t1

aebτPnew(τ)dτ ≤
∫ t2

t1

aebτP (τ)dτ (23)

as bothP (t) andebt are monotone increasing. In addition, sinceP (t) is temperature feasible:

∫ t1

0

aebτP (τ)dτ ≤ Tδe
bt1 (24)

∫ t2

0

aebτP (τ)dτ ≤ Tδe
bt2 (25)

Combining (23) and (25), we conclude thatPnew(t) satisfies the temperature constraint att = t2:

∫ t2

0

aebτPnew(τ)dτ =

∫ t1

0

aebτPnew(τ)dτ +

∫ t2

t1

aebτPnew(τ)dτ (26)

≤
∫ t1

0

aebτP (τ)dτ +

∫ t2

t1

aebτP (τ)dτ (27)

≤ Tδe
bt2 (28)

Additionally, the temperature constraint is satisfied fort > t2 sincePnew(t) andP (t) are identical

for t > t2 andP (t) is temperature feasible. Hence, we need to show thatPnew(t) satisfies the

temperature constraint for allt ∈ (t1, t2) to establish the temperature feasibility ofPnew(t). That

is, we need to show:

∫ t1

0

aebτP (τ)dτ +

∫ t

t1

aebτPnew(τ)dτ ≤ Tδe
bt, t ∈ (t1, t2) (29)

SincePnew(t) = p is constant over[t1, t2], we have:

∫ t

t1

aebτPnew(τ)dτ =
a

b
p
(

ebt − ebt1
)

, t ∈ [t1, t2] (30)

Using (30) in (29) and sinceebt ≥ 0, (29) takes the following equivalent form:

e−bt

(
∫ t1

0

aebτP (τ)dτ − a

b
pebt1

)

+
a

b
p ≤ Tδ (31)
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Note that the left hand side of (31) is either monotone increasing or monotone decreasing in

t as it is a linear function ofe−bt. Since the inequality (31) holds att = t1 and t = t2 as

Pnew(t) satisfies the temperature constraint at those points, we conclude thatPnew(t) satisfies

the temperature constraint for allt ∈ [t1, t2]. In addition,Pnew(t) yields higher throughput than

P (t) due to the concavity of logarithm. This contradicts the optimality of P (t). The proof holds

even when[t1, t2] includes an energy arrival instant provided that the energycausality constraint

is not tight at that instant.�

Next, we show that discontinuities in the power level could only occur in the form of positive

jumps, and only at the instances of energy harvests.

Lemma 7 If there is a discontinuity inP (t), it is a positive jump and it occurs only at the

energy arrival instants. The temperatureT (t) is continuous throughout the[0, D] interval.

Proof: Sinceebt is a continuous function oft, λ(t) ≥ 0 andβ(t) ≥ 0, any jump inP (t) has to

be positive due to (10). Any positive jump at instants other thansk violates monotonicity ofP (t)

within each epoch due to Lemma 6. Due to (5), the resulting temperatureT (t) is continuous

throughout the[0, D] interval. �

By Lemma 7, we can takeβ(t) in the formβ(t) =
∑N+1

j=1 βjδ(t−sj) without loss of optimality,

whereβj ≥ 0, j = 1, . . . , N + 1, are finitely many Lagrange multipliers corresponding to the

energy causality constraints at the energy harvesting instantssj and the deadline,sN+1 = D.

The next lemma shows, for an arbitrary feasible policyP (t), that if the temperature reaches

the critical levelTc at someth, then the power just beforeth must be larger than a threshold.

Lemma 8 If T (th) = Tc for someth ∈ [0, D), thenP (th − ǫ) ≥ Tδb

a
for all sufficiently small

ǫ > 0.

Proof: SinceT (th) = Tc, we have:

∫ th

0

aebτP (τ)dτ = Tδe
bth (32)

We combine (6) with (32) to get

∫ th

t

aebτP (τ)dτ ≥ Tδ

(

ebth − ebt
)

, ∀t ∈ [0, th] (33)
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which implies in view of the continuity ofP (t) (except for the finitely many energy arrival

instants) proved in Lemma 7 thatP (th − ǫ) ≥ Tδb

a
for all sufficiently smallǫ > 0. �

We next state the continuity of the optimal power policyP (t) at points when it hits the critical

temperatureTc.

Lemma 9 If T (th) = Tc for someth ∈ [0, D) thenP (t) is continuous atth andP (th) =
Tδb

a
.

