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Abstract—In wireless cloud storage systems, the recovery fail- possible withk out of n nodes. For practical implementations,
ure probability depends on not only wireless channel condibns  erasure coding is known to be more reliable than duplication
but also storage size of each distributed storage node. Foma of the file [Z]. Reed-Solomon codé&l[3] is the most popular

efficient utilization of limited storage capacity and the pefor- . . .
mance characterization of allocation strategies, we asymgtically one for practical implementation of MDS codes and Reed-

analyze the recovery failure probability of a wireless clod Solomon code with information dispersal algorithm (IDAy fo
storage system with a sum storage capacity constraint for ib  distributed storage was investigated|[in [4]-[7]. Fountzodes

high SNR regime and low SNR regime. Then, we find the optimal [g] and low-density parity-check (LDPC)1[9] are also known
storage allocation strategy across distributed storage ries in to have approximate MDS properties. Especially, raptoecod

terms of the asymptotic recovery failure probability. Our analysis . . .
reveals that the maximal symmetric allocation is optimal fo the first known class of fountain codes as well as online codes

high SNR regime and the minimal allocation (with | 7| complete [10], is another example of rateless erasure codes andd@®Vvi

storage nodes and an incomplete storage node) is optimal ftsw  linear time complexity of encoding and decoding.

SNR regime, whereT is the sum storage capacity. Based on the  \When a storage node fails, the code repairing problem in

numerical investigation, we also show that in intermediateSNR 5 gistributed storage system is addressed in [11] where the

regime, a balance allocation between the minimal allocatio and - . . . .
code repairing techniques are categorized into exact nmepai

the maximal symmetric allocation would not be required if we . . ! i
select one between them according to SNR. functional repair, and exact repair of systematic partse Th

. . blocks newly reconstructed by the functional repair preser
Index Terms—Cloud storage system, wireless storage, maxi- y Y pair p

mum distance separable coding, recovery failure, storagellaca- 1€ MDS property and enable data recovery, but they are
tion. not the same as the original blocks. On the contrary, in the

exact repair, the failed blocks are exactly reconstructdu
exact repair of systematic parts is a hybrid repair model
|. INTRODUCTION standing between the functional repair and the exact repair

In recent years, the advent of various kinds of social ndtthe functional repair problem in distributed storage eyt
works, high-definition video streaming, and ubiquitousudlo Was studied in[12], interpreting the problem as a multicgst
storage entails large-scale storage in communicationarksy Problem over an information flow graph. For the exact repair,
Cloud storage systems are able to meet the demand on lafgavas shown in[[1B] that the optimal minimum bandwidth
scale storage capacity only with limited storage capacifggenerating (MBR) code can be found fdr = n — 1,
of each storage node. Moreover, the cloud storage systefffiered andn are the number of surviving nodes and the
improve reliability of data storage and recovery since they humber of storage nodes, respectively. For the exact repair
robust to failures of individual storage nodes to a certain dthe exact minimum storage regenerating (MSR) code based
gree. The robustness also makes repair and maintenance @asiterference alignment was proposed(inl [14], wHert ;
when an appropriate network coding technique is adopted.andd > 2k — 1 wherek is the minimum number of nodes

Theoretically, successful recovery in a cloud storageesyst required for data recovery.
is possible if and only if the corresponding max-flow or min- The capacity of multicast networks with network coding
cut from the storage nodes is greater than or equal to thegiz&vas given in the pioneering work of Ahlswede et al.l[15]. It
the original data object. To implement this feature, given t Was also shown iri[16] that the random linear network coding
positive integers: andn, a(n, k) maximum distance separableoVer a sufficiently large finite field asymptotically achievae
(MDS) code can be used to encode and store the original datglticast capacity. For distributed storage, network ngdias
into n storage nodes such that recovery of the original dataifgroduced in [17]4{19] for wireless sensor network. InJ17

[18], decentralized erasure codes inspired by networkngpdi
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efficiency in a distributed storage system was investigatedof storing and retrieving a file over multiple storage desice
[20]. In [21], partial network coding (PNC) generalizingtne under limited sum storage capacity is also a fundamentatiss
work coding was investigated for data collection in digitéddl to be addressed, from which we can identify the optimal file
sensor networks. For a joint storage and transmission @mpbl portions to store at each storage device. In system design or
[22] showed that a linear coding strategy with file splittingleployment, the problem reveals the optimal storage size at
(instead of coding) achieved optimality in total cost irdihg each storage device under a limited budget of total availabl
the individual cost of updating, storing and retrievingh@t storage space. A cloud edge computing system can also be
key issues on network codes for distributed storage can &® extended application. Cloud edge computing includes the
referred to [11]. processes of distributing input data generated from a wser t

For an efficient utilization of limited storage capacitynearby computing entities (or devices) and delivering outp
resource allocation in distributed storage systems has bekata from the computing entities to the user. The processes a
actively explored. A storage allocation problem under a-cobasically identical with the processes of storing and eginig
straint of total storage capacity was studied [inl [23], whedata over distributed storage devices. Therefore, ouesyst
the recovery probability at the data collector was analyzedodel can be used as a framework for wireless cloud edge
when the link connections from each node to the data collectmmputing system.
are modeled as independent and identically distributéd.ji.

Bernoulli random variables with parametgr It was found In our system model, the recovery failure event occurs eithe
in [23] that the maximal symmetric allocation that equallyvhen a data object is not correctly stored at the distributed
distributes the total storage capacity to the storage nexlesstorage nodes or when the data recovery at the collectsr fail
optimal if the total storage budget is large enough. The g&jfe analyze and characterize recovery failure probabititgn
between the maximal symmetric allocation and the optimagymptotic sense for high SNR regime and low SNR regime,
solution vanishes as the total number of storage nodes groagd quantify the effect of limited storage capacity on the
when pT' > 1, where T is the normalized total storageasymptotic recovery failure probability in high SNR regime
capacity. If the total storage budget is small, the minimdihe contributions of this paper are summarized as follows.
allocation was shown to be optimal, where the total storage

budget is distributed to the minimized number of storageasod

only. In [24], these results were extended to a distributede We find the asymptoticallyoptimal storage allocation
storage system with heterogeneous links where the colnecti  under a constraint of total storage capacity for high SNR
probability from nodei to the data collector ig;. regime and low SNR regime.

