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Abstract—The millimeter wave (mmWave) band, a prime
candidate for 5G cellular networks, seems attractive for wireless
energy harvesting since it will feature large antenna arrays and
extremely dense base station (BS) deployments. The viability
of mmWave for energy harvesting though is unclear, due to
the differences in propagation characteristics such as extreme
sensitivity to building blockages. This paper considers a scenario
where low-power devices extract energy and/or information from
the mmWave signals. Using stochastic geometry, analytical ex-
pressions are derived for the energy coverage probability, the av-
erage harvested power, and the overall (energy-and-information)
coverage probability at a typical wireless-powered device in terms
of the BS density, the antenna geometry parameters, and the
channel parameters. Numerical results reveal several network
and device level design insights. At the BSs, optimizing the
antenna geometry parameters such as beamwidth can maximize
the network-wide energy coverage for a given user population. At
the device level, the performance can be substantially improved
by optimally splitting the received signal for energy and infor-
mation extraction, and by deploying multi-antenna arrays. For
the latter, an efficient low-power multi-antenna mmWave receiver
architecture is proposed for simultaneous energy and information
transfer. Overall, simulation results suggest that mmWave energy
harvesting generally outperforms lower frequency solutions.

I. INTRODUCTION

Millimeter wave (mmWave) communications is a key can-
didate technology for future 5G cellular networks. This is
mainly due to the availability of large spectrum resources at
higher frequencies, which leads to much higher data rates.
Recent research suggests that mmWave systems will typically
feature (i) large-dimensional antenna arrays with directional
beamforming at the transmitter/receiver—which is motivated
by the small wavelength that allows packing a large number
of antenna elements into small form-factors; and (ii) a dense
deployment of base stations (BSs) to ensure a comparable
coverage to ultra high frequency (UHF) networks [2], [3].
These mmWave design features are also attractive for RF
(radio frequency) energy harvesting where a harvesting device
may extract energy from the incident RF signals [4]. This
could potentially power the massive number of low-power
wireless devices in future paradigms such as the Internet of
Things [5]. The signal propagation at mmWave frequencies,
however, suffers from poor penetration and diffraction char-
acteristics, making it sensitive to blockage by buildings [3],
[6]. It is, therefore, unclear if mmWave cellular networks will
be more favorable for RF energy harvesting compared to the
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conventional (below 6 GHz) frequencies. Further, the network
level design principles for mmWave energy harvesting systems
are not well understood. This motivates a network view of
energy harvesting in a mmWave cellular network.

A. Contributions

In this paper, we provide a tractable framework to character-
ize the performance of wireless energy and information trans-
fer aided by a large-scale mmWave cellular network. Our anal-
ysis accounts for the key distinguishing features of mmWave
systems, namely the sensitivity to blockage and the use of
potentially large antenna arrays at the transmitter/receiver.
We first consider mmWave energy harvesting, where devices
only extract energy from the incident mmWave signals. Our
analysis models two operating scenarios, one where devices
have their beams aligned to that of a mmWave BS, and
the other where no such beam alignment is assumed. For
both operating modes, we derive simple analytical expressions
for metrics such as the energy coverage probability and the
average harvested power using tools from stochastic geometry.
We then extend the analysis to characterize the overall (energy-
and-information) coverage probability for the general case
where a device extracts both energy and information from the
mmWave signals.

To get design insights, we examine the network level perfor-
mance trends in terms of key parameters such as the mmWave
network density and the antenna geometry parameters for both
operating modes of the energy harvesting devices. Numerical
results suggest that narrower antenna beams are preferred
when the users are aligned with a BS, whereas wider beams are
favorable when no beam alignment is assumed. Our findings
also suggest that there typically exists an optimum transmit
antenna beamwidth that maximizes the network-wide energy
coverage for a given user population. This implies that the
mmWave BSs will need to adapt the antenna beam patterns
depending on the fraction of the users operating in each mode.