Proof: The proof follows from Lemma 2 and Lemma 8 and the fact that negative jumps inP (t)

are not allowed due to Lemma 7.�

Next, we show that when the temperature hits the boundaryTc, it has to return toTc.

Lemma 10 WheneverT (th) = Tc for someth < D, there existst > th such thatT (t) = Tc.

Proof: Assume thatT (th) = Tc for someth < D and T (t) < Tc for all th < t < D. By

Lemma 9,P (th) =
Tδb

a
. From (4) withT (th) = Tc, the constraintT (t) ≤ Tc becomes:

∫ t

th

aebτP (τ)dτ ≤ Tδ

(

ebt − ebth
)

, th < t ≤ D (34)

SinceT (t) < Tc in th < t < D, only energy causality constraint is active and thusP (t) for

th < t < D is the piecewise constant monotone power allocation in [10]. On the other hand,

P (t) = Tδb

a
satisfies (34) with equality for allt. Therefore, we must haveP (t) = c < Tδb

a
for all

t ∈ (th, th + δ) for someδ > 0. However, this contradictsP (th) =
Tδb

a
since there cannot be a

negative jump inP (t) by Lemma 7.�

The following lemma identifies the exact conditions where the powerP (t) makes a jump.

Lemma 11 If there is a jump inP (t), it occurs only at an energy arrival instant, when the

battery is empty and the temperature is strictly belowTc.

Proof: Due to the slackness conditions in (11)-(12), a jump occurs if either the battery is empty

or the temperature constraint is tight, i.e.,T (t) = Tc. By Lemma 9,P (t) is continuous whenever

T (t) = Tc. Therefore, a jump inP (t) occurs at an energy arrival instant, when the battery is

empty andT (t) < Tc. �

We finally remark that energy may have to be wasted as aggressive use of energy may cause

temperature to rise above the critical level.
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V. OPTIMAL POLICY IN THE SINGLE ENERGY ARRIVAL CASE

In this section, we consider a single epoch whereE units of energy is available at the

transmitter at the beginning. We first develop further structural properties for the optimal power

control policy in this specific case and then obtain the solution.

A. Properties of an Optimal Policy

The next lemma shows that, if the power falls below a certain threshold at an intermediate point

and remains under that threshold until the deadline, then itshould remain constant throughout.

Lemma 12 If 0 < P (t) ≤ Tδb

a
for t ∈ [t1, D], thenP (t) is constant over[t1, D].

Proof: AssumeP (t) is not constant over[t1, D]. Let Er =
∫ D

t1
P (τ)dτ > 0. Define a new

policy Pnew(t) = Er

D−t1
for t ∈ [t1, D] and Pnew(t) = P (t) otherwise.Pnew(t) is both energy

and temperature feasible. Energy feasibility holds by construction asPnew andP have the same

energy over[t1, D]. Temperature feasibility also holds:T (t1) ≤ Tc sinceP (t) is temperature

feasible and as Er

D−t1
< Tδb

a
, we haveT (t) ≤ Tc for all t1 < t < D from (6). Now, by

Jensen’s inequalityPnew(t) achieves strictly larger throughput sincelog is strictly concave. This

contradicts the optimality ofP (t). Hence,P (t) = c > 0 for t ∈ [t1, D].�

The following lemma states that the power has to remain constant at the levelTδb

a
when the

temperature reaches the critical levelTc.

Lemma 13 Let t′ ∈ [0, D] denotemin{t ∈ [0, D] : T (t) = Tc}. If t′ < D, thenP (t) = Tδb

a
for

all t ∈ [t′, D].

Proof: By Lemma 9,P (t′) = Tδb
a

. By Lemma 6,P (t) is monotone decreasing, and thus0 ≤

P (t) ≤ Tδb

a
for t′ < t ≤ D. By Lemma 12,P (t) = c for all t ∈ [t′, D]. By Lemma 7,P (t) is

continuous and therefore,P (t) = Tδb

a
for all t ∈ [t′, D]. �

The following lemma states that the optimal power is always larger than a constant value

determined by the fixed system parameters.

Lemma 14 The optimal policyP (t) satisfies:

P (t) ≥ min

{

Tδb

a
,
E

D

}

, ∀t ∈ [0, D] (35)
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Proof: If the temperature constraint is not tight, then the problemreduces to the energy con-

strained problem in which caseP (t) = E
D

. If the temperature constraint is tight,P (t) is monotone

decreasing by Lemma 6 and when the temperature level reachesTc, P (t) remains atTδb

a
by

Lemma 13. Hence,P (t) ≥ Tδb

a
. �

The following lemma shows that, since the power is always larger than a constant value,

battery energy level is never zero, except possibly at the deadline.

