
ar
X

iv
:1

60
3.

03
13

3v
1 

 [c
s.

IT
]  

10
 M

ar
 2

01
6

1

Energy-Efficient Packet Scheduling with Finite

Blocklength Codes: Convexity Analysis and

Efficient Algorithms
Shengfeng Xu, Tsung-Hui Chang, Shih-Chun Lin, Chao Shen, and Gang Zhu

Abstract

This paper considers an energy-efficient packet schedulingproblem over quasi-static block fading

channels. The goal is to minimize the total energy for transmitting a sequence of data packets under

the first-in-first-out rule and strict delay constraints. Conventionally, such design problem is studied

under the assumption that the packet transmission rate can be characterized by the classical Shannon

capacity formula, which, however, may provide inaccurate energy consumption estimation, especially

when the code blocklength is finite. In this paper, we formulate a new energy-efficient packet scheduling

problem by adopting a recently developed channel capacity formula for finite blocklength codes. The

newly formulated problem is fundamentally more challenging to solve than the traditional one because

the transmission energy function under the new channel capacity formula neither can be expressed in

closed form nor possesses desirable monotonicity and convexity in general. We analyze conditions on the

code blocklength for which the transmission energy function is monotonic and convex. Based on these

properties, we develop efficient offline packet scheduling algorithms as well as a rolling-window based

online algorithm for real-time packet scheduling. Simulation results demonstrate not only the efficacy of

the proposed algorithms but also the fact that the traditional design using the Shannon capacity formula

can considerably underestimate the transmission energy for reliable communications.
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I. INTRODUCTION

One of the most urgent tasks in constructing the future 5G communication network is to

mitigate the energy consumption despite greatly increaseddemands for data transmission rate

[2]. This calls for advanced packet scheduling designs thatnot only account for the quality of

services (e.g., delay constraints and packet error probabilities) but also minimize the transmission

energy expenditure for green communications. Energy-efficient packet scheduling problems have

been extensively studied in the literature; see, e.g., [3–7]. In particular, work [3] has studied the

energy-efficient packet scheduling problem in additive white Gaussian noise (AWGN) channels

by assuming that all packets have a common deadline. Work [4]extends [3] to the setting where

the packets have individual delay constraints and follow the first-in-first-out (FIFO) rule. While

[3, 4] have focused on optimizing the optimal packet blocklength, works [5–7] aimed at finding

the optimal packet transmission rates for minimizing the total transmission energy. Notably,

works [5–7] have considered quasi-static block fading channels instead of AWGN channels.

An assumption that is commonly made in the aforementioned works [3–7] is that the transmis-

sion power and rate obey the classical Shannon capacity formula, which, however, is valid only

when the channel code has an extremely long length [8]. Unfortunately, the future 5G system

is expected to support a wide range of services for emerging applications, such as metering

and traffic safety [9], where the packet blocklength is shortand sometimes under stringent

delay and reliability constraints [10]. This implies that the long code required by the Shannon

capacity formula may become prohibitive, and thus previousdesigns in [3–7] do not fit these

5G applications. Therefore, it is paramount to investigateenergy-efficient packet scheduling

problems for finite blocklength codes. In fact, recent studies in information theory [8] have also

revealed the fact that the Shannon capacity may yield inaccurate engineering insights into the

system design once the code blocklength is constrained. In view of this, a new channel capacity

formula for the finite blocklength codes has been developed in [8], which predicts the rate

performance of short packet transmission more accurately than the Shannon capacity formula

[11]. Note that this new capacity formula has recently been considered in [12–18] for network

performance analysis, though the results therein cannot beused for packet scheduling designs.

In this paper, we study the energy-efficient packet scheduling problem using the new capacity

formula for the finite blocklength codes in [8]. Specifically, we consider a scenario where a
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scheduler wants to transmit a sequence of packets using a minimal transmission energy subject

to FIFO and strict delay constraints over quasi-static block fading channels. In [3–7], the packet

scheduling algorithms are developed under the assumption that the transmission energy is a

monotonic and convexfunction of the blocklength (or rates in [5–7]). Such desirable properties

naturally hold true when the traditional Shannon capacity formula is adopted. However, when

the new capacity formula for the finite blocklength codes is considered, the packet scheduling

problem isfundamentallymore challenging. First, the monotonicity and convexity ofthe trans-

mission energy function mayno longerhold in the finite blocklength regime. Second, due to the

complex structure of the new channel capacity formula, the transmission energy function does

not even have an explicit expression. This implies that the packet scheduling problem cannot be

directly solved by off-the-self solvers even if it is a convex optimization problem. To the best of

our knowledge, the current paper is the first to investigate the energy-efficient packet scheduling

problem for finite blocklength codes. The main contributions of this paper are summarized as

follows.

• We formulate the energy-efficient packet scheduling problem for finite blocklength codes

over quasi-static block fading channels. Specifically, we consider the finite-blocklength

channel capacity formula in [8] and propose to jointly optimize the packet transmission

power and code blocklength to minimize the total transmission energy subject to strict

delay constraints. By applying the implicit function theorem [19], we analytically show that

the energy function under the finite blocklength codes can still preserve the monotonicity

and convexity under mild conditions on the code blocklength.

• Two offline packet scheduling algorithms are proposed to solve the considered packet

scheduling problem. When the packet scheduling problem is a(strictly) convex problem,

we show that the multi-level water filling (MLWF) algorithm in [7] can be modified to

solve the considered packet scheduling problem. In particular, the analyzed monotonicity

and convexity of the energy function can be utilized to implement the MLWF algorithm

without the need of knowing explicit expression of the energy function. For the general case

where the objective function may not be convex, we modify thesuccessive upper-bound

minimization (SUM) method in [20] to handle the considered packet scheduling problem

in the absence of explicit expression of the energy function. Inspired by the proposed
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Fig. 1. Delay constrained packet transmissions using finiteblocklength codes withmk symbols for packetk

offline scheduling algorithms, we further develop an onlinealgorithm for real-time packet

scheduling.

• Numerical simulations are conducted to demonstrate the importance of the newly formulated

packet scheduling problem and the performance advantage ofthe proposed algorithms. Sim-

ulation results show that the transmission energy requiredby the finite-blocklength packet

scheduling problem is higher than that using the traditional Shannon capacity formula,

which illustrates the fact that the latter may considerately underestimate the required trans-

mission energy for reliable communications. Specifically,based on our numerical results,

the traditional design underestimates about 10% transmission energy for achieving5×10−4

packet error probability.