Most of the previous papers on network coding in dis- « Using exponential equality analysis, we show that the op-
tributed storage systems rely mainly on simple graph néksvor ~ timal allocation strategy for high SNR regime is maximal
with reliable links. System design and performance angslysi symmetric spreading of the total storage budget across the
of distributed storage systems in fading channels is ctucia  distributed storage nodes.

For example, diversity gains by multiple antennas or migdtip « We show that for low SNR regime, the minimal allocation
nodes [[25], [[26] in distributed storage systems are reduire  with |T'] complete and 1 incomplete storage nodes is op-
to be properly analyzed and evaluated in fading channels. timal. In the minimal allocation|T"| — T" storage budget,
However, there have been very few studies on distributed which is the remaining storage budget after allocating
storage allocation with non-reliable fading links so fal- A |T] budget to|T| storage nodes, is not required to be
though some works, such ds 23], [24], tried to take account allocated.

of unreliable links with Bernoulli random variables, theyléd o Inlow SNR regime, the storing phase becomes the perfor-
to exactly account for the key features of wireless linkshsuc ~ mance bottleneck and thus the recovery failure probability
as channel fading. For example, diversity gains by multiple mainly depends on the cardinality of the decoding set of
antennas or cooperative nodes|[25],/[26] in distributedagte which elements are the storage nodes that have stored the
systems are required to be properly analyzed and evaluated i object successfully.

fading channels. Despite the importance of system design anes Based on numerical investigation, we show that in inter-

performance analysis of distributed storage systems iimdad mediate SNR, a balance allocation between the minimal
channels, there have been few studies on distributed storag allocation and the maximal symmetric allocation would
allocation with non-reliable fading links so far. not be necessary if we properly switch them according

In this context, we consider a wireless cloud storage system to SNR.
where data storage and recovery are carried out through
wireless fading channels. A personal cloud storage system
might be a good application of our system model. Contrary to The rest of the paper is organized as follows. In Section
public cloud storage on internet like Dropbox or Google érivIl, we present our system model and notations about the
users directly access nearby wireless storage to storériviee  exponential equality. Section Il describes how the wisle
their data in a personal cloud storage system. Apparenttjoud storage system operate. The optimal allocation for
distributed storage techniques and resource allocati@erunasymptotic SNR region is investigated and analyzed in 8ecti
limited storage space are key techniques enabling persohalln Section V, we present numerical results. Finally, we
wireless cloud storage systems. In this regard, the probleenclude this paper in Section VI.



Phase 1:
Data Storing Phase

Phase 2:

Data Recovery Phase period but the channel gains independently change between

the periods.

An additive white Gaussian noise (AWGN) is denoted:by
and follows the complex Gaussian distribution with zero mea
and varianceVy, i.e., z; ~ CN (0, Ny). The average signal-to-
noise ratio (SNR) of a link is denoted as= P/N, and the
amount of coded data stored in storage node{l,..., K}
is denoted ag;.

In our model, each storage node does not have an individual
restriction on the storage size but the maximum amount of
data stored at each storage nod&'ibecause the total storage
budget is limited tdl" such thathi1 a; < T.We assume that
the size of data object is normalized to be unit compared to
the total storage capacif§ as in other literature [23], which
simplifies design and analysis of distributed storage syste
A data object corresponds to a divided data block and the
recovery probability to be analyzed is for each data block, n
for the whole file. Total storage constraifit and allocated
budgeta; is also identically used for a data block consisting
A. System and Channel Model the file because they are already normalized values compared

As shown in Fig[lL, the number of storage nodes is st the original data. In other words,; can also denotes the
to K. Data source, data collector, and storage nodes amount of MDS coded fraction stored in storage nade
denoted bys, ¢ and {1,..., K}, respectively. The collector
node recovers the stored data from the storage nodes. If we
consider the scenario when a mobile user stores its data on
cloud storage, the collector node will be the same as theAs shown in Fig[ll, the storage and recovery operation is
data source, so the direct link from the source node to tRenstituted by two basic phases. The first one is for storing
data collector does not exist. The channel gain from nodata object in the distributed storage nodes and the second
i to nodej is denoted byh,; and follows the complex One is for recovering the stored data. These two phases are

Gaussian distribution with zero mean and unit variance, i.€coupled in time since the stored data are recovered later
hij ~ CN(0,1). For simplicity, we assume all channelglthough the first phase affects the data recovery in thenseco
independent and identically distributed (i.i.d.) and trethp Phase. That is, the storage phase and the recovery phase are
loss are ignored, but the result of this paper can be extend¥d concurrently entered into.

to a general case with ease. To facilitate tractable arsalysi 1) Storage Phase: The source node broadcasts a data object

Storage nodes
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Fig. 1. A wireless distributed storage system model cartstit by data
storing and recovery phases

II. SYSTEM MODEL AND NOTATIONS

Storage and Recovery Operation

without losing key insights on system design, we assunek i.i.
channels. Moreover, if storage nodes are not close one@noth
in a rich scattering environment, the independent channel
model can be effective.The analytic framework developed in
i.i.d. channels will be also useful in non i.i.d. channelsr file
storing and recovery, a file is divided into many data blocks
and the storing and recovery processes are carried out for
each data block. Because mobility of both storage devicds an
user is limited in personal cloud storage systems, the Boppl
spread is not likely to be large. For example, in low mobility
environments (i.e, moving speed is less than 5 m/sec), the
coherent time becomes approximately 20 ms with 2.4GHz
carrier frequency. On the other hand, symbol duration is on
the order of tens of microseconds and the supported data rate
reaches more than 1 Gbps in current wireless communication
protocols such as Wi-Fi direct. Consequently, each datekblo
size can be as large as up to 2.5 Mbytes under the coherent
time requirement. This block size is large enough to impleme
ideal MDS coding and given the fact that storage devices
like HDD or SSD use block size of 4 KB — 2,048 KB, the
requirement of coherence time can be readily met for each dat
block. Therefore, we assume that the coherence time is tonge
than each storage period and recovery period for each data
block and thus the channel gains do not change during each

to the cloud storage nodes to store the data object during
a given time period. If a storage node has successfully
decoded the broadcast data object from the source,
the storage node converts the decoded data object into
suitable MDS coded blocks as much as its allocated
storage size;, and stores it. Storage nodsuccessfully
decodes the data object from the source node only when
the instantaneous mutual information between the source
node and storage nodes greater than or equal to the
required rate of the data object, i.bag, (1+plhs ;|?) >