Lemma 15 In an optimal policy, energy in the battery is non-zero except possibly att = D.

Proof: By Lemma 14, the optimal power is always larger than a positive constant. Thus, the

battery energy does not drop to zero.�

The following lemma shows that the temperature is monotone increasing throughout the

transmission duration, and also is a concave function of time.

Lemma 16 The temperature with the optimal power policy is monotone increasing and concave.

Proof: If the temperature constraint is never tight, then the optimal power level isE
D

, and from

Lemma 3, the temperature is monotone increasing. Concavityin this case follows from the

concavity of the explicit expression in (18) withT (0) = Te. Now, assume that the temperature

constraint is tight att = D. By Lemma 14,P (t) ≥ Tδb

a
. From (3), we have:

dT

dt
= aP (t)− b (T (t)− Te) (36)

≥ a
Tδb

a
− b (T (t)− Te) (37)

= b (Tc − T (t)) ≥ 0 (38)

as T (t) ≤ Tc by the temperature constraint. SinceP (t) is monotone decreasing by Lemma 6

andT (t) is monotone increasing, from (36),dT
dt

is monotone decreasing, proving the concavity

of T (t) in this case.�

B. Optimal Policy

In view of Lemma 15, the energy constraint can be tight only att = D. Therefore, the

corresponding Lagrange multiplier is a single variableβ(t) = βδ(t−D). From Lemma 16,T (t)
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is monotone increasing. Due to Lemma 13, whenT (t) reachesTc, power level has to remain at

Tδb

a
. Accordingly, we denote the instant when the temperature reachesTc as t0.

1) Sufficiently Large Energy:In this case, the energy constraint is never tight, andβ = 0. In

view of Lemma 5, the temperature constraint is tight att = D.

First, consider the case thatD is sufficiently large so that there existst0 < D such that

T (t0) = Tc. For t ∈ [0, t0), T (t) < Tc and from (11),λ(t) = 0. From (10), whent ∈ [0, t0) we

haveP (t) = 1
C
e−bt − 1 whereC =

∫ D

t0
λ(τ)dτ > 0. Since att = t0 the temperature reachesTc,

from Lemma 13, we haveP (t) = Tδb

a
for t ∈ [t0, D]. Then, the optimal power has the form:

P (t) =

(

1

C
e−bt − 1

)

(u(t)− u(t− t0)) +
Tδb

a
u(t− t0) (39)

whereu(t) is the unit step function. Now, from Lemma 9,P (t) is continuous att0 andC should

be chosen accordingly. In particular,C = 1
(

Tδb

a
+1

)e−bt0 . The following Lagrange multiplierλ(t)

verifies (39):

λ(t) =
b

(

Tδb

a
+ 1
)e−btu(t− t0) +

e−bD

(

Tδb

a
+ 1
)δ(t−D) (40)

The corresponding optimal temperature pattern for0 ≤ t ≤ t0 is:

T (t) = a

(

Tδb

a
+ 1

)

te−b(t−t0) +
a

b
e−bt − a

b
+ Te (41)

andT (t) = Tc for t0 ≤ t ≤ D. We note thatt0 satisfies:

(

Tδ

a
+

1

b

)

ebt0 − 1

b
=

(

Tδb

a
+ 1

)

t0e
bt0 (42)

so thatT (t0) = Tc. Hence,T (t) monotonically increases till it reachesTc, which is consistent

with Lemma 16.

Next, consider the case thatD < t0. In this case,

P (t) =
1

C
e−bt − 1 (43)

whereC = D
((

Tδ

a
+ 1

b

)

ebD−
1

b

) andλ(t) = Cδ(t−D). Therefore, the optimalP (t) in this case is

P (t) =
1

D

((

Tδ

a
+

1

b

)

ebD − 1

b

)

e−bt − 1 (44)
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We also remark thatt0 level that satisfies (42) monotonically increases withTδ. To see this,

we rearrange (42) as follows:

1

b

(

1− 1
(

Tδb

a
+ 1
)e−bt0

)

− t0 = 0 (45)

Let us define a multi-variable real functionw(t0, Tδ) as the left hand side of (45) and denote a

specific solution ast∗0 for fixed Tδ. It is easy to see that (45) always has a solutiont0 for fixed

Tδ. To see this, we evaluate the derivative with respect tot0 as:

∂

∂t0
w(t0, Tδ) =

1
(

Tδb

a
+ 1
)e−bt0 − 1 ≤ 0, ∀t0 ≥ 0 (46)

That is,w(t0, Tδ) is monotone decreasing witht0. At t0 = 0, w(t0, Tδ) > 0 while w(t0, Tδ) →

−∞ ast0 grows. In view of the continuity ofw(t0, Tδ), there exists at0 such thatw(t0, Tδ) = 0.

