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Abstract—In wireless cloud storage systems, the recovery fail-
ure probability depends on not only wireless channel conditions
but also storage size of each distributed storage node. For an
efficient utilization of limited storage capacity and the perfor-
mance characterization of allocation strategies, we asymptotically
analyze the recovery failure probability of a wireless cloud
storage system with a sum storage capacity constraint for both
high SNR regime and low SNR regime. Then, we find the optimal
storage allocation strategy across distributed storage nodes in
terms of the asymptotic recovery failure probability. Our analysis
reveals that the maximal symmetric allocation is optimal for
high SNR regime and the minimal allocation (with ⌊T ⌋ complete
storage nodes and an incomplete storage node) is optimal forlow
SNR regime, whereT is the sum storage capacity. Based on the
numerical investigation, we also show that in intermediateSNR
regime, a balance allocation between the minimal allocation and
the maximal symmetric allocation would not be required if we
select one between them according to SNR.

Index Terms—Cloud storage system, wireless storage, maxi-
mum distance separable coding, recovery failure, storage alloca-
tion.

I. I NTRODUCTION

In recent years, the advent of various kinds of social net-
works, high-definition video streaming, and ubiquitous cloud
storage entails large-scale storage in communication networks.
Cloud storage systems are able to meet the demand on large-
scale storage capacity only with limited storage capacity
of each storage node. Moreover, the cloud storage systems
improve reliability of data storage and recovery since theyare
robust to failures of individual storage nodes to a certain de-
gree. The robustness also makes repair and maintenance easy
when an appropriate network coding technique is adopted.

Theoretically, successful recovery in a cloud storage system
is possible if and only if the corresponding max-flow or min-
cut from the storage nodes is greater than or equal to the sizeof
the original data object. To implement this feature, given two
positive integersk andn, a(n, k) maximum distance separable
(MDS) code can be used to encode and store the original data
into n storage nodes such that recovery of the original data is
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possible withk out ofn nodes. For practical implementations,
erasure coding is known to be more reliable than duplication
of the file [2]. Reed-Solomon code [3] is the most popular
one for practical implementation of MDS codes and Reed-
Solomon code with information dispersal algorithm (IDA) for
distributed storage was investigated in [4]–[7]. Fountaincodes
[8] and low-density parity-check (LDPC) [9] are also known
to have approximate MDS properties. Especially, raptor code,
the first known class of fountain codes as well as online codes
[10], is another example of rateless erasure codes and provides
linear time complexity of encoding and decoding.

When a storage node fails, the code repairing problem in
a distributed storage system is addressed in [11] where the
code repairing techniques are categorized into exact repair,
functional repair, and exact repair of systematic parts. The
blocks newly reconstructed by the functional repair preserve
the MDS property and enable data recovery, but they are
not the same as the original blocks. On the contrary, in the
exact repair, the failed blocks are exactly reconstructed.The
exact repair of systematic parts is a hybrid repair model
standing between the functional repair and the exact repair.
tThe functional repair problem in distributed storage systems
was studied in [12], interpreting the problem as a multicasting
problem over an information flow graph. For the exact repair,
it was shown in [13] that the optimal minimum bandwidth
regenerating (MBR) code can be found ford = n − 1,
where d and n are the number of surviving nodes and the
number of storage nodes, respectively. For the exact repair,
the exact minimum storage regenerating (MSR) code based
on interference alignment was proposed in [14], whenk

n ≤ 1
2

and d ≥ 2k − 1 wherek is the minimum number of nodes
required for data recovery.

The capacity of multicast networks with network coding
was given in the pioneering work of Ahlswede et al. [15]. It
was also shown in [16] that the random linear network coding
over a sufficiently large finite field asymptotically achieved the
multicast capacity. For distributed storage, network coding was
introduced in [17]–[19] for wireless sensor network. In [17],
[18], decentralized erasure codes inspired by network coding
on random bipartite graphs were proposed for distributed
multiple sources and their applications to sensor networks
were presented. Another linear technique to increases data
persistence in wireless sensor networks was proposed and
compared to other codes when the positions and topology
of nodes were unknown in [19]. Pyramid codes for flexibly
exploiting the tradeoffs between total storage space and access
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efficiency in a distributed storage system was investigatedin
[20]. In [21], partial network coding (PNC) generalizing net-
work coding was investigated for data collection in distributed
sensor networks. For a joint storage and transmission problem,
[22] showed that a linear coding strategy with file splitting
(instead of coding) achieved optimality in total cost including
the individual cost of updating, storing and retrieving. Other
key issues on network codes for distributed storage can be
referred to [11].

For an efficient utilization of limited storage capacity,
resource allocation in distributed storage systems has been
actively explored. A storage allocation problem under a con-
straint of total storage capacity was studied in [23], where
the recovery probability at the data collector was analyzed
when the link connections from each node to the data collector
are modeled as independent and identically distributed (i.i.d.)
Bernoulli random variables with parameterp. It was found
in [23] that the maximal symmetric allocation that equally
distributes the total storage capacity to the storage nodesis
optimal if the total storage budget is large enough. The gap
between the maximal symmetric allocation and the optimal
solution vanishes as the total number of storage nodes grows,
when pT > 1, where T is the normalized total storage
capacity. If the total storage budget is small, the minimal
allocation was shown to be optimal, where the total storage
budget is distributed to the minimized number of storage nodes
only. In [24], these results were extended to a distributed
storage system with heterogeneous links where the connection
probability from nodei to the data collector ispi.

Most of the previous papers on network coding in dis-
tributed storage systems rely mainly on simple graph networks
with reliable links. System design and performance analysis
of distributed storage systems in fading channels is crucial.
For example, diversity gains by multiple antennas or multiple
nodes [25], [26] in distributed storage systems are required
to be properly analyzed and evaluated in fading channels.
However, there have been very few studies on distributed
storage allocation with non-reliable fading links so far. Al-
though some works, such as [23], [24], tried to take account
of unreliable links with Bernoulli random variables, they failed
to exactly account for the key features of wireless links such
as channel fading. For example, diversity gains by multiple
antennas or cooperative nodes [25], [26] in distributed storage
systems are required to be properly analyzed and evaluated in
fading channels. Despite the importance of system design and
performance analysis of distributed storage systems in fading
channels, there have been few studies on distributed storage
allocation with non-reliable fading links so far.