Q. The value of threshold) depends on the adopted
modulation and coding scheme (MCS) and bandwidth
for data transmission. For example, a typical range of
required SNR in 802.11n Wi-Fi is around from 10 to 30
dB [28]. Taking account of specific system parameters
of the adopted wireless communication protocol, the
threshold@ corresponding to a required SNR value can
be computed. The amount of MDS coded data stored
at node: (¢ D) is equal to its allocated storage size
a;, whereD is the decoding set whose elements are
the storage nodes which have successfully decoded the
broadcast data object. ¥, _,, a; < 1, the data object

is not properly stored because the data object cannot
be properly recovered from the stored MDS coded data
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[23]. On the other hand, i, a; > 1, the collector LIST OF SYMBOLS ANDITS DESCRIPTIONS
has a chance to properly recover the data object from

the stored MDS coded data, depending on channel
conditions from the storage nodes to the collector. Note
that instead of MDS coding, random linear coding over
a sufficiently large field can be used for data object
recovery [16].

Recovery Phase: When the data collector wants to re-
cover the data object, it requests the storage nodes in the
decoding set to send the MDS coded blocks of the stored d
data. The storage phase and the recovery phase are
assumed to have the same time length for simplicity. Let

i € {1,2,...,|D|} be the index of the storage node i get, The data object is successfully recovered if
the decoding set. They are indexed in descending order
of the channel power gain from the storage node to the el 5

collector such thath; .|* > |hy |* > -+ > [hp | th log(1 +[h; o) > Q- )
Then, storage nodetransmits during; fraction of the !

time period allocated for the recovery phase, whgre
varies with the cardinality of the decoding set and has
to satisfyt; < a; and>_”! t. = 1 which is a constraint C. Notations

channel coefficient from to j

average received SNR

individual storage constraint at storage
the number of storage nodes

storage allocation vector

source

total storage capacity

data collector

accumulated rate threshold
exponential order

o>
Qo |N|=|p | XE[=|

-~
|

Otherwise, recovery of the stored data object fails.

=1"
from the property of MDS code. The data collector is The exponential equality is denoted as the symbgl
assumed to know the index and the stored data sizei@f,, f(p) = p°, when lim, 00 % = b whereb is

each storage node by proper signaling with the storagglled the exponential orderof f(p).p The exponential in-
nodes. With the help of pilot symbols from each storaggqualities denoted byc and > are similarly defined ()"
node in the decoding set, the data collector estimatgs ysed to denotenax{xz,0}. RN is the set of realN-

the channel gains from the storage node. To focus @iples, whileRN* denotes the set of nonnegative re¥t
developing the optimal distributed caching strategy, Weiples. For any sef? € RY, the intersection of the set and
assume perfect channel state information at the data is denoted byOt, i.e., Ot = ©® N RN*. Assume that
collector and discard the signaling overhead. Based @nis a Gaussian random variable with zero mean and unit
the channel gains, the data collector determines the tigigriance. Then, the asymptotic probability density fumeti
fractions, {t;}, by solving the following optimization (pdf) of the exponential order of/|z|? denoted by is ob-

problem: tained asp, = lim, o In(p)p~ " exp(—p~") where v =
2
D) —1im, o0 % By limiting p to infinity, the pdf in [II=Q)

@ is given byp, =p=> =0forv <0, p,=p " forv>0.

t:log(1 + [h; |? _ : .
arg@axz ilog(1+ i I°p) Thus, for independent random varlabl{e@-}f{:1 distributed

g i=1

D] identically tov, the probabilityP» that(vy,...,vk) belongs
subject toZtc 1. t<a. ) to set© can be characterized by
i=1 K
Po=ph, for dy=  inf G
The optimized value ofzf is given by o=r 0 (U17~~~7111)1K)€(9+ JZ:;UJ ®)
a1 [E? s < 1} provided thatO™ should be non-empty. In other words, the
i ’ g=1"J exponential order ofP» depends onO* only. The list of

+ (1 _ zé_:laﬁ) 1 {gii a:>1andYita. < 1} symbols used in the paper is given in TaBle I.
5=1"7 =19 5

=17
)
IIl. ASYMPTOTIC ANALYSIS OF RECOVERY FAILURE

where1(-) is the indicator function which returns 1 if PROBABILITY

the argument is true or 0 otherwise, which suggests thatFor the system model described in the previous section, the
longer transmission time is allocated to the storage nodecovery failure probability (i.e., the complimentary ogery

with a stronger channel gain under the storage constragmbbability) is hard to obtain in closed form, as noted[in][23
and the transmit time constraint. even if interesting wireless ingredients are not incorfeataln
According to the determinedt;}, the data collector this section, we instead explore the optimal storage dilmca
receives the stored MDS coded block from storage node an asymptotic sense. Exponential order determines the
1 during thet; time portion. Then, it moves on to storagedecreasing speed of recovery errors in high SNR regime. Con-
node2 and receives the stored MDS coded block duringequently, large exponential order offers low recoverjufai

t5. In this way, the data collector receives the storeprobability if SNR is sufficiently high. On the other hand,
MDS coded date from the storage nodes in the decoditite recovery failure probability is not characterized weaj



exponential order in low SNR regime, so the dominant order T
of recovery probability helps understand recovery perfomoe K
in low SNR regime. where [9) is due to the fact that an average with the
|Dyup(asym)| smallest ones is less than an arithmetic av-
erage; [(AD) is becausgDyp(asym)| is determined to sat-
_ N . isfy > .cpar < 1 for the symmetric allocation. Com-
We analyze the recovery failure probability for high SN%ining @) and [[ID), we havigip(asym)l ol < 1. Since

K2

Dup(a Dup(a 1 :
regime in this subsc_ectlon to understgnd its asymptotic\oeh \Z L{p( )l aj <1< ZL:L{P( )+ aj, there exists a s&byp(a)
ior. That is, we derive the exponential order of the recove I T S
. . ) . .—such that{a,,a,...,a/y } € Dyp(a), which implies

failure probability and find the optimal storage allocatio [Dup(asym)| .

