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Low Complexity Antenna Selection for Low Target
Rate Users in Dense Cloud Radio Access Networks
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Abstract—We propose a low complexity antenna selection
algorithm for low target rate users in cloud radio access networks.
The algorithm consists of two phases: In the first phase, each
remote radio head (RRH) determines whether to be included in
a candidate set by using a predefined selection threshold. Inthe
second phase, RRHs are randomly selected within the candidate
set made in the first phase. To analyze the performance of the
proposed algorithm, we model RRHs’ and users’ locations by
a homogeneous Poisson point process, whereby the signal-to-
interference ratio (SIR) complementary cumulative distribution
function is derived. By approximating the derived expression, an
approximate optimum selection threshold that maximizes the SIR
coverage probability is obtained. Using the obtained threshold, we
characterize the performance of the algorithm in an asymptotic
regime where the RRH density goes to infinity. The obtained
threshold is then modified depending on various algorithm
options. A distinguishable feature of the proposed algorithm is
that the algorithm complexity keeps constant independent to the
RRH density, so that a user is able to connect to a network
without heavy computation at baseband units.

I. I NTRODUCTION

Cloud radio access networks (C-RANs) [1], [2] use dis-
tributed RF units called remote radio heads (RRHs), which
are connected to a centralized baseband processor unit (BBU)
cloud via highspeed fronthaul. Due to this structure, a C-
RAN has an inherent advantage for improving the network
throughput. For instance, on the uplink, it would be optimum
to decode jointly the transmitted symbols by aggregating
all the received data, which is naturally possible in a C-
RAN setting. One issue of the centralized decoding is that
it requires significant computation complexity. For example,
if computation resources in the BBU cloud are statically
multiplexed, sharing huge amount of data between BBUs
may cause a computational outage [3]. For a user that wants
high-rate communication, this shortcoming is worth to endure
since it compensates high data rate. Nevertheless, focusing
on a user that wants only low-rate communication, this huge
computation complexity is unnecessary; thereby such user
should avoid this.

As an alternative of the centralized decoding, for users
which require low-rate communication, we consider to seg-
ment the processing so that one BBU decodes the data for a
single (low target rate) user. In this setting, a RRH selection
switch is considered as illustrated in Fig. 1. The role of the
RRH selection switch is to select a RRH and connect it to
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Fig. 1. The considered uplink C-RAN model. The RRH selectionswitch
selects a RRH and connects it to the BBU dedicated for user 1. User 1
indicates a low target rate user.

the BBU dedicated for the corresponding user, e.g., user 1 in
Fig. 1. User 1 indicates a low target rate user. For this reason,
instead of a fixed RRH-BBU pair, the considered C-RAN has
a reconfigurable fronthaul structure [4], where a BBU can be
flexibly connected to the selected RRHs among the distributed
RRHs. By doing this, the decoding complexity per user is
manageable.

In the considered C-RAN with a reconfigurable fronthaul,
RRH selection is important since it mainly determines the
performance. Most prior RRH selection methods demand com-
plexity closely related to the density of the RRH. As a simple
example, let’s assume that the RRH selection switch selects
the nearest RRH to the user. To do this, the RRH selection
switch searches all the RRHs and selects the RRH whose the
distance is minimum, resulting in that the complexity linearly
increases with the RRH density. When considering a C-RAN
with a high RRH density [5], [6], this RRH selection method
can cause high complexity in the RRH selection switch, where
such complexity is not desirable especially for low target rate
users. In this paper, we propose a RRH selection algorithm
where its goal is different from conventional RRH selection
algorithms, i.e., keeping reasonable complexity even in dense
C-RANs.

A. Related Work

RRH selection methods in C-RANs was proposed in [7]–
[13]. In [7], the downlink sum-rate was characterized as a
function of a subset of RRHs and based on that a combinatorial
optimization problem was formulated to find the optimal sub-
set of RRHs. Similar to [7], in [8], an optimization problem to
select the RRHs was formulated but the optimization goal was
minimizing network power consumption. In [9], to reduce the
complexity caused by estimating instantaneous channel and
computing an uplink receiver filter, a channel matrix sparsify-
ing algorithm was proposed for the MMSE receiver. In [10]–
[12], motivated by the energy efficiency in a large distributed
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network, energy efficient antenna selection algorithms were
proposed. In [13], a multi-mode antenna selection algorithm
that chooses whether one antenna or multiple antennas for
serving one user was proposed.

In another line of research, the signal-to-interference (SIR)
coverage probability was characterized when using various
cooperation techniques under an assumption of a network
modeled by a homogeneous Poisson point process (PPP).
For instance, in [14], the SIR coverage was analyzed in a
uplink C-RAN, where a user is associated with the nearest
RRHs. Assuming a downlink C-RAN where a user is served
by multiple RRHs (or base stations (BSs)), the SIR coverage
probability was characterized in [15]–[19]. Further, by using
this characterization, the optimum cluster size was obtained in
[15]–[17]. In [20], the SIR coverage performance of the rate-
splitting with the pair-wise BS cooperation was characterized.
Considering a multi-tier network, in [21]–[23], a joint trans-
mission method for heterogeneous networks was proposed
and the SIR performance was analyzed. While the benefits
of cooperation was a main topic in [15]–[23], [24] focused on
how each user achieves the benefits of cooperation avoiding
the BS conflict problem, which occurs when multiple users
want to be served from the same BS.

The main limitation of the existing work [7]–[23] is that a
centralized approach is used, where a core processor (e.g.,the
RRH selection switch in this paper) collects all the information
from every RRH such as distances to users or instantaneous
channel coefficients for choosing RRHs. For instance, in [7],
distances (large scale fading) between RRHs to active users
are needed to solve the optimization problem. This approach
is not fitted to our aim in a dense C-RAN scenario since the
complexity is an increasing function of the RRH density.

