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Abstract

The intensity matching approach for tractable performanceevaluation and optimization of cellular

networks is introduced. It assumes that the base stations are modeled as points of a Poisson point

process and leverages stochastic geometry for system-level analysis. Its rationale relies on observing that

system-level performance is determined by the intensity measure of transformations of the underlaying

spatial Poisson point process. By approximating the original system model with a simplified one, whose

performance is determined by a mathematically convenient intensity measure, tractable yet accurate

integral expressions for computing area spectral efficiency and potential throughput are provided. The

considered system model accounts for many practical aspects that, for tractability, are typically neglected,

e.g., line-of-sight and non-line-of-sight propagation, antenna radiation patterns, traffic load, practical

cell associations, general fading channels. The proposed approach, more importantly, is conveniently

formulated for unveiling the impact of several system parameters,e.g., the density of base stations and

blockages. The effectiveness of this novel and general methodology is validated with the aid of empirical

data for the locations of base stations and for the footprints of buildings in dense urban environments.

Index Terms

Ultra-Dense Cellular Networks, Poisson Point Processes, Stochastic Geometry.

I. INTRODUCTION

In the last few years, stochastic geometry has been widely used for system-level modeling,

performance evaluation, and optimization of several candidate system architectures, network

topologies, and transmission technologies for next-generation cellular networks [1]. At present,

many tractable mathematical methodologies for analyzing and optimizing (heterogeneous) cel-

lular networks in terms of average rate [2], coverage [3] anderror probability [4], [5] exist.

The tractability of currently available methodologies originates from two main assumptions:

1) the network elements are modeled as points of a Poisson Point Process (PPP) and 2) the
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path-loss, as a function of the distance, is modeled as a power-decaying function with distance-

independent parameters [6]. Recent studies based on actualcellular network deployments and

building footprints have unveiled that the PPP-based assumption is sufficiently accurate for

modeling dense urban environments,e.g., downtown London [7]. They have disclosed, on the

other hand, the crucial impact of the path-loss model for system-level analysis and optimization.

In particular, coverage and rate estimated by relying on theconventional power-decaying path-

loss model are qualitatively and quantitatively differentcompared with those obtained by using

more realistic path-loss models, which,e.g., originate from channel measurements and/or are

recommended by standardization working groups for evaluating and comparing different wireless

access technologies [8]. They have revealed, in addition, the need of taking the radiation pattern

of transmit and receive antennas into account, in order to adequately quantify the impact of the

other-cell interference and, hence, of network densification, i.e., small cell technology.

Motivated by these considerations, a few researchers have recently generalized the PPP-based

approach for modeling cellular networks [1], by assuming more realistic path-loss models [9]-

[12]. These papers have unveiled,e.g., that the impact of network densification depends on the

path-loss model being adopted. In [9], the authors employ a two-slope path-loss model and

show that an optimal density of Base Stations (BSs) exists. This finding is in contradiction with

[1], which, by assuming a power-decaying path-loss model, proved the density-invariance of

interference-limited cellular networks. In [10], the author uses a three-state path-loss model that

is empirically derived from channel measurements conducted in New York City for transmission

in the millimeter wave band. The path-loss model accounts for Line-Of-Sight (LOS), Non-Line-

Of-Sight (NLOS), and outage links, whose probability of occurrence is distance-dependent. It is

proved that coverage and rate depend on the density of BSs. In[11] and [12], the authors employ

a path-loss model that accounts for LOS and NLOS links, whoseprobability of occurrence is

an exponential and a linear function of the distance, respectively. Similar to [9], it is shown that

the density-invariance property does not hold anymore. Theauthors of [11] unveil, however, that

the impact of network densification depends on the load modelbeing considered: if the densities

of Mobile Terminals (MTs) and BSs do not scale at the same rate(i.e., full traffic load), small

cell deployments provide better performance compared withthe predictions in [9] and [12].

The discoveries in [7], [9]-[12] bring to light the need of more realistic modeling assumptions

in stochastic geometry analysis of cellular networks. They, however, still rely on important

simplifications, as well as introduce mathematical methodologies that, although computationally
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TABLE I: Summary of main symbols and functions used throughout the paper.

Symbol/Function Definition

E{·}, Pr {·} Expectation operator, probability measure
Im {·}, j Imaginary part operator, imaginary unit
λBS, λMT Density of base stations, mobile terminals

ΨBS, ΨMT, Ψ(I)
BS Poisson point process of base stations, mobile terminals, interfering base stations

NRB Number of resource blocks
PBS, PRB Transmit power of base stations, per resource block
pLOS(·), pNLOS(·), pOUT(·) Probability of line-of-sight, non-line-of-sight, outage
Db, B Radius of thebth ball of the channel model, number of balls

q
[Db−1,Db]
s Link state probability of states in [Db−1, Db)
ls (·), Xs, gs Path-loss, shadowing, fading power gain

L
(n)
s , L(0) Inverse average received power of thenth link of states, of the intended link

psel (·) Probability that a mobile terminal is scheduled for transmission
poff (·) Probability that a base stations is not activated
GBS (·), GMT (·) Antenna radiation pattern of base stations, mobile terminals
G(0) End-to-end antenna gain of the intended link

Kq, γ(l)
q , ϕ(l−1)

q Number of lobes, gain, phase of the antenna radiation pattern
σ2
N , Iagg (·) Noise variance, aggregate other-cell interference

Φs Poisson point process of the path-loss of states

ΛΦs ([·, ·)), Λ
(1)
Φs

([·, ·)) Intensity measure of the point process of the path-loss, itsfirst derivative
fX(·), MX(·) Probability density function, moment generating functionof random variableX
1[x,y] (·) or 1 (·) Indicator function
2F1 (·, ·, ·, ·) Gauss hypergeometric function
δ(·), Γ(·) Dirac delta function, gamma function
‖·‖2F Frobenius norm
H(·), H Heaviside function, complementary Heaviside function
As or Υs (·) Probability of being in states
SINR, ASE, PT Signal-to-interference+noise-ratio, area spectral efficiency, potential throughput
R, C(·) Shannon rate, coverage probability

affordable in many cases, lack tractability for general cellular setups. In [9], no LOS and NLOS

links are considered. In [11], [12], simplified link-state models are assumed. In [9], [11], [12], no

directional antennas and shadowing for cell association are taken into account, Rayleigh fading

for all links is considered, saturated traffic load (except [11]) is assumed. In spite of that, the

frameworks are still formulated in terms of multi-fold integrals, which do not provide direct

insight on the impact of key system parameters,e.g., the density of BSs and blockages.

In the present paper, a novel methodology to leverage stochastic geometry for modeling,

evaluating, and optimizing cellular networks in a tractable yet accurate manner is introduced.

The proposed approach accounts for several important aspects that are overlooked in previous

works [9]-[12], and, more importantly, it provides direct insight on the impact of key system

parameters. For example, it allows us to prove that a local optimum for the density of BSs exists

and that it depends on the density of blockages. Notably, we introduce a new and mathematically

tractable link state model and prove, with the aid of empirical data, that it is flexible enough

for approximating several link state models widely adoptedin the literature. We propose, in
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addition, a general approach for estimating the parametersof the new link state model in order

to closely match empirical propagation and blockage models. Compared with other mathematical

approaches currently available in the literature, it leadsto a simpler yet accurate mathematical

formulation of key performance indicators for cellular network design, as well as direct insight on

the impact of several system parameters. The details of the proposed approach and the complete

set of design guidelines that emerge from it are discussed inSections III and V.

The remainder of the present paper is organized as follows. In Section II, the system model is

summarized. In Section III, the proposed Intensity Matching (IM)-based methodology is intro-

duced and its rationale is discussed. In Section IV, the mathematical frameworks for computing

Area Spectral Efficiency (ASE) and Potential Throughput (PT) are reported. In Section V,

performance trends and design guidelines for system optimization are elaborated. In Section

VI, the IM-based approach is substantiated with the aid of empirical data for the locations of

BSs and for the footprints of buildings [7]. Finally, Section VII concludes this paper.

Notation: For the convenience of the readers, a summary of the main symbols and functions

used throughout the present paper is provided in Table I.

II. SYSTEM MODEL

A. PPP-Based Abstraction Modeling

A downlink (single-tier) cellular network is considered. The BSs are modeled as points

of a homogeneous PPP, denoted byΨBS, of densityλBS. The MTs are modeled as another

homogeneous PPP, denoted byΨMT, of densityλMT. ΨBS andΨMT are independent. Each BS

hasNRB orthogonal Resource Blocks (RBs) for serving the MTs,i.e., NRB MTs can be served,

at most, by any BSs without intra-cell interference. Each BStransmits with constant power in

each RB. LetPBS be the power budget of each BS andPRB be the transmit power per RB.

PBS is equally distributed among the RBs,i.e., PRB = PBS/NRB, regardless of the number of

RBs that are actually used by each BS. Generalizations wherethe BSs transmit with unequal

power are left to future research. The mathematical frameworks are developed for the typical

MT, denoted byMT(0), that is located at the origin (Slivnyak theorem [13, Th. 1.4.5]). The BS

servingMT(0) is denoted byBS(0) and the set of interfering BSs on a RB is denoted byΨ
(I)
BS.

B. Link State Modeling

Consider an arbitrary link of lengthr, i.e., the distance from a BS to a MT is equal tor. Due

to large-scale environmental-dependent blockages [14, Slide 98], each link can be inS different

states. LetS denote the set ofS states. The probability of being in states ∈ S is denoted by
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TABLE II: Widely used link state models. The parametersa(·), b(·) andc(·) are environmental-dependent.

pLOS(r) pNLOS(r) pOUT(r)

3GPP [8] min
{

a3G
r

, c3G
}(

1− e
− r

b3G

)
+ e

− r
b3G 1− pLOS(r) 0

Random Shape [15] aRS exp (−bRSr) 1− pLOS(r) 0
Linear [12] 1− pNLOS(r) min {aLr + bL, cL} 0

Empirical mmWave [10] (1− pOUT (r)) e−ammr 1− pLOS(r)− pOUT(r) max
{
0, 1− e−bmmr+cmm

}

Two-ball mmWave [10] see (1) withS = 3, s = {LOS,NLOS,OUT}, B = 2

Fig. 1: Considered cellular network (a) and multi-state blockage model (b). (a) It is obtained from the dataset in
[7] and represents a dense urban environment in downtown London. The red and green dots represent BSs that
are located outside and inside the buildings, respectively. The blue shapes represent the buildings in the considered
region. (b) It provides a sketched illustration of a multi-state blockage model (dots: BSs, triangles: MTs): (1) outdoor
LOS link, (2) outdoor NLOS link, (3) indoor LOS link, (4) outdoor-to-indoor link, (5) indoor-to-outdoor link. Every
type of link has a different probability of occurrence and the corresponding channels have different parameters.

ps (·), which is a function ofr and of the environment. By definition,
∑

s∈S ps (r) = 1 for every

r. Examples of two-state (S = 2) and three-state (S = 3) link models are constituted by micro-

wave and millimeter-wave outdoor links, which, because of the presence of buildings, can be

either in LOS or NLOS [8], [11], [12], and in LOS, NLOS or outage (OUT) [10], respectively.

Table II provides link state models that are often used for system-level performance evaluation.

In Fig. 1, we provide an illustration of the system model under analysis that accounts for the

location of cellular BSs and for the presence of buildings. In particular, Fig. 1(a) is obtained by

using the empirical dataset in [7], to which the readers are referred for further details. In Fig.

1(b), we provide a sketched representation of a typical urban environment where a multi-state

link model emerges. Further details and illustrations are available in [14, Slides 39, 98].

In the present paper, we adopt the so-called multi-ball linkstate model as the constituent

building block of the proposed IM-based approach. The reason of this choice is twofold: 1) its

mathematical tractability and 2) its flexibility for approximating other link state models. Further
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details are provided in Section III. The accuracy of the multi-ball link state model has been

experimentally validated in [7]. In mathematical terms,ps (·) can be formulated as follows:

ps (r) =
∑B+1

b=1 q
[Db−1,Db]
s 1[Db−1,Db] (r) with

∑
s∈S q

[Db−1,Db]
s = 1; b = 1, 2, . . . ,B + 1 (1)

whereB denotes the number of balls,Db is the radius of thebth ball withD0 = 0 andDB+1 = ∞,

q
[Db−1,Db]
s is the probability that the link is in states if r ∈ [Db−1, Db), 1[x,y] (r) is the indicator

function defined as1[x,y] (r) = 1 if r ∈ [x, y) and 0 otherwise,
∑

s∈S q
[Db−1,Db]
s = 1 holds by

definition of probability. An illustration forB = 3 is reported in [14, Slide 109].

The probability that a link is in states is independent of the other links. From the thinning

theorem of PPPs [13], the BSs whose links are in states constitute a non-homogeneous PPP of

densityλBS,s (r) = λBSps (r). This PPP is denoted byΨBS,s and
⋃

s∈SΨBS,s = ΨBS holds.

C. Channel Modeling

Path-loss, shadowing and fast-fading are considered, whose probability distribution depends

on the link state. All links in the same state are independentand identically distributed (i.i.d.).