- . . that |Dup(asym)| < |Dup(a)|. Therefore, the allocation corre-
to maximize the exponential order. The exponential order : . . .

. . +Sponding to the minimuniDyp(a)| is the symmetric storage

characterizes the decreasing tendency of the recoverydail .

. L . . allocation,asym.
probability versus SNR, and is interpreted as diversityeord With the svmmetric allocation. the lower bound @
if bit error probability or outage probability is considdre . i 3;] th imized ’ bound. That (.a) h
in conventional wireless communication systems. Contra&?mc' es wi € maximized upper bound. ‘That Is, he

to the conventional diversity order, the exponential order m mltn?@”ti ln Iovgar botlrj]nd IIB).becomeIED| W'ftrt]hthe
the recovery failure probability is determined by not onl)§ymme fcaflocation. since the maximum values of the upper

the number of independent fading paths for data storage a lower bounds coincide, we conclude that the symmetric

recovery but also the limited total storage capacity. a (c):catll(l)n mi\.)q'r:n 12€S the]?xpodn;nt;ﬁl ordf‘r. | : |
Lemma 1:For given storage allocatioa = {ay,...,ax}, orofiary 1. -or given it and £, tn€ optimal exponentia

the exponential order of the recovery failure probabilisy iorder of the recovery failure probability is

- [Dup(asym)| < 1 (10)

A. Optimal Storage Allocation in High SNR Regime

lower and upper bounded, respectively, by K
(K,T) { TW - (11)
. .
d(a) 2 Dg?ll}»lvlwl(} <K ~ DI+ D L I[Z i 2 H) with the optimal storage allocation policy.
r (6) Proof: The proof of Theoreni]ll showed that for sym-

metric storage allocationDyp(asym)|T/K < 1. Therefore,
andd(a) < min <K— |D|+|D|-1[Zai > 1]>. the maximum possible cardinality of the decoding set is

DC{1,....K} = |Dup(asym)| = [K/T] — 1. Plugging this in Lemm&l1, we
(7) obtain [11). [ |
Remark 1: Theoren[ll is on the same line with the result
Proof: Refer to AppendiXxA. m of [23]. Theorem[Il exhibits that the maximal symmetric

Theorem 1:Under a total storage capacify (> 1) con- sprgading of the sum storage capacity(> 1) yields the
straint, the optimal storage allocation in terms of expdiaén OPtimal recovery probability in terms of exponential oregen
order is to maximally and symmetrically allocate the surfPr Wireless distributed storage systems suffering froanctel

storage capacity across all storage nodes. fading.
Proof: Our optimization problem is formulated as Remark 2:The optimal exponential order of the recov-
ery failure probability is bounded above and below by
max d(a) (1-4)K <d*(K,T) < (1- %) K + 1. Thus, the approx-

. . 1 S
subject t0ay + as + -+ +ax =T, a; >t >0, Vi. |m<_':1ted slope of the exponential order (i$ — %), which is
®) strictly less than 1, for the sum storage capadity
Although the exponential order well characterizes asymp-
For an arbitrary storage allocatien the upper bound af(a) totic behavior of the recovery failure probability, we also
in (@) is determined by the maximum value of the cardinalitsierive a high SNR approximation of the recovery failure
|D| of a decoding set satisfying , ., ar < 1. Let this probability for concrete understanding of recovery suseasl
decoding set béDyp(a). Obviously, Dyp(a) is a set of the failure in high SNR regime, when the sum storage capatity
nodes whose allocated storage sizes aré®hg(a)| smallest is maximally and symmetrically spread to the storage nodes.
ones, i.e.;.Dyp(a) = {ala; e ,a‘TDUP(a”} Whereaj denotes  Theorem 2:When SNR is sufficiently high, the recovery
thei-th smallest storage size in and|Dyp(a)| is determined failure probability is approximated as
such thaty>[Pwr@1 I < 1 < SoIPw(@)iFt o
- 1;1 7 — =1 7" ) igh K
To maximize the upper bound ef(a), we have to find PIJ} Q] =~ (-1
K-

)(QQ KT (K- T14D)
an allocation which yields the smallefbyp(a)|. Consider

the symmetric storage allocatieryn, in which the allocated (12)
storage sizes are the same gs Then, for the symmetric  Proof: Lemmall and Theoref 1 indicate that when SNR
allocation, the following inequalities hold. is sufficiently high, the exponential order of the recovery

ZIDup(asym)l 4T failure probability is dominate_zd byDUp(aSy,_n_)L For asym and _
S L A = (9) |Dur(asym)|, the recovery failure probability when SNR is
|Dup(asym)| — K sufficiently high is obtained as



(Ik() PrD| = K- Pr| 3 tilog(1 + |hif?) > Q]