Synopsis: Section II describes the system model and the finite blocklength packet scheduling

problem. In Section III, the monotonicity and convexity properties of the transmission energy

function are analyzed. Two offline and one online packet scheduling algorithms are proposed in

Section IV. Simulation results and conclusions are given inSections V and VI, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model and Finite Blocklength Codes

We consider a packet scheduling problem where a transmitterschedules the transmission of a

sequence ofK data packets. We assume long or medium range communications, where the energy

consumption is mainly contributed by data transmission andthe circuit power consumption is

negligible [21]. The purpose is to minimize the expenditureof total transmission energy while

satisfying the transmission deadline constraints imposedon the packets. We assume that each

packetk, which containsNk data bits, arrives at timeGk and has to be completely delivered

before timeDk (see Fig. 1). It is assumed that the scheduler obeys the FIFO rule [3, 4], i.e.,
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Gk < Gk+1 andDk < Dk+1 for all k. Without loss of generality, we setG1 = 0 andGK+1 = DK ,

and assumeGk+1 < Dk for k = 1, . . . , K − 1 [4]. The latter assumption implies that theseK

packets belong to a “scheduling interval”, otherwise the scheduling problem can be decomposed

into multiple independent scheduling problems. For example, if it happens thatGk+1 ≥ Dk for

somek ∈ {1, . . . , K−1}, then the task of schedulingK packets boils down to two independent

problems, one for scheduling packet1 to packetk and the other for scheduling the remaining

packets.

To deliver the packets, the scheduler encodes theNk data bits of each packetk into a codeword

block (data payload of a packet) with a length ofmk symbols, and transmits the codeword with

a powerpk > 0. Note that rather than transmitting independent modulatedsymbols, each symbol

in the codeword may depend on allNk data bits and correlate with other symbols in the same

block. We assume that some capacity-approaching coding strategy is used (e.g. low-density

parity-check (LDPC) codes in [22]). In the existing packet scheduling designs such as those in

[3–7], it is assumed that the transmitted codeword can be successfully decoded by the receiver

if Nk, mk andpk satisfy the Shannon channel capacity formula, i.e.,

Nk

mk

= log2(1 + pkhk), (1)

wherehk , |h̃k|2 and h̃k ∈ C is a complex channel coefficient during transmitting packetk. In

(1), the noise power is assumed to be one. It is important to note that, according to the Shannon’s

channel coding theorem [23], (1) is valid only when the blocklengthmk approaches infinity

[8, 12]. Obviously, under the deadline constraint, block length mk must be finite and satisfies

0 ≤ mk ≤ Dk − Gk. This implies that for delay-constrained applications, the existing designs

[3–7] that use (1) may fail to predict the true system performance.

Targeting at solving the aforementioned inaccuracy issue,the work [8] has generalized the

Shannon capacity to the finite blocklength regime. It shows that, given a packet error probability

ǫk ∈ (0, 1), a transmission powerpk and a block lengthmk, the achievable data rate is given by

Nk

mk

= log2(1 + pkhk)−
√

1

mk

(

1− 1

(pkhk + 1)2

)

Q−1(ǫk)

ln 2
+
O(logmk)

mk

,

≈ log2(1 + pkhk)−
√

1

mk

(

1− 1

(pkhk + 1)2

)

Q−1(ǫk)

ln 2
, (2)
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whereQ(x) =
∫∞
x

1√
2π

exp(−t2/2)dt is the GaussianQ-function andQ−1 denotes the inverse

function of Q. The approximation in (2) is made by assuming thatmk is no smaller than a

thresholdm̂ > 0 so that the termO(logmk)
mk

becomes negligible. Notably, according to [8], (2) is

valid even when the threshold̂m is as small as100. This is strongly contrast to the traditional

Shannon capacity in (1) which is approximately true only ifm̂ ≥ 105 [22]. Therefore, (2) is

particularly suitable for the packet scheduling problems with finite-blocklength codes. However,

this new formula, which is adopted in our work, is much more complicated than the Shannon

capacity formula, as explained shortly.

It is worthwhile to notice that the new formula (2) reduces to(1) if one setsǫk = 0.5 in

(2), i.e.,Q−1(0.5) = 0. In other words, any scheduling solutionsmk andpk obtained based on

(1) correspond to a packet error probability of0.5 in (2). Therefore, the conventional designs

in [3–7] using (1) actually cannot guarantee reliable performance for finite-blocklength packet

transmission. In the next subsection, we use (2) to formulate an energy-efficient packet scheduling

problem.

B. Packet Scheduling Problem with Finite Blocklength Codes

In this subsection, we formulate an offline packet scheduling problem by assuming that the

packet arrival times{Gk}, deadlines{Dk} and channel coefficients{hk} are known a priori. The

importance of studying the offline scheduling problem is twofold. First, offline solutions serve

as performance lower bounds for an online algorithm. Second, offline solutions usually provide

useful insights into the development of efficient online algorithms. To formulate the problem,

let us make the following assumption.

Assumption 1 (No-idling assumption) The scheduler starts to transmit each packetk right after

the transmission of packet(k − 1) is complete, fork = 2, . . . , K.

The no-idling assumption is intuitively justified as there is no benefit to delay the transmissions of

packets, especially when the packets are subject to deadline constraints. Mathematically, the no-

idling assumption is automatically satisfied if the transmission energy is a decreasing function of

the blocklengthmk and the scheduler targets at minimizing the transmission energy. As we will

show shortly, this property is indeed true under some mild conditions on the packet blocklength

mk. Note that, under the no-idling assumption, the accumulated blocklength
∑k

i=1mi represents
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the end time of the transmission of packetk as well as the start time of the transmission of

packet(k + 1).

We define the transmission energy of packetk asEk(mk, pk) , mkpk. Under the FIFO rule

and the no-idling assumption, we formulate the energy-efficient packet scheduling problem as

follows

min
pk≥0,mk≥0,
k=1,...,K

K
∑

k=1

Ek(mk, pk) (3a)

s.t. Fk(mk, pk) = 0, ∀ k = 1, . . . , K, (3b)

mk ≥ m̂, ∀ k = 1, . . . , K, (3c)

∑k

i=1mi ≥ Gk+1, ∀ k = 1, . . . , K, (3d)

∑k

i=1mi ≤ Dk, ∀ k = 1, . . . , K, (3e)

pk ≤ Pmax, ∀ k = 1, . . . , K, (3f)

where

Fk(mk, pk) ,

√

1
mk

(

1− 1
(pkhk+1)2

)

Q−1(ǫk)
ln 2

− log2(1 + pkhk) +
Nk

mk
(4)

is a continuously differentiable function.

Problem (3) aims to optimize the transmission powerpk and blocklengthmk, in order to

minimize the total transmission energy subject to the finiteblocklength channel capacity formula

(3b) and some scheduling constraints (3c)-(3f). Among the scheduling constraints, (3c) is the

minimum blocklength constraint for (3b) holding true. The constraints (3d) and (3e) are known

as thecausality constraintand deadline constraint, respectively [3, 4]. Specifically, for each

packetk, (3d) indicates that the packet cannot be transmitted before its arrival time, while (3e)

suggests that the transmission should be completely finished before its deadline. Notice that (3d)

and (3e) ensure1 mk ≤ Dk − Gk for all k. Equation (3f) indicates the maximum transmission

power constraint.

Notably, by applying the implicit function theorem [19] toFk(mk, pk) = 0 in (3b), there

exists a continuously differentiable function, denoted byPk, such thatPk(mk) = pk. Therefore,

1For eachk, we haveGk +mk ≤
∑k−1

i=1
mi +mk =

∑k

i=1
mi ≤ Dk. Thus,mk ≤ Dk −Gk.