Similar to the BS-related parameters, we also investigate
the role of the device-related parameters on the system per-
formance. For example, the overall (energy-and-information)
coverage probability can be improved by optimizing over a
design parameter (power splitting ratio) to optimally portion
the received signal between the energy harvesting and the in-
formation decoding modules. Another important design feature
at the user is the receive antenna array. Similar to the BSs,
the mmWave users can, in principle, benefit from using large
antenna arrays. For low-power energy harvesting devices, how-
ever, the associated antenna circuity could increase the power
consumption, offsetting the potential gains of large antenna
arrays. To leverage multiple antennas at the receiver without
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resorting to power-hungry circuit components, we propose
a simple switch-based receiver architecture for simultaneous
energy and information transfer. Simulation results reveal
that the proposed low-power solution performs reasonably
well compared to more advanced but power-hungry receiver
architectures.

B. Related Work

Wireless energy harvesting is becoming increasingly fea-
sible due to the reduction in the power consumption re-
quirements of wireless sensors and the improvements in
energy harvesting technologies [7]–[10]. This has also led
to considerable research in advancing the theoretical under-
standing of wireless-powered systems (see [4], [11] for a
comprehensive overview). For example, wireless energy and
information transfer has been studied for different information-
theoretic setups such as a broadcast channel [12], a fading
channel [13], and an interference channel [14]. Many of these
papers highlight the fundamental trade-off between energy and
information transfer efficiency and characterize the achievable
rate-energy regions for different practical receiver architectures
[11].

Wireless energy and/or information transfer in large-scale
networks has also been investigated [15]–[20]. In [15], the
performance of ambient RF energy harvesting was charac-
terized using tools from stochastic geometry. Using a repul-
sive point process to model RF transmitters, it was shown
that more repulsion helps improve the performance at an
energy harvester for a given transmitter density. In [16], [17],
cognitive radio networks were considered, and opportunistic
wireless energy harvesting was proposed and analyzed. In [18],
a hybrid cellular network architecture was proposed to enable
wireless power transfer for mobiles. In particular, an uplink
cellular network was overlaid with power beacons and trade-
offs between the transmit power and deployment densities
were investigated under an outage constraint on the data links.
A broadband wireless network with transmit beamforming was
considered in [19], where optimal power control algorithms
were devised for improving the throughput and power transfer
efficiency. Simultaneous information and energy transfer in a
relay-aided network was considered in [20]. Under a random
relay selection strategy, the network-level performance was
characterized in terms of the relay density and the relay
selection area.

Our work differs from the prior work in that we inves-
tigate wireless energy and information transfer in a large-
scale mmWave cellular network. Due to the different physical
characteristics and design features at mmWave, prior work on
energy/information transfer in lower frequency networks does
not directly apply to mmWave networks. In another line of
work, the performance of mmWave cellular networks in terms
of signal-to-interference-and-noise ratio (SINR) coverage and
rate has also been analyzed using stochastic geometry [21],
[22]. None of this work on mmWave networks, however,
provides a performance characterization from the perspective
of wireless energy and information transfer.

The paper is organized as follows. In Section II, we in-
troduce the system model. Section III presents the analytical
results for mmWave energy harvesting. The case with simul-
taneous information and energy transfer is treated in Section
IV. We conclude the paper in Section V.

II. SYSTEM MODEL

In this section, we introduce the network and channel
models, followed by a description of the antenna model. The
parameters defined in this section are summarized in Table I.

A. Network Model

We consider a large-scale cellular network consisting of
mmWave BSs and a population of wireless-powered devices
(or users) that operate by extracting energy and/or information
in the mmWave band. The mmWave BSs are located according
to a homogeneous Poisson point process (PPP) Φ(λ) of density
λ. The user population is drawn from another homogeneous
PPP Φu(λu) of density λu, independently of Φ. In general,
mmWave BSs and users may be located outdoors or indoors.
Empirical evidence suggests that mmWave signals exhibit high
penetration losses for many common building materials [6],
[21]. Assuming the building blockages to be impenetrable,
we focus on the case where the BSs and users are located
outdoors. We say that a BS-user link is line-of-sight (LOS)
or non-line-of-sight (NLOS) depending on whether or not
it is intersected by a building blockage. Channel measure-
ment campaigns have reported markedly different propaga-
tion characteristics for LOS/NLOS links [2], [6]. To model
blockage due to buildings, we leverage the results in [23]
where the buildings are drawn from a boolean stochastic point
process. We define a line-of-sight (LOS) probability function
p(r) = e−βr for a link of length r, where β is a constant
that depends on the geometry and density of the building
blockage process: a BS-receiver link of length r is declared
LOS with a probability p(r), independently of other links.
While conducting stochastic geometry analysis, we will apply
this result to split the BS PPP into two independent but non-
homogeneous PPPs consisting of LOS and NLOS BSs.