Additionally, we observe in (45) that for fixedt0, w(t0, Tδ) monotonically increases withTδ.

Therefore, ifw(t∗0, Tδ) = 0, then, due to monotone increasing property with respect toTδ,

w(t∗0, T
′

δ) > 0 for T
′

δ > Tδ. Hence, fort∗∗0 such thatw(t∗∗0 , T
′

δ) = 0, we havet∗∗0 > t∗0 due to

monotone decreasing property with respect tot0.

2) Energy Limited Case:Note that the optimal power policies in the energy unconstrained

cases in (39) and (44) have finite energies. If the available energyE is larger than the corre-

sponding energy level in (39) and (44), then the solution is as in (39) and (44). Otherwise, the

energy constraint is active and the Lagrange multiplier isβ > 0. From (10), we have:

P (t) =
1

β + ebt
∫ D

t
λ(τ)dτ

− 1 (47)

We first note that there is a critical energy levelEcritical such that ifE ≤ Ecritical, then

constant power policyP (t) = E
D

is optimal. This critical level is:

Ecritical =
Tδb

a

DebD

ebD − 1
(48)

This is the critical level below which the temperature constraint is not tight by the constant power

allocationP (t) = E
D

. The expression in (48) is evaluated from (18) by insertingT (0) = Te, and

requiringT (D) ≤ Tc. WhenE ≤ Ecritical, λ(t) = 0 since temperature constraint is never tight.

In this case,β = 1
E

D
+1

. Ecritical is the maximum energy level for which a constant power level
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is optimal. If P (t) = Ecritical

D
, T (t) is monotone increasing over[0, D] and reachesTc at t = D.

If E > Ecritical, the constant power levelEcritical

D
does not satisfy the temperature constraint. We

note from (48) thatEcritical increases with the deadlineD. Therefore, there exists a deadline

level D̃ for which D > D̃ impliesE < Ecritical and hence constant power policy is optimal.

An alternative way of observing the behavior of the optimal policy is to fix the available

energyE andTe and vary the critical temperatureTc. In this case, there is a critical temperature

limit T limit
c for which P (t) = E

D
is optimal wheneverTc > T limit

c :

T limit
c = Te +

a

b

E

D

ebD − 1

ebD
(49)

which again is evaluated from (18) withT (0) = Te. In the following, we considerE > Ecritical

or Tc < T limit
c so that both energy and temperature constraints are tight atthe end of the

communication session.

Again, we consider two possibilities: temperature constraint becomes tight at at0 < D, and

temperature constraint becomes tight att = D. In both cases, the energy constraint becomes

tight at t = D.

First, consider the case thatt0 < D: Due to (11),λ(t) = 0 for t ∈ [0, t0) and from (10), we

get:

P (t) =
1

β + Cebt
− 1 (50)

whereC =
∫ D

t0
λ(τ)dτ > 0. Additionally, P (t) = Tδb

a
for the remaining portion of the epoch in

view of Lemma 13.t0 is such that fort > t0, P (t) = Tδb

a
andT (t0) = Tc. SinceP (t0) =

Tδb

a

we have:

1

β + Cebt0
=

Tδb

a
+ 1 (51)

Similarly, for T (t0) = Tc, we have from (5) withT (0) = Te:

e−bt0

(∫ t0

0

ebt
(

a

(

1

β + Cebt
− 1

)

+ bTe

)

dt+ Te

)

= Tc (52)

Finally, the energy constraint has to be satisfied att = D:

∫ t0

0

(

1

β + Cebt
− 1

)

dt+
Tδb

a
(D − t0) = E (53)
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No temperature constraint E < Ecritical

P(t)

tt0 D

Tδb

a

No energy constraint E = ∞

(a) FixedTc and varyingE.

Tc > T
limit

c

P(t)

tt0

Tc < T
limit

c

t0 D

(b) FixedE and varyingTc.