March 11, 2016 DRAFT
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problem (3) can be equivalently written as

min
mk≥0,

k=1,...,K

K
∑

k=1

Ek(mk, Pk(mk)) (5a)

s.t. mk ≥ m̂, ∀ k = 1, . . . , K, (5b)

∑k

i=1mi ≥ Gk+1, ∀ k = 1, . . . , K, (5c)

∑k

i=1mi ≤ Dk, ∀ k = 1, . . . , K, (5d)

Pk(mk) ≤ Pmax, ∀ k = 1, . . . , K. (5e)

We can see thatEk(mk, Pk(mk)) is a function ofmk only, thus in the sequel we useEk(mk)

instead for brevity.

Let us examine problem (5) by considering the traditional Shannon capacity formula in (1).

In that case, the corresponding power function has the following closed-form expression

Pk(mk) =
1

hk

(

2
Nk
mk − 1

)

, (6)

and the energy function is given by

Ek(mk) = mkPk(mk) =

mk

(

2
Nk
mk − 1

)

hk

. (7)

It can be shown thatPk(mk) in (6) is a monotonically decreasing function ofmk, and thus (5e) is

equivalent to an explicit lower-bound constraintmk ≥ Nk

log2(1+Pmaxhk)
. In addition, one can verify

thatEk(mk) in (7) is a monotonically decreasing and convex function ofmk. Therefore, under

the Shannon capacity formula, Assumption 1 is automatically satisfied. Moreover, problem (5)

is a convex optimization problem, which is efficiently solvable by off-the-shelf convex solvers

(e.g.,CVX [24]).

Unfortunately, such monotonicity and convexity are no longer guaranteed when the finite-

blocklength capacity formula (2) is considered. In fact, one even cannot obtain an explicit

expression for the functionsPk(mk) andEk(mk) under (2). This implies that problem (5) for

the finite-blocklength case imposes a much greater challenge than the existing works in [4].

To solve the problem, in the next section, we propose to characterize analytic conditions under

which Ek(mk) preserves desirable monotonicity and convexity. Later in Section IV, we further

present two efficient optimization algorithms for handlingproblem (5).

DRAFT March 11, 2016
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III. M ONOTONICITY AND CONVEXITY OF Ek(mk)

As one of the key results, the following proposition states the conditions for whichPk(mk)

andEk(mk) are monotonically decreasing.

Proposition 1 Let τk ,
Q−1(ǫk)√

m̂
for packet error probabilityǫk ∈ (0, 0.5). It holds true that

(a) The power functionPk(mk) under (2) is decreasing formk ≥ m̂;

(b) The energy functionEk(mk) under (2) is decreasing for

m̂ ≤ mk ≤ gEk
, X−1

k

(

− 1

W
(

− exp(−1− τk
2
)
) − 1

)

, (8)

whereXk(mk) is a function satisfying

√

1

mk

(

1− 1

(X (mk) + 1)2

)

Q−1(ǫk)

ln 2
− log2(1 + X (mk)) +

Nk

mk

= 0, (9)

andW(z) is the Lambert W function satisfyingW(z) exp(W(z)) = z [25].

Proof: Proposition 1 is proved by bounding the gradients ofPk(mk) andEk(mk) which are

obtained by applying the implicit function theorem [19] to (3b). The details are relegated to

Appendix A. �

Proposition 1 has two significant aspects. First, accordingto the monotonic property of

Pk(mk) in Proposition 1(a), one can reformulate the implicit constraint (5e) as an explicit

one. Specifically, by Proposition 1(a), (5e) is equivalent to boundingmk from the bottom, i.e.,

mk ≥ m̃k, wherem̃k = P−1
k (Pmax). From (3b), one can show thatP−1

k has a closed form as

P−1
k (y) =

[

1

2 log2(1 + yhk)

(

√

1− 1

(yhk + 1)2
Q−1(ǫk)

ln 2

+

√

(

1− 1

(yhk + 1)2

)(

Q−1(ǫk)

ln 2

)2

− 4Nk log2(1 + yhk)

)]2

. (10)

Second, since from Proposition 1(b)Ek(mk) is decreasing withmk for mk ≤ gEk
, Assumption

1 is well justified if mk is restricted within that region. Based on the discussions above, we
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rewrite problem (5) as follows

min
mk≥0,

k=1,...,K

K
∑

k=1

Ek(mk) (11a)

s.t.
k
∑

i=1

mi ≥ Gk+1, ∀k = 1, . . . , K, (11b)

k
∑

i=1

mi ≤ Dk, ∀k = 1, . . . , K, (11c)

mk ≥ max{m̂, m̃k}, ∀k = 1, . . . , K, (11d)

mk ≤ gEk
, ∀k = 1, . . . , K, (11e)

where we have added constraints (11d) and (11e).

We note that the constraints (11b) to (11e) are all linear. Therefore, what remains is to

characterize the convexity ofEk(mk). This is established below.

Theorem 1 Given τk ,
Q−1(ǫk)√

m̂
∈ (0,

√
3
3
), the energy functionEk(mk) under (2) is a strictly

convex function of blocklengthmk for

m̂ ≤ mk ≤ gC,k , X−1
k

(

exp
(

η(τk) +
τk
2

)

− 1
)

, (12)

where

η(τk) ,
3 +

√

9 + 12τk(1−
√
3τk)

4(1−
√
3τk)

. (13)

Proof: See Appendix B. �

Theorem 1 implies that problem (11) is a convex optimizationproblem ifmk ≤ gC,k. It will be

seen in the next section that problem (11) can be globally solved by a low complexity algorithm

as long as it is a (strictly) convex problem. In the general case for which problem (11) may not

be convex, we also present an efficient approximation algorithm. Before ending this section, we

have two remarks regardinggEk
, gC,k andτk.

Remark 1 It is worthwhile to note that the upper boundsgEk
and gC,k characterized by the

functionXk in (9) are independent of the channel gainhk. Moreover, the upper boundsgEk
and

gC,k are arguably large enough, and in general do not have an impact on the solutions to problem

(11). To see this, we numerically draw the curves ofgEk
and gC,k with respect toǫk in Fig.
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Fig. 2. Upper boundsgEk
and gC,k versusǫk andNk; (a) Nk = 1.2 × 10

4, hk = 10, and m̂ = 200; (b) ǫ = 5 × 10
−4,

hk = 10, andm̂ = 200.

2(a) and with respect toNk in Fig. 2(b), respectively. One can see from the two figures that the

gaps between̂m andgEk
andgC,k are fairly large (e.g., forNk = 1.2× 104 and ǫk = 5× 10−4,

we havegEk
= 1.5 × 104 and gC,k = 3 × 103). This implies that, for the scenarios with small

values ofDk−Gk ≤ min {gC,k, gEk
} for all k, the constraint (11e) is automatically satisfied and

problem (11) is a convex optimization problem.

Remark 2 The condition ofτk ∈ (0,
√
3
3
) in Theorem 1 is minor. Specifically, one can readily

show thatτk = Q−1(ǫk)√
m̂
∈ (0,

√
3
3
) is equivalent toǫk ∈ (Q(

√
3m̂
3

), 0.5). Form̂ = 200, the condition

τk ∈ (0,
√
3
3
) can be satisfied wheneverǫk ∈ (1.6×10−16, 0.5), which is true in practical scenarios.