Intended and interfering links are denoted by the superscripts (0) and (i), respectively.

a) Path-Loss:Consider a link of lengthr in states ∈ S. The distance-dependent path-loss

model isls (r) = κsr
αs , whereκs is the path-loss constant andαs is the path-loss slope.

b) Shadowing:Consider a link in states ∈ S. Shadowing follows a log-normal distribution

with mean equal toµs (in dB) and standard deviation equal toσs (in dB). It is denoted byXs, and

its Probability Density Function (PDF) is equal tofXs (x) =
10

ln(10)
1√

2πσsx
exp

(
− (10 log10 x−µs)

2

2σ2
s

)
.

c) Fading: Consider a link in states ∈ S. The power gain due to small-scale fading follows

a gamma distribution with fading parameterms and meanΩs. It is denoted bygs, and its PDF

is fgs (x) = mms
s xms−1

Ωms
s Γ(ms)

exp
(
−msx

Ωs

)
, whereΓ(·) is the gamma function. The gamma model is

chosen due to its tractability and the wide range of fading severities that can be handled,e.g.,

LOS, NLOS (ms ≈ 1) and no fading (ms → ∞) links. Also, it allows one to analyze and

compare multiple-antenna transmission schemes over Rayleigh fading channels [14, Slide 91].

Remark 1:The proposed approach can be generalized to account for the bounded path-loss

model ls (r) = κs (max {r̃s, r})
αs , wherer̃s ≥ 0 avoids the singularity at the origin. For typical

cellular network deployments, however, the conditionD0 < r̃s < D1 holds. As a result, the final

formulas are more analytically involving, but the inherentperformance trends are not affected.

Numerical examples based on actual cellular network deployments are reported in [7]. In this

paper, for this reason, we have decided to report the mathematical formulas only forr̃s = 0. �
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D. Cell Association Modeling

A cell association criterion based on the average highest received power is assumed. Let the

superscript(n) identify a generic BS-to-MT link. The serving BS,BS(0), is obtained as follows:

BS(0) = argmaxs∈S,BS(n)∈ΨBS,s

{
X

(n)
s

/
ls
(
r(n)
)}

= argmins∈S,BS(n)∈ΨBS,s

{
L
(n)
s

}
(2)

whereL(n)
s = ls

(
r(n)
)/

X
(n)
s denotes the inverse of the average received power of thenth link

in ΨBS,s. As for the intended link, we haveL(0) = mins∈S,BS(n)∈ΨBS,s

{
L
(n)
s

}
.

E. Load Modeling

To account for arbitrary triplets{λBS, λMT, NRB}, we use an approach similar to that in [16].

We, however, generalize it for modeling the setupNRB > 1. It is worth mentioning that the

approach in [16] is applicable to cellular networks whose coverage regions (cells) constitute a

Voronoi tessellation. The distribution of the area of the Voronoi cells is, however, still obtained

by using simulations. The approach in [16], hence, is applicable to a cell association criterion

based on the shortest distance. It cannot be used, on the other hand, if the cell association in (2)

is employed. Some illustrations are available in [14, Slides 118-121]. To the best of the authors

knowledge, there are no empirical results for the distribution of the area of the coverage regions

that originate from the cell association in (2). For this reason and for mathematical tractability,

we rely on a first-order moment matching approach for approximating the latter distribution [17].

The rationale and the mathematical foundation behind this approximation can be found in [18].

The proposed modeling approximation, more precisely, relies on the followingLemma 1.

Lemma 1:Consider the link state model, the path-loss model and the cell association criterion

introduced in Sections II-B, II-C and II-D, respectively. Let Pr0 {·} and E
0 {·} denote the

probability and the expectation operators under the Palm probability [13]. The mean value

(average) of the area of the associated coverage regions (cells) can be formulated as follows:

E
0 {area}

(a)
= 2π

∑
s∈S
∫∞
0

Pr0
{
r ∈ Cs

(
BS(0)

)}
ps (r) rdr

(b)
= 2π

∑
s∈S
∫∞
0

(∏
s̃∈S Pr

0
{

κs̃r̃
αs̃

Xs̃
> κsrαs

X (0)
s

})
ps (r) rdr

(c)
= 2π

∑
s∈S
∫∞
0

(
EX (0)

s

{
exp

(
−
∑

s∈S 2πλBSEXs̃

{∫ c
(
r̃,Xs̃,X (0)

s

)

0 ps̃ (r̃) r̃dr̃

})})
ps (r) rdr

(d)
=
∑

s∈S As/λBS

(e)
= 1/λBS

(3)

whereE {·} is the expectation,Cs

(
BS(0)

)
is the “cell” of BS(0) in states, i.e., the set of points

in the plane that are served byBS(0) and whose links are in states, X (0)
s is the shadowing
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of a point at distancer from BS(0) whose link is in states, Xs̃ is the shadowing of the same

point at distancẽr from another (generic) BS different fromBS(0) whose link is in statẽs,

c
(
r̃,Xs̃,X

(0)
s

)
=
((

Xs̃

/
X

(0)
s

)
(κs/κs̃) r̃

αs

)1/αs̃

, andAs is the association probability of state

s, i.e., the probability thatMT(0) is served by a BS whose link with it is in states, as follows:

As = E
L
(0)
s

{
∏

s̃ 6=s, s̃∈S
Pr
{
L
(0)
s̃ > L

(0)
s

∣∣∣L(0)
s

}}
=
∫∞
0

∏
s̃ 6=s, s̃∈S

Pr
{
L
(0)
s̃ > x

∣∣∣x
}
f
L
(0)
s

(x) dx (4)

whereL(0)
s = minBS(n)∈ΨBS,s

{
L
(n)
s

}
andf

L
(0)
s

(·) is the PDF ofL(0)
s for s ∈ S.

Proof: It follows from the definition of mean (average) area in [18], by using (1) and (2),

and by taking into account that the considered PPPs are independent and non-homogeneous. In

particular: (a) follows by definition of mean area, (b) from the definition of cell association in (2),

(c) by using the same steps as in [18, Lemma 2], (d) by computing (4) with the aid of (20)-(22)

and comparing it with (c), and (e) by definition of association probability,i.e.,
∑

s∈S As = 1. �

Based onLemma 1, the following approximation for the PDF of the area of the cells is used.

Approximation 1:Consider a cellular network with PPP-distributed BSs of density λBS and

the system model in Sections II-B-D. The PDF of the area of thecells is approximated as:

farea (x) ≈
(

3.5
E{area}

)3.5
x2.5

Γ(3.5)
exp

(
− 3.5

E{area}x
)

(5)

which is a gamma random variable with parameters(m,Ω) = (3.5,E {area}) [16, Eq. (1)]. �

The modeling assumption in (5) foresees to approximate the actual PDF of the area of the cells

originating from (2) with the PDF of the area of a Voronoi tessellation having the same average

area. SinceE {area} = 1/λBS in (3), the PDF in (5) coincides with the PDF corresponding to

a Voronoi tessellation. In Section VI, this approach is shown to be accurate for various setups.

Remark 2:At the time of writing, we have no simple and intuitive explanation for the fact that

the PDF of the area of the cells in (5) coincides with that of a Voronoi tessellation, even though

the cell association considered in the present paper is not based on the shortest distance criterion.

We can, however, safely affirm the following. Let us consider, as an example, a two-state link

model with,e.g., LOS and NLOS links, without shadowing. The corresponding cell association

criterion based on the smallest path-loss partitions the plane into cells that, according to (3),

have the same average area as those of a Voronoi tessellation, i.e., 1/λBS. They are, however,

constituted of points in the plane that are not necessarily contiguous,e.g., see [14, Slide 120].
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Even though (5) implies that the distribution of the area of the cells is the same as that of a

Voronoi tessellation, the shape of the cells is different. We note, in addition, that this is different

from [17] and [18], where multi-tier cellular networks are considered. A single-tier cellular

network with LOS and NLOS links is, from the cell associationstandpoint, not exactly the same

as a two-tier cellular network. All the BSs, in fact, are homogeneous in terms of deployment

density and transmit power. Each cell, more precisely, is constituted by all the possible points

in the plane that are either in LOS or NLOS, but still experience the smallest path-loss in the

downlink. It is reasonable to expect that, for typical path-loss exponents, the cells are constituted

by spatial locations that are in LOS with respect to the BS. Inthe limiting regime where all the

points are in LOS, the cell association would boil down to theshortest distance criterion. In this

limiting case, (5) would be exact. This provides a somehow intuitive justification for (5). �

As better described in Section II-G, ASE and PT on a generic RBdepend on: 1) the probability

that the typical MT is scheduled for transmission in a RB and 2) the probability that a generic

BS does not transmit in a RB. The first probability accounts for the fact that a number of MTs

greater thanNRB may be associated to a BS. Thus, at mostNRB MTs can be served and the

others are blocked. The second probability accounts for thefact that fewer MTs thanNRB may

be associated to a BS, which implies that a BS may not be activein some of its RBs. These

probabilities are denoted bypsel (·) and poff (·), respectively, and both depend on the triplet

{λBS, λMT, NRB}. They are formulated in the following two lemmas under the assumption that

the MTs associated to a BS are randomly chosen for transmission in an arbitrary RB.

Lemma 2:Consider the triplet{λBS, λMT, NRB}. psel (·) can be formulated as follows:

psel (λBS, λMT, NRB) = 1− f
(a)
sel

(
f
(b)
sel − f

(c)
sel

)
(6)

where2F1 (·, ·, ·, ·) is the Gauss hypergeometric function and:

f
(a)
sel = f

(a)
sel (λBS, λMT, NRB) =

3.54.5Γ(4.5+NRB)
Γ(4.5)

(λMT/λBS)
NRB

(
1

3.5+λMT/λBS

)4.5+NRB

f
(b)
sel = f

(b)
sel (λBS, λMT, NRB) =

1
Γ(1+NRB) 2

F1

(
1, 4.5 +NRB, 1 +NRB,

λMT/λBS

3.5+λMT/λBS

)

f
(c)
sel = f

(c)
sel (λBS, λMT, NRB) =

NRB

Γ(2+NRB) 2
F1

(
1, 4.5 +NRB, 2 +NRB,

λMT/λBS

3.5+λMT/λBS

)
(7)

Proof: Let N
′
be the number of other MTs associated to a generic BS conditioned on a generic

MT being associated to the BS. By definition,psel (λBS, λMT, NRB) =
∑NRB−1

n=0 1 Pr
{
N

′
= n

}
+

∑+∞
n=NRB

(NRB/(n+ 1)) Pr
{
N

′
= n

}
. With the aid ofApproximation 1, Pr

{
N

′
= n

}
follows

from [16]. The proof concludes by formulating the summations in terms of2F1 (·) functions.�
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Lemma 3:Consider the triplet{λBS, λMT, NRB}. poff (·) can be formulated as follows:

poff (λBS, λMT, NRB) = 1− λMT/(λBSNRB)− p
(a)
off + p

(b)
off + p

(c)
off

(8)

wherep(x)off = p
(x)
off (λBS, λMT, NRB) for x = {a, b, c, } are as follows:

p
(a)
off = 3.53.5Γ(4.5+NRB)

Γ(3.5)Γ(2+NRB)
(λMT/λBS)

1+NRB

(3.5+λMT/λBS)
4.5+NRB 2F1

(
1, 4.5 +NRB, 2 +NRB,

λMT/λBS

3.5+λMT/λBS

)

p
(b)
off = 3.53.5Γ(4.5+NRB)

Γ(3.5)NRBΓ(1+NRB)
(λMT/λBS)

1+NRB

(3.5+λMT/λBS)
4.5+NRB 2F1

(
1, 4.5 +NRB, 2 +NRB,

λMT/λBS

3.5+λMT/λBS

)

p
(c)
off = 3.53.5Γ(5.5+NRB)

Γ(3.5)NRBΓ(3+NRB)
(λMT/λBS)

2+NRB

(3.5+λMT/λBS)
5.5+NRB 2F1

(
2, 5.5 +NRB, 3 +NRB,

λMT/λBS

3.5+λMT/λBS

)
(9)

Proof: Let N be the number of MTs associated to a BS. By definition,poff (λBS, λMT, NRB) =
∑NRB

n=0 (1− n/NRB) Pr {N = n}. With the aid ofApproximation 1, Pr {N = n} follows from

[16]. The proof is concluded by formulating the summations in terms of2F1 (·) functions. �

Under the assumption that the network is either dense (i.e., λBS/λMT ≫ 1) or sparse (i.e.,

λBS/λMT ≪ 1), the lemmas can be simplified as summarized in the followingtwo corollaries.