PrlQl= > PylQ|DIPID] 3 k= n
(a)
PELh K S (MVprp =1 P maxlog(1 + [hi.ol*) > Q|
(a) K k i€D '
S Pr|D| = [K/T| - 1] k=2
(411 (19)
K K K K—k
= Prilog,(1 + p|h|? fr1-1 K\ .29 e
(127, Pitoma1 + ln) > ' 3 () (1)
x Prflog, (1 + p|hf?) < QI [#1+! s 7 :
Q_
K 9Q _q [F1-1 X 1—(1—6_2P1> ) (20)
= exp
(rs1-0) (= (55)) .
00 _ 1\ KT _ 22 3 <K) (-2 221
X (1 — exp ( )) (15) k=2 k
P -
K—[E741 2@ K=k 291 k
(b) K 20 -1 T x|1—e "7 1—(1-e""7 (21)
~ | 5 —_— (16)
(71 -1 P
(b) _9.29-1
where (a) is from the result of LemmA]1 with high SNR < e = 7 (22)
assumption andb) is due to Taylor's expansion gs— oc.
P @) d P ¥ OO. where(a) is from the selection upper bound (i.e., selecting the
node with the strongest channel to the data collector among
k complete nodes), an@) is because ag increases, the rest
. . . . Q_
B. Optimal Storage Allocation in Low SNR Regime term except 2 7 goes to 0 and strictly less than 1. On the

Although we have derived the optimal storage capacifher hand, the recovery probability for the storage atioca
allocation for high SNR, it is not clear whether the derived = (1,0,...,0) is given by
solution is always optimal for all other SNR regimes. As - B .
stated earlier, the exact closed form expression of thevezgo Po(a1) = Prinode 1 is inD] - Pr[recovery from node 1]

failure probability is hard to obtain due to its mathemdtica (23)
intractability. Thereby, in this subsection, we exploresth _ Prllog(1 + |hs1|2p) > Q] - Prllog(l + |h1..?p) > Q]
optimal storage allocation strategy in low SNR regime. Tis th ’ ’ (24)
end, we have to first understand the relationship between the 50 1 50 1

decoding set cardinality and the recovery failure proligbil — Po(ay) (_ exp (_ ) exp (_ )) (25)
We start with the following definition of a complete storage p p

node.

_ . _ Consequently, Lemma 1 is proved becauBg(a(e)) <
Definition 1: Storage nodé is defined as a complete stor-po(al) in low SNR regime means, always shows lower
age node if it can store a complete data object and the dgi@, ey fajlure probability than any other allocation haitit
object can be perfectly recovered from it without help of ané’omplete storage nodes. -
other storage nodes. That is,df > 1, storage node is a Lemma 3:For any allocation strategy witli(; complete

complete st?rage node. ) ) storage nodes anll, incomplete storage nodes, the recovery
Lemma 2: Any storage allocation strategy without complet(Fa”ure probability in low SNR regime is higher than an

storage nodes has higher recovery failure probability i 104;,5-ation with K, + 1 complete storage nodes
SNR than a storage allocation strategy with only one coraplet Proof: Let an allocation strategy with; complete stor-

storage. ] . , __age nodes and, incomplete storage nodes begx, x,) and
Pro%)f. Let us consider the following storage allocation,\ 4iiocation strategy withi; + 1 complete storage nodes
strategy: ax,+1. Similar to the proof of Lemma 1, we can easily show
ale)={l-el—¢....,1—¢} the recovery probability ok, x,) can be upper bounded as

. o . follows:
wheree is an arbitrarily small positive value ¢ 0). (17)

. Po(a
To recover the data object, at least two storage nodes aroe(K(K“Kz))
1

required for the allocatioa(e) and the corresponding recovery Z i (K1) (Kz
o k

probability becomes ke ) PrlID| = k1 + k2]

k}] =0 k}2:0
K x Pr[recovery fromk; + ko storage nodes] (26)

Po(a(e)) = ]; <Ik(> Pr(D| = k] @ i i <I]§11> <I]§22>6—(k1+k2)'2@p1

x Pr[recovery fromk incomplete storage nodes] (18) o —



2@, Ki+Ko—ki—ko 2Q k1+kE2
(o) ()
Ko Ka—k2
K. Q_ Q_
S () (1)
2@ 1 k2
x| 1- (1 —e » )
K, 2@ —1 2@ —1 8f
— exp | —2- 1—exp|—
1 P P 6
2@ — 1
+o0 (exp (—2 . )) (27) 4r
P

exponential order

20 —1 2 ]
< Kiexp <—2 . ) (28)
p 00 é 4‘1 é é 16 1‘2 1‘4 1‘6 1‘8 20
where (a) is obtained from the selection upper bound as ir The number of storage nodes
(19) and< is the asymptotic inequality which denotes that the (a) By the numbers of storage nodasfor T = 2,5, 12.
inequality is valid for high SNR regime. Because K =10
2Q 1 10 T
Po(aik, Kk,)) S Kiexp (‘2' , > g9
o
2Q —1 _ -'_é‘ 8r Need 1/3 individual budget to get
< (Kl + 1) exp <_2 . ) ~ Pp (aK1+l)a (29) % 4l 80% exponential order
_ _ § 2r
Po(ak, k) < Pola, 41) holds forp — cc. = A R R
Lemma 4:When the sum storage bugétis allocated to 0o 1 2 3 4 5 6 7 8 9 10

The total storage budget

|T'| complete storage nodes, the remainifig- | 7| storage K = 200

budget should be allocated to only one storage node, tovaehie 200
the optimal performance in low SNR regime.
PrOOf: Refer to Appendl)EB' . . . © Need 1/40 individual budget to get
Theorem 3:The optimal storage budget allocation in low £ 100ff ~ 80% exponential order
SNR regime consists dfl’| complete storage nodes and oneg
incomplete storage whose storage siz&'is |T|.
Proof: The proof is straightforward from Lemmas[1—4. O i e 0 o0 e 1o oo ea 200
| ] The total storage budget
Example 1:In low SNR regime, if the sum storage budget
for K = 6 storage nodes is given ¥ = 2.25, two nodes
should have storage sizg = 1 and one node should haveFig- 2. Exponential order growth
storage size0.25. Note that this allocation is completely
different. T
. Remark B:When the tota_ll storage. budget is given b)_/ an— H Pr[log(l + plhil?) > Q}
integer value i.e] = | T'|, with the optimal storage allocation ;.5 ;cp
in low SNR, the number of storage nodes with non-zero 12
allocated memory i§" and they are all complete storage nodes. x H Pr [log(l + plh;]7) < Q]
Then, contrary to the maximal symmetric allocation in high
SNR, node selection for selection diversity in the recovery  x Pr [10g(1 + pmax|h|?) < Q} (31)
phase is possible. In this case, the recovery failure prittyab b
can be obtained exactly in closed form as in the following T 2Q _1\" 2Q _1\\ 7k
-2 (1)er (-57) (o0 (55)
Corollary 2: When the total storage budget is an integer *=9
value, the recovery failure probability with the minimalcal ( ( 20 — 1)>k
e i X |(1—exp|(—
cation is obtained as p