In this context, we consider a wireless cloud storage system
where data storage and recovery are carried out through
wireless fading channels. A personal cloud storage system
might be a good application of our system model. Contrary to
public cloud storage on internet like Dropbox or Google drive,
users directly access nearby wireless storage to store or retrieve
their data in a personal cloud storage system. Apparently,
distributed storage techniques and resource allocation under
limited storage space are key techniques enabling personal
wireless cloud storage systems. In this regard, the problem

of storing and retrieving a file over multiple storage devices
under limited sum storage capacity is also a fundamental issue
to be addressed, from which we can identify the optimal file
portions to store at each storage device. In system design or
deployment, the problem reveals the optimal storage size at
each storage device under a limited budget of total available
storage space. A cloud edge computing system can also be
an extended application. Cloud edge computing includes the
processes of distributing input data generated from a user to
nearby computing entities (or devices) and delivering output
data from the computing entities to the user. The processes are
basically identical with the processes of storing and retrieving
data over distributed storage devices. Therefore, our system
model can be used as a framework for wireless cloud edge
computing system.

In our system model, the recovery failure event occurs either
when a data object is not correctly stored at the distributed
storage nodes or when the data recovery at the collector fails.
We analyze and characterize recovery failure probability in an
asymptotic sense for high SNR regime and low SNR regime,
and quantify the effect of limited storage capacity on the
asymptotic recovery failure probability in high SNR regime.
The contributions of this paper are summarized as follows.

• We find the asymptoticallyoptimal storage allocation
under a constraint of total storage capacity for high SNR
regime and low SNR regime.

• Using exponential equality analysis, we show that the op-
timal allocation strategy for high SNR regime is maximal
symmetric spreading of the total storage budget across the
distributed storage nodes.

• We show that for low SNR regime, the minimal allocation
with ⌊T ⌋ complete and 1 incomplete storage nodes is op-
timal. In the minimal allocation,⌊T ⌋−T storage budget,
which is the remaining storage budget after allocating
⌊T ⌋ budget to⌊T ⌋ storage nodes, is not required to be
allocated.

• In low SNR regime, the storing phase becomes the perfor-
mance bottleneck and thus the recovery failure probability
mainly depends on the cardinality of the decoding set of
which elements are the storage nodes that have stored the
object successfully.

• Based on numerical investigation, we show that in inter-
mediate SNR, a balance allocation between the minimal
allocation and the maximal symmetric allocation would
not be necessary if we properly switch them according
to SNR.

The rest of the paper is organized as follows. In Section
II, we present our system model and notations about the
exponential equality. Section III describes how the wireless
cloud storage system operate. The optimal allocation for
asymptotic SNR region is investigated and analyzed in Section
IV. In Section V, we present numerical results. Finally, we
conclude this paper in Section VI.
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Fig. 1. A wireless distributed storage system model constituted by data
storing and recovery phases

II. SYSTEM MODEL AND NOTATIONS

A. System and Channel Model

As shown in Fig. 1, the number of storage nodes is set
to K. Data source, data collector, and storage nodes are
denoted bys, c and {1, . . . ,K}, respectively. The collector
node recovers the stored data from the storage nodes. If we
consider the scenario when a mobile user stores its data on
cloud storage, the collector node will be the same as the
data source, so the direct link from the source node to the
data collector does not exist. The channel gain from node
i to node j is denoted byhi,j and follows the complex
Gaussian distribution with zero mean and unit variance, i.e.,
hi,j ∼ CN (0, 1). For simplicity, we assume all channels
independent and identically distributed (i.i.d.) and the path
loss are ignored, but the result of this paper can be extended
to a general case with ease. To facilitate tractable analysis
without losing key insights on system design, we assume i.i.d.
channels. Moreover, if storage nodes are not close one another
in a rich scattering environment, the independent channel
model can be effective.The analytic framework developed in
i.i.d. channels will be also useful in non i.i.d. channels. For file
storing and recovery, a file is divided into many data blocks
and the storing and recovery processes are carried out for
each data block. Because mobility of both storage devices and
user is limited in personal cloud storage systems, the Doppler
spread is not likely to be large. For example, in low mobility
environments (i.e, moving speed is less than 5 m/sec), the
coherent time becomes approximately 20 ms with 2.4GHz
carrier frequency. On the other hand, symbol duration is on
the order of tens of microseconds and the supported data rate
reaches more than 1 Gbps in current wireless communication
protocols such as Wi-Fi direct. Consequently, each data block
size can be as large as up to 2.5 Mbytes under the coherent
time requirement. This block size is large enough to implement
ideal MDS coding and given the fact that storage devices
like HDD or SSD use block size of 4 KB – 2,048 KB, the
requirement of coherence time can be readily met for each data
block. Therefore, we assume that the coherence time is longer
than each storage period and recovery period for each data
block and thus the channel gains do not change during each

period but the channel gains independently change between
the periods.

An additive white Gaussian noise (AWGN) is denoted byzi
and follows the complex Gaussian distribution with zero mean
and varianceN0, i.e.,zi ∼ CN (0, N0). The average signal-to-
noise ratio (SNR) of a link is denoted asρ = P/N0 and the
amount of coded data stored in storage nodei ∈ {1, . . . ,K}
is denoted asai.

In our model, each storage node does not have an individual
restriction on the storage size but the maximum amount of
data stored at each storage node isT because the total storage
budget is limited toT such that

∑K
i=1 ai ≤ T . We assume that

the size of data object is normalized to be unit compared to
the total storage capacityT as in other literature [23], which
simplifies design and analysis of distributed storage systems.
A data object corresponds to a divided data block and the
recovery probability to be analyzed is for each data block, not
for the whole file. Total storage constraintT and allocated
budgetai is also identically used for a data block consisting
the file because they are already normalized values compared
to the original data. In other words,ai can also denotes the
amount of MDS coded fraction stored in storage nodei.

B. Storage and Recovery Operation

As shown in Fig. 1, the storage and recovery operation is
constituted by two basic phases. The first one is for storing
data object in the distributed storage nodes and the second
one is for recovering the stored data. These two phases are
decoupled in time since the stored data are recovered later
although the first phase affects the data recovery in the second
phase. That is, the storage phase and the recovery phase are
not concurrently entered into.