B. Contributions

In this paper, we propose a low complexity RRH selection
algorithm. The proposed algorithm consists of two phases. In
the first phase, called the distributed selection phase, each
RRH compares a distance (or received power) from a user
with a predefined selection threshold, and determines whether
to be included in a candidate set. One issue in the first phase
is that it is not trivial to extract the required information,
e.g., a distance or received power, in each RRH when all the
baseband processing such as FFT are placed in the BBU cloud.
To resolve this, we assume a LTE channel structure which
permits the RRHs to extract the required information from
the received signal in the time domain, without performing all
the received signal processing found subsequently in the BBU
cloud. In the second phase, called the random selection phase,
the RRH selection switch randomly selects RRHs within the
candidate set made in the first phase. By using two separate
phases, the complexity of the algorithm is constant irrespective
of the RRH density.

To analyze the performance of the proposed algorithm, we
model a network by using a homogeneous PPP, that allows an
expression for the SIR CCDF to be derived in a closed form.
Further, for the analytical tractability, we simplify the proposed
algorithm so that only one RRH is selected and a distance

between each RRH and a user is used in the first phase. Under
this assumption, we derive the SIR complementary cumulative
distribution function (CCDF) as a function of relevant system
parameters, chiefly the selection threshold, the densitiesof the
RRH and the interfering user, the pathloss exponent, and the
SIR target. By approximating the derived SIR CCDF, we find
an approximate optimum selection threshold that maximizes
the SIR coverage probability. With the obtained selection
threshold, we characterize the SIR coverage probability of
the proposed algorithm in an asymptotic regime, and reveal
a condition that the relative performance loss caused by the
random selection vanishes. Then, we modify the obtained
approximate optimum selection threshold so as to work for
a general case of the algorithm, i.e., if multiple RRHs are
selected or received power is used.

The remainder of the paper is organized as follows. In
Section II, the proposed algorithm and the system model used
in the paper are explained. In Section III, an approximate
optimum selection threshold is obtained and the performance
of the proposed algorithm is characterized. In Section IV, the
obtained selection threshold is modified for various algorithm
options and Section V concludes the paper.

II. SYSTEM MODEL

In this section, we first explain the proposed algorithm and
the RRH setting for applying the algorithm in practice. Next,
we introduce the network model and the RRH selection model
for analyzing the performance of the proposed algorithm.

A. RRH Selection Algorithm

In this subsection, we explain the proposed RRH selection
algorithm. For applying the algorithm, we consider a general
uplink cellular system implemented by a C-RAN, where
single-antenna RRHs are distributed and connect to centralized
BBUs. The location of thei-th RRH is denoted asdi. The set
of RRH locations are denoted asΦ = {di, i ∈ N}. Single-
antenna users transmit the uplink data through the network.
We denote that thei-th user is located atui, and the set of
the users’ locations isΦu = {ui, i ∈ N}. We only focus on
user 1 located atu1 since the algorithm can be applied for
each user equivalently. Without loss of generality, we assume
u1 = 0. This assumption can be generalized easily by shifting
the location of each RRH bydi − u1 ∀i. It is worthwhile to
mention that the applicability of the proposed algorithm is
not restricted by a particular network model, such as a PPP
network model.

The proposed algorithm consists of two phases, called the
distributed selection phase and the random selection phase,
respectively.

1) Phase 1-Distributed Selection:The goal of this phase is
to determine a candidate set of RRHs. To do this, each RRH
compares the distance from user 1 with a predefined selection
thresholdRth. Denoting a candidate set asA, a RRH whose
a distance from user 1 is less thanRth will be in A. In other
words,di ∈ A if ‖di‖ < Rth. Clearly, every RRH included
in A has a distance less thenRth, i.e., max

di∈A
‖di‖ < Rth. If

the selection thresholdRth is too small, then all the RRHs’
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distances are larger than a threshold, i.e.,‖di‖ > Rth for
∀di ∈ Φ, the candidate set is empty. In this case, user 1
fails to connect to a RRH and the outage occurs. Instead of
a distance, each RRH also can use received power. Given a
received power thresholdPth, the RRH whose received power
larger thanPth will be in A, and otherwise the RRH will not
be included inA. We denote that|A| = M , M ≥ 0.

2) Phase 2-Random Selection:In this phase, the RRH
selection switch randomly selects RRHs within the candidate
set made in the distributed selection phase. A set of selected
RRHs in this phase is denoted asB, where|B| = L, L ≥ 1
andM ≥ L. For instance, assuming thatA = {d1, · · ·dM},
we haveB = {di1 , · · ·diL} with probability 1/

(

M
L

)

for
any {i1, ..., iL} ⊆ {1, ...,M} since the RRHs are chosen
randomly. When only one RRH is selected in the RRH
selection switch, i.e.,L = 1, one RRH is selected withinA
with probability1/M . Fig. 2 illustrates the proposed algorithm
assumingM = 2 andL = 1

One point about the random selection phase is that there is
a non-zero possibility that more than two users select the same
RRH. When assuming that the RRHs are densely deployed,
which is the case we focus on, this probability becomes small.

In the distributed selection phase, since each of RRH
performs the comparison in a distributed way, no central-
ized processing is required. For this reason, the complexity
is independent to the density of the RRH. In the random
selection phase, the RRH selection switch randomly selects
a RRH within the candidate set, so that the complexity is
also independent to the density of the RRH. To show this
specifically, we consider a simple random delay method that
can be used in the random selection phase. If the RRH is
included in A in the distributed selection phase, the RRH
sends a predefined1-bit symbol through the optical fiber to
the RRH selection switch, otherwise sends nothing. Before
sending the signal, the RRH generates a random delay and
sends the symbol after the generated delay time. Then, the
RRH selection switch selects the RRH whose the sent symbol
arrives at the first time. By doing this, the RRH selection
switch is able to complete the RRH selection within a constant
time.