We allow the user population to consist of two types of
users, namely connected and nonconnected. A connected user
is assumed to be tagged with the BS, either LOS or NLOS, that
maximizes the average received power at that user. Moreover,
for the connected case, we assume perfect beam alignment
between a BS and its tagged user, i.e., the BS and user
point their beams so as to have the maximum directivity gain.
Further, we assume that a BS serves only one connected user
at a given time. For a nonconnected user, we do not assume
any prior beam alignment with a BS, i.e., it is not tagged with
any BS. This allows us to model a wide range of scenarios.
For instance, due to limited resources, the mmWave network
may (directly) serve only a fraction of the user population as
connected users, leaving the rest in the nonconnected mode.
Another interpretation could be that due to the challenges
associated with channel acquisition, not all the users could
be simultaneously served in the connected mode. We let ε be
the probability that a randomly selected node is a connected
user, independently of other nodes. With this assumption, we
can thin the user PPP Φu into two independent PPPs Φu,con
and Φu,ncon, with respective densities ελu and (1 − ε)λu.



Note that an arbitrary user, either connected or nonconnected,
may experience an energy outage if the received power falls
short of a required threshold ψ. This threshold would depend
on the power consumption requirements of the receiver. To
capture the sensitivity requirements of the harvesting circuit,
we define ψmin to be the harvester activation threshold, i.e., the
minimum received energy needed to activate the harvesting
circuit (the energy outage threshold ψ would typically be
greater than ψmin). We use ξ to denote the rectifier efficiency.
We define Pcon (λ, ψcon) to be the energy coverage probability
given an outage threshold ψcon for a connected user, while
Pncon (λ, ψncon) denotes the same for the nonconnected case.
With these definitions, we can define the overall energy
coverage probability Λ(ε, λ, ψcon, ψncon) of the network as

Λ(ε, λ, ψcon, ψncon) = εPcon (λ, ψcon) + (1− ε)Pncon (λ, ψncon) (1)

where the energy coverage probability is a function of several
parameters such as the BS density, the channel propagation
parameters, as well as the antenna beam patterns at the trans-
mitter/receiver. For cleaner exposition, we drop the subscript in
ψcon or ψncon, using the notation Λ(ε, λ, ψ) when the context
is clear. In Section III-A, we provide analytical expressions
to compute the energy coverage probability in a mmWave
network.

B. Channel Model

We now describe the channel model for an arbitrary user
without losing generality. Empirical evidence suggests that
mmWave frequencies exhibit different propagation character-
istics for the LOS/NLOS links [6]. While the LOS mmWave
signals propagate as if in free space, the NLOS mmWave
signals typically exhibit a higher path loss exponent (and
additional shadowing) [6]. We let αL and αN be the path
loss exponents for the LOS and NLOS links respectively. We
define the distance-dependent path loss for a user located a
distance r` from the `-th BS: g`(r`) = CLr

−αL

` when the
link is LOS, where the constant CL is the path loss intercept;
and g`(r`) = CNr

−αN

` for the NLOS case. Note that by
including blockages in our model (Section II-A), we capture
the distance-dependent signal attenuation due to buildings.
To simplify the analysis, we do not include additional forms
of shadowing in our model. We further define h` to be the
small-scale fading coefficient corresponding to a BS ` ∈ Φ.
Assuming independent Nakagami fading for each link, the
small-scale fading power H` = |h`|2 can be modeled as a
normalized Gamma random variable, i.e., H` ∼Γ (NL, 1/NL)
when the link is LOS and H` ∼Γ (NN, 1/NN) for the NLOS
case, where the fading parameters NL and NN are assumed
to be integers for simplicity.