1) Storage Phase: The source node broadcasts a data object
to the cloud storage nodes to store the data object during
a given time period. If a storage node has successfully
decoded the broadcast data object from the source,
the storage node converts the decoded data object into
suitable MDS coded blocks as much as its allocated
storage sizeai, and stores it. Storage nodei successfully
decodes the data object from the source node only when
the instantaneous mutual information between the source
node and storage nodei is greater than or equal to the
required rate of the data object, i.e.,log2(1+ρ|hs,i|2) ≥
Q. The value of thresholdQ depends on the adopted
modulation and coding scheme (MCS) and bandwidth
for data transmission. For example, a typical range of
required SNR in 802.11n Wi-Fi is around from 10 to 30
dB [28]. Taking account of specific system parameters
of the adopted wireless communication protocol, the
thresholdQ corresponding to a required SNR value can
be computed. The amount of MDS coded data stored
at nodei (∈ D) is equal to its allocated storage size
ai, whereD is the decoding set whose elements are
the storage nodes which have successfully decoded the
broadcast data object. If

∑

i∈D ai < 1, the data object
is not properly stored because the data object cannot
be properly recovered from the stored MDS coded data
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[23]. On the other hand, if
∑

i∈D ai ≥ 1, the collector
has a chance to properly recover the data object from
the stored MDS coded data, depending on channel
conditions from the storage nodes to the collector. Note
that instead of MDS coding, random linear coding over
a sufficiently large field can be used for data object
recovery [16].

2) Recovery Phase: When the data collector wants to re-
cover the data object, it requests the storage nodes in the
decoding set to send the MDS coded blocks of the stored
data. The storage phase and the recovery phase are
assumed to have the same time length for simplicity. Let
î ∈ {1, 2, . . . , |D|} be the index of the storage node in
the decoding set. They are indexed in descending order
of the channel power gain from the storage node to the
collector such that|h1̂,c|

2 ≥ |h2̂,c|
2 ≥ · · · ≥ |h ˆ|D|,c

|2.

Then, storage nodêi transmits duringt̂i fraction of the
time period allocated for the recovery phase, wheret̂i
varies with the cardinality of the decoding set and has
to satisfyt̂i ≤ aî and

∑|D|
i=1 t̂i = 1 which is a constraint

from the property of MDS code. The data collector is
assumed to know the index and the stored data size of
each storage node by proper signaling with the storage
nodes. With the help of pilot symbols from each storage
node in the decoding set, the data collector estimates
the channel gains from the storage node. To focus on
developing the optimal distributed caching strategy, we
assume perfect channel state information at the data
collector and discard the signaling overhead. Based on
the channel gains, the data collector determines the time
fractions, {ti}, by solving the following optimization
problem:

argmax
tî

|D|
∑

i=1

t̂i log(1 + |hî,c|
2ρ) (1)

subject to
|D|
∑

i=1

t̂i = 1, t̂i ≤ aî. (2)

The optimized value oft∗
î

is given by

t∗
î
= aî · 1

[

Σi
ĵ=1

aĵ < 1
]

+
(

1− Σi−1

ĵ=1
aĵ

)

· 1
[

Σi
ĵ=1

aĵ > 1 andΣi−1

ĵ=1
aĵ ≤ 1

]

(3)

where1(·) is the indicator function which returns 1 if
the argument is true or 0 otherwise, which suggests that
longer transmission time is allocated to the storage node
with a stronger channel gain under the storage constraint
and the transmit time constraint.
According to the determined{ti}, the data collector
receives the stored MDS coded block from storage node
1̂ during thet1̂ time portion. Then, it moves on to storage
node2̂ and receives the stored MDS coded block during
t2̂. In this way, the data collector receives the stored
MDS coded date from the storage nodes in the decoding

TABLE I
L IST OF SYMBOLS AND ITS DESCRIPTIONS

hi,j channel coefficient fromi to j

ρ average received SNR
ai individual storage constraint at storagei
K the number of storage nodes
a storage allocation vector
s source
T total storage capacity
c data collector
Q accumulated rate threshold
d(·) exponential order

set. The data object is successfully recovered if

|D|
∑

i=1

t̂i log(1 + |hî,c|
2ρ) > Q. (4)

Otherwise, recovery of the stored data object fails.

C. Notations

The exponential equality is denoted as the symbol
.
=,

i.e., f(ρ)
.
= ρb, when limρ→∞

log(f(ρ))
log(ρ) = b where b is

called the exponential orderof f(ρ). The exponential in-
equalities denoted bẏ≤ and ≥̇ are similarly defined.(x)+

is used to denotemax{x, 0}. R
N is the set of realN -

tuples, whileRN+ denotes the set of nonnegative realN -
tuples. For any setO ∈ R

N , the intersection of the set and
R

+ is denoted byO+, i.e., O+ = O ∩ R
N+. Assume that

h is a Gaussian random variable with zero mean and unit
variance. Then, the asymptotic probability density function
(pdf) of the exponential order of1/|h|2 denoted byv is ob-
tained aspv = limρ→∞ ln(ρ)ρ−v exp(−ρ−v) where v =

− limρ→∞
log(|h|2)
log(ρ) . By limiting ρ to infinity, the pdf in (II-C)

is given bypv
.
= ρ−∞ = 0 for v < 0, pv

.
= ρ−v for v ≥ 0.

Thus, for independent random variables{vj}Kj=1 distributed
identically tov, the probabilityPO that (v1, . . . , vK) belongs
to setO can be characterized by

PO

.
= ρ−d0 , for d0 = inf

(v1,...,vK)∈O+

K∑

j=1

vj (5)

provided thatO+ should be non-empty. In other words, the
exponential order ofPO depends onO+ only. The list of
symbols used in the paper is given in Table I.

III. A SYMPTOTIC ANALYSIS OF RECOVERY FAILURE

PROBABILITY

For the system model described in the previous section, the
recovery failure probability (i.e., the complimentary recovery
probability) is hard to obtain in closed form, as noted in [23],
even if interesting wireless ingredients are not incorporated. In
this section, we instead explore the optimal storage allocation
in an asymptotic sense. Exponential order determines the
decreasing speed of recovery errors in high SNR regime. Con-
sequently, large exponential order offers low recovery failure
probability if SNR is sufficiently high. On the other hand,
the recovery failure probability is not characterized wellby
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exponential order in low SNR regime, so the dominant order
of recovery probability helps understand recovery performance
in low SNR regime.

A. Optimal Storage Allocation in High SNR Regime

We analyze the recovery failure probability for high SNR
regime in this subsection to understand its asymptotic behav-
ior. That is, we derive the exponential order of the recovery
failure probability and find the optimal storage allocation
to maximize the exponential order. The exponential order
characterizes the decreasing tendency of the recovery failure
probability versus SNR, and is interpreted as diversity order
if bit error probability or outage probability is considered
in conventional wireless communication systems. Contrary
to the conventional diversity order, the exponential orderof
the recovery failure probability is determined by not only
the number of independent fading paths for data storage and
recovery but also the limited total storage capacity.