For more clarification, we compare the random selection
phase and the nearest RRH selection. We assume that the same
distributed selection phase is used for refining the candidate set
A, but in the nearest RRH selection, the RRH selection switch
chooses the RRH whose the distance is the minimum inA. To
do this, the RRHs included inA sends the measured distance
after quantizing it through the optical fiber. Here, the required
number of quantization bit is obviously more than1. Then,
the RRH selection switch collects all the distance information
sent from each RRH and finds the minimum, which needs|A|
complexity. If the cardinality ofA increases, the complexity
for choosing the RRH should also increase. On the contrary
to this, in the random selection, the selection switch does not
have to collect all the distance information from each RRH in
A, which makes the selection complexity constant irrespective
of |A|. Finally, the proposed algorithm is able to select a RRH
for each user with a constant complexity.

RRH Selection Switch

Rth

Distributed Selection Phase Random Selection Phase

BBU for User 1

User 1

Fig. 2. Illuratration of the proposed RRH selection algorithm when distance
information is used. We assume thatM = 2, L = 1. In the distributed
selection phase, the candidate set is determined. In the figure, the RRHs
marked by the red rectangle are included inA. In the random selection phase
the RRH selection switch randomly chooses one RRH inA with probability
1/2.

B. RRH Setting

Since the proposed algorithm requires a distance or received
power, each RRH should extract this information from the
signals it receives. When all the digital processing such as
the FFT as used in 3GPP LTE are placed in the BBU cloud,
however, it is not clear that how each RRH can extract the
information required for the proposed algorithm. For example,
without the FFT, each RRH should obtain the required infor-
mation from only the time domain signals. In this subsection,
we explain how each RRH obtains the required information by
using the characteristic of the LTE channel structure. Before
data transmission, a user sends the random access preamble
signal generated from the Zadoff-Chu sequence through the
physical random access channel (PRACH) for initial access.
There can be two kinds of interference to this preamble signal.
The first one is from users that are actively communicat-
ing with their selected RRHs. These signals are transmitted
through the physical uplink shared channel (PUSCH) [25].
Conventionally, this can be eliminated easily by using the
FFT due to the orthogonal property of the OFDM, though this
cannot be applied due to the lack of the FFT in each RRH. The
second one is from users that are transmitting other preamble
signals through the physical random access channel (PRACH).

We first remove the interference on the PUSCH. Since
the PUSCH and the PRACH are defined to be separately
placed in the frequency domain [25], each RRH uses bandpass
filter (BPF) that only allows to pass the frequency band
corresponding to the PRACH. Then, the signals on the PUSCH
are removed. Through this method, the only remaining signals
are the preamble signals transmitted on the PRACH. The
characteristic of the preamble signals is that they are generated
from Zadoff-Chu sequence, and each user has different root
of the sequence. Two key properties of Zadoff-Chu sequence
are as follows: It is a constant amplitude zero auto-correlation
(CAZAC) sequence, and it preserves its property of a CAZAC
sequence in both of the time and frequency domain. Due to
these properties, the preamble signals on PRACH from the
different users have zero cross correlation each other in the
time domain [25]. For this reason, each RRH discriminates a
preamble signal transmitted from a particular user by applying
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Fig. 3. The description of how to extract the required information without
using frequency domain processing. Eliminating the signals on the PUSCH by
using the bandpass filter, and discriminate the preamble signals by multiplying
Zadoff-Chu sequence assigned to each user. By repeating this process and
averaging the received power, each RRH obtains the averagedreceived power.

the conventional technique as in the LTE standard, i.e., mul-
tiplying the preamble signals with the Zadoff-chu sequence
assigned to the particular user. As a result, the only remaining
signal is the preamble signal transmitted from the particular
user due to the zero cross correlation property. Then the RRH
extracts the required information from the remaining signal.
Fig. 3 describes the whole procedures of how to obtain the
required information without using the FFT at each RRH.

Now we explain the model mainly used for analyzing the
performance of the proposed algorithm.

C. Network Model

We consider a network modeled by a homogeneous PPP,
so that a RRH’s locationdi ∀i is distributed according to a
homogeneous PPP with densityλ. Each user’s locationui ∀i
is also distributed as a homogeneous PPP with densityλu.
We do not assume power control as this would depend on the
RRH that is eventually selected.

D. RRH Selection Model

Henceforth, for analytical tractability, we assume that the
proposed algorithm uses a distance in the distributed selection
phase and only one RRH is selected (L = 1). This assumption
is generalized later. Once the RRH is selected, it is connected
to the BBU dedicated for the user 1, and the BBU decodes the
uplink data symbol by using the received signal at the selected
RRH. Extensions are possible to support MIMO, e.g., to use
multiple co-located RRHs from the tower.

E. Signal Model

The BBU performs single user detection by treating other
users’ interference as noise [26]. This is a reasonable assump-
tion since we assume that one BBU is allocated for handling
one user. Thanks to the property of a homogeneous PPP, we
are able to assume thatu1 = 0 without loss of generality.
Denoting the index of the selected RRH for user 1 ass, the
received signal at the selected RRH is given by

ys = ‖ds‖−β/2
hs,1x1 +

∑

ui∈Φu\u1

‖ds − ui‖−β/2
hs,ixi + zs,

(1)

whereds is a location of the selected RRH ,hi,j ∼ CN (0, 1)
is a Rayleigh fading coefficient from userj to RRH i, and
zs ∼ CN

(

0, σ2
)

is additive white Gaussian noise andβ is
the pathloss exponent. The uplink symbol transmitted from
useri is indicated byxi, whoseE

[

|xi|2
]

= 1.
Now we define the instantaneous SIR CCDF. Denoting

Hi,j = |hi,j |2, the instantaneous SIR CCDF is defined as

P (θ, λ, λu, β) = P

[

‖ds‖−β
Hs,1

∑

ui∈Φu\u1
‖ds − ui‖−β

Hs,i

> θ

]

,

(2)

where θ is the SIR target. The noise term is neglected for
analytical tractability. The noise term can be incorporated with
more complicated calculations, but it makes it hard to devise
intuition from the expression.