Pr[Q] = ZT: <£> <e—&pl)k <1 _e—zQﬁ)T. (30) "

k=0 IV. NUMERICAL RESULT
Proof: : i
- A. High SNR Regime

Pr[Q] = Z PH|D| = k] - Prs[Q | [D] = k]| To focus on channel fading effects only, we assume simple
topology where the distances from data source/collect to

50

ex

(b) By sum storage capacity for K = 10, 200.

Jj¢D

(32)

k=0
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storage nodes are the same. The channel gains of each link are
i.i.d. exponential random variables with unit mean. Thencha
nel gains do not change during each period but independently .|
change along the periods. An recovery failure occurs ifegith
data object is not properly stored or accumulated inforomati
at data collector is less than thresha@)d

Fig.[2(a) shows the exponential order of the recovery failur
probability versus the number of storage nodes for various
sum storage constraints. It is shown that the exponentikdror
increases with the number of storage nodes and the incgeasin
slope depends on the sum storage constraint. For example, ol
whenT = 2, the increasing slope of the exponential order

exponential order loss
due
to limited storage

Recovery failure probability

Simulation

is % as noted in Remark]2. Contrary to the conventional ~ = = High-SNR Approximation
multiple relay or antenna diversity order, the exponertrder 1o75|, | ¥— Conventional (uniimited)
dose not increase with the number of storage nodes since - 5 : P » prs

10
the gain provided by multiple storage nodes is hampered by SNR (dB)
“mite.d storage c_apg_city. In other words, gdding S.torag‘?EnOFig. 3. Recovery failure probabilities féF = 1,3, andco when K = 5
can improve reliability of storage operation but its effé€t ang their high SNR approximations
marginal without sufficient storage capacity.

Fig.[2(b) shows the effect of the sum storage constraint on
the exponential order of the recovery failure probabilityem
the number of storage nodes is fixed/gs= 10 or K = 200.
As predicted in Corollary]1, the exponential order increase
and converges as the sum storage budget grows. According to
Theoren{dL, with the optimal storage allocation in high SNR,
the storage size allocated to each node becomes smaller as
the number of storage nodes increases. For example, taobtai
80% of the maximum exponential order which is marked as
the black circles, the storage sizes required at each nade (i
T/K) area; = 1/40 anda; = 1/3 for K = 200 and K = 10,

OI

Crossing point  :

Recovery failure probability

o,
W
T

respectively. Fig. 4 reveals that if sum storage capacity is Symmetis allosation

relatively small compared to the number of storage nodes, = 7 - "SR approsimation

only a small amount of increment in storage capacity can + _ Minimal allocation (analysis)

considerably increase the exponential order. This phenome e : . )1 . e
is more noticeable when the number of storage node is large, SNR (dB)

which implies that full exponential order is achievable twit
only a very small storage budget per storage node if tfiig. 4. Recovery failure probabilities of the maximal syntriveallocation
. d the minimal allocation whei’ = 1,2 and K = 6.
number of storage nodes is large enough. an ’
Fig. 3 figure verifies that the asymptotic analysis of recov-

ery failure probability well approximate the recovery 8 o the data source for the optimal performance, but this is
probability in high SNR regime. As shown in the analysis qfjikely in low SNR. Consequently, the performance of the
exponential order, the recovery failure probability is dlpd oy metric allocation is restricted at the storing phase and

as the sum storage capacity is smaller. It is also verifietl tha, <o than that of the minimal allocation in low SNR. Eor

the high SNR approximation matches well with the simulatiop _ 5 the exponential orders of the symmetric allocation and

result if SNR is greater than 10 dB. Given that a typical rangge minimal allocation aré and2, respectively. In high SNR,

of required SNR in 802.11n Wi-Fi is around from 10 10 3Qhe symmetric allocation is definitely better but in low SNR,

dB [28], the high SNR approximation would be useful ife recovery failure probability of the minimal allocatios

performance evaluations . much lower than that of the symmetric allocation. The crugsi
point between the two allocation schemes is arodrB.

B. Low SNR Regime
Fig. @ exhibits that the minimal allocation is strictly testt C- Discussions on Storage Allocation in Intermediate SNR

than the symmetric allocation in terms of the recovery failu Although the optimal storage allocation is unknown for
probability in low SNR regime. Fofl’ = 1, although both intermediate SNR regime, the optimal storage allocatimatest

of the allocation strategies have the same exponentialr,ordges for high and low SNR regimes may suggest that a
the minimal allocation outperforms the symmetric allooati balanced allocation between the maximal symmetric alionat

in terms of recovery failure probability. In the symmetriand the minimal allocation be effective in intermediate SNR
allocation, all the storage nodes have to decode the dagatobfor example, when there are 6 storage nodes and the sum



APPENDIXA
PROOF OF THELEMMA [

By the law of total probability, the recovery failure proba-
bility is given by
PylQl= > PrQ|DIPD] (A1)
DC{1,.... K}

where(@ is the rate of the data object, which is equivalent to
the data object size. The probability for the decodingl3e$