Lemma 1:For given storage allocationa = {a1, . . . , aK},
the exponential order of the recovery failure probability is
lower and upper bounded, respectively, by

d(a) ≥ min
D⊆{1,...,K}

(

K − |D|+min
i∈D

ti
−1 · 1[

∑

i∈D

ai ≥ 1]

)

(6)

andd(a) ≤ min
D⊆{1,...,K}

(

K − |D|+ |D| · 1[
∑

i∈D

ai ≥ 1]

)

.

(7)

Proof: Refer to Appendix A.
Theorem 1:Under a total storage capacityT (> 1) con-

straint, the optimal storage allocation in terms of exponential
order is to maximally and symmetrically allocate the sum
storage capacity across all storage nodes.

Proof: Our optimization problem is formulated as

max
a

d(a)

subject toa1 + a2 + · · ·+ aK = T, ai ≥ ti ≥ 0, ∀i.
(8)

For an arbitrary storage allocationa, the upper bound ofd(a)
in (7) is determined by the maximum value of the cardinality
|D| of a decoding set satisfying

∑

k∈D ak < 1. Let this
decoding set beDUP(a). Obviously,DUP(a) is a set of the
nodes whose allocated storage sizes are the|DUP(a)| smallest
ones, i.e.,DUP(a) = {a↑1, a

↑
2, . . . , a

↑
|DUP(a)|

} wherea↑i denotes
the i-th smallest storage size ina, and|DUP(a)| is determined
such that

∑|DUP(a)|
i=1 a↑i < 1 ≤

∑|DUP(a)|+1
i=1 a↑i .

To maximize the upper bound ofd(a), we have to find
an allocation which yields the smallest|DUP(a)|. Consider
the symmetric storage allocationasym in which the allocated
storage sizes are the same asT

K . Then, for the symmetric
allocation, the following inequalities hold.

∑|DUP(asym)|
i=1 a↑i
|DUP(asym)|

≤
T

K
, (9)

T

K
· |DUP(asym)| < 1 (10)

where (9) is due to the fact that an average with the
|DUP(asym)| smallest ones is less than an arithmetic av-
erage; (10) is because|DUP(asym)| is determined to sat-
isfy

∑

k∈D ak < 1 for the symmetric allocation. Com-

bining (9) and (10), we have
∑|DUP(asym)|

i=1 a↑i < 1. Since
∑|DUP(a)|

i=1 a↑i < 1 ≤
∑|DUP(a)|+1

i=1 a↑i , there exists a setDUP(a)

such that{a↑1, a
↑
2, . . . , a

↑
|DUP(asym)|

} ⊆ DUP(a), which implies
that |DUP(asym)| ≤ |DUP(a)|. Therefore, the allocation corre-
sponding to the minimum|DUP(a)| is the symmetric storage
allocation,asym.

With the symmetric allocation, the lower bound ofd(a)
coincides with the maximized upper bound. That is, the
term mini∈D t−1

i in lower bound (6) becomes|D| with the
symmetric allocation. Since the maximum values of the upper
and lower bounds coincide, we conclude that the symmetric
allocation maximizes the exponential order.

Corollary 1: For givenK andT , the optimal exponential
order of the recovery failure probability is

d∗(K,T ) = K −

⌈
K

T

⌉

+ 1 (11)

with the optimal storage allocation policy.
Proof: The proof of Theorem 1 showed that for sym-

metric storage allocation,|DUP(asym)|T/K < 1. Therefore,
the maximum possible cardinality of the decoding set is
|DUP(asym)| = ⌈K/T ⌉ − 1. Plugging this in Lemma 1, we
obtain (11).

Remark 1:Theorem 1 is on the same line with the result
of [23]. Theorem 1 exhibits that the maximal symmetric
spreading of the sum storage capacityT (> 1) yields the
optimal recovery probability in terms of exponential ordereven
for wireless distributed storage systems suffering from channel
fading.

Remark 2:The optimal exponential order of the recov-
ery failure probability is bounded above and below by
(
1− 1

T

)
K ≤ d∗(K,T ) ≤

(
1− 1

T

)
K + 1. Thus, the approx-

imated slope of the exponential order is
(
1− 1

T

)
, which is

strictly less than 1, for the sum storage capacityT .
Although the exponential order well characterizes asymp-

totic behavior of the recovery failure probability, we also
derive a high SNR approximation of the recovery failure
probability for concrete understanding of recovery success and
failure in high SNR regime, when the sum storage capacityT
is maximally and symmetrically spread to the storage nodes.

Theorem 2:When SNR is sufficiently high, the recovery
failure probability is approximated as

Prhigh
f [Q] ≈

(
K

⌈K
T ⌉ − 1

)

(2Q − 1)K−⌈K
T
⌉+1ρ−(K−⌈K

T
⌉+1)

(12)

Proof: Lemma 1 and Theorem 1 indicate that when SNR
is sufficiently high, the exponential order of the recovery
failure probability is dominated by|DUP(asym)|. For asym and
|DUP(asym)|, the recovery failure probability when SNR is
sufficiently high is obtained as
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Prf [Q] =
∑

D⊆{1,...,K}

Prf [Q | D]Pr[D] (13)

(a)
≈

(
K

⌈K
T ⌉ − 1

)

Pr[|D| = ⌈K/T ⌉ − 1]

=

(
K

⌈K
T ⌉ − 1

)

Pr[log2(1 + ρ|h|2) > Q]⌈
K
T
⌉−1

× Pr[log2(1 + ρ|h|2) < Q]K−⌈K
T
⌉+1 (14)

=

(
K

⌈K
T ⌉ − 1

)(

exp

(
2Q − 1

ρ

))⌈K
T
⌉−1

×

(

1− exp

(
2Q − 1

ρ

))K−⌈K
T
⌉+1

(15)

(b)
≈

(
K

⌈K
T ⌉ − 1

)(
2Q − 1

ρ

)K−⌈K
T
⌉+1

(16)

where (a) is from the result of Lemma 1 with high SNR
assumption and(b) is due to Taylor’s expansion asρ → ∞.

B. Optimal Storage Allocation in Low SNR Regime

Although we have derived the optimal storage capacity
allocation for high SNR, it is not clear whether the derived
solution is always optimal for all other SNR regimes. As
stated earlier, the exact closed form expression of the recovery
failure probability is hard to obtain due to its mathematical
intractability. Thereby, in this subsection, we explore the
optimal storage allocation strategy in low SNR regime. To this
end, we have to first understand the relationship between the
decoding set cardinality and the recovery failure probability.
We start with the following definition of a complete storage
node.