III. PERFORMANCECHARACTERIZATION

In this section, we provide analytical results on the per-
formance of the proposed algorithm. At first, we characterize
the SIR coverage probability. Then we optimize a predefined
selection threshold by using the obtained SIR coverage expres-
sion. Finally, we characterize the performance of the proposed
algorithm in an asymptotic regime.

A. SIR CCDF Characterization

In this subsection, we derive the SIR CCDF if a RRH is
selected by using the proposed selection algorithm. First,we
obtain the probability density function (PDF) of the‖ds‖ in
the following Lemma.

Lemma 1. Given the selection thresholdRth, the PDF of the
random variable‖ds‖ is

fRth

‖ds‖ (r) =
2r

R2
th

, for 0 < r < Rth. (3)

Proof: Denote the number of RRHs inside the closed set
S ⊆ R

2 asN (S). WhenN (B (0, Rth)) = K, the conditional
PDF of ‖ds‖ is

fRth

‖ds‖ (r|N (B (0, Rth)) = K) =
2r

R2
th

, for 0 < r < Rth.

(4)

This is because in a homogeneous PPP conditioned on the
number of points inB (0, Rth), points in B (0, Rth) are
independently and uniformly distributed in the bounded set
B (0, Rth). Marginalizing (4) forK,

fRth,Not−normalized
‖ds‖ (r)

= E

[

fRth

‖ds‖ (r|N (B (0, Rth)) = K)
]

=
2r

R2
th

∞
∑

K=1

(

λπR2
th

)K

K!
e−λπR2

th

(a)
=

2r

R2
th

(1 − e−λπR2
th), for 0 < r < Rth, (5)
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where (a) follows that
∞
∑

K=1

P [N (B (0, Rth)) = K] =

∞
∑

K=0

(

λπR2
th

)K

K!
e−λπR2

th − e−λπR2
th = 1− e−λπR2

th , (6)

by the second axiom of probability. Normalizing (5) so that
the total probability is equal to1, we have

fRth

‖ds‖ (r) =
2r

R2
th

, for 0 < r < Rth. (7)

Leveraging Lemma 1, the SIR CCDF (2) is derived in
Theorem 1.

Theorem 1. Given the selection thresholdRth, the instanta-
neous SIR CCDF is

P (Rth, θ, λ, λu, β)

=
(

1− e−λπR2
th

)

(

1− e−πλuθ
2/β 1

sinc(2/β)
R2

th

)

πλuθ2/β
1

sinc(2/β)R
2
th

. (8)

Proof: Since the outage occurs when a candidate setA
is empty, we only consider the case thatA is not empty. The
SIR (2) is rewritten as

P (Rth, θ, λ, λu, β)

= P [A 6= ∅]P
[

‖ds‖−β
Hs,1

∑

ui∈Φu\u1
‖ds − ui‖−β Hs,i

> θ

∣

∣

∣

∣

∣

A 6= ∅
]

=P [A 6= ∅]P



Hs,1 > ‖ds‖β θ
∑

ui∈Φu\u1

‖ds − ui‖−β
Hs,i





(a)
= P [A 6= ∅]E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,i

]

(b)
=
(

1− e−λπR2
th

)

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,i

]

,

(9)

where (a) comes from thatHs,i for i ∈ N follows the
exponential distribution with unit mean and (b) follows

P [A 6= ∅] = 1− P [N (B (0, Rth)) = 0]

=
(

1− e−λπR2
th

)

. (10)

We now calculate the expectation in (9). First,

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,i

]

= Eds

[

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,i

∣

∣

∣
ds

]]

(a)
= Eds

[

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ui‖−βHs,i

∣

∣

∣
ds

]]

=Eds

[

LI

(

‖ds‖β θ
)]

. (11)

where (a) follows the stationarity of a homogeneous PPP and
Slivnyak’s theorem [27].LI (s) is the Laplace functional of
I, whereI =

∑

ui∈Φu\u1
‖ui‖−β

Hs,i. LI (s) is derived as

LI (s) = exp

(

−πλus
2/β 1

sinc (2/β)

)

, (12)
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Fig. 4. The SIR CCDF verification whenλ = 10
−5/π, λu = 10

−6/π,
andβ = 4.

where the detailed proof is in [28]. Plugging (12) into (11),

Eds

[

LI

(

‖ds‖β θ
)]

= E

[

exp

(

−πλuθ
2/β ‖ds‖2

1

sinc (2/β)

)]

(a)
=

∫ Rth

0

exp

(

−πλuθ
2/β ‖ds‖2

1

sinc (2/β)

)

2r

Rth
dr

=
1− exp

(

−πλuθ
2/β 1

sinc(2/β)R
2
th

)

πλuθ2/β
1

sinc(2/β)R
2
th

, (13)

where (a) comes from Lemma 1. This completes the proof.
The obtained SIR CCDF is verified in Fig. 4. As observed,

the derived SIR CCDF tightly matches with the exact SIR
CCDF obtained by Monte-Carlo simulations over entire range
of θ. Fig. 4 also gives intuition of how the selection threshold
Rth affects the SIR coverage performance. Applying the
proposed selection algorithm, there are two cases of outage.
The first case is when no RRH is in the candidate set, i.e.,
A = ∅. The second case is when the SIR is lower thanθ.
Now we see examples for each case of outage depending on
Rth. WhenRth = 250m, the SIR CCDF has a plateau when
θ < 0dB. This is mainly because the possibility of the event
A = ∅ is too high, therefore the SIR CCDF is dominated
by the first case of outage. In contrast, withRth = 2000m,
the selected RRH is likely to be far from the user since
the selection threshold is too large, resulting in that the SIR
coverage performance degrades severely whenθ increases, i.e.,
the SIR CCDF is dominated by the second case of outage.
This observation implies that the selection threshold should
be optimized depending on the system parameters, e.g.,λ,
λu, θ, andβ.