IV. OFFLINE AND ONLINE SCHEDULING ALGORITHMS

In the previous section, we have shown that the transmissionenergy function using finite

blocklength codes in (11a) can still preserve the monotonicity and convexity under mild condi-

tions on the code blocklength. In this section, we first present a feasibility condition of problem

(11). Then, we respectively propose two efficient offline algorithms for solving problem (11) in

Section IV-B and IV-C. Finally, an online algorithm is proposed in Section IV-D.
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A. Feasibility Condition

Due to the deadline constraint, problem (11) may not have a feasible solution. In that case,

the mechanism of admission control may be adopted, which however is beyond the scope of the

current paper. Here we present a sufficient condition for which problem (11) is feasible.

Proposition 2 Suppose that the packet arrival times{Gk} and deadlines{Dk} satisfy

Gk+1 −Gk ≥ max{m̂, m̃k}, ∀k = 1, . . . , K, (14a)

Dk −Gk ≤ gEk
, ∀k = 1, . . . , K. (14b)

Then problem(11) has a feasible solution.

Proof: We show thatm̄k = Gk+1 − Gk, k = 1, . . . , K, is a feasible solution to problem (11)

given (14). First, sinceGk+1 < Dk for all k from the “same scheduling interval” assumption in

Section II-A, (14a) and (14b) respectively imply that{m̄k} satisfies (11d) and (11e). Second,

note that
∑k

i=1 m̄i = Gk+1 < Dk. So,{m̄k} satisfies the constraint (11b) with equality and also

satisfies the constraint (11c). �

By assuming that problem (11) is feasible (e.g., the feasibility condition (14) holds), we next

study efficient algorithms for solving problem (11). We remark that solving (11) is challenging

due to the following two reasons. First, problem (11) is in general not convex without adding the

additional constraintsmk ≤ gC,k, ∀k from Theorem 1. Second, even under conditions for which

problem (11) is convex, standard optimization tools (such as CVX [24]) cannot be employed

to solve problem (11) since the energy functionEk(mk) does not have an explicit, close-form

expression. In the next two subsections, we respectively present two efficient offline algorithms

for overcoming these difficulties.

B. Multi-level Watering-Filling Algorithm for Convex Packet Scheduling

In this subsection, we assume that problem (11) is a (strictly) convex optimization problem.

For example, this can be guaranteed if the constraintmk ≤ gC,k, ∀k is imposed, i.e., (11e) is

replaced withmk ≤ min{gEk
, gC,k}, ∀k. As aforementioned, standard convex solvers cannot

be used for solving problem (11). Fortunately, the multi-level water-filling (MLWF) algorithm

proposed in [7] can be modified to solving problem (11) without the need of explicit expressions

of Ek(mk). Note that in [7] the MLWF algorithm was proposed to solve a rate-controlled packet
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scheduling problem assuming a strictly convex energy function. While [7] has considered a

different system setup, the optimization problem studied therein happens to have a similar form

as problem (11) and thereby the MLWF algorithm can be modifiedto solve problem (11).

To briefly illustrate how to apply the MLWF algorithm for problem (11), let us denote{m∗
k ≥

0, k = 1, . . . , K} as the optimal solution to problem (11), and denote{µ∗
k ≥ 0, k = 1, . . . , K} and

{λ∗
k ≥ 0, k = 1, . . . , K} as the optimal Lagrange multipliers associated with the constraint (11b)

and (11c), respectively. Then,{m∗
k, µ

∗
k, λ

∗
k} satisfy the following Karush-Kuhn-Tucker (KKT)

optimality conditions [26] of problem (11):

m∗
k = min{ℓk,max{φk(ωk), uk}}, ∀k = 1, . . . , K, (15)

µ∗
k

(

k
∑

i=1

m∗
i −Gk+1

)

= 0, ∀k = 1, . . . , K, (16)

λ∗
k

(

k
∑

i=1

m∗
i −Dk

)

= 0, ∀k = 1, . . . , K, (17)

whereℓk , max{0, m̂, m̃k}, uk , min{gEk
, gC,k},

ωk ,

K
∑

i=k

(µ∗
i − λ∗

i ) , (18)

andφk is the the inverse function ofE ′
k (the gradient ofEk). Clearly, once the “water levels”

ωk, k = 1, . . . , K, are obtained, the optimal packet length{m∗
k} can be evaluated through (15).

It is shown in [7] that, by carefully exploiting the structure of problem (11),ωk, k = 1, . . . , K,

can be determined by a low-complexity search algorithm. Dueto the space limit, we refer the

readers to [7, Section III] for the details.

However, we emphasize here that, to implement the MLWF algorithm, one must be able to

evaluate the function value ofφk(ωk) in (15). This task is non-trivial for our problem (11).

When the Shannon capacity formula in (1) is used, it can be shown thatφk(ωk) has a closed

form φk(ωk) =
Nk ln 2

1+W
(

−ωkhk+1

e

) , whereW is the Lambert W function ande is the Euler’s number.

However, when the finite blocklength channel capacity in (2)is used,φk(ωk) no longer has a

close-form expression. Fortunately, based on the monotonicity of Pk(mk) andE ′
k(mk) as proved

in Proposition 1 and Theorem 1, we are able to evaluateφk(ωk) via bisection search. Note that

φk is monotonically increasing asE ′
k is monotonically increasing whenEk is strictly convex.

Specifically, we present the bisection algorithm for evaluating φk(ωk) in Algorithm 1. In Step
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4, we can evaluateE ′
k(m̄k) for a givenm̄k by the following formula

E ′
k(mk) = Pk(mk) +mkP

′
k(mk)

= Pk(mk)−mk

(

∂Fk(mk, pk)

∂mk

∣

∣

∣

∣

pk=Pk(mk)

)

(

∂Fk(mk, pk)

∂pk

∣

∣

∣

∣

pk=Pk(mk)

)−1

, (19)

where the second equality is obtained by applying the implicit function theorem [19] toFk(mk, pk)

= 0 (see (3b)). Explicit expressions of∂Fk(mk ,pk)
∂mk

and ∂Fk(mk ,pk)
∂pk

are given in (25a) and (26a) in

Appendix A, respectively. As seen, it remains to calculatePk(mk). This again can be achieved

by bisection search based on the monotonicity ofPk(mk), as we show in Algorithm 2.

Algorithm 1 Bisection algorithm for evaluatingφk(ωk)

1: Given initial values ofmu = Dk −Gk andmℓ = 0, and the accuracyε1.

2: while mu −mℓ > ε1 do

3: m̄k ← 1
2
(mu +mℓ)

4: CalculateE ′
k(m̄k) by (19), wherePk(mk) can be obtained by Algorithm 2

5: if E ′
k(m̄k) > ωk then

6: mu ← m̄k

7: else

8: mℓ ← m̄k

9: end if

10: end while

11: return φk(ωk)← m̄k

The computational complexity of the MLWF algorithm is givenas follows. By [7], given a total

number ofK packets, the MLWF algorithm requiresO(K) rounds of search to attain the global

optimal solution. In each round of the MLWF algorithm, one needs to evaluate the function values

of φk(ωk), k = 1, . . . , K, by Algorithm 1, and in each iteration of Algorithm 1 one has to run Al-

gorithm 2 for obtainingPk(mk). Algorithm 1 is a bisection search method which is known to have

a complexity orderlog2(
Dk−Gk

ε1
); similarly, the complexity order of Algorithm 2 islog2(

Pmax

ε2
).