Definition 1: Storage nodei is defined as a complete stor-
age node if it can store a complete data object and the data
object can be perfectly recovered from it without help of any
other storage nodes. That is, ifai ≥ 1, storage nodei is a
complete storage node.

Lemma 2:Any storage allocation strategy without complete
storage nodes has higher recovery failure probability in low
SNR than a storage allocation strategy with only one complete
storage.

Proof: Let us consider the following storage allocation
strategy:

a(ǫ) = {1− ǫ, 1− ǫ, . . . , 1− ǫ}

whereǫ is an arbitrarily small positive value (ǫ > 0). (17)

To recover the data object, at least two storage nodes are
required for the allocationa(ǫ) and the corresponding recovery
probability becomes

P̄O(a(ǫ)) =
K∑

k=2

(
K

k

)

Pr[|D| = k]

× Pr[recovery fromk incomplete storage nodes] (18)

=

K∑

k=2

(
K

k

)

Pr[|D| = k] · Pr
[ ∑

i∈D

ti log(1 + |hi,c|
2) > Q

]

(a)

≤
K∑

k=2

(
K

k

)

Pr[|D| = k] · Pr
[

max
i∈D

log(1 + |hi,c|
2) > Q

]

(19)

=

K∑

k=2

(
K

k

)

e−k· 2
Q−1

ρ

(

1− e−
2Q−1

ρ

)K−k

×

(

1−

(

1− e−
2Q−1

ρ

)k
)

(20)

= e−2· 2
Q−1

ρ

K∑

k=2

(
K

k

)

e−(k−2)· 2
Q−1

ρ

×

(

1− e−
2Q−1

ρ

)K−k
(

1−

(

1− e−
2Q−1

ρ

)k
)

(21)

(b)

≤ e−2· 2
Q−1

ρ (22)

where(a) is from the selection upper bound (i.e., selecting the
node with the strongest channel to the data collector among
k complete nodes), and(b) is because asρ increases, the rest

term excepte−2· 2
Q−1

ρ goes to 0 and strictly less than 1. On the
other hand, the recovery probability for the storage allocation
a1 = (1, 0, . . . , 0) is given by

P̄O(a1) = Pr[node 1 is inD] · Pr[recovery from node 1]

(23)

= Pr[log(1 + |hs,1|
2ρ) > Q] · Pr[log(1 + |h1,c|

2ρ) > Q]
(24)

= P̄O(a1)

(

= exp

(

−
2Q − 1

ρ

)

exp

(

−
2Q − 1

ρ

))

(25)

Consequently, Lemma 1 is proved becauseP̄O(a(ǫ)) ≤
P̄O(a1) in low SNR regime meansa1 always shows lower
recovery failure probability than any other allocation without
complete storage nodes.

Lemma 3:For any allocation strategy withK1 complete
storage nodes andK2 incomplete storage nodes, the recovery
failure probability in low SNR regime is higher than an
allocation withK1 + 1 complete storage nodes.

Proof: Let an allocation strategy withK1 complete stor-
age nodes andK2 incomplete storage nodes bea(K1,K2) and
an allocation strategy withK1 + 1 complete storage nodes
aK1+1. Similar to the proof of Lemma 1, we can easily show
the recovery probability ofa(K1,K2) can be upper bounded as
follows:

P̄O(a(K1,K2))

=

K1∑

k1=0

K2∑

k2=0

(
K1

k1

)(
K2

k2

)

Pr[|D| = k1 + k2]

× Pr[recovery fromk1 + k2 storage nodes] (26)

(a)

≤
K1∑

k1=1

K2∑

k2=0

(
K1

k1

)(
K2

k2

)

e−(k1+k2)·
2Q−1

ρ
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×

(

1− e−
2Q−1

ρ

)K1+K2−k1−k2

(

1−

(

1− e−
2Q−1

ρ

)k1+k2

)

+

K2∑

k2=2

(
K2

k2

)

e−k2·
2Q−1

ρ

(

1− e−
2Q−1

ρ

)K2−k2

×

(

1−

(

1− e−
2Q−1

ρ

)k2

)

=

(
K1

1

)

exp

(

−2 ·
2Q − 1

ρ

)(

1− exp

(

−
2Q − 1

ρ

))

+ o

(

exp

(

−2 ·
2Q − 1

ρ

))

(27)

. K1 exp

(

−2 ·
2Q − 1

ρ

)

(28)

where (a) is obtained from the selection upper bound as in
(19) and. is the asymptotic inequality which denotes that the
inequality is valid for high SNR regime. Because

P̄O(a(K1,K2)) . K1 exp

(

−2 ·
2Q − 1

ρ

)

< (K1 + 1) exp

(

−2 ·
2Q − 1

ρ

)

≈ P̄O(aK1+1), (29)

P̄O(a(K1,K2)) < P̄O(aK1+1) holds forρ → ∞.
Lemma 4:When the sum storage bugetT is allocated to

⌊T ⌋ complete storage nodes, the remainingT − ⌊T ⌋ storage
budget should be allocated to only one storage node, to achieve
the optimal performance in low SNR regime.

Proof: Refer to Appendix B.
Theorem 3:The optimal storage budget allocation in low

SNR regime consists of⌊T ⌋ complete storage nodes and one
incomplete storage whose storage size isT − ⌊T ⌋.

Proof: The proof is straightforward from Lemmas 1–4.

Example 1: In low SNR regime, if the sum storage budget
for K = 6 storage nodes is given byT = 2.25, two nodes
should have storage sizeai = 1 and one node should have
storage size0.25. Note that this allocation is completely
different.

Remark 3:When the total storage budget is given by an
integer value i.e.,T = ⌊T ⌋, with the optimal storage allocation
in low SNR, the number of storage nodes with non-zero
allocated memory isT and they are all complete storage nodes.
Then, contrary to the maximal symmetric allocation in high
SNR, node selection for selection diversity in the recovery
phase is possible. In this case, the recovery failure probability
can be obtained exactly in closed form as in the following
corollary.