C. Antenna Model

To compensate for higher propagation losses, mmWave BSs
will use large directional antennas arrays. We assume that the
BSs and users are equipped with Nt and Nr antenna elements
each. To simplify the analysis while capturing the key antenna
characteristics, we use the sectored antenna model of Fig. 1
(except for Section IV), similar to the one considered in [21],
[24]. We use AM,m,θ,θ̄(φ) to characterize the antenna beam
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Fig. 1. Sectored antenna model. The antenna beam pattern is parameterized
by the directivity gains for the main lobe (M ) and side lobe (m), and the
half power beamwidths for the main lobe (θ) and side lobe (θ̄).

pattern, where φ gives the angle from the boresight direction,
M denotes the directivity gain and θ the half power beamwidth
for the main lobe, while m and θ̄ give the corresponding
parameters for the side lobe. With this notation, AMt,mt,θt,θ̄t(·)
denotes the antenna beam pattern at an arbitrary BS in Φ, and
AMr,mr,θr,θ̄r(·) denotes the same for an energy harvesting user
in Φu. We further define δ` = AMt,mt,θt,θ̄t(φ

`
t )AMr,mr,θr,θ̄r(φ

`
r ),

the total directivity gain for the link between the `-th BS and
the typical user; φ`t and φ`r give the angle-of-arrival and angle-
of-departure of the signal.

Without any further assumptions about the beam align-
ment between a user and its BS, we model the directiv-
ity gain δ` as a random variable. We assume the angles
φ`t and φ`r are uniformly distributed in [0, 2π). Due to the
sectored antenna model, the random variable δ` = Di

with a probability pi (i ∈ {1, 2, 3, 4, 5}), where Di ∈
{MtMr,Mtmr,mtMr,mtmr, 0} with corresponding probabil-
ities pi ∈ {qtqr, qtq̄r, q̄tqr, q̄tq̄r, qo}; the constants qt = θt

2π ,
q̄t = θ̄t

2π , qr = θr
2π , q̄r = θ̄r

2π , and qo = 2−qt− q̄t−qr− q̄r. Note
that D5 = 0 models the extreme case where the BS and user
beams have no alignment at all. Note that for the connected
mode, since we assume perfect beam alignment between the
typical user and its serving BS (hereby denoted by subscript
0), the directivity gain δ0 = MtMr due to the sectored antenna
model.

III. MMWAVE WITH ENERGY HARVESTING

In this section, we assume that each user is equipped with an
energy harvesting circuit, and attempts to extract energy from
the incident mmWave signals. No decoding of information
is considered in this section. The case with simultaneous
information and power transfer is treated in Section IV. We
first provide analytical expressions to evaluate the energy
coverage probabilities for both connected and nonconnected
users. We then validate the analytical model, and conclude
the section by providing network level design insights.

A. Stochastic Geometry Analysis

We first provide some lemmas before stating the main
analytical results for this section.

Lemma 1 (Modified from [23, Theorem 8]): The probabil-
ity density function (PDF) of the distance from an en-
ergy harvesting user to its nearest LOS BS, given that the
user observes at least one LOS BS, is given by τL (x) =
2πλBL

−1xp(x)e−2πλ
∫ x
0
vp(v)dv , where x > 0 and BL = 1 −



TABLE I
MODEL PARAMETERS

Notation Description
Nt, Nr Antenna array size at the transmitter

(t) and receiver (r)
Mt, Mr
mt, mr

Main lobe directivity gain
Side lobe directivity gain

θt, θr
θ̄t, θ̄r

Main lobe half power beamwidth
Side lobe half power beamwidth

Φ(λ) BS PPP with density λ
Φu(λu) User PPP with density λu
ε Fraction of connected users
ψ Energy outage threshold
ψmin Harvester activation threshold
ξ Rectifier efficiency
Λ(ε, λ, ψ) Energy coverage probability
p(r) LOS probability function
β Building blockage parameter
αL, αN LOS/NLOS path loss exponents
CL, CN LOS/NLOS path loss intercepts
NL, NN LOS/NLOS fading parameters
Pt Transmit power of BSs in Φ

e−2πλ
∫∞
0
vp(v)dv is the probability that the receiver observes

at least one LOS BS. Similarly, the distance distribution of
the link between the user and its nearest NLOS BS, given
that the user observes at least one NLOS BS, is given by
τN (x) = 2πλBN

−1x(1 − p(x))e−2πλ
∫ x
0
v(1−p(v))dv , where

x > 0 and BN = 1 − e−2πλ
∫∞
0
v(1−p(v))dv is the probability

that the user observes at least one NLOS BS.
Lemma 2 (Modified from [21, Lemma 2]): Let %L and %N

denote the probability that the energy harvesting user is
connected to a LOS and a NLOS BS respectively, then %L is
given by %L = BL

∫∞
0
e−2πλ

∫ ρL(x)

0 (1−p(v))vdvτL (x) dx, where

ρL(x) =
(
CN

CL

) 1
αN x

αL
αN and %N = 1− %L.