Thus, the MLWF algorithm has a total complexity ofO(K2 log2(
maxk(Dk−Gk)

ε1
) log2(

Pmax

ε2
)).
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Algorithm 2 Bisection algorithm for evaluating power functionPk(mk)

1: Given initial values ofPu = Pmax andPℓ = 0, and the accuracyε2.

2: while Pu − Pℓ > ε2 do

3: p̄k ← 1
2
(Pu + Pℓ)

4: Calculatem̄k ← P−1
k (p̄k) by (10).

5: if m̄k < mk then

6: Pu ← p̄k

7: else

8: Pℓ ← p̄k

9: end if

10: end while

11: return Pk(mk)← p̄k

C. Non-Convex Packet Scheduling Based on Successive Upper-bound Minimization

In the absence of constraintsmk ≤ gC,k, k = 1, . . . , K, problem (11) in general is not

a convex problem. In that case, we propose to solve problem (11) by the successive upper-

bound minimization (SUM) method [20]. Specifically, the SUMmethod for solving problem

(11) involves solving a sequence of the following subproblems: for iterationsr = 0, 1, 2, . . . ,

{mr+1
k }Kk=1 = arg min

mk≥0,
k=1,...,K

K
∑

k=1

Uk(mk;m
r
k) (20a)

s.t. constraints (11b)− (11e), (20b)

where

Uk(mk;m
r
k) , Ek(m

r
k) + E ′

k(m
r
k)(mk −mr

k) +
γ

2
|mk −mr

k|2 (21)

is a proximal first-order approximation ofEk(mk) aroundmr
k andγ > 0 is a penalty parameter;

see Algorithm 3.

The SUM method has several advantages. Firstly, the quadratic objective functionUk(mk;m
r
k)

can be explicitly computed sinceEk(m
r
k) = mr

kPk(m
r
k) andE ′

k(m
r
k) can be respectively evaluated

by Algorithm 2 and (19). This method therefore avoids handling problem (11) directly where

Ek(mk) has no closed-form expression. Secondly, the objective function Uk(mk;m
r
k) is strictly
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convex with respect tomk, and therefore the standard convex solvers or even the MLWF

algorithm in the previous subsection can be used to solve problem (20) efficiently. Finally,

in contrast to the MLWF algorithm which relies on the specificproblem structure of (11), the

SUM method is more flexible in the sense that it can be extendedto handle more complex

scheduling constraints.

According to [20], whenE ′
k(mk) is Lipschitz continuous and for a large enoughγ, Algorithm

3 is guaranteed to converge to the set of stationary points ofproblem (11). Moreover, if problem

(11) is convex, Algorithm 3 converges to the global optimal solution set. According to [27],

the iteration number of Algorithm 3 isO(1
ε
), whereε is the desired solution accuracy. When

the MLWF algorithm is used to solve the subproblem (20) (which requires a complexity of

O(K2 log2(
Pmax

ε2
))), Algorithm 3 has a complexity ofO(K2

ε
log2(

Pmax

ε2
)).

Algorithm 3 SUM method for solving problem (11)

1: Set r = 0. Given a set of feasible{m0
k}Kk=1 and desired accuracyε.

2: repeat

3: CalculateUk(mk;m
r
k) in (21) by Algorithm 2 and (19).

4: Solve (20) by standard convex solvers or the MLWF algorithm,and obtain{mr+1
k }Kk=1.

5: Setr ← r + 1.

6: until
∑K

k=1 |mr
k −mr−1

k |2 < ε.

D. Rolling-Window Based Online Scheduling Algorithm

In the previous two subsections, offline scheduling algorithms are developed by assuming that

the scheduler has full knowledge of the arrival times and deadlines of all the packets. However,

in practical situations, only the information of arrived packets are known and an online algorithm

that can perform real-time scheduling is desired. In this subsection, we present a rolling-window

based online scheduling algorithm for such a purpose.

The idea of the proposed online algorithm is to always schedule the most urgent packet at the

current time for transmission, while taking into account the scheduling constraints of the packets

that have arrived at and before the current time. To illustrate this online strategy, let us consider

the example in Fig. 3. As shown in Fig. 3(a), suppose that, at current timet, the packetk, packet
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k + 1 and packetk + 2 have arrived but not been scheduled yet. Then, the schedulerconsiders

a scheduling window from the current time toDk+2. Note that, given the arrived packets, this

is the longest scheduling window one can choose at current time. An obvious advantage of this

strategy is that the deadline information of all arrived packets can be taken into account in the

optimization which avoids myopic scheduling solutions.

Specifically, the scheduler sets the arrival times of the three packets to zero, and sets their

deadlines toDk − t, Dk+1 − t and Dk+2 − t, respectively. Then, the scheduler applies the

offline scheduling algorithm (e.g., the proposed algorithms in Section IV-B and IV-C) to the

scheduling window2 and obtains the optimal packet lengthsm∗
k, m

∗
k+1 andm∗

k+2, respectively.

The scheduler, however, discardsm∗
k+1 andm∗

k+2 and appliesm∗
k to the transmission of packet

k only. At time t +m∗
k, when the transmission of packetk finishes, the scheduler then repeats

the optimization by moving the window forward which contains all the arrived and unscheduled

packets (e.g., packetsk+1, k+2 andk+3 shown in Fig. 3(b)). Note that the complexity of the

online algorithm depends on the offline algorithm used and the number of packets appearing in

each scheduling window. We will show in the next section thatthe proposed online scheduling

algorithm outperforms some myopic strategies.

Dk Dk+1Gk+1Gk Gk+2 Dk+2

m
¤

k

t

Dk+1Gk+1 Gk+3Gk+2 Dk+2

m
¤

k+1

t + m
¤

k Dk+3

(a)

(b)

Fig. 3. Example for illustrating the proposed online scheduling algorithm.

2Similar to [28], in the online case, the future channel coefficients are assumed known or can be estimated through channel

prediction methods such as Kalman filtering [29].
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V. SIMULATION RESULTS

A. Simulation Setup

In the simulations, we assume that theK packets contain equal size ofNk = 1.2× 104 bits.

The block fading channel follows Rayleigh distribution with a scale parameterσ. The packet

error probabilities for all packets are set the same, i.e.,ǫ , ǫ1 = · · · = ǫK . The maximum

transmission powerPmax is set to26 dBW. Note that in the considered energy-efficient problem,

the maximum powerPmax may not always be used up, i.e.,pk < Pmax. The transmission energy

of each packetk is mkTspk, where the symbol durationTs is set to66.7 µs following the LTE

standard [30].