Corollary 2: When the total storage budget is an integer
value, the recovery failure probability with the minimal allo-
cation is obtained as

Prf [Q] =

T∑

k=0

(
T

k

)(

e−
2Q−1

ρ

)k (

1− e−
2Q−1

ρ

)T

. (30)

Proof:

Prf [Q] =

T∑

k=0

Pr[|D| = k] · Prf [Q
∣
∣ |D| = k]]
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Fig. 2. Exponential order growth

=

T∑

k=0

∏

i∈D

Pr
[
log(1 + ρ|hi|

2) > Q
]

×
∏

j /∈D

Pr
[
log(1 + ρ|hj|

2) < Q
]

× Pr

[

log(1 + ρmax
i∈D

|hi|
2) < Q

]

(31)

=

T∑

k=0

(
T

k

)

exp

(

−
2Q − 1

ρ

)k (

1− exp

(

−
2Q − 1

ρ

))T−k

×

(

1− exp

(

−
2Q − 1

ρ

))k

(32)

IV. N UMERICAL RESULT

A. High SNR Regime

To focus on channel fading effects only, we assume simple
topology where the distances from data source/collect to
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storage nodes are the same. The channel gains of each link are
i.i.d. exponential random variables with unit mean. The chan-
nel gains do not change during each period but independently
change along the periods. An recovery failure occurs if either
data object is not properly stored or accumulated information
at data collector is less than thresholdQ.

Fig. 2(a) shows the exponential order of the recovery failure
probability versus the number of storage nodes for various
sum storage constraints. It is shown that the exponential order
increases with the number of storage nodes and the increasing
slope depends on the sum storage constraint. For example,
when T = 2, the increasing slope of the exponential order
is 1

2 as noted in Remark 2. Contrary to the conventional
multiple relay or antenna diversity order, the exponentialorder
dose not increase with the number of storage nodes since
the gain provided by multiple storage nodes is hampered by
limited storage capacity. In other words, adding storage node
can improve reliability of storage operation but its effectis
marginal without sufficient storage capacity.

Fig. 2(b) shows the effect of the sum storage constraint on
the exponential order of the recovery failure probability when
the number of storage nodes is fixed asK = 10 or K = 200.
As predicted in Corollary 1, the exponential order increases
and converges as the sum storage budget grows. According to
Theorem 1, with the optimal storage allocation in high SNR,
the storage size allocated to each node becomes smaller as
the number of storage nodes increases. For example, to obtain
80% of the maximum exponential order which is marked as
the black circles, the storage sizes required at each node (i.e.,
T/K) areai = 1/40 andai = 1/3 for K = 200 andK = 10,
respectively. Fig. 4 reveals that if sum storage capacity is
relatively small compared to the number of storage nodes,
only a small amount of increment in storage capacity can
considerably increase the exponential order. This phenomenon
is more noticeable when the number of storage node is large,
which implies that full exponential order is achievable with
only a very small storage budget per storage node if the
number of storage nodes is large enough.

Fig. 3 figure verifies that the asymptotic analysis of recov-
ery failure probability well approximate the recovery failure
probability in high SNR regime. As shown in the analysis of
exponential order, the recovery failure probability is degraded
as the sum storage capacity is smaller. It is also verified that
the high SNR approximation matches well with the simulation
result if SNR is greater than 10 dB. Given that a typical range
of required SNR in 802.11n Wi-Fi is around from 10 to 30
dB [28], the high SNR approximation would be useful in
performance evaluations .

B. Low SNR Regime

Fig. 4 exhibits that the minimal allocation is strictly better
than the symmetric allocation in terms of the recovery failure
probability in low SNR regime. ForT = 1, although both
of the allocation strategies have the same exponential order,
the minimal allocation outperforms the symmetric allocation
in terms of recovery failure probability. In the symmetric
allocation, all the storage nodes have to decode the data object
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Fig. 3. Recovery failure probabilities forT = 1, 3, and∞ whenK = 5
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Fig. 4. Recovery failure probabilities of the maximal symmetric allocation
and the minimal allocation whenT = 1, 2 andK = 6.

from the data source for the optimal performance, but this is
unlikely in low SNR. Consequently, the performance of the
symmetric allocation is restricted at the storing phase and
worse than that of the minimal allocation in low SNR. For
T = 2, the exponential orders of the symmetric allocation and
the minimal allocation are4 and2, respectively. In high SNR,
the symmetric allocation is definitely better but in low SNR,
the recovery failure probability of the minimal allocationis
much lower than that of the symmetric allocation. The crossing
point between the two allocation schemes is around4 dB.

C. Discussions on Storage Allocation in Intermediate SNR

Although the optimal storage allocation is unknown for
intermediate SNR regime, the optimal storage allocation strate-
gies for high and low SNR regimes may suggest that a
balanced allocation between the maximal symmetric allocation
and the minimal allocation be effective in intermediate SNR.
For example, when there are 6 storage nodes and the sum
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storage budget is 2, i.e.,(K = 6, T = 2), the symmetric
allocation isasym =

(
1
3 , . . . ,

1
3

)
and the minimal allocation

is amin = (1, 1, 0, 0, 0, 0). Possible balanced allocation strate-
gies between them could beamix1 =

(
1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0

)
and

amix2 =
(
2
3 ,

2
3 ,

2
3 , 0, 0, 0

)
. Both of the allocation strategies

require at least 2 storage nodes to recover the data object
but amix1 can choose 2 among 4 storage nodes whileamix2

can choose 2 among 3 storage nodes. As a result,amix1 is
expected to outperformamix2, which is verified in Fig. 5.
Comparingamix1 with the maximal symmetric allocation and
the minimal allocation, the minimal allocation is the best until
SNR is around 4 dB at which the minimal allocation and
the maximal symmetric allocation cross, whereas the maximal
symmetric allocation is the best after the crossing. This result
strongly implies that selection between the minimal allocation
and the maximal symmetric allocation suffices.

V. CONCLUSION

In this paper, we introduced a new wireless distributed
storage model with a sum storage capacity and investigated
its performance in terms of the recovery failure probability.
Using exponential order analysis, we proved that the maximal
symmetric allocation is the optimal allocation strategy for
high SNR regime. For the maximal symmetric allocation, we
also presented an approximated representation of the recovery
failure probability based on a high SNR approximation. On
the other hand, using asymptotic analysis for low SNR, the
minimal allocation with⌊T ⌋ complete storage nodes and one
incomplete storage node was shown to be optimal in low SNR
regime. If the sum storage capacity is given as an integer
value, we derived the exact recovery failure probability of
the minimal allocation in low SNR regime. Based on the
numerical investigation, we also showed that a proper selection
between the minimal allocation and the maximal symmetric
allocation would make any balance allocation unnecessary.