B. Selection Threshold Optimization

In this subsection, we derive an approximate optimal selec-
tion thresholdR̃⋆

th to maximize the SIR coverage performance
given system parametersθ, λ, andλu. For intuition, we first
illustrate the SIR coverage performance depending onRth in
Fig. 5. As observed in Fig. 5, the optimum selection threshold
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Fig. 5. The SIR coverage probability with parameter sweaping for Rth. It
is assumed thatλu = 10−5/π, β = 4, andθ = 0dB.

R⋆
th exists, and also the SIR coverage performance has a sharp

shape around theR⋆
th especially when the RRHs are densely

deployed, so that there can be significant performance loss
when using wrongRth.

Obtaining the exactR⋆
th = argmax P (Rth), however, is

challenging. Specifically, there is no closed form solution
satisfying

∂P (Rth)

∂Rth
= 0. (14)

For this reason, we rather use an approximate SIR CCDF to
obtain the optimum selection threshold. Lemma 2 gives an
approximation ofP (Rth).

Lemma 2. The SIR CCDF(8) is approximated by

P̃ (Rth, θ, λ, λu, β)

=
λπR2

th

(1 + λπR2
th)
(

1 + πλuθ2/β
1

sinc(2/β)R
2
th

) . (15)

Proof: From the Taylor expansion of the exponential
function ex = 1 + x/1! + x2/2! + · · · , we have

e−x =
1

1 + x/1 + x2/2! + · · · ≈
1

1 + x
. (16)

Using this approximation, the first part of the SIR CCDF (8)
is approximated as

1− e−λπR2
th ≈ λπR2

th

1 + λπR2
th

, (17)

and the second part of (8) is also approximated as

1− e−πλuθ
2/β 1

sinc(2/β)
R2

th ≈
πλuθ

2/β 1
sinc(2/β)R

2
th

1 + πλuθ2/β
1

sinc(2/β)R
2
th

(18)

Plugging (17) and (18) into (8), we complete the proof.
By leveraging Lemma 2, Corollary 1 provides an approxi-

mate optimum selection threshold.

Corollary 1. Given θ, λ, and λu, an approximate optimal
selection threshold that maximizesP̃ (Rth, θ, λ, λu, β) is

R̃⋆
th =

(

1

π2λλuθ2/β
1

sinc(2/β)

)
1
4

. (19)
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Fig. 6. The comparison between the optimal SIR CCDF obtainednumerically
and the approximated optimum SIR CCDF obtained analytically. It is assumed
that λu = 10

−5/π, β = 4, andλ ∈ {10−3/π, 10−4/π, 10−5/π}.

Proof: To find R̃⋆
th = argmax P̃ (Rth, θ, λ, λu, β), we

solve

∂P̃ (Rth)

∂Rth
= 0, (20)

where

P̃ (Rth, θ, λ, λu, β)

=
λπR2

th

(1 + λπR2
th)
(

1 + πλuθ2/β
1

sinc(2/β)R
2
th

) . (21)

It has a closed-form solution

Rth =

(

1

π2λλuθ2/β
1

sinc(2/β)

)
1
4

, (22)

which completes the proof.

Remark 1. As observed in Corollary 1,̃R⋆
th is inversely

proportional to λ, λu, and θ2/β . This gives intuition for
deciding a selection thresholdRth. When the network is dense,
(largeλ), Rth should be small since the probability that there
is a RRH located close to a user is high. When there are many
interfering users (largeλu), Rth should also be small since
there is only little chance of successfully communicating with
the selected RRH if the RRH is located far from the user due
to the large interference. This is also true whenθ increases.
This intuition agrees with the observations from Fig. 4.

To demonstrate the obtained selection threshold, we com-
pare the SIR CCDF withR̃⋆

th and the numerically obtained
optimum SIR CCDF. For the numerically obtained optimum
SIR CCDF, we calculate all the SIR coverage probability for
Rth ∈ [0,∞) and pick the maximum one. Fig. 6 shows
the comparison between them. The SIR CCDF withR̃⋆

th is
reasonably close to the numerically obtained optimum SIR
CCDF over entire range ofθ.

C. Asymptotic Performance Analysis

In this subsection, we analyze the performance of the
proposed algorithm in the asymptotic regime, whereλ → ∞
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and λu → ∞. Comparing to the SIR performance of the
nearest RRH selection, which corresponds to the best case in
the same assumption with the proposed algorithm, a relative
performance loss is defined. Then, we reveal the necessary
condition that makes the performance loss vanish in the
asymptotic regime. First, we derive the SIR CCDF when user
1 selects the nearest RRH to the origin.

Lemma 3. When user 1 selects the nearest RRH, the instan-
taneous SIR CCDF is

Pn (θ, λ, λu, β) =
λ sinc

(

2
β

)

λuθ2/β + λ sinc
(

2
β

) . (23)

Proof: Rewriting the definition of the SIR CCDF (2),

Pn (θ, λ, λu, β)

= P

[

‖ds‖−β Hs,1
∑

ui∈Φu\u1
‖ds − ui‖−β

Hs,i

> θ

]

= P



Hs,1 > ‖ds‖−β
θ

∑

ui∈Φu\u1

‖ds − ui‖−β
Hs,i





= E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,i

]

, (24)

where‖ds‖ ≤ ‖di‖ for i ∈ N since we assume that the nearest
RRH selection. Similar to Theorem 1,

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,i

]

=Eds

[

LI

(

‖ds‖β θ
)]

, (25)

where LI (s) is the Laplace functional ofI where I =
∑

ui∈Φu\u1
‖ui‖−β

Hs,i. The Laplace functional ofI is given
by

LI (s) = exp

(

−πλus
2/β 1

sinc (2/β)

)

. (26)

Plugging it into (25), we have

Eds

[

LI

(

‖ds‖β θ
)]

= E

[

exp

(

−πλuθ
2/β ‖ds‖2

1

sinc (2/β)

)]

. (27)

Now we use the PDF of‖ds‖, which is [29]

f‖ds‖ (r) = 2λπre−λπr2 . (28)

Leveraging (28), the expectation in (27) is calculated as

E

[

exp

(

−πλuθ
2/β ‖ds‖2

1

sinc (2/β)

)]

=

∫ ∞

0

exp

(

−πλuθ
2/β ‖ds‖2

sinc (2/β)

)

2λπr exp
(

−λπr2
)

dr

=
λ sinc

(

2
β

)

λuθ2/β + λ sinc
(

2
β

) , (29)

which completes the proof.
Now we define the relative SIR performance loss in the

following.