The packet arrival interval(Gk+1 − Gk) is generated according to a truncated exponential

distribution with meanνm̂ in the time window[ν−1, ν +1]× m̂ [31]. Similarly, the lifetime of

packet(Dk−Gk) follows a truncated exponential distribution with meannm̂ in the time window

[n−1, n+1]×m̂. In general, a smaller value ofν indicates a smaller packet arrival interval while a

smaller value ofn implies a more stringent delay constraint for scheduling. One can check that if

3 < ν ≤ n− 2, then the FIFO rule (i.e.,Dk < Dk+1 ∀k) and the scheduling interval assumption

(i.e., Gk+1 < Dk ∀k) are both satisfied. Moreover, ifn + 1 ≤ ⌊mink=1,...,K {gC,k, gEk
} /m̂⌋,

then mk ≤ min{gC,k, gEk
} ∀k, that is, problem (11) must be a strictly convex problem. All

the simulation results to be presented are obtained by averaging over100 independent channel

realizations and100 independent packet generations per channel realization.

B. Energy Underestimation due to Shannon Capacity Formula

Let us first examine the scheduling performance of problem (11). The MLWF algorithm dis-

cussed in Section IV-B is used to solve problem (11). Fig. 4(a) displays the average transmission

energy versus packet error probabilityǫ, under different values of packet lifetime parametersn.

The controlling parameterν for packet arrival interval is set to six. As discussed in Section II-A,

the traditional design based on the Shannon capacity formula corresponds to problem (11) with

0.5 packet error probability. From curves in Fig. 4(a), we can see that the traditional design

based on the Shannon capacity formula suffers significant energy underestimation. For example,

from the curve withn = 10, the average transmission energy of the considered problem(11)

is 26.17 Joule for ǫ = 5 × 10−4, whereas the transmission energy obtained by the traditional
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Fig. 4. Transmission energy and underestimated energy vs. packet error probability, forν = 6, K = 5, σ = 10 and different

values ofn (packet lifetime).

design (ǫ = 0.5) is 23.93 Joule. Thus, the traditional design underestimates a total2.24-Joule

transmission energy (about 10%) for achieving5 × 10−4 packet error probability. Indeed, from

Fig. 4(a), energy underestimation always exists forǫ < 0.5 and the amount of underestimated

energy increases when the packet error probability decreases. We can also observe from Fig. 4(a)

that a larger value ofn results in less transmission energy consumption. This is because larger

n implies less stringent delay constraint and a longer code blocklength is allowed according to

our simulation setup. By the fact that the energy function isdecreasing with the blocklength

(see Proposition 1), less energy is consumed for larger value of n.

To emphasize the energy underestimation issue due to the Shannon capacity formula, we

further show in Fig. 4(b) the amount of underestimated energy in Fig. 4(a) versus the packet

error probability. One can observe that the energy underestimated by the traditional design

using Shannon capacity formula could be significant, especially when the desired packet error

probability is small and the delay constraint is stringent (small n). Specifically, forn = 8,

n = 10 and n = 12, the amount of underestimated energy can respectively be upto 10.4%,

10.1% and9.8% of the predicted energy from problem (11) using new capacityformula. These

simulation results not only confirm the intuition that energy consumption is increasing with

lower latency and higher communication reliability, but also well demonstrate the necessity of
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Fig. 5. Transmission energy and underestimated energy vs. packet error probability, forn = 10, K = 5, σ = 10 and different

values ofν (packet arrival interval).

the finite-blocklength channel capacity for energy-efficient packet scheduling.

Fig. 5(a) and Fig. 5(b) respectively show the average transmission energy and the corre-

sponding underestimated energy versus packet error probability ǫ, under different values ofν

for controlling the packet arrival interval. It can be seen from Fig. 5(a) that a shorter packet

arrival interval results in more energy consumption. This is because shorter packet arrival intervals

enforces shorter code blocklength, and more energy will be consumed by the decreasing property

of the energy function. Due to the same reason, a smaller value of ν results in more serious

energy underestimation as shown in Fig. 5(b).

C. Performance Comparison of Online and Offline Algorithms

Here we compare the performance of the proposed two offline algorithms and the online

algorithm. As a benchmark, amyopiconline scheme is also considered. In this myopic scheme,

whenever a data packet is ready to transmit, the scheduler always encodes the packet with a

maximum blocklength which is equal to the difference between the current time and the packet

deadline. We setν = 4, n = 10, ǫ = 5×10−4 andK = 10. Under this setting, the energy function

is strictly convex. Therefore, both the MLWF algorithm and SUM method can be employed to

solve this convex problem and obtain the optimal solution. In the SUM method, we used the
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Fig. 6. Energy consumptions for different scheduling algorithms whenν = 4, n = 10, ǫ = 5× 10
−4 andK = 10

MLWF algorithm to handle the subproblem (20). We assume thatthere are three packets arrived

before time 0.

Fig. 6 presents the average transmission energies of different scheduling algorithms under

consideration. As seen from the figure, the two proposed offline scheduling algorithms attain

the same average energy consumption and perform better thanthe other two online algorithms.

This is because the offline algorithms are under the ideal assumptions that global knowledge

of the packet arrivals is completely available. Without global knowledge, one can see that the

proposed online algorithm still performs much better than the myopic algorithm. The reason

is that the proposed online algorithm always chooses a longest possible scheduling window to

fully utilize the deadline information of all arrived packets. Finally, as observed from the figure

without surprise, the average energy consumption decreases when the channel gain increases.

VI. CONCLUSIONS

In this paper, we have investigated the energy-efficient packet scheduling problem by consider-

ing the new finite-blocklength channel capacity formula. While the newly formulated scheduling

problem is inherently more complicated than the traditional designs that use the Shannon capacity

formula, we have analytically shown that the packet transmission energy is a monotonically

March 11, 2016 DRAFT



22

decreasing and convex function of the code blocklength as long as the code blocklength is prop-

erly upper bounded. These appealing properties are therefore automatically valid for scenarios

where the packets are subject to short delay constraints. Tosolve the packet scheduling problem

efficiently, we have also presented the MLWF algorithm and the SUM algorithm for offline packet

scheduling as well as a rolling-window based online algorithm for real-time packet scheduling.

The presented simulation results have shown that, in comparison with the proposed finite-

blocklength packet scheduling design, the traditional design using the Shannon capacity formula

can considerably underestimate the required transmissionenergy for reliable communications.

We have also shown that the proposed online algorithm substantially outperforms the myopic

scheduling schemes.

In the current work, we have assumed long or medium-range wireless communications where

the energy consumption is mainly contributed by the data transmission power and the circuit

power due to signal processing is negligible. However, for other scenarios (such as low-range

wireless communications), the circuit power may have to be taken into account in the packet

scheduling design; see [28, 32]. Generalization of the current work to that with circuit power

consumption would be an interesting direction for future research.

APPENDIX A

PROOF OFPROPOSITION1

For notational simplicity, we remove the subindexk of all variables and letx = ph > 0.