Corollary 1: ConsiderλBS/λMT ≫ 1. psel (·) andpoff (·) in (6) and (8) simplify as follows:

psel (λBS, λMT, NRB) → 1− Γ(4.5+NRB)
Γ(4.5)Γ(1+NRB)

1
1+NRB

(
λMT/λBS

3.5

)NRB

poff (λBS, λMT, NRB) → 1− λMT/(λBSNRB)
(10)

Proof: It follows from (6)-(9), using asymptotic approximationsfor the 2F1 (·) function. �

Corollary 2: ConsiderλBS/λMT ≪ 1. psel (·) andpoff (·) in (6) and (8) simplify as follows:

psel (λBS, λMT, NRB) → NRB (λMT/λBS)
−1

poff (λBS, λMT, NRB) →
4
63

3.53.5

Γ(3.5)
Γ(4.5+NRB)
Γ(1+NRB)

(
λMT

λBS

)−3.5 (11)

Proof: It follows from (6)-(9), using asymptotic approximationsfor the 2F1 (·) function. �

Based on this load model, from the thinning theorem of PPPs [13], the set of BSs that are

active on a RB and whose links are in states constitute a non-homogeneous PPP of density

λ
(I)
BS,s (r) = (1− poff)λBS,s (r) = (1− poff) λBSps (r) = λ

(I)
BSps (r), whereλ(I)

BS = (1− poff) λBS is

the density of active BSs in a RB. This PPP is denoted byΨ
(I)
BS,s and

⋃
s∈S Ψ

(I)
BS,s = Ψ

(I)
BS holds.

Remark 3:Compared with [11], where, for tractability, it is assumed that the MTs connect to

their closest BS (see footnote 3 therein), the proposed mathematical approach is more rigorous

thanks to (3) and to the aid of [18]. It is, in addition, formulated in a more general manner,

since an arbitrary number of RBs and the selection probability in (6) are taken into account.�
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TABLE III: Examples of antenna radiation patterns. The notation is provided in footnote 1.

Gq (θq)

Omni-directional 1

3GPP [19] γ
(3GPP)
q 10

−(6/5)
(
θq

/
φ
(3dB)
q

)2

1

[
0,φ

(3GPP)
q

] (|θq |) + γ
(3GPP)
q 10−Aq/10

1

[
φ
(3GPP)
q ,π

] (|θq |)

UWLA [20] γ
(UWLA)
q

∣∣N−1
q sin

(
Nqπν

−1 cos (θq) dq
)
sin−1

(
πν−1 cos (θq) dq

)∣∣2

Three-Sector [21]

γ
(1,sec)
q 1

[
0,φ

(1,sec)
q

] (|θq|) + γ
(2,sec)
q 1

[
φ
(3,sec)
q ,π

] (|θq|)

+γ
(1,sec)
q

(
1−

(
|θq| − φ

(1,sec)
q

)/
ǫq
)
1

[
φ
(2,sec)
q ,φ

(2,sec)
q

] (|θq|)

+
(
2g

(2,sec)
q

(
|θq| − φ

(2,sec)
q

)/
ǫq
)
1

[
φ
(2,sec)
q ,φ

(3,sec)
q

] (|θq |)

Two-lobe [10] see (12) withKq = 2

F. Antenna Radiation Pattern

In [7], it is empirically shown that the antenna radiation pattern greatly affects the performance

of cellular networks. Different radiation patterns are typically used for system-level performance

evaluation. Notable examples are provided in Table III1.

With the exception of the two-lobe model [10], the antenna radiation patterns in Table III

are, usually, mathematically intractable. The proposed IM-based approach, thus, relies on a

generalized version of the two-lobe model, which is referred to as the multi-lobe model. In [7],

it has been proved to be sufficiently accurate with the aid of numerical simulations.

Let θq ∈ [−π, π) for q ∈ {BS,MT} be the angle towards the boresight direction. The multi-

lobe antenna radiation pattern of BSs and MTs may be different and can be formulated as:

Gq (θq) =
∑Kq

l=1 γ
(l)
q 1

[
ϕ
(l−1)
q ,ϕ

(l)
q

] (|θq|) (12)

whereKq is the number of lobes,γ(l)
q is the gain of thelth lobe,ϕ(0)

q = 0 < ϕ
(1)
q < ϕ

(2)
q < · · · <

ϕ
(Kq−1)
q < ϕ

(Kq)
q = π are the angles associated with the lobes, and

∫ π

−π
Gq (θ) dθ = 2π.

The antenna radiation pattern in (12) is not only mathematically tractable, but it provides an

accurate step-wise approximation of other antenna radiation patterns as well [7],e.g., those in

Table III. Consider a generic antenna radiation patternG
(X)
q (·). Its multi-lobe approximation in

(12) can be found by solving the minimization problem as follows (‖·‖2F is the Frobenius norm):

argmin{
γ
(l)
q

}
,
{
ϕ
(l)
q

}
{∥∥∥log10

(
G

(X)
q (θ)

)
− log10 (Gq (θ))

∥∥∥
2

F

}
(13)

1Notation of Table III – 3GPP (6 sectors):φ(3dB)
q = 35 degrees,Aq = 23, φ

(3GPP)
q = 48.46 degrees,γ(3GPP)

q = 9.33.
UWLA (Uniformly Weighted Linear Array):Nq = 8 is the number of antenna-elements,dq = ν/2 is the uniform spacing
between them andν is the wavelength,γ(UWLA)

q = 12.1631. Three-Sector:γ(1,sec)
q =

(
2π − (2π − 3ǫq/2−̟q) γ

(1,sec)
q

)
/̟q,

θ
(1,sec)
q = (̟q − ǫq) /2, θ(2,sec)q = (̟q + ǫq) /2, θ(3,sec)q = ̟q/2 + ǫq, g(2,sec)q = 0.05, ̟q = 70 degrees,ǫq = 10 degrees.
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TABLE IV: Five-lobe approximation of the antenna radiationpatterns in Table III based on (12) and (13).

ϕ
(1)
q ϕ

(2)
q ϕ

(3)
q ϕ

(4)
q γ

(1)
q γ

(2)
q γ

(3)
q γ

(4)
q γ

(5)
q

3GPP 0.2114 0.4229 0.6343 0.8457 8.3951 4.4863 1.2797 0.1943 0.0468
UWLA 0.1115 0.2524 2.8892 3.0301 9.9251 1.9782 0.1405 1.9782 9.9251

Tree-Sector 0.5236 0.6109 0.6981 0.7854 4.9464 3.7022 1.2366 0.0248 0.05

The larger the number of lobes is, the more accurate but more complex the multi-lobe

approximation is. Table IV provides the five-lobe (Kq = 5) approximation of some antenna

radiation patterns in Table III.Kq = 5 yields a good trade-off between complexity and accuracy.

For brevity, no pointing errors on the intended link are considered. This assumption can be re-

moved as shown in [10]. Thus, the directivity gain of the intended link isG(0) = GBS (0)GMT (0).

Since, on the other hand, the interfering BSs focus their beams towards their intended MTs and

they are both randomly deployed, the radiation patterns of all non-intended links are randomly

oriented with respect to each other and uniformly distributed in [−π, π). So, the directivity gain

of a generic interfering link,G(i) = GBS

(
θ
(i)
BS

)
GMT

(
θ
(i)
MT

)
, has the following PDF:

fG(i) (γ) =
∑KBS

l1=1

∑KMT

l2=1
ω
(l1)
BS

2π

ω
(l2)
MT

2π
δ
(
γ − γ

(l1)
BS γ

(l2)
MT

)
(14)

whereω(l)
q = 2

(
ϕ
(l)
q − ϕ

(l−1)
q

)
for q ∈ {BS,MT} andδ (·) is the Dirac delta function.

Remark 4:With no pointing errors, the multi-lobe approximation is necessary only to compute

the distribution of the other-cell interference. It is not needed, on the other hand, for obtaining

G(0). Thus, we assumeG(0) = G
(X)
BS (0)G

(X)
MT (0) for every antenna radiation patternX. �

G. Problem Formulation

The performance metrics of interest are ASE and PT, which areexpressed inbps/Hz/m2. They

can be formulated as follows (for simplicity, we use the short-handpsel = psel (λBS, λMT, NRB)):

ASE = (λMTpsel/ln (2)) ln (1 + SINR) ; PT = λMTpsel log2 (1 + T)Pr {SINR ≥ T} (15)

where SINR denotes the Signal-to-Interference+Noise-Ratio at MT(0) and T is the minimum

SINR threshold for successful decoding. The ASE is obtainedfrom the Shannon rateR =

ln (1 + SINR) and the PT depends on the coverage probabilityC (T) = Pr {SINR ≥ T}.

Remark 5:The definition of ASE and PT in (15) is based on information-theoretic arguments.

This implies that encoding, decoding and the related assumptions on the channel state information

that need to be fulfilled at the transmitter and receiver are those stated in [1, Sec. IV]. �

In particular,SINR = SINR (λBS, λMT, NRB, poff) and it can be formulated as follows:

SINR = SINR
(
L(0) = L

(0)
s

)
=

PRBG
(0)g

(0)
s

/
L
(0)
s

σ2
N+Iagg

(
L
(0)
s

) if L(0) = L
(0)
s (16)
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whereσ2
N is the noise power in a RB,L(0)

s = minBS(n)∈ΨBS,s

{
L
(n)
s

}
, Iagg (·) is the interference:

Iagg
(
L(0)

)
=
∑

s̃∈S
∑

BS(i)∈Ψ(I)
BS,s̃

(
PRBG

(i)g
(i)
s̃

/
L
(i)
s̃

)
1

(
L
(i)
s̃ > L(0)

)
(17)

where, for simplicity, the short-hand1 (y > x) = 1[x,∞] (y) = 1[0,y] (x) is used.

Remark 6:The SINR in (16) is inherently formulated for application tosingle-input-single-

output systems. It can find application, however, to system setups where multiple-input-multiple-

output transmission schemes are used and for which the end-to-end power gains of intended

and interfering links can be formulated in terms of a gamma random variable. Further details

about this generalization are available in [3]. Relevant examples of multiple-input-multiple-output

transmission schemes where this equivalency holds are illustrated in [14, Slides 90, 91]. �

By using the Moment Generating Function (MGF) approach in [2], R can be formulated as:

R =
∑

s∈S EL
(0)
s

{
E

{
ln
(
1 + SINR

(
L
(0)
s

))∣∣∣L(0)
s

}
Pr
{
L(0) = L

(0)
s

}}

=
∑

s∈S EL
(0)
s

{(∫∞
0

exp (−σ2
Nz)M̄g

(0)
s

(
PRBG

(0)z

L
(0)
s

∣∣∣L(0)
s

)
M

Iagg
(
L
(0)
s

)
(
z|L

(0)
s

)
dz
z

)
Υs

(
L
(0)
s

)}

=
∑

s∈S
∫∞
0

∫∞
0

exp (−σ2
Nz)M̄g

(0)
s

(
PRBG

(0)z
x

∣∣∣ x
)
MIagg(x) (z| x)Υs (x) fL(0)

s
(x) dzdx

z

(18)

whereM̄
g
(0)
s

(z| x) = 1−M
g
(0)
s

(z| x), f
L
(0)
s

(·) is the PDF ofL(0)
s , Υs

(
L
(0)
s

)
= Pr

{
L(0) = L

(0)
s

}
=

∏
r 6=s∈SPr

{
L
(0)
r > L

(0)
s

∣∣∣L(0)
s

}
follows from the independence ofΨBS,s for s ∈ S,M

g
(0)
s

(
z
/
L
(0)
s

∣∣∣ x
)

= E
g
(0)
s

{
exp

(
−z
(
g
(0)
s

/
L
(0)
s

))∣∣∣L(0)
s

}
is the MGF ofg(0)s conditioned onL(0)

s , M
Iagg

(
L
(0)
s

)
(
z|L

(0)
s

)

= E

{
exp

(
−zIagg

(
L
(0)
s

))∣∣∣L(0)
s

}
is the MGF ofIagg

(
L(0) = L

(0)
s

)
in (17) givenL(0) = L

(0)
s .

By using the Gil-Pelaez approach in [3],C (·) can be formulated as follows:

C (T) =
∑

s∈S EL
(0)
s

{
Pr
{
SINR

(
L
(0)
s

)
≥ T

∣∣∣L(0)
s

}
Pr
{
L(0) = L

(0)
s

}}

=
∑

s∈S EL
(0)
s

{
Pr
{
Iagg

(
L
(0)
s

)
≤ 1

T
PRBG

(0)g
(0)
s

L
(0)
s

− σ2
N

∣∣∣L(0)
s

}
Υs

(
L
(0)
s

)}

=
∑
s∈S

∞∫
0

(
1
2
− 1

π

∞∫
0

Im
{
exp (jzσ2

N )Mg
(0)
s

(
jz PRBG(0)

Tx

∣∣∣ x
)
MIagg(x) (jz| x)

}
dz
z

)
Υs (x) fL(0)

s
(x) dx

(19)

whereIm {·} is the imaginary part operator andj is the imaginary unit.

The expressions in (18) and (19) are general and, in particular, are applicable to any link

state, channel, and radiation pattern models. Depending onthe chosen models, however, their

computation may not be either mathematically or numerically possible. Usually, the distribution

of g
(0)
s does not pose any relevant issues. If, for example,g

(0)
s follows a gamma distribution

(Section II-C): M
g
(0)
s

(z) = (1 + z (Ωs/ms))
−ms in (18) and (19). The IM-based approach

provides a methodology for efficiently computing (18) and (19) under general system models.
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Also, it leads to mathematical frameworks that provide insight for system design. For brevity,

in the sequel, we focus our attention only on the ASE. Similarcomments apply to the PT.