Fig. 3. The optimal power policy in the single energy arrivalcase for different energy and deadline constraints.

If there existst0 ≤ D for (51)-(53), thenP (t) is:

P (t) =

(

1

β + Cebt
− 1

)

(u(t)− u(t− t0)) +
Tδb

a
u(t− t0)

In this case, the corresponding Lagrange multiplier is:

λ(t) = bCe−b(t−t0)u(t− t0) + Ceb(t0−D)δ(t−D) (54)

Otherwise, when no sucht0 < D exists, the temperature constraint is tight only att0 = D.

In this case,P (t) is as in (50) fort ∈ [0, D] whereβ andC have to satisfy:

e−bD

(∫ D

0

ebt
(

a

(

1

β + Cebt
− 1

)

+ bTe

)

dt+ Te

)

= Tc (55)

∫ D

0

(

1

β + Cebt
− 1

)

dt = E (56)

The corresponding Lagrange multiplier isλ(t) = Cδ(t−D).

Depending on the energyE and the critical temperatureTc, the optimal power scheduling

policy P (t) varies according to the plots in Fig. 3. For smallE and fixedTc or for largeTc

and fixedE, a constant power policy is optimal. For moderate and largeE, the optimal power

policy is exponentially decreasing and may hit the power level Tδb

a
. Note thatt0 level at which

temperature touches the critical level decreases asTc is decreased and asE is increased. In

particular, for fixedTc, the level oft0 is bounded below by the solution forE = ∞ whereas for

fixed E, t0 goes to0 asTc approachesTe.
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VI. OPTIMAL POLICY FOR MULTIPLE ENERGY ARRIVALS

In this section, we extend the solution to the case of multiple energy arrivals. We start with

extending the properties observed for the single energy arrival case when initial temperature

T (0) is different fromTe. The following lemma generalizes Lemmas 6, 13 and 16 for the case

of an arbitraryT (0).

Lemma 17 Assume that the initial temperatureT (0) is in the rangeTe < T (0) < Tc instead

of T (0) = Te and consider the single energy arrival case:P (t) is monotone decreasing. Let

th ∈ [0, D] denotemin{t ∈ [0, D] : T (t) = Tc}. If th < D, thenP (t) = Tδb

a
for all t ∈ [th, D] and

the temperature is monotone increasing and concave. IfT (0) = Tc, thenP (t) = min
{

Tδb

a
, E
D

}

.

Proof: If T (0) is in the rangeTe < T (0) < Tc then, instead of (6), we have the following

temperature constraint:

∫ t

0

aebτP (τ)dτ ≤ Tδe
bt − Tg, ∀t ∈ [0, D] (57)

whereTg = T (0) − Te ≥ 0. Note thatTδe
bt − Tg ≥ 0 for all t ∈ [0, D], i.e., the right hand

side of (57) is always non-negative. The argument in Lemma 6 is valid in the presence of the

additional termTg in (57), and thereforeP (t) is monotone decreasing.

The second claim follows from the argument in Lemma 13. In particular, in addition to

Lemma 6, Lemma 12 directly extends with the constraint in (57). Hence, the result follows by

applying the argument in Lemma 13.

Finally, T (t) is monotone increasing and concave due to the steps followedin Lemma 16. In

particular, if the temperature constraint is tight att = D, P (t) ≥ Tδb

a
. Hence, (36)-(38) hold and

the temperature is monotone increasing and concave. IfT (0) = Tc, thenP (t) = min
{

Tδb

a
, E
D

}

due to the energy constraint. Note that the temperature decreases in casemin
{

Tδb

a
, E
D

}

= E
D

. �

As in the single epoch case, we will investigate the solutionunder special cases. In particular,

we will investigate the solution according to the time when the temperature hits the critical

level. To this end, we specialize in an interval[t1, t2] such thatT (t) < Tc for all t ∈ [t1, t2) and

T (t2) = Tc where0 < t1 < t2 ≤ D. Note that the temperatureT (t) is a continuous function of

t and hence there exist such intervals. We assume that the solution is known in[0, t1) ∪ (t2, D]

and we letTe ≤ T (t1) < Tc. In this case, the solution of (7) over the interval[t1, t2] is equal
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to the solution of the following problem obtained by restricting the temperature constraint to be

satisfied att = t2 only:

max
P (t), t∈[t1,t2]