APPENDIX A
PROOF OF THELEMMA 1

By the law of total probability, the recovery failure proba-
bility is given by

Prf [Q] =
∑

D⊆{1,...,K}

Prf [Q | D]Pr[D] (A.1)

whereQ is the rate of the data object, which is equivalent to
the data object size. The probability for the decoding setD is
obtained as

Pr[D] =
∏

i∈D

Pr
[
log2(1 + ρ|hs,i|

2) > Q
]

×
∏

i∈{1,...,K}\D

Pr
[
log2(1 + ρ|hs,i|

2) < Q
]

(A.2)

=
∏

i∈D

Pr
[
ρ|hs,i|

2 > 2Q − 1
]

×
∏

i∈{1,...,K}\D

Pr
[
ρ|hs,i|

2 < 2Q − 1
]

(A.3)

(a).
=
∏

i∈D

Pr
[
ρ1−vs,i > ρ0

] ∏

i∈{1,...,K}\D

Pr
[
ρ1−vs,i < ρ0

]

(A.4)
.
=
∏

i∈D

ρ0 ·
∏

i∈{1,...,K}\D

ρ−1 (A.5)

= ρ−(K−|D|) (A.6)

where |D| is the cardinality of the decoding setD and vs,i
is the exponential order of1/|hs,i|; (a) comes from the
definition of the exponential order. Assuming that{|gi|2} are
i.i.d. exponential random variables, for a given decoding setD,
the conditional recovery failure probability is upper bounded
by

Prf [Q | D] = Pr

[
∑

i∈D

ti log2(1 + ρ|hi,c|
2) < Q

]

(A.7)

1[
∑

i∈D

ai ≥ 1] + 1[
∑

i∈D

ai < 1] (A.8)

(a)

≤ Pr

[
∑

i∈D

ti log2(1 + ρ|gi|
2) < Q

]

× 1[
∑

i∈D

ai ≥ 1] + 1[
∑

i∈D

ai < 1] (A.9)

(b).
=

{

ρ−mini∈D ti
−1

, for
∑

i∈D ai ≥ 1,
1, for

∑

i∈D ai < 1
(A.10)

where(a) is because|hi.c|2 is replaced by|gi|2; the optimal
transmit time allocation{ti} depends on the ordered channel
gains of|hi.c|

2, but not on|gi|2, which yields higher recovery
failure probability due to unoptimized transmit time allocation
for {|gi|2}. (b) follows from the definition of the exponential
order and (5) (See [27] for more details) such that

Pr

[
∑

i∈D

ti log(1 + |gi|
2ρ) < Q

]

.
= ρ− inf

v∈O+

∑
i∈D vi
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Fig. 6. Exponential order when there are only two nodes.O+ corresponds
to the dashed region. The exponential order is dominated anddetermined by
min t−1

i
. The exponential order is maximized whent1 = t2 for the two node

case.

.
= ρ−mini∈D ti

−1

(A.11)

whereO = {vi|vi ∈ D,
∑

i∈D ti(1 − vi) < 0} and vi is the
exponential order of1/|gi|2. Fig. 6 illustrate a simple example
of (A.11) when there are only 2 nodes.

On the other hands, if the channel gains for each node are
replaced by the highest channel gain among them during the
recovery phase, a lower bound on the conditional recovery
failure probability is obtained as

Prf [Q | D]

≥ Pr[log2(1 + ρmax
i∈D

|hi,c|
2) < Q]1[

∑

i∈D

ai ≥ 1] + 1[
∑

i∈D

ai < 1]

(A.12)

.
= ρ−|D|

1

[
∑

i∈D

ai ≥ 1

]

+ 1

[
∑

i∈D

ai < 1

]

(A.13)

Combining (A.6), (A.10), and (A.13), the exponential order
of the recovery failure probability is lower and upper bounded
as (6) and (7), respectively.

APPENDIX B
PROOF OF THELEMMA 4

For the allocationa(K1,K2) defined in the proof of Lemma 3,
let K1 be⌊T ⌋ and then, the sum of the storage sizes allocated
to K2 incomplete storage nodes is equal or less thanT −⌊T ⌋.
There can be up toK2 = K−K1 incomplete storage nodes in
this storage allocation. Let this allocation bea′(K1,K2)

where
K2 = K −K1. Then the recovery probability fora′(K1,K2)

is
given by

P̄O(a
′
(K1,K2)

) =

K1∑

k1=1

(
K1

k1

)
e−k1·

2Q−1

ρ

(
1− e−

2Q−1

ρ

)−(K1+K2−k1)

(A.23)

× Pr [ Recovery fromk1 out of K1 com. nodes ] (A.24)

+

K1∑

k1=1

∑

I6=∅

(
K1

k1

)
e−(k1+|I|)· 2

Q−1

ρ

(
1− e−

2Q−1

ρ

)−(K1+K2−k1−|I|)
(A.25)

× Pr [ Recovery fromk1 com. and inc. nodes inI ]
(A.26)

whereI is a subset consists of the incomplete storage nodes
in D. The first term consisting of (A.23) and (A.24) has a
dominant scale in the recovery probability and is common
regardless ofK2 in a

′
(K1,K2)

. Therefore, we have to focus on
the second term consisting of (A.25) and (A.26) to analyze
the effect of incomplete storage allocations.

Now we prove that in the second term, the case whenk1 =
1, |I| = 1 leads to a dominant scale asρ → 0;

1∑

k1=1

∑

|I|=1

(
K1

k1

)

e−2· 2
Q−1

ρ

(

1− e−
2Q−1

ρ

)K1+K2−2

× Pr [ Recovery fromk1(= 1) com. and inc. nodes inI ]

(a)

≥
∑

|I|=1

K1e
−2· 2

Q−1

ρ

(

1− e−
2Q−1

ρ

)K1+K2−2

× Pr [ Recovery from 1 com. node ]
(b)

& (K1K2 − δ1)e
−2· 2

Q−1

ρ e−
2Q−1

ρ for arbitrary smallδ1

=Θ

(

exp

(

−3 ·
2Q − 1

ρ

))

(A.27)

where(a) is from that recovery from 1 complete storage only
without help of incomplete storage nodes yields worse recov-

ery probability;(b) is satisfied because
(
1−e−

2Q−1

ρ

)K1+K2−2

goes to 1 asρ increases. For|I| ≥ 2, the followings hold:

K1∑

k1=1

∑

|I|≥2

(
K1

k1

)
e−(k1+|I|)· 2

Q−1

ρ

(
1− e−

2Q−1

ρ

)−(K1+K2−k1−|I|)

× Pr [ Recovery fromk1 com. and inc. nodes inI ]

(a)

≤
K1∑

k1=1

∑

|I|≥2

(
K1

k1

)
e−(k1+|I|)· 2

Q−1

ρ

(
1− e−

2Q−1

ρ

)−(K1+K2−k1−|I|)

︸ ︷︷ ︸

≥1

×Pr [ Recovery fromk1 + |I| com. nodes ]
︸ ︷︷ ︸

=1−(1−exp(−(2Q−1)/ρ))k1+|I| ≤ (k1+|I|) exp(−(2Q−1)/ρ)

(b)

.