III. T HE INTENSITY MATCHING APPROACH

BesidesM
g
(0)
s

( ·| ·), three functions are needed for computingR in (18): f
L
(0)
s

(·), Υs (·),

andMIagg(·) ( ·| ·). For arbitrary link state, channel, and radiation pattern models, they can be

formulated in mathematical terms by invoking the displacement theorem of PPPs [6]. In simple

but general terms, it can be formulated as follows. LetΨBS,s for s ∈ S be non-homogeneous and

independent PPPs of densityλBS,s (r) = λBSps (r). The sets of path-lossΦs =
{
L
(n)
s

}
BS(n)∈ΨBS,s

for s ∈ S are non-homogeneous and independent PPPs onR
+ with intensity measure:

ΛΦs ([0, ξ)) = E {Φs ([0, ξ))} = E

{∑
BS(n)∈ΨBS,s

1[0,ξ]

(
L
(n)
s

)}

(a)
= 2πλBSEXs

{∫∞
0

Pr {ls (r)/Xs ∈ [0, ξ)} ps (r) rdr
}
= 2πλBSEXs

{∫ (Xsξ/κs)
1/αs

0
ps (r) rdr

} (20)

where (a) directly follows from the displacement theorem ofPPPs [6, Th. 1.3.9].

From (20),f
L
(0)
s

(·) andΥs (·) follow from the void probability of PPPs [13, Th. 1.1.5]:

f
L
(0)
s

(x) = −dPr
{
L
(0)
s > x

}/
dx = −dPr {Φs ([0, x)) = 0}/dx

(a)
= −d exp (−ΛΦs ([0, x)))/dx = Λ

(1)
Φs

([0, x)) exp (−ΛΦs ([0, x)))
(21)

Υs (x) =
∏

r 6=s∈SPr
{
L
(0)
r > x

∣∣∣ x
}
=
∏

r 6=s∈SPr {Φr ([0, x)) = 0|x}

(a)
=
∏

r 6=s∈S exp (−ΛΦr ([0, x))) = exp
(
−
∑

r 6=s∈S ΛΦr ([0, x))
) (22)

where (a) originates from [13, Th. 1.1.5] andΛ(1)
Φs

([·, ·)) is the first derivative ofΛΦs ([·, ·)).

From (20),MIagg(·) ( ·| ·) follows from the Laplace functional of PPPs [13, Prop. 1.2.2]:

MIagg(x) (z| x) = E {exp (−zIagg (x))}

= E

{
exp

(
−z
∑

s̃∈S
∑

BS(i)∈Ψ(I)
BS,s̃

(
PRBG

(i)g
(i)
s̃

/
L
(i)
s̃

)
1

(
L
(i)
s̃ > x

))}

(a)
=
∏

s̃∈S E
{
exp

(
−z
∑

BS(i)∈Ψ(I)
BS,s̃

(
PRBG

(i)g
(i)
s̃

/
L
(i)
s̃

)
1

(
L
(i)
s̃ > x

))}

(b)
=
∏

s̃∈S exp
(
− (1− poff)EG(i),g

(i)
s̃

{
Zs̃

(
PRBz, x;G

(i), g
(i)
s̃

)})

(c)
=
∏

s̃∈S exp
(
− (1− poff)

∫∞
x

(1− Ξs̃ (PRBz, y)) Λ
(1)
Φs̃

([0, y)) dy
)

(23)

where the following short-hands are introduced:

Zs̃

(
PRBz, x;G

(i), g
(i)
s̃

)
=
∫∞
x

(
1− exp

(
−zPRBG

(i)g
(i)
s̃

/
y
))

Λ
(1)
Φs̃

([0, y)) dy

Ξs̃ (PRBz, y) = E
G(i),g

(i)
s̃

{
exp

(
−zPRBG

(i)g
(i)
s̃

/
y
)} (24)
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and (a) follows from the independence ofΨ
(I)
BS,s̃ for s̃ ∈ S, (b) originates from [13, Prop. 1.2.2],

(c) is the same as (b) but the expectationE
G(i),g

(i)
s̃
{·} is moved inside the integral. The(1− poff)

factor in (23) accounts for the active interfering BSs on a RBbased on the load model in Section

II-E, i.e., ΛΦs ([0, ξ)) 7→ (1− poff) ΛΦs ([0, ξ)) to account for the active interfering BSs.

A. Motivation

It is possible, in principle, to plug (20)-(24) in (18) and (19), and to obtain a general and

exact mathematical approach for computing relevant performance indicators for cellular network

design. The resulting expressions are, however, formulated in terms of multi-fold integrals, which

are typically numerically intractable, and, more importantly, neither shed light on performance

trends nor provide design insight. To overcome this issue, two options are possible: i) to simplify

the system model, in order to get mathematically tractable expressions for (20)-(24) and ii) to

introduce approximations in (20)-(24), in order to make their computation analytically tractable.

The first option has been widely adopted. In particular, the main simplifying assumption that

makes (20)-(24) tractable relies on considering a single-state (S = 1) link model. With this

simplifying assumption,ΛΦs ([·, ·)) can be formulated in closed-form and the integral in (24) is

usually (e.g., for omni-directional antennas) computable in closed-form as well. The details can

be found in [6], [14, Slide 107]. Recently, however, it has been shown that making simplistic

assumptions on link state and path-loss models lead to inaccurate predictions of the impact of key

design parameters [9]-[12]. Motivated by these considerations, we introduce an approximation

that provides closed-form expressions for (20)-(24), making (18) and (19) computationally

affordable, as well as that offers design insight for system-level optimization.

B. Rationale

The rationale behind the IM-based approach originates fromdirect inspection of (18)-(24).

1) The two-fold integrals in (18) and (19) are, usually, unlikely amenable to simplifications

without reducing the generality of the system model or without considering specific parameters.

2) The integralΛ̃Φs ( [0, ξ)| Xs) = Λ̃Φs ([0,Xsξ)) =
∫ (Xsξ/κs)

1/αs

0
ps (r) rdr in (20) is usually

computable in closed-form for typical link state models. Table V provides it for the case studies

available in Table II2. The issue is the computation of the expectation with respect to the

2Notation of Table V –ηs (ξ) = (Xsξ/κs)
1/αs , s ∈ {LOS,NLOS}. RS = Random Shape, L = Linear, mmW = Empirical

mmWave.Λ̃(X)
NLOS ([0,XNLOSξ)) = (1/2) η2

NLOS (ξ)− Λ̃
(X)
LOS

(
ηNLOS (ξ) , x

(X)
NLOS

)
, X = {3GPP,L}; Λ̃(RS)

NLOS ([0,XNLOSξ)) =

(1/2) η2
NLOS (ξ) − Λ̃

(RS)
LOS (ηNLOS (ξ)). x

(3GPP)
s = κs (a3G/c3G)

αs , x
(L)
s = κs (cL/aL − bL/aL)

αs . H (x) = 1 if x ≥ 0,
H (x) = 0 if x < 0; H (x) = 1 − H (x). K1 = a−2

mm, K2 = ecmm (amm + bmm)−2, R = ammb−1
mmcmm,

W = (amm + bmm) b−1
mmcmm,Qs = ammκ

−1/αs
s , Ts = bmmκ

−1/αs
s , Vs = (amm + bmm)κ

−1/αs
s , Zs = κs

(
b−1
mmcmm

)αs .
Λ̃

(mmW)
OUT ([0,XOUTξ)) = 0.
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TABLE V: Λ̃Φs ([·, ·)) of the link state models in Table II. The notation is providedin footnote 2.

Λ̃
(3GPP)
LOS ([0,XLOSξ)) = Λ̃

(3GPP)
LOS

(
ηLOS (ξ) , x

(3GPP)
LOS

)

= H
(
x− x

(3GPP)
LOS

)(
b23G (c3G − 1)

(
e−ηLOS(ξ)/b3G − 1

)
+ b3G (c3G − 1) e−ηLOS(ξ)/b3GηLOS (ξ) + (1/2) c3Gη

2
LOS (ξ)

)

+H
(
x− x

(3GPP)
LOS

)(
−a2

3G/c3G +
(
b23G + a3Gb3G/c3G − a3Gb3G

)
e−a3G/(b3Gc3G)

)

+H
(
x− x

(3GPP)
LOS

)(
−b3Ge

−ηLOS(ξ)/b3G (b3G − a3G + ηLOS (ξ)) + a3GηLOS (ξ)
)

Λ̃
(RS)
LOS ([0,XLOSξ)) = Λ̃

(RS)
LOS (ηLOS (ξ)) = aRS

(
b−2
RS − b−2

RS (1 + bRSηLOS (ξ)) e
−bRSηLOS(ξ)

)

Λ̃
(L)
LOS ([0,XLOSξ)) = Λ̃

(L)
LOS

(
ηLOS (ξ) , x

(L)
LOS

)
= H

(
x− x

(L)
LOS

)
(1/2− bL/2− aLηLOS (ξ) /3) η

2
LOS (ξ)

+1/
(
6a2

L

) (
(cL − bL)

3 + 3a2
Lη

2
LOS (ξ) (1− cL)

)
H

(
x− x

(L)
LOS

)

Λ̃
(mmW)
LOS ([0,XLOSξ)) = Υ̃0 (XLOSξ; LOS) ; Λ̃

(mmW)
NLOS ([0,XNLOSξ)) = Υ̃1 (XNLOSξ; NLOS)− Υ̃0 (XNLOSξ; NLOS)

Υ̃0 (x; s) = K2

(
e−W +We−W − e−Vsx

1/αs
− Vsx

1/αse−Vsx
1/αs

)
H (x− Zs)

+K1

(
1− e−Qxx

1/αs
−Qsx

1/αse−Qsx
1/αs

)
H (x− Zs) +K1

(
1− e−R −Re−R

)
H (x− Zs)

Υ̃1 (x; s) = (1/2)κ
−2/αs
s x2/αsH (x− Zs) + (1/2)

(
b−1
mmcmm

)2
H (x− Zs)

+b−2
mmecmm

(
e−cmm + e−cmmcmm − e−Tsx

1/αs
− Tsx

1/αse−Tsx
1/αs

)
H (x− Zs)

shadowing,i.e., Xs. This is due to the intractable PDF of the log-normal distribution (see Section

II-C). It is worth mentioning that, if a multi-state path-loss model is considered, the impact of

shadowing cannot be taken into account, differently from [6], by simply scaling the density of

BSs.

3) The expectation with respect to small-scale fading,i.e., g
(i)
s̃ , in (23) or (24) is usually

computable for several fading models,e.g., the gamma distribution. The expectation with respect

to the antenna radiation pattern,i.e., G(i), is usually difficult to be computed for general antenna

models. Even if it was computable, the resulting integral over y would not be, in general,

solvable. The use of the multi-ball (approximated) model in(13) allows one, on the other hand,

to compute the expectation without affecting the computation of the resulting integral overy.

4) The integral overy in (23) or (24) is, in general, not computable in closed-formbecause

of the complicated expression of the intensity measure in (20), which is not even available in

closed-form due to the need of taking into account the shadowing for cell association (see (2)).

5) Given antenna radiation pattern and small-scale fading models, the direct inspection of (18)-

(24) brings to our attention that ASE and PT are uniquely determined by the intensity measure

in (20). Given two different system models, in other words, the resulting ASE and PT would be

the same if they happen to have, for every link state, the sameintensity measure in (20).

Moving from these considerations, the IM-based approach isbased on the following. i) No

attempt for simplifying (18) and (19) is made. In Section V, however, asymptotic expressions

that offer design guidelines in relevant operating regimes(e.g., dense and sparse networks) are

provided. ii) For every link state, the intensity measure in(20) is approximated with another
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intensity measure that is more suitable for mathematical analysis and that, under the general

system model of Section II, leads to closed-form expressions for (21)-(24). With the aid of this

methodology, ASE and PT are formulated in a tractable (and insightful) two-fold integral.

C. Proposed Methodology

Based on this rationale, the IM-based approach requires thechoice of: i) an approximated

intensity measure that, based on (20)-(24), is suitable formathematical analysis and ii) a criterion

for computing, based on the exact intensity measure in (20),the set of its constituent parameters.