Definition 1. The relative SIR performance of the proposed
algorithm compared to the nearest RRH selection is defined
as

L(Rth, θ, λ, λu, β) =
P (Rth, θ, λ, λu, β)

Pn (θ, λ, λu, β)

=

(

1− e−λπR2
th

)

(

1−e
−πλuθ2/β 1

sinc(2/β)
R2

th

)

πλuθ2/β 1
sinc(2/β)

R2
th

λ sinc( 2
β )

λuθ2/β+λ sinc( 2
β )

=

(

1− e−λπR2
th

)(

1− e−πλuθ
2/β 1

sinc(2/β)R
2
th

)

πλuλθ2/βR2
th

λuθ2/β+λ sinc( 2
β )

. (30)

Since the nearest RRH selection is the best case of
the proposed algorithm,L(Rth, θ, λ, λu, β) ≤ 1. When
L(Rth, θ, λ, λu, β) = 1, the proposed algorithm has the same
SIR performance with the nearest RRH selection. When the
proposed algorithm uses the approximate optimum selection
thresholdR̃⋆

th, we denote that

L(R̃⋆
th, θ, λ, λu, β)

=

(

1− e−λπ(R̃⋆
th)

2)(

1− e−πλuθ
2/β 1

sinc(2/β)(R̃
⋆
th)

2)

πλuλθ2/β(R̃⋆
th)

2

λuθ2/β+λ sinc( 2
β )

. (31)

The performance loss (L(Rth, θ, λ, λu, β) ≤ 1) in the
proposed algorithm comes from the random selection phase,
which cannot guarantee the nearest RRH is selected. As
mentioned before, however, the nearest RRH selection requires
complexity that increases with the RRH density. For this
reason, the performance loss is interpreted as a cost for keeping
the complexity independent to the RRH density.

Now, we reveal the condition forL(R̃⋆
th, θ, λ, λu, β) → 1

in the asymptotic regime, i.e.,λ → ∞ and λu → ∞ in the
following theorem.

Theorem 2. Assuming thatλ → ∞ and λu → ∞, the
performance loss vanishes, i.e.,L(R̃⋆

th, θ, λ, λu, β) → 1 if

√
λ√
λu

→ ∞. (32)

Proof: From (19),L(R̃⋆
th, θ, λ, λu, β) is

L(R̃⋆
th, θ, λ, λu, β)

=

(

1− e

(

−
√

λ
√

sinc(2/β)√
λuθ1/β

))(

1− e

(

−
√

λuθ1/β
√

λ
√

sinc(2/β)

))

√
λ
√
λuθ1/β

√
sinc(2/β)

(λuθ2/β+λ sinc(2/β))

.

(33)
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Fig. 7. The SIR performance loss of the proposed algorithm depending
on the density ratio and various SIR thresholds. It is assumed that β = 4.
As observed in the figure, the performance loss due to the random selection
decreases as the density ratio increases.

Letting Cλ/λu
=

√
λ/

√
λu,

L(R̃⋆
th, θ, λ, λu, β)

=

(

1− e

(

−Cλ/λu

√
sinc(2/β)

θ1/β

))(

1− e

(

− 1
Cλ/λu

θ1/β√
sinc(2/β)

))

Cλ/λu
(

θ1/β√
sinc(2/β)

)

+

(

1− e

(

−Cλ/λu

√
sinc(2/β)

θ1/β

)
)(

1− e

(

− 1
Cλ/λu

θ1/β√
sinc(2/β)

)
)

1

Cλ/λu

(√
sinc(2/β)

θ1/β

)

.

(34)

Now consider a function defined as

f (x) =
(1− e−x)

(

1− e−
1
x

)

x
+

(1− e−x)
(

1− e−
1
x

)

1/x
,

(35)

wherex = Cλ/λu

√
sinc(2/β)

θ1/β . Whenx → ∞, we have

lim
x→∞

f (x)

= lim
x→∞

(1− e−x)
(

1− e−
1
x

)

x
+

(1− e−x)
(

1− e−
1
x

)

1/x

= lim
x→∞

(1− e−x)
(

1− e−
1
x

)

1/x

= lim
x→∞

x− xe−
1
x − xe−x + xe−x− 1

x

= lim
y→0

(1− e−y)

y
(a)
= 1, (36)

where (a) follows L’Hopital’s rule. This concludes that when
Cλ/λu

→ ∞, L(R̃⋆
th, θ, λ, λu, β) → 1, i.e., the performance

loss vanishes. This completes the proof.

In Theorem 2, it is shown that the performance loss due
to the random selection vanishes if the relative RRH density
Cλ/λu

goes to infinity. In practice, however, the assumption
Cλ/λu

→ ∞ is too extreme even in a dense C-RAN scenario.
Nevertheless, Theorem 2 is still valid to get intuition of the
relative SIR performance of the proposed algorithm in the
non-asymptotic regime, i.e,

√
λ√
λu

< ∞. For instance, since

L(R̃⋆
th, θ, λ, λu, β) is smooth for all Cλ/λu

, it is obvious
that L(R̃⋆

th, θ, λ, λu, β) approaches to1 as Cλ/λu
increases.

In other words, the performance loss due to the random
selection in the proposed algorithm becomes negligible as
the density of RRH increases. One noticeable point here
is that the algorithm complexity keeps constant independent
to the RRH density. This intuition is demonstrated by the
simulation in Fig. 7. In Fig. 7,L(R̃⋆

th, θ, λ, λu, β) is drawn
depending on the density ratioλλu

and the SIR thresholdθ.
As observed in the figure,L(R̃⋆

th, θ, λ, λu, β) increases as
λ
λu

increases, and alsoL(R̃⋆
th, θ, λ, λu, β) is larger at lowθ.