K1∑

k1=1

∑

|I|≥2

(
K1

k1

)

e−(k1+|I|)· 2
Q−1

ρ (k1 + |I|) e−
2Q−1

ρ

=Θ

(

exp

(

−4 ·
2Q − 1

ρ

))

(A.28)

where(a) is from that a recovery fromk1+|I| complete nodes
is always better than that fromk1 complete storage nodes and
|I| incomplete storage nodes;(b) is because

Pr [ Recovery fromk1 + |I| com. nodes ] (A.29)

= 1−

(

1− exp

(

−
2Q − 1

ρ

))k1+|I|

≤ (k1 + |I|) exp

(

−
2Q − 1

ρ

)

.

Comparing (A.28) with (A.27), we verify that the case when
k1 = 1 and|I| = 1 is dominant in the second term consisting
of (A.25) and (A.26). Consequently, in low SNR regime, the
optimal allocation strategy for the remainingT − ⌊T ⌋ budget
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can be identified by solving following optimization problem:

max
a↓
j

∑

|D\I|=1

∑

|I|=1

exp

(

−(|D \ I|+ |I|) ·
2Q − 1

ρ

)

×

(

1−exp

(

−
2Q − 1

ρ

))K1+K2−|D\I|−|I|

× Pr [ Recovery from 1 com. inD \ I and 1 inc. nodes inI ]

subject to
K2∑

j=1

a↓j = T − ⌊T ⌋

wherea↓j is the jth largest value among the storage sizes al-
located toK2 incomplete storage nodes, that is, the allocation
to K2 storage nodes is rewritten in descending order such that(

a↓1 ≥ · · · ≥ a↓K2

)

. Removing common terms and making the
problem concise, we can reduce the optimization problem to

max
a↓
j

K1∑

i=1

K2∑

j=1

Pr [ Recovery from a com.i and an inc. nodej ].

= max
a↓
j

K1∑

i=1

K2∑

j=1

Pr
[

(1− a↓j ) log
(
1 + |hi,c|

2ρ
)

+ a↓j log
(
1 + max{|hi,c|

2, |hj,c|
2}ρ
)
> Q

]

(A.30)

subject to
K2∑

j=1

a↓j = T − ⌊T ⌋. (A.31)

where |hi,c|2 and |hj,c|2 are i.i.d. exponential random vari-
ables. Note that the probabilities for the summation are based
on independent events and have the form in (A.22). Note that
(A.21) is a convex function with respect toa ∈ [0, 1] since
1) it is an increasing function ofa ∈ [0, 1] \ {0.5}; 2) for
a = 0.5, the limit of (A.21) exists and (A.21) is continuous
on a ∈ [0, 1]; 3) for 0 ≤ a < 0.5, the dominant term is

a
2(1−2a) exp (−2Q/ρ) and its first and second derivatives with
respect toa are always negative and positive, respectively,
i.e., −1

2(1−2a)2 < 0 and 2
(1−2a)3 > 0; 4) for 0.5 < a ≤ 1, the

dominant term is− a
2(1−2a) exp

(

− Q
ρa

)

which is also convex
with respect toa because we can adjustρ as small as we want
in low SNR.

Consequently,
∑

i

∑

j Pr
[
(1 − a↓j ) log

(
1 + |hi,c|

2ρ
)

+

a↓j log
(
1 + max{|hi,c|2, |hj,c|2}ρ

)
> Q

]
= K1

∑

j fprob(a
↓
j )

is convex on a real interval[0, 1] because a sum of convex
functions is also convex. Moreover, it is symmetric fora↓j and
hence it is a Schur-convex function [29]. Therefore, with the
constraint

(
∑

j a
↓
j = T − ⌊T ⌋

)

, the strong majorization holds
for the allocation vector with only one non-zero element. That
is, a↓1 = T − ⌊T ⌋, a↓2 = · · · a↓K2

= 0.
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Pr
[

(1− a↓j ) log
(
1 + |hi,c|

2ρ
)
+ a↓j log

(
1 + max{|hi,c|

2, |hj,c|
2}ρ
)
> Q

]

(A.14)

(a)
≈ Pr

[

(1− a↓j )|hi,c|
2ρ+ a↓j max{|hi,c|

2, |hj,c|
2}ρ > Q

]

(A.15)

= 1− Pr
[

(1− a↓j )|hi,c|
2 + a↓j max{|hi,c|

2, |hj,c|
2} ≤ Q/ρ

]

(A.16)

= 1− Pr
[

(1− a↓j )|hi,c|
2 + a↓j |hi,c|

2 ≤ Q/ρ | |hi,c|
2 > |hj,c|

2
]

Pr
[
|hi,c|

2 > |hj,c|
2
]

− Pr
[

(1− a↓j )|hi,c|
2 + a↓j |hj,c|

2 ≤ Q/ρ | |hi,c|
2 ≤ |hj,c|

2
]

Pr
[
|hi,c|

2 ≤ |hj,c|
2
]

(A.17)

= 1−
1

2

(

1− exp

(

−
Q

ρ

))

−
1

2

∫ Q/ρ

0

Pr
[

(1− a↓j )t+ a↓j max(t, |hj,c|
2) < Q/ρ

]

Pr
[
|hi,c|

2 = t
]
dt (A.18)

= 1−
1

2

(

1− exp

(

−
Q

ρ

))

−
1

2

∫ Q/ρ

0

Pr

[

|hj,c|
2 <

Q/ρ− (1 − a↓j )t

a↓j

]

exp(−t) dt (A.19)

= 1−
1

2

(

1− exp

(

−
Q

ρ

))

−
1

2

∫ Q/ρ

0

(

1− exp

(

−
Q/ρ− (1− a↓j )t

a↓j

))

exp(−t) dt (A.20)

= exp

(

−
Q

ρ

)

+
a↓j

2(1− 2a↓j )

(

exp

(

−2 ·
Q

ρ

)

− exp

(

−
Q

ρ
·
1

a↓j

))

(A.21)

= fprob(a
↓
j ) (A.22)

where(a) comes fromlog(1 + x) ≈ x whenx is small.
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