In addition, the choice of the approximated intensity and ofthe matching criterion need to be

formulated in a way that the impact of all relevant design parameters can be still identified. In the

remainder of this paper, to avoid ambiguity, all the parameters of the system model corresponding

to the IM-based approximation are identified by addinĝ(·) to the original parameter.

a) Approximated Intensity Measure:It is chosen so that it corresponds to a system model

where: i) the link state model is the multi-ball model in (1),i.e., ps (r) 7→ p̂s (r), ii) Xs 7→ X̂s = 1

for s ∈ S, and iii)λBS,s (r) 7→ λ̂BS,s (r) = λBS,s (r)E
{
X

2/αs
s

}
(a)
= λBS,s (r) exp (2µ̃s/αs + 2σ̃2

s/α
2
s)

for s ∈ S, where (a) follows from the fractional moments of a log-normal distribution with

µ̃s = µsln (10)/10 and σ̃s = σsln (10)/10. Accordingly, the approximated intensity measure,

Λ̂Φs ([·, ·)), of (20) and its first derivative,̂Λ(1)
Φs

([·, ·)), can be formulated as follows:

ΛΦs ([0, ξ)) ≈ Λ̂Φs ([0, ξ)) = 2πλBS exp (2µ̃s/αs + 2σ̃2
s/α

2
s)
∫ (ξ/κs)

1/αs

0
p̂s (r) rdr

(a)
= 2πλBS exp (2µ̃s/αs + 2σ̃2

s/α
2
s)
∫ (ξ/κs)

1/αs

0

(∑B̂+1
b=1 q̂

[D̂b−1,D̂b]
s 1[D̂b−1,D̂b] (r)

)
rdr

(b)
= πλBSΘs

∑B̂
b=1 q̂

[D̂b−1,D̂b]
s H

(
ξ − κsD̂

αs

b

)
H
(
ξ − κsD̂

αs

b−1

)(
(ξ/κs)

2/αs − D̂2
b−1

)

+πλBSΘs

∑B̂
b=1 q̂

[D̂b−1,D̂b]
s H

(
ξ − κsD̂

αs
b

)(
D̂2

b − D̂2
b−1

)

+πλBSΘsq̂
[D̂B̂

,∞]
s H

(
ξ − κsD̂

αs

B̂

)(
(ξ/κs)

2/αs − D̂2
B̂

)

(25)

Λ̂
(1)
Φs

([0, ξ)) = πλBSΘs (2/αs) κ
−2/αs
s ξ2/αs−1

∑B̂
b=1 q̂

[D̂b−1,D̂b]
s H

(
ξ − κsD̂

αs

b

)
H
(
ξ − κsD̂

αs

b−1

)

+πλBSΘs (2/αs)κ
−2/αs
s ξ2/αs−1q̂

[D̂B̂
,∞]

s H
(
ξ − κsD̂

αs

B̂

)

(26)

where (a) follows from (1), (b) by computing the resulting integral,Θs = exp (2µ̃s/αs + 2σ̃2
s/α

2
s).

Remark 7:The assumptionXs 7→ X̂s = 1 for s ∈ S is primarily made for mathematical

tractability, due to the intractable expression of the PDF of the log-normal distribution. It,

however, does not imply that log-normal shadowing is neglected in the approximated system
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model. The impact of shadowing, in fact,explicitly appears in̂λBS,s (·) and implicitly appears in

the set of parameters
{
B̂, D̂b, q̂

[·,·]
s

}
for b = 1, 2, . . . , B̂, i.e.,

{
B̂, D̂b, q̂

[·,·]
s

}
=
{
B̂ (µs, σs, κs, αs) ,

D̂b (µs, σs, κs, αs) , q̂
[·,·]
s (µs, σs, κs, αs)

}
. Stated differently, the main impact of shadowing explic-

itly appears inλ̂BS,s (·), while its secondary (remaining) impact is absorbed into the modified

set of parameters
{
B̂, D̂b, q̂

[·,·]
s

}
for b = 1, 2, . . . , B̂. This is apparent in (27) shown below, where

the criterion for obtaining the parameters of the approximation is formally stated. In the rest of

the present paper, for simplicity, we avoid this heavy notation and assume it implicitly. �

Remark 8:Even though, based onRemark 7, the impact of shadowing seems to disappear in

the mathematical framework, we prove, in Section V, that it can be clearly identified, in the final

expressions of ASE and PT, as a function of the parameters
{
D̂b, q̂

[·,·]
s , exp (2µ̃s/αs + 2σ̃2

s/α
2
s)
}

.

B̂, on the other hand, is decided a priori to keep the computational complexity under control.�

Remark 9:The choice of̂λBS,s (·), and, in particular, the scaling factorexp (2µ̃s/αs + 2σ̃2
s/α

2
s),

allows our approach to encompass, as a special case, the (exact) mathematical framework in [6],

which is applicable to the analysis of single-state link andunbounded path-loss models. �

b) Criterion for “Matching” the Intensities: Let B̂ be given (seeRemark 8). Λ̂Φs ([·, ·))

requires the estimation of
{
D̂b, q̂

[·,·]
s

}
for b = 1, 2, . . . , B̂. The adopted criterion is as follows:

argmin
{D̂b},

{
q̂
[·,·]
s

}
{∥∥∥ln

(
(2πλBS)

−1 ΛΦs ([0, xIM))
)
− ln

(
(2πλBS)

−1 Λ̂Φs ([0, xIM))
)∥∥∥

2

F

}
(27)

wherexIM is chosen sufficiently large in order to approximate the entire body of the intensity

measure and the logarithm function is used to better controlthe accuracy of the approximation.

In particular,ΛΦs ([0, ξ)) = 2πλBS

∫∞
0

Λ̃Φs ([0, xξ)) fXs (x) dx, where Λ̃Φs ([·, ·)) is one of the

functions available in Table V and̂ΛΦs ([·, ·)) is the intensity measure in (25).

Remark 10:From (27), all the parameters in̂ΛΦs ([·, ·)) of (25) are independent ofλBS. �

Remark 11:If the link state model is based on empirical data,e.g., on actual footprints of build-

ings [7], (27) tells us that we can avoid to estimateps (·) and can directly use empirical estimates

of the associated intensity measure, which, besides the locations and shapes of buildings, depends

on path-loss and shadowing models as well. How to computeΛΦs ([·, ·)) based on empirical data

is discussed in [7, Eq. (18)].ΛΦs ([·, ·)) may be even provided by telecommunication operators,

which could compute it based on specific path-loss and shadowing models tailored to particular

urban cities. With this input, (18) and (19) can be exploitedfor system-level optimization as a

function of many important system parameters (besides path-loss and blockage models). �
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It is worth mentioning, finally, the relevance thattractable but accurate approximationsare

recently gaining in the context of stochastic geometry analysis of realistic but intractable network

models [22]. The IM-based approach provides a contributionto these research activities. The

proposed approach, in particular, is aimed to yield a tractable approximation for taking into

account important link-level characteristics,e.g., multi-state links, that, if neglected, may lead

to erroneous conclusions about the performance of cellularnetworks. The BSs are, however,

still assumed to be distributed according to a PPP. Current research activities on modeling the

locations of cellular BSs with the aid of point processes different from the PPP,e.g., [22], are

complementary to the proposed IM-based approach. The generalization of the IM-based approach

to account for non-PPP models for the locations of cellular BSs is a research issue currently

being investigated by the authors. It is, however, beyond the scope of the present paper.

IV. A REA SPECTRAL EFFICIENCY AND POTENTIAL THROUGHPUT

Based on the IM-based approach, the following two propositions provide tractable (i.e., easy

to be computed numerically) mathematical expressions for ASE and PT. Short-hands:Ls (x) =

Λ̂
(1)
Φs

([0, x)) exp
(
−
∑

r∈S Λ̂Φr ([0, x))
)

,M
g
(0)
s

(x) = (1 + xΩs/ms)
−ms , M̄

g
(0)
s

(x) = 1−M
g
(0)
s

(x),

Fs (x) = 1−
∑KBS

l1=1

∑KMT

l2=1
ω
(l1)
BS

2π

ω
(l2)
MT

2π 2F1

(
ms,−

2
αs
, 1− 2

αs
,−x Ωs

ms
γ
(l1)
BS γ

(l2)
MT

)
.

Proposition 1:Consider the approximated intensity measure in (25). The ASE is the following:

ASE = λMTpsel
ln(2)

∑
s∈S
∫∞
0

∫∞
0

exp
(
−

zxσ2
N

G(0)PRB

)
MIagg(x)

(
z

G(0) |x
)
M̄

g
(0)
s

(z)Ls (x)
dzdx
z

(28)

whereMIagg(x) (z |x) = exp
(∑

r∈S T̂r (z, x)
)

and T̂r (·, ·) is defined as follows:

T̂r (z, x) = πλ
(I)
BSΘr

(
x
κr

)2/αr

Fr (z)
B̂∑

b=1

q̂
[D̂b−1,D̂b]
r

(
H
(
x− κrD̂

αr
b

)
H
(
x− κrD̂

αr
b−1

))

+πλ
(I)
BSΘr

B̂∑
b=1

q̂
[D̂b−1,D̂b]
r

(
D̂2

b−1Fr

(
xz

κrD̂
αr
b−1

)
H
(
x− κrD̂

αr
b−1

)
− D̂2

bFr

(
xz

κrD̂
αr
b

)
H
(
x− κrD̂

αr
b

))

+πλ
(I)
BSΘrq̂

[D̂B̂
,∞]

r

(
D̂2

B̂Fr

(
xz

κrD̂
αr
B̂

)
H
(
x− κrD̂

αr

B̂

)
+
(

x
κr

)2/αr

Fr (z)H
(
x− κrD̂

αr

B̂

))

(29)

Proof: It follows from (18), inserting (25), (26) in (21)-(24) andcomputing the integrals.�

Proposition 2:Consider the approximated intensity measure in (25). Let the same definitions

as inProposition 1hold. The PT isPT =λMTpsel log2 (1 + T)
(
1/2− C̄ (T)

/
π
)
, where:

C̄ (T) =
∑

s∈S
∫∞
0

∫∞
0

Im
{
exp

(
jzxσ2

NT

G(0)PRB

)
M

g
(0)
s

(jz)MIagg(x)

(
− jzT

G(0) |x
)}

Ls (x)
dzdx
z

(30)
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Proof: It follows from (19), inserting (25), (26) in (21)-(24) andcomputing the integrals.�

It is worth mentioning that the mathematical tractability of ASE and PT in (28) and (30),

respectively, originates from the adopted multi-ball linkstate model (see Section II-B) and from

the IM-based approximation introduced in Section III-C. These are the main novelties of the

proposed approach, which make the analytical expressions of ASE and PT inProposition 1and

Proposition 2along with their associated mathematical derivations unique.

To enable easier understanding of the impact of the link state model on system design and

optimization, the following corollary provides a simplified framework under the assumption of

a two-state (S = 2) and single-ball (B = 1) blockage model. In Section V, it is used to discuss

performance trends and to provide guidelines for system-level optimization. To be concrete and

clear, we assume that the two states,s1 ands2, correspond to LOS and NLOS links, respectively.

For ease of understanding, thus, the notations1 7→ LOS ands2 7→ NLOS is adopted.

Corollary 3: If S = 2 andB = 1, the expressions of ASE in (28) and PT in (30) still hold,

but MIagg(x) (z |x) = exp
(
T̂LOS (z, x) + T̂NLOS (z, x)

)
, and (25), (26), (29) simplify as follows:

Λ̂Φs ([0, ξ)) = πλBSΘsq̂
[0,D̂1]
s

(
(ξ/κs)

2/αs H
(
ξ − κsD̂

αs
1

)
+ D̂2

1H
(
ξ − κsD̂

αs
1

))

+πλBSΘsq̂
[D̂1,∞]
s

(
(ξ/κs)

2/αs − D̂2
1

)
H
(
ξ − κsD̂

αs
1

) (31)

Λ̂
(1)
Φs

([0, ξ)) = πλBSΘsq̂
[0,D̂1]
s (2/αs) κ

−2/αs
s ξ2/αs−1H

(
ξ − κsD̂

αs
1

)

+πλBSΘsq̂
[D̂1,∞]
s (2/αs)κ

−2/αs
s ξ2/αs−1H

(
ξ − κsD̂

αs
1

) (32)

T̂r (z, x) = πλ
(I)
BSΘrq̂

[0,D̂1]
r

((
x
κr

)2/αr

Fr (z)H
(
x− κrD̂

αr
1

)
− D̂2

1Fr

(
xz

κrD̂
αr
1

)
H
(
x− κrD̂

αr
1

))

+πλ
(I)
BSΘrq̂

[D̂1,∞]
r

((
x
κr

)2/αr

Fr (z)H
(
x− κrD̂

αr
1

)
+ D̂2

1Fr

(
xz

κrD̂
αr
1

)
H
(
x− κrD̂

αr
1

))

(33)

Proof: It follows by settingS = 2 andB = 1, some algebra and simplifications. �

V. PERFORMANCE TRENDS AND DESIGN INSIGHTS

In this section, based on the mathematical frameworks in Section IV, we study the impact of

several system parameters on the performance of cellular networks. Due to space limitations,

we focus our attention only on the ASE. By using a similar methodology of analysis, the same

study can be conducted for the PT. To gain the most of the insight for cellular networks design,

the mathematical framework inCorollary 3 constitutes the departing point of our analysis.
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TABLE VI: Auxiliary functions in (34). The notation is provided in footnote 3.