Recovery failure probability

obtained as
= Symmetric allocation
. . ‘M)i’xlureamm=(1/2,1/2,1/2,1/2,0,0) Pr[’D] — H Pr [10g2(1 4 p|hs,i|2) > Q}
1070~ — Mixture a . = (2/3,2/3,2/3,0,0,0) 1 :
= = = Minimal arlrl“c:(calion b
L L L L L L X H Pr [10g2(1 + p|h571|2) < Q} (A'2)
-4 -2 0 ZSNR(dB)4 6 8 10 ie{l,.. . K)\D
_ 12 Q _
Fig. 5. Recovery failure probability of various allocatistrategies. o H) Pr [P|hs,z| > 2 1]
1€
< JI  Prlelheil® <29 —1] (A.3)
. . . eq{1,..., K}\D

storage budget is 2, i.e(K = 6, T = 2), the symmetric (a;e{ aaatl
allocation isagym = (3,...,3) and the minimal allocation = H Prpt=ves > o] H Prpt=ves < o]
is amin = (1,1,0,0,0,0). Possible balanced allocation strate- ep €1 K\D
gies between them could b&ynix1 = (3.1,3.3,0,0) and o (A.4)
amix2 = (%,%,%,0,0,0). Both of the allocation strategies _ 0 .
require at least 2 storage nodes to recover the data object — H P H P (A-5)
but a,ix1 can choose 2 among 4 storage nodes wWhjlg, o €D ie{l,.. . K}]\D
can choose 2 among 3 storage nodes. As a reswl; is = p~ (K=IPD (A.6)

expected to outperform,ix2, Which is verified in Fig[Bb.
Comparingamix1 With the maximal symmetric allocation an . _
the minimal allocation, the minimal allocation is the bestiu 'S the exponential order of /|h[; (a) comes fr(;m the
SNR is around 4 dB at which the minimal allocation ang€finition of the exponential order. Assuming tHag;|"} are
the maximal symmetric allocation cross, whereas the maxinid- €xponential random variables, for a given decodeigs

symmetric allocation is the best after the crossing. Thesiite the conditional recovery failure probability is upper bded
strongly implies that selection between the minimal altmra by

and the maximal symmetric allocation suffices.
Prs[Q | D] =Pr [Z tilogy (1 + plhicl?) < Q} (A7)

dwhere|D| is the cardinality of the decoding s& and v, ;

i€D
1 a; > 1|+1 a; <1 A.8
V. CONCLUSION [Z ] [Z ] (A.8)
i€D €D
(a) )
In this paper, we introduced a new wireless distributed < Pr| ) tilogs(1+plgil*) < Q
storage model with a sum storage capacity and investigated €D
its performance in terms of the recovery failure probapilit X 1[2 a; > 1]+ 1[2 a; < 1] (A.9)
Using exponential order analysis, we proved that the maxima i€D i€D
symmetric allpcation is the optimal aIIocati_on strate_gy fo ®) o minieptfl’ for Yiepa; > 1,
high SNR regime. For the maximal symmetric allocation, we =11 for S pai <1
also presented an approximated representation of theegcov ’ ieb (A.10)

failure probability based on a high SNR approximation. On

the other hand, using asymptotic analysis for low SNR, theéhere(a) is becauséh; .|? is replaced byg;|?; the optimal
minimal allocation with|7'| complete storage nodes and on&ansmit time allocatior{t;} depends on the ordered channel
incomplete storage node was shown to be optimal in low SNRuins of|h; .|, but not on|g;|?, which yields higher recovery
regime. If the sum storage capacity is given as an intedeilure probability due to unoptimized transmit time abdion
value, we derived the exact recovery failure probability dbr {|g:|?}. (b) follows from the definition of the exponential
the minimal allocation in low SNR regime. Based on therder and[(b) (Se€ [27] for more details) such that
numerical investigation, we also showed that a proper setec

betwee_n the minimal allocation and the maximal symmetric py Zti log(1 + |g;|2p) < Q| = p~ "fveot Tien v
allocation would make any balance allocation unnecessary. icD
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vo 4 whereZ is a subset consists of the incomplete storage nodes

in D. The first term consisting of (A.23) and_(A]24) has a
dominant scale in the recovery probability and is common
regardless of<s in a,. . . Therefore, we have to focus on
the second term consisting df (Al25) arid (A.26) to analyze
the effect of incomplete storage allocations.

Now we prove that in the second term, the case whea
1,]Z] = 1 leads to a dominant scale as— 0;

£y () oo

1)K1+K2—2
kim1|Z]=1

x Pr [ Recovery fromk; (= 1) com. and inc. nodes iff ]
2@ 1

Z (1 —e 7

IZ]=1

=) (A.11) x Pr [ Recovery from 1 com. node ]
® 291 5@

whereO = {v;|v; € D, 3 ,cpti(l —v;) < 0} andw; is the 2 (K1Ky—di)e e
exponential order of /|g;|?. Fig.[d illustrate a simple example 9Q _1
=0 (exp (—3 . ))
p

of (A1) when there are only 2 nodes.

On the other hands, if the channel gains for each node are
replaced by the highest channel gain among them during thgere(a) is from that recovery from 1 complete storage only
recovery phase, a lower bound on the conditional recovesjthout help of incomplete storage nodes yields worse recov

1

4

Vi
tnl

Fig. 6. Exponential order when there are only two nodes. corresponds
to the dashed region. The exponential order is dominateddatermined by
min t;l. The exponential order is maximized when= ¢, for the two node
case.

(a)

Ki+Ko—2
—92. 2 71 )

—mingep t;

for arbitrary smalld;

(A.27)

failure probability is obtained as

Pr[Q[D]
> Prllogy(1 4+ pmax |hicl?

€D 1€D
(A.12)
= p~IPlh lz a;>1| +1 Y ai< 11 (A.13)
€D €D

Combining [[A.6), [A.1D), and (A.13), the exponential order

of the recovery failure probability is lower and upper boedd

as [6) and[{7), respectively.