From this observation, we see that the proposed algorithm
performs well (i) in a dense RRH environment and (ii) at a
low SIR threshold. One non-trivial observation in Fig. 7 is
that at high SIR thresholdsθ = 3, 6 (dB), there is a range of
λ
λu

whereL(R̃⋆
th, θ, λ, λu, β) and λ

λu
inversely proportional,

i.e., L(R̃⋆
th, θ, λ, λu, β) decreases asλλu

increases. This is
particularly observed in the low density ratio regionλλu

< 3.
The implication behind this observation is that in the region
1 < λ

λu
< 3, the SIR performance of the nearest RRH

selection improves faster than that of the proposed algorothm,
resulting inL(R̃⋆

th, θ, λ, λu, β) rather decreases.

IV. GENERALIZATION

In this section, we generalize the approximate optimum
selection threshold derived in the previous section. First, we
relax the assumption where a distance between each RRH and
a user is used as a predefined threshold. Next, the assumption
that only one RRH is selected is generalized to multiple RRHs,
i.e., L > 1.

A. Received Power Threshold

In a real wireless environment, it is difficult to estimate
the exact distance from the user because of long-term fading
such as a shadowing. For this reason, it is more desirable
for the proposed RRH selection algorithm to use the received
power to select a RRH rather than the distance. To derive
an approximate optimum selection threshold analytically,we
make an assumption about a shadowing. After averaging out
the fast fading coefficients, the received power at RRHi from
user 1 is

Pi,1 = Si,1 ‖di‖−β
, (37)

whereSi,1 denotes a shadowing coefficient from user 1 and
RRH i. Each RRH measures the received power, and compares
it with a predefined received power thresholdPth. If the
measured received power is larger than the threshold, i.e.,
Pi,1 > Pth, the RRH located atdi is included in a candidate
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setA, unless it is not. The second phase of the algorithm is
equivalent with a case where the distance threshold is used.

Now we attempt to obtain the optimum selection threshold
for a case where the received power threshold is used. To
this end, Lemma 4 is introduced. It is for incorporating
a shadowing effect into the approximate optimum distance
threshold derived in Corollary 1.

Lemma 4. Assume generic shadowing coefficient, denoted as
S where

E

[

S
2
β

]

< ∞. (38)

Then, the process of propagation losses experienced by the
typical user is an non-homogeneous Poisson process onR

+

with intensity measure

Λ ([0, t)) = λ

∫

R2

P

[

xβ

S
∈ [0, t)

]

dx

= λπE
[

S
2
β

]

t
2
β . (39)

Proof: See the reference [30] Lemma 1.
By leveraging Lemma 4, we obtain an approximate opti-

mum received power threshold̃P ⋆
th in the following corollary.

Corollary 2. Assume independent and identical generic shad-
owing coefficient denoted asS satisfying (38). When the
received power is used as the selection threshold, an approx-
imate optimum selection threshold̃P ⋆

th is

P̃ ⋆
th =

(

R̃⋆
th,sh

)−β

E

[

S
2
β

]−β
2

, (40)

whereR̃⋆
th,sh is defined as

R̃⋆
th,sh =

(

1

π2λλuθ2/β
ES

sinc(2/β)

)
1
4

, with (41)

ES = E

[

S2/β
]

E

[

1

S

]2/β

. (42)

Proof: Rewriting the SIR CCDF with the arbitrary shad-
owing assumption,

P (Rth, θ, λ, λu, β)

= P [A 6= ∅]P
[

‖ds‖−β Hs,1Ss,1
∑

ui∈Φu\u1
‖ds − ui‖−βHs,iSs,i

>θ

∣

∣

∣

∣

∣

A 6= ∅
]

,

(43)

whereSj,i for j, i ∈ N is a shadowing coefficient between
RRH j and useri, while the indexs means the index of the
selected RRH. For instance,Ss,i means a shadowing coeffi-
cient between the selected RRH and the useri. Subsequently

we have

(43)= P [A 6= ∅] ·
E

[

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,iSs,i/Ss,1

∣

∣

∣
Ss,1

]]

(a)

≥
(

1− e−λπR2
th

)

·

E

[

e−‖ds‖βθ
∑

ui∈Φu\u1
‖ds−ui‖−βHs,iSs,iE[1/Ss,1]

]

(b)
=
(

1− e−λπR2
th

)

(

1− e−πλuθ
2/β ES

sinc(2/β)
R2

th

)

πλuθ2/β
ES

sinc(2/β)R
2
th

, (44)

where (a) comes from Jensen’s inequality and
(b) follows that the Laplace functional ofI ′ =
∑

ui∈Φu\u1
‖ui‖−β Hs,iSs,iE [1/Ss,1] given as

LI′ (s) = exp

(

−πλus
2/β

E

[

S2/β
]

E

[

1

S

]2/β
1

sinc (2/β)

)

,

(45)

with S is a generic shadowing coefficient. DefiningES =

E
[

S2/β
]

E
[

1
S

]2/β
, we obtain (44). Now, we first obtain an

approximate optimum distance thresholdRth that maximizes
a lower bound on the SIR CCDF with a shadowing assumption
(44). This can be calculated directly by using Corollary 1.