T̂in (z, x) = πλ
(I)
BS

∑
r∈{LOS,NLOS}

(
Θr q̂

[0,D̂1]
r

((
x
κr

)2/αr

Fr,in (z)− D̂2
1Fr,in

(
xz

κrD̂
αr
1

))
+Θr q̂

[D̂1,∞]
r D̂2

1Fr,in

(
xz

κrD̂
αr
1

))

T̂out (z, x) = πλ
(I)
BS

∑
r∈{LOS,NLOS}

(
Θr q̂

[D̂1,∞]
r (x/κr)

2/αr Fr,out (z)

)

Λ̂Φin ([0, x)) = πλBS

∑
r∈{LOS,NLOS}

(
Θr q̂

[0,D̂1]
r (x/κr)

2/αr

)
H

(
x− κrD̂

αr
1

)

Λ̂Φout ([0, x)) = πλBS

∑
r∈{LOS,NLOS}

(
Θr q̂

[0,D̂1]
r D̂2

1 +Θr q̂
[D̂1,∞]
r

(
(x/κr)

2/αr − D̂2
1

))
H

(
x− κrD̂

αr
1

)

Λ̂
(1)
Φs,in

([0, x)) = πλBSΘsq̂
[0,D̂1]
s (2/αs)κ

−2/αs
s x2/αs−1

Λ̂
(1)
Φs,out

([0, x)) = πλBSΘsq̂
[D̂1,∞]
s (2/αs)κ

−2/αs
s x2/αs−1

Let us start by rewriting the ASE inCorollary 3 in an explicit manner, in order to make the

physical meaning of its constituent elements more evident.With the aid of some algebra, the

ASE is equal toASE = (λMTpsel/ln (2)) (RLOS,in +RLOS,out +RNLOS,in +RNLOS,out), where:

Rs,in =
∫ κsD̂

αs
1

0

(∫∞
0

exp
(
−zx

σ2
N

G(0)PRB

)
exp

(
T̂in

(
z

G(0) , x
))

M̄
g
(0)
s

(z) dz
z

)

×Λ̂
(1)
Φs,in

([0, x)) exp
(
−Λ̂Φin

([0, x))
)
dx

Rs,out =
∫∞
κsD̂

αs
1

(∫∞
0

exp
(
−zx

σ2
N

G(0)PRB

)
exp

(
T̂out

(
z

G(0) , x
))

M̄
g
(0)
s

(z) dz
z

)

×Λ̂
(1)
Φs,out

([0, x)) exp
(
−Λ̂Φout ([0, x))

)
dx

(34)

wheres ∈ {LOS,NLOS} and the rest of the functions are reported in Table VI3.

The four terms that constitute the ASE have a clear physical interpretation:Rs,t for s ∈

{LOS,NLOS} andt ∈ {in, out} is the contribution to the ASE that originates when the serving

BS is in states and is located either inside (t = in) or outside (t = out) the ball of radiusD̂1. It

is worth mentioning, however, that the interfering BSs are not constrained to be located either

inside or outside the ball of radiuŝD1 if t = in or t = out, respectively.

The ASE in (34) is exact and holds forS = 2 and B = 1. In typical cellular network

deployments, it can be further simplified. The conditionq̂
[D̂1,∞]
LOS ≈ 0, in fact, usually holds.

This implies thatRLOS,out is negligible compared to the other three addends. In the sequel,

thus, we consider the approximationASE ≈ (λMTpsel/ln (2)) (RLOS,in +RNLOS,in +RNLOS,out),

which constitutes a tight estimate of the ASE. This is substantiated in Section VI with the aid of

empirical data. It is, however, still too complicated for gaining engineering insight. We propose,

hence, four asymptotic approximations that correspond to four important operating regimes. In

this section, we show that they shed light on key performancetrends and provide (different)

guidelines for the optimization of cellular networks. These findings are substantiated in Section

3Notation of Table VI –Fr,in (z) = Fr (z)H
(
z − κsD̂

αs
1

)
, Fr,out (z) = Fr (z)H

(
z − κsD̂

αs
1

)
.
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VI. For each case study, in particular, accurate and weak approximations are provided. The latter

ones are useful for gaining deeper design insight and are denoted by using the symbol∝.

For ease of exposition, wherever needed,λBS is replaced by its equivalent representation in

terms of average cell radius (Rcell), i.e., λBS ↔ 1/(πR2
cell) [10]. Also, the following short-hands

are introduced:̂θ
[0,D̂1]
LOS = ΘLOSq̂

[0,D̂1]
LOS D̂2

1, θ̂
[D̂1,∞]
NLOS = ΘNLOSq̂

[D̂1,∞]
NLOS D̂2

1, φ̂
[D̂1,∞]
NLOS = ΘNLOSq̂

[D̂1,∞]
NLOS ,

κ̂D = (κLOS/κNLOS) D̂
(αLOS−αNLOS)
1 , PN,D = PRB

/(
σ2
NκLOSD̂

αLOS
1

)
, PN = PRB/(σ

2
NκNLOS).

a) Very Dense (VD) Cellular Networks:This regime emerges if the following conditions

are satisfied: i)λBS/λMT ≫ 1 andRcell ≪ D̂1, ii) psel and poff are those in (10). Usually, in

addition,psel in (10) is close to one,i.e., psel → 1. As a result, the ASE is dominated byRLOS,in,

i.e., ASE → ASE(VD) = (λMT/ln (2))R
(VD)
LOS,in, whereR(VD)

LOS,in can be formulated as follows:

R
(VD)
LOS,in

(VD)
→
∫∞
0

∫∞
0

exp

(
π λMT

NRB

(
yFLOS

(
z

G(0)

)
− θ̂

[0,D̂1]
LOS FLOS

((
y

θ̂
[0,D̂1]
LOS

)αLOS/2
z

G(0)

)))

×πλBS exp (−πλBSy)M̄g
(0)
LOS

(z) dzdy
z

∝
∫∞
0

(
1− λMT

NRBλBS
FLOS

(
z

G(0)

))−1

M̄
g
(0)
LOS

(z) dz
z

(35)

where (VD) is obtained by taking the following into account:i) q̂
[D̂1,∞]
LOS ≈ 0, ii) D̂2

1 ≫(
(κLOS/κNLOS) D̂

αLOS
1

)2/αNLOS

and (κLOS/κNLOS) D̂
αLOS−αNLOS
1 ≪ 1, since αNLOS > αLOS,

iii) Fs (z) → 0 if z → 0, as well as, for very dense cellular networks, that iv) the noise is

negligible compared to the other-cell interference and v)
(
πλBSD̂

2
1

)
exp

(
−πλBSD̂

2
1y
)
≈ 0 if

y ∈ [1,∞). The weaker approximation in∝ follows by noting thatπλBSD̂
2
1 exp

(
−πλBSD̂

2
1y
)
→

πλBSD̂
2
1δ (y) if πλBSD̂

2
1 =

(
D̂2

1

/
R2

cell

)
≫ 1, which impliesFLOS

(
yαLOS/2z

)
≈ yαLOS/2FLOS (z)

andyFLOS (z)−yαLOS/2FLOS (z) ≈ yFLOS (z). ∝ is obtained by computing the resulting integral.

b) Dense (D) Cellular Networks:This regime emerges if the following conditions are

satisfied: i) the network is sufficiently dense that the typical MT is served, almost surely, by a

BS in LOS and located inside the ball of radiuŝD1, i.e., Rcell < D̂1 andASE → ASE(D) =

(λMTpsel/ln (2))R
(D)
LOS,in, but ii) the network is still sparse enough that there are (almost) no

inactive BSs and some MTs are still blocked,i.e., poff → 0, λBS/λMT < 1, andpsel is that in

(11). Thus,ASE(D) = (NRBλBS/ln (2))R
(D)
LOS,in andR(D)

LOS,in can be formulated as follows:

R
(D)
LOS,in

(D)
→ πλBSθ̂

[0,D̂1]
LOS

∫ 1

0

∫∞
0

exp

(
−πλBSθ̂

[0,D̂1]
LOS

(
y − yFLOS

(
z

G(0)

)
+ FLOS

(
yαLOS/2z

G(0)

)))

× exp

(
πλBSθ̂

[D̂1,∞]
NLOS FNLOS

(
κ̂D

yαLOS/2z
G(0)

))
M̄

g
(0)
LOS

(z) dzdy
z

(36)
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∝
∫∞
0

∫∞
0

exp

(
yFLOS

(
z

G(0)

)
− πλBSθ̂

[0,D̂1]
LOS FLOS

((
y

πλBSθ̂
[0,D̂1]
LOS

)αLOS/2
z

G(0)

)
− y

)
M̄

g
(0)
LOS

(z) dzdy
z

where (D) is obtained by taking the following into account: i) q̂
[D̂1,∞]
LOS ≈ 0, ii) D̂2

1 ≫(
(κLOS/κNLOS) D̂

αLOS
1

)2/αNLOS

, sinceαNLOS > αLOS, as well as, for dense cellular networks,

that iii) the noise is negligible compared to the other-cellinterference. The weaker approxima-

tion in ∝ follows by noting thatFNLOS

(
κ̂Dy

αLOS/2z
)
≪ FLOS

(
yαLOS/2z

)
since κ̂D ≪ 1 for

αNLOS > αLOS, and
(
πλBSD̂

2
1

)
exp

(
−πλBSD̂

2
1y
)
≈ 0 if y ∈ [1,∞) andRcell < D̂1.

c) Sparse (S) Cellular Networks:This regime emerges if the following conditions are

satisfied: i) the network is sufficiently sparse such that there are (almost) no inactive BSs,i.e.,

poff → 0, but ii) the network is dense enough thatbothRLOS,in andRNLOS,out contribute to the

ASE, i.e., Rcell > D̂1, some MTs are blocked,i.e., λBS/λMT < 1, andpsel is that in (11). Thus,

ASE → ASE(S) = (NRBλBS/ln (2))
(
R

(S)
LOS,in +R

(S)
NLOS,out

)
with R

(S)
LOS,in, R

(S)
NLOS,out equal to:

R
(S)
LOS,in

(S1)
→ πλBSθ̂

[0,D̂1]
LOS

∫ 1

0

∫∞
0

exp
(
−yαLOS/2

PN,D

z
G(0)

)
M̄

g
(0)
LOS

(z)

× exp

(
−πλBSθ̂

[0,D̂1]
LOS

(
y − yFLOS

(
z

G(0)

)
+ FLOS

(
yαLOS/2 z

G(0)

)))
dzdy
z

∝ πλBSθ̂
[0,D̂1]
LOS

∫ 1

0

∫∞
0

exp
(
−yαLOS/2

PN,D

z
G(0)

)
M̄

g
(0)
LOS

(z)

×

(
1− πλBSθ̂

[0,D̂1]
LOS

(
y − yFLOS

(
z

G(0)

)
+ FLOS

(
yαLOS/2 z

G(0)

)))
dzdy
z

(37)

R
(S)
NLOS,out

(S2)
→
∫∞
0

∫∞
0

exp

(
−

(
y

πλBSφ̂
[D̂1,∞]
NLOS

)αNLOS/2
1
PN

z
G(0)

)
M̄

g
(0)
NLOS

(z)

× exp
(
−
(
y − yFNLOS

(
z

G(0)

)))
dzdy
z

(38)

where (S1) and (S2) are obtained by taking the following into account: i)q̂
[D̂1,∞]
LOS ≈ 0, ii) D̂2

1 ≫(
(κLOS/κNLOS) D̂

αLOS
1

)2/αNLOS

, sinceαNLOS > αLOS, as well as, for sparse cellular networks, iii)

πλBSD̂
2
1 exp

(
−πλBSD̂

2
1y
)
≈ 0 if y ∈ [0, 1] in (S2), sinceRcell > D̂1. The weaker approximation

in ∝ follows by noting thatf (y, z) = y − yFLOS (z) + FLOS

(
yαLOS/2z

)
∈ [0, 1] for y ∈ [0, 1],

z ≥ 0, soexp

(
−πλBSθ̂

[0,D̂1]
LOS f (y, z)

)
≈ 1−πλBSθ̂

[0,D̂1]
LOS f (y, z) if πλBSD̂

2
1 =

(
D̂2

1

/
R2

cell

)
< 1.

d) Very Sparse (VS) Cellular Networks:This regime emerges if the following conditions are

satisfied: i)λBS/λMT ≪ 1 andRcell ≫ D̂1, ii) psel andpoff are those in (11). Usually, in addition,

poff in (11) is close to zero,i.e., poff → 0. As a result, the ASE is dominated byRNLOS,out, i.e.,
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TABLE VII: Summary of performance trends. “Rate” and “ASE” are those in (36)-(39) for VD, D, S, and VS
cellular networks, respectively. The notation is providedin footnote 4.

Very Dense (VD) Networks Dense (D) Networks Sparse (S) Networks Very Sparse (VS) Networks
λBS ր Rateր – ASEր Rateց – ASE ? Rateր – ASEր Rateր – ASEր
λMT ր Rateց – ASEր Rate↔ – ASE↔ Rate↔ – ASE↔ Rate↔ – ASE↔
NRB ր Rateր – ASEր Rate↔ – ASEր Rateց – ASEր Rateց – ASEր
PBS ր Rate↔ – ASE↔ Rate↔ – ASE↔ Rateր – ASEր Rateր – ASEր

G(0) ր Rateր – ASEր Rateր – ASEր Rateր – ASEր Rateր – ASEր
D1 ր Rateց – ASEց Rateց – ASEց Rateր – ASEր Rate↔ – ASE↔
σs ր Rateր – ASEր Rateր – ASEր Rate? – ASE ? Rateր – ASEր

ASE → ASE(VS) = (NRBλBS/ln (2))RNLOS,out, whereR(VS)
NLOS,out can be formulated as follows:

R
(VS)
NLOS,out

(S2)
→
∫∞
0

∫∞
0

exp

(
−

(
y

πλBSφ̂
[D̂1,∞]
NLOS

)αNLOS/2
1
PN

z
G(0)

)
M̄

g
(0)
NLOS

(z)

× exp
(
−
(
y − yFNLOS

(
z

G(0)

)))
dzdy
z

(39)

where (VS) is obtained similar to (S2) in (38). In fact,R(VS)
NLOS,out = R

(S)
NLOS,out.