∫ t2

t1

1

2
log (1 + P (τ)) dτ

s.t.
∫ t2

t1

aebτP (τ)dτ = Tδe
bt2 − Tg

∫ t

0

P (τ)dτ ≤
h̃(t)
∑

i=0

Ẽi, ∀t ∈ [t1, t2] (58)

whereTg = T (t1)− Te ≥ 0. In (58), Ẽi is determined as follows:̃E0 is the available energy in

the battery at timet = t1. Ẽi for i = 1, . . . , Ñ are the energy arrivals at instantss̃i ∈ (t1, t2).

h̃(t) is defined accordingly. While the times̃si are exactly those in the original problem, the

amountsẼi may be different from the original amounts as some energy maybe left for use in

the (t2, D] interval. For the following argument, whether̃Ei equals the original energy arrival

amount is not relevant and we leavẽEi as arbitrary amounts. To obtain the solution of (58)

using this Lagrangian framework, it is necessary and sufficient to findÑ + 2 variablesβi ≥ 0,

i = 1, . . . , Ñ + 1 andC ≥ 0 such that

P (t) =

[

1
∑Ñ+1

j=i βj + Cebt
− 1

]+

, t ∈ [s̃i−1, s̃i), i = 1, . . . , Ñ + 1 (59)

with the corresponding slackness conditions. Therefore, for the [t1, t2] interval, the solution has

the structure in (59), which is parameterized by finitely many Lagrange multipliers. In particular,

throughout an epoch over whichT (t) < Tc, power level satisfiesP (t) =
[

1
β+Cebt

− 1
]+

for some

β ≥ 0 andC ≥ 0 not both equal to zero. This also holds in a subinterval of an epoch over

which T (t) < Tc. In the following lemma, we show that in such an epoch, the temperatureT (t)

is unimodal.

Lemma 18 If P (t) =
[

1
β+Cebt

− 1
]+

for t ∈ [t1, t2] for someβ > 0 and C > 0, the resulting

T (t) is unimodal over[t1, t2].

Proof: From (4), we have fort ∈ [t1, t2],

T (t) = e−b(t−t1)

(

∫ t

t1

eb(τ−t1)

(

a

[

1

β + Cebτ
− 1

]+

+ bTe

)

dτ + T (t1)

)

(60)
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First, we note that whenP (t) = 0, d
dt
T (t) ≤ 0 from (3). Hence, it suffices to show thatT (t) is

unimodal whenP (t) = 1
β+Cebt

− 1 > 0. By evaluating the integral, we get

T (t) =
a

bC
e−bt log

(

β + Cebt

β + Cebt1

)

+
(

T (t1)− Te +
a

b

)

e−b(t−t1) + Te −
a

b
(61)

We claim thatT (t) in (61) is unimodal fort > t1. Note that the derivative ofT (t) is:

d

dt
T (t) = e−bt

(

aebt

β + Cebt
− a

C
log

(

β + Cebt

β + Cebt1

)

− b
(

T (t1)− Te +
a

b

)

ebt1
)

(62)

We let x = ebt, x1 = ebt1 and concentrate on ax
β+Cx

− a
C
log
(

β+Cx

β+Cx1

)

for x > x1. We note

that ax
β+Cx

− a
C
log
(

β+Cx

β+Cx1

)

is a strictly monotone decreasing function ofx for x > x1 > 0. In

particular, we have:

d

dx

(

ax

β + Cx
− a

C
log

(

β + Cx

β + Cx1

))

=
−Cx

(β + Cx)2
(63)

Thus, aebt

β+Cebt
− a

C
log
(

β+Cebt

β+Cebt1

)

is strictly monotone decreasing int. As aebt

β+Cebt
− a

C
log
(

β+Cebt

β+Cebt1

)

>

0 at t = t1, we conclude that the factor in (62) that multipliese−bt can take value0 at most once.

In particular, aebt

β+Cebt
− a

C
log
(

β+Cebt

β+Cebt1

)

− b
(

T (t1)− Te +
a
b

)

ebt1 can take positive or negative

values att = t1. If it is positive att = t1, it hits value0 at most once fort > t1. If it is negative

at t = t1, it stays negative throughoutt > t1. This proves thatT (t) is unimodal over[t1, t2]. �

In the following lemma, we show that, in an epoch[si, si+1], the temperature cannot return

to Tc if it hits and falls belowTc.

Lemma 19 If T (th) = Tc and T (th +∆) < Tc for some∆ > 0 where bothth and th +∆ are

in [si, si+1], thenT (t) < Tc for all t ∈ [th +∆, si+1].