APPENDIXB
PROOF OF THELEMMA [4

For the allocatiomk, k) defined in the proof of Lemnid 3,
let K7 be |T'] and then, the sum of the storage sizes allocated

to K> incomplete storage nodes is equal or less than|T|.
There can be up t&;
this storage allocation. Let this allocation bg, . ) where

Ky = K — K;. Then the recovery probability fQI(K K) |
given by
K, _k 291
= Kl e "t
Po(a] = ( )
O( (K17K2)) ]ﬁZ:l kq (1 _e—izprl)_(Kl-i-Kz—/ﬂ)
(A.23)

x Pr [ Recovery fromk; out of K1 com. nodes ] (A.24)

< K —(ky+z))- 2222
+ Z Z (kl) _2Q7—1 (K1t Ko—ki—|Z)) (A25)
ki=1Z#0) (1 e 7z )
x Pr [ Recovery fromk; com. and inc. nodes iff ]
(A.26)

) < QD ai > 1 +1[> a; < 1]

= K — K, incomplete storage nodes in

ery probability;(b) is satisfied becaus(a—e = ) Kt K2 =2

goes to 1 ap increases. FolZ| > 2, the followings hold:

£ s ()
Q1  _ ke —
P 152 kl (1 _ 672 2 1) (K1+Kao—k1—|Z])
x Pr [ Recovery fromk; com. and inc. nodes i |
_ 291
(a) & >oiz>2 (1]:11)6 HIZ 5

= 0
%)7(K1+K2*k1*|1|)

k=1 (1 —e

>1
xPr [ Recovery fromk; + |Z| com. nodes ]

=1—(1—exp(—(29-1)/p))1T1Z < (k1 +|Z]) exp(—(22-1)/p)

b) Ku
: (e o= iz e

S5lb>
)

ki=1 |Z|>2

=0 (exp <—4-
where(a) is from that a recovery frorh; +|Z| complete nodes
is always better than that fromy complete storage nodes and
|Z| incomplete storage node§;) is because

(A.28)

Pr [ Recovery fromk; + |Z| com. nodes ] (A.29)

2Q _q ki1+|Z|
=1—|1—exp|—
P

20 —1
< (k1 +|Zl) exp (— k )

Comparing [(A.ZB) with[[A.2l7), we verify that the case when
k1 =1 and|Z| = 1 is dominant in the second term consisting
of (A.25) and [[A.Z6). Consequently, in low SNR regime, the
optimal allocation strategy for the remainifig— |7'| budget




can be identified by solving following optimization problem [3]

mx 303 e (<0242 2

a#
i |D\Z|=1|Z|=1

< < 2Q_1)>K1+K2—D\I—I
X | 1—exp| —
p

x Pr [ Recovery from 1 com. irD \ Z and 1 inc. nodes iff ]

(4]

(5]

Ko (6]
subject toy a} =T — [T

Jj=1

(7]

whereaj is the jth largest value among the storage sizes al-
located toK, incomplete storage nodes, that is, the allocatio®!
to K, storage nodes is rewritten in descending order such thgj

a{ > > aﬁﬁ . Removing common terms and making th "

problem concise, we can reduce the optimization problem to
K K [11]
m{%xz > Pr [ Recovery from a comi and an inc. nodg .
@5 =1 j=1
K, Ks

=max >3 Pr[(l —ab)log (1 + |hicl*p)

@i =1 j=1

+ atlog (1+ max{|hiol?, . *1o) > Q]

[12]

[13]

(A.30) 4

[15]

Ko
subject toy at =T — [T]. (A.31)

j=1 [16]

where |h; .|* and |h;.|* are i.i.d. exponential random vari-
ables. Note that the probabilities for the summation aredag17]
on independent events and have the forniin (A.22). Note that
(AZT) is a convex function with respect to € [0,1] since g
1) it is an increasing function of € [0,1] \ {0.5}; 2) for

a = 0.5, the limit of (A21) exists and({A.21) is continuous
ona € [0,1]; 3) for 0 < a < 0.5, the dominant term is |1
FToza] ©XP (—2Q/p) and its first and second derivatives with
respect toa are always negative and positive, respectivel%/zo]

ie., ﬁ <0 andﬁ > 0; 4) for 0.5 < a < 1, the

dominant term is—ﬁ exp —QJ which is also convex
with respect tax because we can adjustas small as we want [21]
in low SNR.

Consequently, >, >~ Pr[(1 — ay)log (1+ |hicl?p) +
aylog (1 + max{|hicl?, hjel?}p) > Q) = K13, foroblay)
is convex on a real intervdD, 1] because a sum of convex?®!
functions is also convex. Moreover, it is symmetric ijrand
hence it is a Schur-convex functidn [29]. Therefore, with thl24]
constraint( > aj =T — |T]), the strong majorization holds
for the allocation vector with only one non-zero elementafTh[25]
is, af =T — \_TJ,(LJQ’:---(ﬁ{2 =0.

[22]

[26]
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Pr [(1 — a¥)log (1+ [hie[2p) + at log (1 + max{|hic[2, [hycl*}p) > Q] (A.14)
(a)

< Pr|(1 = al)lhi?p + af max{hiol?, [he?bo > Q] (A.15)
—1—Pr [(1 — )il + ab max{ il [y} < Q/p} (A.16)

—1- Pr[(l — a)lhiol> + ahicl < Q/p | |hicl? > Ihj,clﬂ Pr{|hic®> > |hjel?]

= Pr[ (1= a)lhicl + @l < Q/p | hiel® < hyel2] Pr{hicl? < [hjef?] (A7)

(%))

Pr [(1 — ab)t + af max(t, [hy,[?) < Q/p} Pr[|hi.[2 = 1] dt (A.18)

Il
[
|

—_
N
—
|
]
4
o)
|
|

|
N o~ NI
S—
O
~
he)

_ Q 1o Qlp—(1—a)t

=1- <1 — exp (—;)) - 5/0 Pr l|h”|2 < —j’J] exp(—t) dt (A.19)
Q/ 1

=1- % (1 — exp (—%)) - %‘/0 ’ (1 — exp < %)) exp(—t) dt (A.20)

P S N (22) ep(-21

_ep( p) 2(1 — 2a*) (ep ? ep( p aj>> (A-21)

= foron(a}) (A.22)

where(a) comes fromlog(1 + z) ~ « whenz is small.
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