From (36)-(39), the impact of important design parameters can be unveiled. A summary of

the related performance trends is provided in Table VII4.

Before proceeding further, it is worth mentioning that the ASE in (34) is conveniently for-

mulated in terms of a two-fold integral whose integrand function is the product of four terms,

each one having a precise physical meaning: 1)exp
(
−zxσ2

N

/(
G(0)PRB

))
accounts for the noise,

2) exp
(
T̂t

(
z
/
G(0), x

))
accounts for the other-cell interference, 3)̄M

g
(0)
s

(z) accounts for the

fast-fading of the intended link, and 4)̂Λ(1)
Φs,t

([0, x)) exp
(
−Λ̂Φt ([0, x))

)
accounts for the path-

loss of the intended link. This helps interpreting, in the next sub-sections, the (approximated)

mathematical expressions in (36)-(39).

The impact of several system parameters follows by direct inspection of (36)-(39). These

simple case studies are not explicitly discussed in the sequel. The impact of a few important

parameters deserves, on the other hand, further comments and clarifications. In some cases, in

addition, their impact in very dense, dense, sparse and verysparse cellular networks is different.

A. Impact of the Density of Base Stations

Increasing the density of BSs has a different impact, depending on the operating regime being

considered. The comments in what follows hold if the antennas are not very directive. In Section

V-D, the impact of the antenna radiation pattern is discussed and elaborated in detail.

4Notation of Table VII –X ր, X ց and X ↔ mean thatX increases with, decreases with, is independent ofX,
respectively;X ? means that the trend is unpredictable and further details are provided in the main body of the text.
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a) Very Dense Regime:Both approximations in (35) highlight that rate and ASE increase

asλBS increases. The accurate approximation in (35) shows that increasingλBS brings the BSs

closer to the MTs (because ofπλBS exp(−πλBSy)) without increasing the other-cell interference

(see the first exponential function in the integrand), whichdoes not depend onλBS.

b) Dense Regime:The weak approximation in (36) shows that increasingλBS decreases

the rate. In fact, the function−
(
D̂2

1

/
R2

cell

)
FLOS

(((
R2

cell

/
D̂2

1

)
y
)αLOS/2 (

z
/
G(0)

))
is positive

and monotonically decreases asRcell decreases fory ∈ [0, 1] and z ≥ 0. Unlike (35), in fact,

(36) highlights that both the intended power and the other-cell interference depend onλBS. The

impact ofλBS on the ASE depends, on the other hand, on the pair
(
D̂1, G

(0)
)

. The derivative of

the related integrand function with respect toλBS is, in fact, neither always positive nor always

negative for everyy ∈ [0, 1] andz ≥ 0. Further comments are provided in Sections V-D, V-E.

c) Sparse and Very Sparse Regimes:The weak approximation in (37) and (38) demonstrate

that increasingλBS increases the rate. In fact,

(
πλBSθ̂

[0,D̂1]
LOS

)2

≪ πλBSθ̂
[0,D̂1]
LOS if D̂2

1

/
R2

cell < 1,

which implies that (37) increases withλBS. The impact ofλBS on the ASE is the same.

B. Impact of the Density of Mobile Terminals

The density of MTs has a noticeable impact on rate and ASE onlyin the very dense regime. In

this case, in fact,λMT determines the other-cell interference, since many BSs arelikely not to have

MTs to serve and, thus, are inactive. In all the other regimes, on the other hand, all BSs are likely

to be active and to contribute to the other-cell interference. Both approximations in (35) show

that the rate decreases asλMT increases. The impact ofλMT on the ASE needs deeper inspection.

Based on the weak approximation in (35), the ASE is a functionof λMT/(1 + λMTf (z)), where

f (z) = −(NRBλBS)
−1F

(
z
/
G(0)

)
≥ 0 for z ≥ 0. Since its first derivative with respect toλMT

is positive forz ≥ 0, we conclude that the ASE increases asλMT increases.

C. Impact of the Number of Resource Blocks

In very dense and dense regimes, the impact ofNRB follows from (35) and (36). In sparse

and very sparse regimes, (37)-(39) highlight that the impact of NRB on the ASE depends on two

contrasting effects: on the one hand, the number of served MTs increases withNRB, and, on

the other hand, the transmit power per RB decreases withNRB. The net impact ofNRB in these

regimes deserves some additional comments. In the sparse regime, since

(
πλBSθ̂

[0,D̂1]
LOS

)2

≪

πλBSθ̂
[0,D̂1]
LOS if D̂2

1

/
R2

cell < 1, the net impact ofNRB on R
(S)
LOS,in is determined by:

NRB

∫ 1

0
exp

(
−NRBy

αLOS/2f (z)
)
dy = 2

αLOS
f (z)−2/αLOS N

1−2/αLOS

RB γ
(

2
αLOS

, NRBf (z)
)

(40)



SUBMITTED FOR JOURNAL PUBLICATION 26

wheref (z) =
(
σ2
NκLOSD̂

αLOS
1 z

)/(
PBSG

(0)
)
≥ 0 and γ (·, ·) is the lower incomplete gamma

function. From (40), we conclude that, in the sparse regime,R
(S)
LOS,in increases asNRB increases.

A similar study can be conducted forR(S)
NLOS,out. In this case, the integral overy can be expressed

in closed-form in terms of the Meijer G-function, which can be shown to increase asNRB

increases. From (37)-(39), we conclude that the ASE increases asNRB increases.

D. Impact of the Antenna Radiation Pattern

SinceFs (z) → 0 if z → 0, (35)-(39) prove, in all regimes, that rate and ASE increaseas the

directivity of the antenna increases. In very dense and dense regimes, the other-cell interference

is reduced. In sparse and very sparse regimes, the intended link is enhanced. If,e.g., the antennas

are highly directive, increasingλBS increases the ASE in the dense regime (Section V-A).

E. Impact of the Density of Blockages

According to [15], the parameterbRS of the blockage model based on random shape theory

(see Table II) is directly related to the percentage of area covered by buildings. The higher the

density of blockages is, more specifically, the largerbRS is. In the single-ball model ofCorollary

3, the radius,D̂1, of the LOS/NLOS ball plays the same role asbRS. By applying the matching

criterion in (27), in particular, it is possible to show thatD̂1 decreases asbRS increases. Further

details are provided in Section VI. In other words, the higher the density of blockages is, the

smallerD̂1 is. This is in agreement with intuition: the more the buildings, the shorter the distance

that a link is in LOS with high probability. By analyzing the impact ofD̂1 in (35)-(39), as a result,

the effect of blockages can be unveiled. Let us consider (35)and (36). By direct inspection, it

follows that−D̂2
1Fs

(
z/D̂2

1

)
is positive and that it monotonically decreases asD̂1 > 1 increases.

This implies that increasinĝD1 (i.e., fewer blockages are present), both rate and ASE decrease.

In very dense and dense regimes, hence, the presence of blockages is useful for reducing the

impact of the other-cell interference. The weaker approximation in (35), however, is independent

of D̂1. This implies that, in the very dense regime, the impact of blockages is expected to be

limited. From (39), we note that the impact of blockages is minor in the very sparse regime as

well. From (37), on the other hand, we note that the impact of blockages is determined by:

ΘLOSq̂
[0,D̂1]
LOS D̂2

1

∫ 1

0
exp

(
−

D̂
αLOS
1 z

G(0) yαLOS/2
)
dy = ΘLOSq̂

[0,D̂1]
LOS

2
αLOS

(
z

G(0)

)−2/αLOS γ
(

2
αLOS

,
D̂

αLOS
1 z

G(0)

)

(41)

From (41), we conclude that, in the sparse regime, rate and ASE decrease aŝD1 decreases.
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F. Impact of the Shadowing Severity

Based on Section III-C, the standard deviation of shadowing, σs, affectsD̂1, q̂
[·,·]
s andΘs. By

inspection of (35)-(39), the impact ofσs implicitly emerges inθ̂
[0,D̂1]
LOS , φ̂

[D̂1,∞]
NLOS andPN,D. By

applying the matching criterion in (27) to different blockage models, it is possible to show that

θ̂
[0,D̂1]
LOS andD̂1 both decrease and̂φ

[D̂1,∞]
NLOS increases asσs increases. Further details are provided in

Section VI. From (35)-(39), as a result, the impact of shadowing on rate and ASE is determined

by D̂1 in very dense and dense regimes. The trends, thus, follow from Section V-E. In sparse

networks, (41) highlights that the impact ofσs highly depends on the blockage model being

considered,i.e., the specific triplet of parameters

(
ΘLOS, q̂

[0,D̂1]
LOS , D̂αLOS

1

)
that appears in (41).

In very sparse networks, (39) shows that rate and ASE increase asσs increases.

G. Existence of a Local Minimum and Maximum of the Rate

Let us consider the expressions of the rate for very dense anddense cellular networks in

(35) and (36), respectively. They have an opposite trend as afunction of the density of BSs: if

λBS increases, the rate increases in the very dense regime and decreases in the dense regime,

respectively. They, in addition, coincide with each other if λBS = λMT/NRB. This implies that

the rate is expected to have a local minimum whenλBS ≈ λMT/NRB approximatively holds.

Let us consider the expressions of the rate for dense and sparse cellular networks in (36)

and (37), respectively. They have an opposite trend as a function of the density of BSs: ifλBS

increases, the rate decreases in the dense regime and increases in the sparse regime, respectively.

This implies that the rate is expected to have a local maximum. By direct inspection of the

weaker approximation in (37), this local maximum occurs when πλBSθ̂
[0,D̂1]
LOS ≈

(
πλBSθ̂

[0,D̂1]
LOS

)2

,

which impliesD̂2
1

/
R2

cell ≈
(
D̂2

1

/
R2

cell

)2
andRcell ≈ D̂1. In other words, the local maximum

depends on the density of blockages and the corresponding average cell radius is expected to be

proportional to the radius,̂D1, of the LOS/NLOS ball that models the blockages. From Section

V-E, we know that the higher the density of blockages is, the smaller the radius of the LOS/NLOS

ball. Moving from rural to urban scenarios, thus, increasing the density of BSs is needed, as

expected, to enable cellular networks working close to sucha local maximum.

In the rate, the local minimum and maximum are expected to be clearly visible if the condition

λMT/NRB ≫ 1
/(

πD̂2
1

)
holds. In this case, in fact, the dense regime emerges distinctly.

H. Guidelines for System-Level Optimization

From an engineering standpoint, the existence of a local minimum and of a local maximum of

the rate provides important design guidelines for system-level optimization. More specifically, a
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TABLE VIII: Simulation setup (compliant with 3GPP and Long Term Evolution Advance (LTE-A)).
Path-Loss αLOS = 2.6, αNLOS = 3.8, κLOS = κNLOS = (4πf0/c0)

2 with f0 = 2.1 GHz, c0 ≈ 3 · 108 m/s
Shadowing, fading σLOS = 4 dB, σNLOS = 10 dB, ΩLOS = ΩNLOS = 1, mLOS = 2.8, mNLOS = 1

BS power, noise PBS = 20 dBm, σ2
N = −174 + 10 log10(BW) +F dBm with BW = 180 kHz, F = 10 dB

Link-state 3GPP [8]:a3G = 18, b3G = 36, c3G = 1; RS [23]: aRS = 1, bRS = 0.046 m−1

Empirical BSs: O2 in [7, Table 1], [7, Fig. 1],Rcell ≈ 83.4 m; buildings: London [7, Fig. 1], [7, Sec. 2.3.1]

λMT =
(
πR2

MT

)−1
RMT ≈ {3.9, 7.6, 11.9, 50, 100} m is the population density of Paris, London, Rome, Pennsylvania, Texas

density of BSs in the rangeλBS ∈
(
1
/(

πD̂2
1

)
, λMT/NRB

)
with λMT/NRB > 1

/(
πD̂2

1

)
should

be avoided, since the rate decreases ifλBS increases. Setups whereλBS > λMT/NRB may be

considered only if economically convenient and cost-effective. As a rule of thumb, system setups

where the average cell radius is of the order of magnitude of the radius of the LOS/NLOS ball,

which depends on the density of blockages and, so, on the specific environment, may represent

a good trade-off between achievable performance and cost. Asimilar conclusion was somehow

implied in [12] for fully-loaded cellular networks and for aspecific set of system parameters.

The connection with the density of blockages, however, was not explicitly made. Quoting [12]:

“Note that our conclusion is made from the investigated set ofparameters, and it is of significant

interest to further study the generality of this conclusionin other network models and with other

parameter sets”. The mathematical approach proposed in the present paper is applicable to a

more general system setup and the impact of all system parameters clearly emerges from the

asymptotic frameworks. It generalizes, in addition, the preliminary findings in [11] on the impact

of the density of BSs in partially-loaded cellular networks, which were obtained with the aid of

linear regression analysis. The IM-based approach allows us to draw general conclusions and to

perform accurate system-level optimization without the need of simplifying the system model.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, numerical results are illustrated and commented with the aim of validating the

accuracy of the IM-based approach for various blockage,i.e., link state, models (see Table II),

and of substantiating the findings and performance trends identified in Section V. The proposed

approach is further compared against empirical data and numerical estimates of rate and ASE

obtained for the actual locations of BSs and footprints of buildings corresponding to a dense

urban area in downtown London. Information about this empirical dataset is available in [7].