Proof: By Lemma 9,P (th) =
Tδb

a
. By Lemma 6, power is monotone decreasing in an epoch.

Therefore, ifT (th+∆) < Tc, thenP (th+∆) < Tδb

a
and henceP (t) < Tδb

a
for all t ∈ [th+∆, si+1].

This, in turn, means thatT (t) < Tc for all t ∈ [th +∆, si+1]. �

Next, we complete the unimodal structure of the temperatureby showing that it has to be

monotone decreasing if it hits and falls belowTc.

Lemma 20 In an epoch[si, si+1], if the temperature touchesTc at th and falls below it, then

the temperature is monotone decreasing in[th, si+1].
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Proof: By Lemma 19, ifT (th +∆) < Tc, thenT (t) < Tc for all t ∈ [th +∆, si]. Therefore, we

have

P (t) =

[

1

β + Cebt
− 1

]+

, t ∈ [th +∆, si+1] (64)

for someβ > 0 andC > 0. By Lemma 18,T (t) is unimodal overt ∈ [th + ∆, si]. Therefore,

T (t) is monotone decreasing.�

We next consider epochs[si, si+1] and its subintervals over whichT (t) < Tc andT (t) = Tc.

By Lemma 18 and in view of the discussion around (58), whenever T (t) < Tc over an epoch,

T (t) reaches its peak level over that epoch at only one instance. Consequently, ifT (t) < Tc

for all t ∈ [si, si+1], there are three possible cases. The first two possibilitiesare thatT (t) is

monotone increasing or monotone decreasing throughout theepoch. The third possible case is

that T (t) is monotone increasing in[si, t1i] and monotone decreasing in(t1i, si+1] for some

t1i ∈ (si, si+1). Otherwise,T (t) hits Tc andT (t) does not return toTc if it falls below it due

to Lemma 19. Therefore, ifT (t) hits Tc in an epoch[si, si+1], then that epoch is divided into

three successive subintervalsIi1, Ii2, Ii3 with Ii1 = [si, ti1), Ii2 = [ti1, ti2) andIi3 = [ti2, si+1] for

somesi < ti1 ≤ ti2 < si+1. T (t) is monotone increasing overIi1, remains atTc over Ii2 and is

monotone decreasing overIi3. We finally note that ifT (t) < Tc at t = D, thenT (t) < Tc for all

t ∈ [0, D]. This follows from Lemma 10. In this case, the temperature constraint is never tight

and the optimal power policy is identical to the one in [10].

In Fig. 4, we plot the optimal energy expenditure for different values of critical temperature

level Tc. We observe that asTc is decreased, the temperature budget shrinks and the temperature

constraint becomes more likely to be tight. In this case, energy is spent faster not to create

high amounts of heat in the system. In general, there is a tension between causing unnecessary

heat in the system and maximizing the throughput. While we have fully characterized this

tension in the single energy arrival case, it needs to be further explored in the multiple energy

arrivals case. In particular, when a high amount of energy arrives into the system during the

progression of communication, the transmitter has to accommodate it by cooling down and

creating a temperature margin for future use. While maximizing the throughput generally requires

using the energy in the system to the fullest extent, the transmitter may have to waste energy due

to the temperature limit. We investigate this tension in numerical examples in the next section.
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Fig. 4. Energy expenditure with the optimal power policy with multiple energy arrivals. In view of the temperature constraint,
asTc is decreased, the energy is spent faster subject to energy causality.

VII. N UMERICAL RESULTS

In this section, we provide numerical examples to illustrate the optimal power policy and the

resulting temperature profile. For plots in Figs. 5, 6, 7 and 8, we seta = 0.1, b = 0.3, Te = 37

andTc = 38. Therefore, the critical power level isTδb

a
= 3.

In Figs. 5 and 6, we consider the energy unlimited scenario. In this case, the solution of (42)

is found ast0 = 2.993. In Fig. 5, we setD = 2 < t0 and we observe that the optimal power

policy is always above the levelTδb

a
. In this case, power strictly monotonically decreases while

temperature strictly monotonically increases with temperature touching the critical levelTc at

the deadline. In Fig. 6, we set the deadline asD = 3.5 > t0. We calculate that the energy

needed to have the power policy in Fig. 6 isE = 17.98. In other words, if the initial energy

is E ≥ 17.98 then the power policy in Fig. 6 is optimal. We observe that theoptimal power

level monotonically decreases to the levelTδb

a
and remains at that level afterwards. Similarly,

the temperature level rises toTc and remains at that level afterwards. Note that the throughput

and the energy consumption in Fig. 6 are higher with respect to those in Fig. 5. Parallel to this

observation, the monotone decrease is sharper in the power policy in Fig. 6 compared to that in

Fig. 5. Since the power level has to be stabilized atTδb

a
, the temperature increase cost paid for
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Fig. 5. Power, energy and temperature plots for unlimited energy andD = 2 for the single epoch case.

achieving certain throughput is minimized if energy consumption starts faster and drops later.