Moreover, we writea ⊜ b if ab > 0 (i.e.,a andb have the same sign). From (3b), we also define

F(m, x) , m ln(x+ 1)−
√
m

√

x(x+ 2)

x+ 1
Q−1(ǫ)−N ln 2 = 0. (22)

Proof of Proposition 1(a): Firstly, note that the left-hand side of (22) is a quadratic equation

of
√
m. Let α = ln(x+ 1), andβ =

√
x(x+2)

x+1
Q−1(ǫ), the positive root of (22) can be given by

√
m =

β +
√

β2 + 4Nα ln 2

2α
(23a)

>
β

α
=

√

x(x+ 2)Q−1(ǫ)

(x+ 1) ln(x+ 1)
, (23b)

where the inequality holds whenQ−1(ǫ) > 0, i.e., ǫ ∈ (0, 0.5). Secondly, according to the

implicit function theorem [19], we have

∂P (m)

∂m
⊜

∂x

∂m
= −

∂F
∂m
∂F
∂x

. (24)
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Based on (22), it can be readily shown that

F ′
m ,

∂F
∂m

= ln(x+ 1)− Q−1(ǫ)

2
√
m

√

x(x+ 2)

x+ 1
(25a)

=
1

2

(

ln(x+ 1) +
N ln 2

m

)

> 0, (25b)

and

F ′
x ,

∂F
∂x

=
m

x+ 1
− Q−1(ǫ)

√
m

(x+ 1)2
√

x(x+ 2)
(26a)

=

√
m

x+ 1

(

√
m− Q−1(ǫ)

(x+ 1)
√

x(x+ 2)

)

(26b)

>

√
m

x+ 1

(

√

x(x+ 2)Q−1(ǫ)

(x+ 1) ln(x+ 1)
− Q−1(ǫ)

(x+ 1)
√

x(x+ 2)

)

(26c)

=

√
mQ−1(ǫ)

√

x(x+ 2)(x+ 1)2 ln(x+ 1)

(

x(x+ 2)− ln(x+ 1)
)

> 0, (26d)

where the inequality (26c) holds due to (23b) and one can easily checkx(x+2)− ln(x+1) > 0

for x > 0.

Thus, we can conclude that for any givenx > 0, ǫ ∈ (0, 0.5) and m ≥ m̂, we always

have ∂x
∂m

< 0 from (24), (25b) and (26d). That is equivalently to say, if (3b) holds true with

ǫ ∈ (0, 0.5), thenP (m) is always decreasing withm, which completes this proof. �

Proof of Proposition 1(b): To prove the monotonicity of the energy functionE(m), we have
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the derivative ofE(m) as

∂E(m)

∂m
=

∂mP (m)

∂m
(27a)

⊜
∂mx

∂m
= x+m

∂x

∂m
= x−m

F ′
m

F ′
x

(27b)

⊜ xF ′
x −mF ′

m (27c)

=
x
√
m

x+ 1

(

√
m− Q−1(ǫ)

(x+ 1)
√

x(x+ 2)

)

−m

(

ln(x+ 1)− Q−1(ǫ)

2
√
m

√

x(x+ 2)

x+ 1

)

(27d)

=

(

x

x+ 1
− ln(x+ 1)

)

m+

√

x(x+ 2)

x+ 1

(

1

2
− 1

(x+ 1)(x+ 2)

)

Q−1(ǫ)
√
m (27e)

⊜

(

x

x+ 1
− ln(x+ 1)

)

+

√

x(x+ 2)

x+ 1

(

1

2
− 1

(x+ 1)(x+ 2)

)

Q−1(ǫ)√
m

(27f)

<

(

x

x+ 1
− ln(x+ 1)

)

+

√

x(x+ 2)

x+ 1

(

1

2
− 1

(x+ 1)(x+ 2)

)

Q−1(ǫ)√
m̂

(27g)

<

(

x

x+ 1
− ln(x+ 1)

)

+

(

1

2
− 1

(x+ 1)(x+ 2)

)

Q−1(ǫ)√
m̂

(27h)

<

(

x

x+ 1
− ln(x+ 1)

)

+
1

2

Q−1(ǫ)√
m̂

(27i)

where (27c) and (27f) hold due toF ′
x > 0 (see (26d)) andm > 0, respectively. (27g) holds

because ofm > m̂. In addition, (27h) and (27i) hold since
√

x(x+2)

x+1
=

√
(x+1)2−1

x+1
< 1 and

1
2
> 1

2
− 1

(x+1)(x+2)
> 0 for x > 0, respectively.

From (27i), to make∂E(m)
∂m

< 0, it is sufficient to have
(

x

x+ 1
− ln(x+ 1)

)

+
τ

2
< 0, (28)

whereτ ,
Q−1(ǫ)√

m̂
. To find the range ofx satisfying (28), the following function is defined from

the left-hand side of (28) as

g(x) ,
x

x+ 1
− ln(x+ 1) = 1− 1

x+ 1
− ln(x+ 1), (29)

with x ≥ 0, g(0) = 0, andg(∞) = −∞. From (29), we have the first-order derivative ofg(x)

g′(x) =
1

(x+ 1)2
− 1

(x+ 1)
= − x

(x+ 1)2
< 0. (30)

Thus, we can obtain thatg(x) is decreasing withx for x ≥ 0 and there exists only onex∗

satisfyingg(x∗) = − τ
2
, which implies thatg(x) + τ

2
< 0 for x > x∗. Mathematically, one can
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obtainx∗ by the following steps

1− 1

x∗ + 1
− ln(x∗ + 1) = −τ

2
(31a)

⇐⇒ exp

(

− 1

x∗ + 1
+ ln

(

1

x∗ + 1

))

= exp
(

−1 − τ

2

)

(31b)

⇐⇒
(

− 1

x∗ + 1

)

exp

(

− 1

x∗ + 1

)

= − exp
(

−1 − τ

2

)

(31c)

⇐⇒− 1

x∗ + 1
=W

(

− exp
(

−1− τ

2

))

(31d)

⇐⇒ x∗ = − 1

W
(

− exp(−1− τ
2
)
) − 1, (31e)

whereW(z) is the solution toW(z) exp(W(z)) = z, i.e., the Lambert W function, and the

symbol⇐⇒ means “if and only if”.

We therefore conclude that ifx = ph > − 1

W(− exp(−1− τ
2
))
−1, then∂E(m)

∂m
< 0 holds. Moreover,

sinceP (m) is decreasing withm, the functionX (m) = P (m)h in (9) is also decreasing with

m. Thus, we have ifm̂ ≤ m ≤ X−1

(

− 1

W(− exp(−1− τ
2
))
− 1

)

, the energy functionE(m) is

decreasing withm. �

APPENDIX B

PROOF OFTHEOREM 1

To prove the convexity of energy functionE(m), we have the second derivative ofE(m) as

∂2E(m)

∂m2
⊜

∂2mx

∂m2
=

∂(∂mx
∂m

)

∂m
=

∂(x +m ∂x
∂m

)

∂m
= 2

∂x

∂m
+m

∂2x

∂m2
. (32)

Now we apply the implicit function theorem. From (24), (25a)and (26a), we have

∂x

∂m
= −F

′
m

F ′
x

, (33)

and

∂2x

∂m2
= − ∂

∂m

(F ′
m

F ′
x

)

= −F
′′
mF ′

x − F ′′
x

∂x
∂m
F ′

m

(F ′
x)

2
= − 1

F ′
x

(

F ′′
m + F ′′

x

(F ′
m

F ′
x

)2
)

. (34)
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Plugging (33) and (34) into (32), we have

∂2mx

∂2m
= −2F

′
m

F ′
x

− m

F ′
x

(

F ′′
m + F ′′

x

(F ′
m

F ′
x

)2
)

(35a)

=
1

F ′
x

(

−2F ′
m −mF ′′

m −mF ′′
x

(F ′
m

F ′
x

)2
)

(35b)

⊜ −2F ′
m −mF ′′

m −mF ′′
x

(F ′
m

F ′
x

)2

(35c)

where (35c) holds due toF ′
x > 0 in (26).