R̃⋆
th,sh =

(

1

π2λλuθ2/β
ES

sinc(2/β)

)
1
4

. (46)

Since this is a distance threshold, we now obtain a received
power threshold that provides the equivalent performance with
the obtainedR̃⋆

th,sh (46). P (Rth, θ, λ, λu, β) can be repre-
sented as

P (Rth, θ, λ, λu, β) =
(

1− e−M ′
)

(

1− e−
λu
λ θ2/β ES

sinc(2/β)
M ′)

λu

λ θ2/β ES

sinc(2/β)M
′ ,

(47)

whereM ′ = λπR2
th is the average number of the selected

RRHs in the distributed selection phase when the distance
threshold isRth. From (47), it is reasonable to interpret that
the SIR coverage performance is determined by the average
number of the selected RRHs in the distributed selection phase,
i.e., M ′. With R̃⋆

th,sh, the average number of the selected
RRHs in the distributed selection phase is characterized as

λπ
(

R̃⋆
th,sh

)2

= λ

∫

R2

P

[

x < R̃⋆
th,sh

]

dx

= λ

∫

R2

P

[

(

R̃⋆
th,sh

)−β

< x−β

]

dx. (48)

Now, rewriting (39),

Λ ([0, t)) = λ

∫

R2

P

[

xβ

S
∈ [0, t)

]

dx

(a)
= λ

∫

R2

P

[

1

t
< Sx−β

]

dx (49)

(b)
= λπE

[

S
2
β

]

t
2
β , (50)
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where (a) follows the non-negativity of the received power
and (b) follows Lemma 4. From (49), we find that the intensity
measureΛ ([0, t)) is the average number of the selected RRHs
in the distributed selection phase when the received power
threshold is

Pth =
1

t
. (51)

To have the same SIR coverage performance with the case
where the proposed algorithm uses an approximate optimum
distance threshold̃R⋆

th,sh, the received power threshold1/t
should satisfy

λπ
(

R̃⋆
th,sh

)2

= λπE
[

S
2
β

]

t
2
β , (52)

which provides

t =

(

R̃⋆
th,sh

)β

E

[

S
2
β

]

β
2

. (53)

This completes the proof.

Remark 2. When S = 1 (no shadowing assumption),
R̃⋆

th,sh = R̃⋆
th and P̃ ⋆

th boils down to

P̃ ⋆
th =

(

R̃⋆
th

)−β

, (54)

which is equivalent with the pathloss of the distance threshold
R̃⋆

th. For this reason, using̃R⋆
th andP̃ ⋆

th provide the equivalent
SIR coverage performance in this case.

B. Multiple RRHs Selection

In this subsection, we assume that a user selects multiple
RRHs to improve the SIR performance. Under this assumption,
we find an appropriate selection threshold that improves the
SIR coverage probability for a case ofL > 1. For simplicity,
we assume thatL ≤ M . When L RRHs are selected in
the RRH selection switch, the BBU uses maximum ratio
combining (MRC) technique to boost the desired signal power.
Denoting the indices of the selected RRHs ass1, ..., sL, the
SIR CCDF is

Pm (θ, λ, λu, β) = P







∣

∣

∣

∑L
ℓ=1 ‖dsℓ‖−β/2

Hsℓ,1

∣

∣

∣

2

∑L
ℓ=1 Iℓ

> θ






,

(55)

where Iℓ =
∑

ui∈Φu\u1
‖dsℓ − ui‖−β

Hsℓ,iHsℓ,1. Note that
dsℓ for ℓ = 1, ..., L is the location of the selected RRH.
Unlike the previous case where only one RRH is selected,
however, it is not straightforward to compute the SIR CCDF.
For this reason, instead of exact characterization, we provide
an approximation of (55).

Using the proposed algorithm, the distribution of‖dsℓ‖
for ℓ = 1, ..., L is identical since there is no dependency in
locations when selecting RRHs. For this reason, in an average
sense, MRC would provide aL-fold array gain to the desired
signal. The aggregated interference powerIℓ for ℓ = 1, ..., L
is also identically distributed due to the stationarity of a

homogeneous PPP. By approximating identically distributed
random variables with the same random variables, we get the
following expression.

Pm (θ, λ, λu, β) ≈ P̃m (θ, λ, λu, β)

= P

[

L ‖ds1‖−β
Hs1,1

I1
> θ

]

(56)

The approximated SIR CCDF (56) is equivalent with that of
the single RRH selection case, whenL-fold array gain is
provided to the desired signal power. This is an equivalent
benefit as reducing the target SIRθ to θ/L. Modifying the
obtained selection threshold̃R⋆

th (19) with θ/L, we have

R̃⋆
th,multi =

(

L2/β

π2λλuθ2/β
1

sinc(2/β)

)
1
4

. (57)

In (57), we observe that when the number of selected RRHs
increases, the selection threshold also increases byL

1
2β . The

explanation of this observation is as follows: whenRth is
too large, the outage occurs mainly because the selected RRH
is located too far from a user, so that the pathloss is too
large. When a user can select multiple RRHs, however, a user
has other chances to select different RRHs, probably located
more closer to the user. For this reason, the selection threshold
becomes larger when the number of selected RRHs increases.

V. CONCLUSIONS

In this paper, we proposed a low complexity RRH selection
algorithm for a low target rate user in a dense C-RAN. By
using the two separate phases, each of which performs the
distributed selection and the random selection, the algorithm
complexity is kept constant, and does not depend on the RRH
density. For the performance analysis, we modeled a network
by a homogenous PPP. By using tools of stochastic geometry,
we derived the SIR CCDF of the proposed algorithm. From the
obtained SIR CCDF expression, we obtained the approximate
optimum selection threshold̃R⋆

th that maximizes the SIR
CCDF of the proposed algorithm. The simulation results
demonstrates that the obtained selection threshold provided the
performance close to the optimum SIR coverage performance
obtained numerically. We also revealed a condition that the
relative performance loss coming from the random selection
vanishes in an asymptotic regime. Generalizing the algorithm,
the obtainedR̃⋆

th was modified toP̃ ⋆
th or R̃⋆

th,multi for a
case where received power is used as a selection threshold
or multiple RRHs are selected in the algorithm.

The key feature of the proposed algorithm is that it has
complexity independent to the RRH density, so that the RRH
selection switch can keep its complexity reasonable irrespec-
tive of the RRH density. Due to this, the performance loss is
inevitable using the proposed algorithm. As the RRH density
increases, however, this performance loss becomes negligible.
Future work could be directed to incorporate more advanced
cooperation algorithm with the proposed RRH selection.
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