In Fig. 7, we set the deadline toD = 3.5 and the energy limit toE = 17.71. Note that this

energy level is slightly less than the energy of the power policy in Fig. 6, which translates into

a right shift of the pointt0. In particular, we calculatet0 = 3.2 as the solution of (51)-(53) in

this case. Similar to the effect of decreasing the deadline observed in the comparison of Figs. 5

and 6, we observe that decreasing the energy level yields asmootherpower policy. Power level

drops toTδb

a
and the temperature hitsTc at a later timet0 and both remain constant afterwards.

In Fig. 8, we consider the same system as in previous figures with two energy arrivals instead

of one and withD = 5. In particular,E0 = 6.08 is available initially andE1 = 14.55 arrives at

time s1 = 1.5. In this case, we calculatet0 = 3.9. The energy causality constraint is tight and the

power level makes a jump at the energy arrival instant. Note that the temperature is continuous

at the energy arrival instant even though its first derivative is not. While the power level has a
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Fig. 6. Power, energy and temperature plots for unlimited energy andD = 3.5 for the single epoch case.

smooth start, a sharper decrease is observed towards the endsince the harvested energy has to

be fully utilized. In particular, the temperature increasebefore the energy arrival is kept to a

minimum level so as to have a higher heat budget for the largerenergy that arrives later. The

temperature hitsTc at t = 3.95 after which the power and temperature both remain constant.

Finally in Fig. 9, we illustrate a curious behavior in the optimal policy. For this example, we set

a = 0.1, b = 1.1, Te = 37 andTc = 37.92. Initial energy isE0 = 25 and energy arrives att = 2

with amountE1 = 17 and the deadline isD = 3.5. We observe that energy causality constraint

is tight att = 2 whereas it is not tight att = D meaning that some energy is wasted in order not

to cause excessive heat. The temperature generated in this throughput optimal power policy first

monotonically increases, hitsTc at t = 1.31, remains there tillt = 1.66 and drops belowTc. We

interpret the drop in the temperature in the first epoch as an effort to create temperature margin

for the high energy arrival in the next epoch. We calculatet0 = 2.23 as the time after which
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Fig. 7. Power, energy and temperature plots for limited energy E = 17.71 andD = 2 for the single epoch case.

power level remains atTδb

a
= 10.12 and the temperature remains atTc. Note that under unlimited

energy, temperature would hitTc at t = 0.878. Due to the energy scarcity in the first epoch,

temperature hitsTc later and drops belowTc. A common behavior we observe in each numerical

example is that temperature ultimately increases between two epochs where energy causality

constraint is tight. Further research is needed to quantifythe relations between the amount of

temperature generated while performing optimally in termsof throughput. While monotonicity

of the temperature is lost when multiple energy harvests exist, we note that monotonicity of the

temperature is guaranteed in the last epoch due to Lemma 17.

VIII. C ONCLUSIONS

We considered throughput maximization for an energy harvesting transmitter over an AWGN

channel under temperature constraints. We used a linear system model for the heat dynamics
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Fig. 8. Power, energy and temperature plots for two energy arrivals, E0 = 6.08 andE1 = 14.55 at t = 1.5 andD = 5.

and determined the throughput optimal power scheduling policy under a maximum temperature

constraint by using a Lagrangian framework and the KKT optimality conditions. We determined

for the single energy arrival case that the optimal power policy is monotone decreasing whereas

the temperature is monotone increasing and both remain constant after the temperature hits the

critical level. We then generalized the solution for the case of multiple energy arrivals. While

monotonicity of the temperature is lost when multiple energy harvests exist, we observed that

the temperature ultimately increases while maximizing thethroughput. We also observed that

the main impact of the temperature constraints is to facilitate faster energy expenditure subject

to energy causality constraints. Additionally, even though using all of the available energy is

optimal for throughput maximization only, with temperature constraints, energy may have to be

wasted in order not to exceed the critical temperature.
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