The details of the simulation setup are provided in Table VIII. For ease of illustration and for its

practical relevance, a two-state blockage model is considered, i.e., with LOS and NLOS links.

In all figures, system-level (Monte Carlo) simulation results are obtained without enforcing

any approximations on the antenna radiation pattern and on the blockage model. The IM-based
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TABLE IX: Parameters of the IM-based approximation computed by using (27): one-ball model.

D̂1 (m) q̂
[0,D̂1]
LOS q̂

[D̂1,∞]
LOS

3GPP 186.2083 0.4256 ≈ 10−12

Random shape 38.7305 0.3999 0
Empirical 87.6027 0.3466 0

TABLE X: Parameters of the IM-based approximation computedby using (27): three- and four-ball models.

D̂1 (m) D̂2 (m) D̂3 (m) D̂4 (m) q̂
[0,D̂1]
LOS q̂

[D̂1,D̂2]
LOS q̂

[D̂2,D̂3]
LOS q̂

[D̂3,D̂4]
LOS q̂

[D̂4,∞]
LOS

3GPP 38.8639 187.0276 1708.6 23922 0.9119 0.2312 0.0241 0.0019 4.63 · 10−5

Random shape 10.2020 30.4979 105.1919 ∞ 0.7666 0.3923 0.0588 0 –
Empirical 15.9867 60.2296 242.2488 ∞ 0.7125 0.3299 0.0572 0 –

TABLE XI: Impact of blockages on the IM-based approximationof the RS link state model.

D̂1 (m) D̂2 (m) D̂3 (m) q̂
[0,D̂1]
LOS q̂

[D̂1,D̂2]
LOS q̂

[D̂2,D̂3]
LOS q̂

[D̂3,∞]
LOS

bRS = 0.01 29.5080 112.7958 397.2890 0.8711 0.4728 0.0767 0
bRS = 0.03 13.2667 43.2311 152.0526 0.8057 0.4221 0.0630 0
bRS = 0.05 9.7242 28.5634 98.0039 0.7577 0.3857 0.0579 0
bRS = 0.07 8.0938 22.1310 74.0757 0.7171 0.3565 0.0543 0
bRS = 0.09 7.144 18.5074 60.5836 0.6801 0.3316 0.0511 0

TABLE XII: Impact of shadowing on the IM-based approximation of 3GPP link state model (σLOS = σNLOS = σ).

D̂1 (m) D̂2 (m) D̂3 (m) D̂4 (m) q̂
[0,D̂1]
LOS q̂

[D̂1,D̂2]
LOS q̂

[D̂2,D̂3]
LOS q̂

[D̂3,D̂4]
LOS q̂

[D̂3,∞]
LOS

σ = 1 dB 52.1531 292.4923 2958.8 39558 0.9368 0.1597 0.0158 0.0013 4.83 · 10−5

σ = 3 dB 45.9521 252.7484 2604.3 36179 0.9294 0.1699 0.0164 0.0013 4.50 · 10−5

σ = 5 dB 36.4947 199.8493 2094.5 30848 0.9110 0.180 0.0169 0.0013 3.87 · 10−5

σ = 7 dB 26.3860 148.8296 1568.1 24696 0.8808 0.1831 0.0169 0.0013 3.08 · 10−5

σ = 9 dB 17.4373 105.1683 1109.2 18702 0.8367 0.1774 0.0164 0.0012 2.25 · 10−5

approach is, on the other hand, based on their approximations in Tables IV and X.

A. IM-based Approach: Approximations and Impact of Shadowing and Density of Blockages

Tables IX and X provide the input parameters of the IM-based approach for one- and three-

& four-ball approximations, respectively. Unless otherwise stated, the setup in Table VIII is

used. The three- & four-ball models offer a more accurate approximation of the actual blockage

models, at the cost of a higher computational complexity. The reason why both approximations

are considered is that the one-ball model, even though less accurate, provides similar performance

trends as the three- & four-ball models, which, in further text, are shown to be in agreement

with the conclusions drawn in Section V and based on (35)-(39). All mathematical frameworks

are generated by using the data in Tables IX, X and (34). The data reported in Tables XI and

XII, on the other hand, are useful for validating the conclusions drawn in Sections V-E and

V-F, respectively. They are shown only for three- & four-ball approximations, but the same

trends hold for the one-ball approximation and for link state models different from 3GPP and

RS. They confirm that the radii of the balls decrease as the density of blockages increases (i.e.,

bRS increases), and that they decrease as the shadowing standard deviation increases. Thus, the

expected trends discussed in Section V-F for the parametersθ̂
[0,D̂1]
LOS andϕ̂

[D̂1,∞]
NLOS are confirmed.
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Fig. 2: R/ ln (2) (a) and ASE (b) of one- and two-
state blockage models. Markers: Monte Carlo simu-
lations. Solid lines: IM-based approximation (three-
ball). Setup: “RS” in Table VIII, PPP-distributed BSs,

NRB = 4, RMT = 3.9 m, Omni antennas.
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Fig. 3: R/ ln (2) (a) and ASE (b) of one- and two-
state blockage models. Markers: Monte Carlo simu-
lations. Solid lines: IM-based approximation (three-
ball). Setup: “RS” in Table VIII, PPP-distributed BSs,

NRB = 8, RMT = 3.9 m, Omni antennas.

B. IM-based Approach: On the Importance of Modeling Assumptions

In Figs. 2 and 3, rate and ASE of one-state (only LOS or NLOS links) and two-state (LOS and

NLOS links) channel models are compared against each other.As far as the two-state channel

model is concerned, the analytical results are obtained by using (34) and the approximation

in Table X (“RS”). As far as the one-state channel model is concerned, two case studies are

considered: i) all links are in LOS andα = αLOS and ii) all links are in NLOS andα = αNLOS,

whereαLOS andαNLOS are those in Table VIII. In this latter case, the analytical results are still

obtained by using (34) and assumingpLOS(r) = 1 and pNLOS(r) = 1 for every r, respectively.

Furthermore, PPP-distributed BSs are assumed. Figs. 2 and 3highlight the importance of taking

accurate blockage models into account. A far as the rate is concerned, we note that an optimal

value of the density of BSs emerges if LOS and NLOS links are considered. As far as the ASE is

concerned, we note that, depending on the operating regime (e.g., sparse vs. dense deployments),

it may increase either sub-linearly or super-linearly as a function of the density of BSs.

C. Validation of the IM-based Approach Against the Empirical Dataset in [7]

In Fig. 4, rate and ASE obtained by using (34) and the approximations in Table X (“Empirical”)

and Table IV (antenna radiation pattern) are compared against system-level simulations of an

actual deployment of BSs and buildings. The IM-based approach provides a good accuracy. Since

Rcell ≈ 83.4 m, RMT ≈ 7.6 m, D̂1 ≈ 87.6 m, the network operates close to its local optimum

(Rcell ≈ D̂1) and it is in between a dense and a sparse regime. Figure 4 shows that the rate is
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almost independent but slightly decreases withNRB and that the ASE increases withNRB. This

agrees with Table VII. It confirms the important role played by the directivity of the antennas,

in order to make the intended link stronger and to reduce the other-cell interference.

The rest of the figures are generated by assuming that the BSs are distributed according to

a PPP. They, in fact, are aimed to illustrate the impact ofλBS on rate and ASE, which, on the

other hand, is fixed and given in [7]. Different blockage models, however, are considered.

D. Validation of the IM-based Approach Against the RS and 3GPP Blockage Models

In Figs. 5 and 6, rate and ASE obtained by using (34) and the approximation in Table X

(“RS” and “3GPP”) are compared against system-level simulations. PPP-distributed BSs are

assumed, as well as RS and 3GPP blockage models are considered, respectively. In both cases,

the local minimum and maximum of the rate can be identified distinctly. The figures confirm

that the local minimum is almost independent of the blockagemodel and increases withNRB,

while the local maximum increases witĥD1, which, in turn, depends on the link state model.

Qualitatively and quantitatively, the predictions in Section V-G are confirmed. Fig. 6(b) confirms

that directive antennas significantly enhance the rate. In the dense regime, Fig. 5(b) shows that

the ASE monotonically increases asλBS increases. This trend is preserved for all case studies

based on the setup in Table VIII. In Fig. 9, a counter-exampleis shown, which highlights that,

in the dense regime, the ASE may decrease asλBS increases. This confirms the unpredictability

highlighted in Table VII (see “?”) and that the impact of somesystem parameters depends on

the considered setup. We emphasize that we have analyzed several setups and that all the trends

in Table VII without “?” have been confirmed. This substantiates our mathematical analysis.

E. Validation of the IM-based Approach Against the Density of MTs

In Fig. 7, rate and ASE obtained by using (34) and the approximation in Table X (“RS”)

are compared against system-level simulations. PPP-distributed BSs are assumed and the RS

blockage model is considered. The impact ofλMT on rate and ASE is in agreement with the

predictions in Table VII. In the rate, in particular, we notethat the local minimum and the

local maximum are not present if the conditionλMT/NRB ≫ 1
/(

πD̂2
1

)
is not satisfied. More

precisely, they are present only ifRMT < D̂1 = 38.7305 m (see Table IX). This confirms the

findings in Sections V-G and V-H. Furthermore, it is interesting to note that, by adopting a

realistic load model, the ASE monotonically increases withboth λMT andλBS.

F. Validation of the IM-based Approach Against the Density of Blockages and Shadowing

In Figs. 8 and 9(a), the rate obtained by using (34) and the approximation in Table X (“RS”

and “3GPP”) is compared against system-level simulations.PPP-distributed BSs are assumed and
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Fig. 4: R/ ln (2) (a) and ASE (b). Markers: Monte
Carlo simulations. Solid lines: IM-based approxima-
tion (three-ball). Setup: “Empirical” in Table VIII,

RMT = 7.6 m.
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Fig. 5: R/ ln (2) (a) and ASE (b). Markers: Monte
Carlo simulations. Solid lines: IM-based approxima-
tion (three-ball). Setup: “RS” in Table VIII, PPP-

distributed BSs,RMT = 3.9 m, Omni antennas.

2 5 10 25 50100 300 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
cell

 [m]

R
at

e 
[b

ps
/H

z]

(a)

 

 
N

RB
 = 1

N
RB

 = 4

N
RB

 = 8

2 5 10 25 50100 300 1000
0

2

4

6

8

10

12

14

16

R
cell

 [m]

R
at

e 
[b

ps
/H

z]

(b)

 

 

N
RB

 = 1

N
RB

 = 4

N
RB

 = 8

Fig. 6:R/ ln (2) for Omni (a) and 3GPP (b) antennas.
Markers: Monte Carlo simulations. Solid lines: IM-
based approximation (three-ball). Setup: “3GPP” in

Table VIII, PPP-distributed BSs,RMT = 3.9 m.
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the RS blockage model is considered. Both figures confirm the performance trends predicted in

Table VII. The density of blockages, in particular, has a noticeably different impact in dense

and sparse regimes. By comparing Figs. 8(b) and 9(a), in the sparse regime, the unpredictable

impact of the shadowing severity is confirmed: the rate decreases and increases as the shadowing

standard deviation increases for RS and 3GPP link state models, respectively.

G. ASE in the Dense Regime: On the Unpredictable Impact of theDensity of BSs

In Fig. 9(b), we consider a special case study, which is aimedto show that, in the dense

regime, the ASE may decrease asλBS increases. The following setup is considered:RMT = 3.9

m, αLOS = 2.01, αNLOS = 5.5, σLOS = σNLOS = 1 dB, D̂1 = 29.5080 m, D̂2 = 112.7958
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m, D̂3 = 397.2890 m, q̂
[0,D̂1]
LOS = 0.99, q̂

[D̂1,D̂2]
LOS = 0.8711, q̂

[D̂2,D̂3]
LOS = 0.0767 and q̂

[D̂3,∞]
LOS = 0.

This figure confirms that it may happen that the ASE decreases even if a practical load model

is used (omni antennas setup). This is somehow in agreement with the findings in [12], where

no load is considered. We emphasize that in all the other casestudies analyzed in the present

paper, however, we have obtained that, for the considered load model, the ASE monotonically

increases asλBS increases. The figure, in addition, confirms that the use of directional antennas

provides a monotonic increase of the ASE, which is in agreement with the trends discussed in

Section V-D. This confirms the benefits of densification underpractical operating conditions.

VII. CONCLUSION

In this paper, the IM-based approach has been introduced. Itis a mathematically tractable

approximation conceived for accurate system-level analysis of PPP-based cellular networks. The

accuracy of the proposed approach has been substantiated with the aid of empirical data and for

various blockage models. The approach is shown to provide insightful mathematical expressions

for spectral efficiency and rate of cellular networks, and, in particular, several conclusions on the

impact of network densification, blockage model and directivity of the antennas can be drawn.

Currently, the authors are working on the generalization ofthe proposed approach for appli-

cation to more general load models, to non-PPP models for thelocations of cellular BSs, to take

into account spatial correlations originating from the presence of blockages, and to the design

and optimization of inter-operator cloud radio access networks and resources sharing.
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