Next, we respectively analyze the lower bound of the terms in(35c). First, from (25b), we

obtain the lower bound of the first two terms in (35c)

−2F ′
m −mF ′′

m = − ln(1 + x)− N ln 2

m
−m

(

−N ln 2

2m2

)

(36a)

= − ln(1 + x)− N ln 2

2m
(36b)

= − ln(1 + x)−
ln(x+ 1)m−

√
x(x+2)

x+1
Q−1(ǫ)

√
m

2m
(36c)

= −3
2
ln(1 + x) +

√

x(x+ 2)

2
√
m(x+ 1)

Q−1(ǫ) (36d)

> −3
2
ln(1 + x), (36e)

where (36c) holds due to the equality (22), and (36e) holds due to x > 0. From (36b), we can

see that−2F ′
m−mF ′′

m < 0. Thus, to make∂
2mx
∂2m

> 0 in (35c), we must have−mF ′′
x

(

F ′

m

F ′

x

)2

> 0.

To have−mF ′′
x

(

F ′

m

F ′

x

)2

> 0, let us analyze the bounds onF ′
m, F ′

x, andF ′′
x , respectively. First,

from (25a), we have

F ′
m = ln(1 + x)−

√

x(x+ 2)

2
√
m(x+ 1)

Q−1(ǫ) (37a)

> ln(1 + x)− Q−1(ǫ)

2
√
m

(37b)

where (37b) holds since
√

x(x+2)

x+1
=

√
(x+1)2−1

x+1
< 1 for x > 0. Second, from (26a), we have

F ′
x =

m

x+ 1
− Q−1(ǫ)

√
m

(x+ 1)2
√

x(x+ 2)
(38a)

<
m

x+ 1
(38b)
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Third, based on (38a), we find

F ′′
x = − m

(x+ 1)2
+

Q−1(ǫ)
√
m

(x+ 1)4x(x+ 2)

(

2(x+ 1)
√

x(x+ 2) + (x+ 1)2
2(x+ 1)

2
√

x(x+ 2)

)

(39a)

= − m

(x+ 1)2
+

Q−1(ǫ)
√
m

(x+ 1)3x(x+ 2)

(

2x(x+ 2) + (x+ 1)2
√

x(x+ 2)

)

(39b)

=

√
m

(x+ 1)2

(

−
√
m+

Q−1(ǫ)
√

x(x+ 2)

3(x+ 1)2 − 2

(x+ 1)((x+ 1)2 − 1)

)

(39c)

Whenx ≥ 1, we have

3(x+ 1)2 − 2

(x+ 1)((x+ 1)2 − 1)
<

3(x+ 1)

(x+ 1)2 − 1
≤ 3(x+ 1)

(1 + 1)2 − 1
= x+ 1. (40)

By plugging the inequality (40) into (39c), we have

F ′′
x <

√
m

(x+ 1)2

(

−
√
m+

x+ 1
√

x(x+ 2)
Q−1(ǫ)

)

(41a)

<

√
m

(x+ 1)2

(

−
√
m+

√

x+ 2

x
Q−1(ǫ)

)

< 0 (41b)

for x ≥ 1, where the last inequality is obtained by assuming
√

x+2
x
Q−1(ǫ) <

√
m̂ <

√
m, i.e,

x > 2τ2

1−τ2
with τ = Q−1(ǫ)√

m̂
. Note thatF ′

x in (38b) is positive from (26), and the right-hand side

of (37b) is positive ifx > exp( τ
2
)− 1. Then if x > max

{

2τ2

1−τ2
, exp

(

τ
2

)

− 1, 1
}

, by combining

(37b), (38b) and (41b), we obtain

−mF ′′
x

(F ′
m

F ′
x

)2

>−m

√
m

(x+ 1)2

(

−
√
m+

√

x+ 2

x
Q−1(ǫ)

)

(

x+ 1

m

(

ln(1 + x)− Q−1(ǫ)

2
√
m

))2

(42a)

=

(

1−
√

x+ 2

x

Q−1(ǫ)√
m

)

(

ln(1 + x)− Q−1(ǫ)

2
√
m

)2

(42b)

≥
(

1−
√
3
Q−1(ǫ)√

m

)(

ln(1 + x)− Q−1(ǫ)

2
√
m

)2

(42c)

>

(

1−
√
3
Q−1(ǫ)√

m̂

)(

ln(1 + x)− Q−1(ǫ)

2
√
m̂

)2

(42d)

=
(

1−
√
3τ
)(

ln(1 + x)− τ

2

)2

(42e)

where (42c) and (42d) hold due tox+2
x
≤ 3 for x ≥ 1 andm > m̂, respectively. Note that (42e)

is positive if 1−
√
3τ > 0.
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Finally, by plugging (36e) and (42e) into (35c), we have

∂2E(m)

∂2m
⊜ −2F ′

m −mF ′′
m −mF ′′

x

(F ′
m

F ′
x

)2

(43a)

> −3
2
ln(1 + x) +

(

1−
√
3τ
)(

ln(1 + x)− τ

2

)2

(43b)

= −3
2

(τ

2
+ y
)

+
(

1−
√
3τ
)

y2 (43c)

wherey , ln(1 + x)− τ
2
. From (43c), to make∂

2E(m)
∂2m

> 0, it is sufficient to have

(

1−
√
3τ
)

y2 − 3

2
y − 3τ

4
> 0. (44)

After solving (44), we obtain that, when1−
√
3τ > 0, i.e., 0 < τ <

√
3
3

, then

y > η(τ) ,
3 +

√

9 + 12τ(1−
√
3τ)

4(1−
√
3τ)

. (45)

Thus, under the condition0 < τ <
√
3
3

, if x = ph > max{exp(η(τ) + τ
2
)− 1, 2τ2

1−τ2
, exp

(

τ
2

)

−
1, 1}, then ∂2E(m)

∂2m
> 0. On one hand, one can check thatη(τ) and 2τ2

1−τ2
are increasing withτ for

0 < τ <
√
3
3

, andexp(η(0))−1 > 1 > 2τ2

1−τ2
, thus we havemax{exp(η(τ)+ τ

2
)−1, 2τ2

1−τ2
, exp

(

τ
2

)

−
1, 1} = exp(η(τ) + τ

2
) − 1 for 0 < τ <

√
3
3

. In addition, sinceX (m) = P (m)h is decreasing

with m from Proposition 1, we have that the energy functionE(m) is convex withm when

m̂ ≤ m ≤ X−1
(

exp
(

η(τ) + τ
2

)

− 1
)

. �
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