Lemma 3 (Modified from [21, Lemma 3]): Given that the
energy harvesting user is connected to a LOS mmWave BS, the
PDF of the link distance is given by the expression τ̃L (x) =
BLτL(x)
%L

e−2πλ
∫ ρL(x)

0 (1−p(v))vdv, where x > 0. Given that the
user is connected to a NLOS mmWave BS, the PDF of the
link distance is given by τ̃N (x) = BNτN(x)

%N
e−2πλ

∫ ρN(x)

0 p(v)vdv

for x > 0 and ρN(x) =
(
CL

CN

) 1
αL x

αN
αL .

Leveraging Slivnyak’s theorem [25], we conduct the anal-
ysis at a typical energy harvesting user located at the origin
without losing generality. We let Pt be the BS transmit power,
and Y =

∑
`∈Φ(λ) Ptδ`H`g`(r`) be the power received at the

user. Recall that ψmin denotes the harvester activation threshold
defined in Section II-A. The energy harvested at a typical
receiver (in unit time) can be expressed as

γ = ξY 1{Y >ψmin} (2)

where ξ ∈ (0, 1] is the rectifier efficiency. Note that we have

neglected the noise term since it is extremely small relative
to the aggregate received signal. The remaining parameters
follow from Section II. Recall that given a BS ` ∈ Φ(λ), the
corresponding fading parameters will be distinct depending
on whether the link is LOS or NLOS, which in turn depends
on the LOS probability function (Section II-A). Further note
that for the connected case, it follows from Section II-C that
δ0 = MtMr for the link from the serving BS (denoted by
subscript 0).

Connected case: The following theorem provides an
analytical expression for the energy coverage probability
Pcon (λ, ψ) = Pr{γ > ψ} at a connected user, where the
random variable γ is given in (2), and ψ is the energy outage
threshold. Note that Pcon (λ, ψ) can also be interpreted as the
complementary cumulative distribution function (CCDF) of
the harvested energy.

Theorem 1: In a mmWave network with density λ, the
energy coverage probability Pcon (λ, ψ) for the connected case
given an energy outage threshold ψ, can be evaluated as

Pcon (λ, ψ) = Pcon,L

(
λ, ψ̂

)
%L + Pcon,N

(
λ, ψ̂

)
%N, (3)

where ψ̂ = max
(
ψ
ξ , ψmin

)
, %L = 1 − %N is given in Lemma

2, while Pcon,L (·) and Pcon,N (·) are the conditional energy
coverage probabilities given the serving BS is LOS or NLOS.
These terms can be tightly approximated as

Pcon,L (λ, ψ) ≈
N∑
k=0

(−1)
k

(
N

k

)
×

∞∫
rg

ζL
k (r)e−Υk,1(λ,ψ,r)−Υk,2(λ,ψ,ρL(r))τ̃L (r) dr, (4)

where ζL
k (x) =

(
1 + akPtMtMrCL

ψNLxαL

)−NL

, the approximation

constant a = N(N !)−
1
N where N denotes the number of

terms in the approximation, while rg defines the minimum
link distance and is included to avoid unbounded path loss at
the receiver. Similarly,

Pcon,N (λ, ψ) ≈
N∑
k=0

(−1)
k

(
N

k

)
×

∞∫
rg

ζN
k (r)e−Υk,1(λ,ψ,ρN(r))−Υk,2(λ,ψ,r)τ̃N (r) dr, (5)

where ζN
k (x) =

(
1 + akPtMtMrCN

ψNNxαN

)−NN

,

Υk,1 (λ, ψ, x) = 2πλ

4∑
i=1

pi

∞∫
x

(
1−

[
1 +

aPtkDiCL

ψNLtαL

]−NL
)

× p(t)tdt, (6)



Υk,2 (λ, ψ, x) = 2πλ

4∑
i=1

pi

∞∫
x

(
1−

[
1 +

aPtkDiCN

ψNNtαN

]−NN
)

× (1− p(t)) tdt, (7)

and the distance distributions τ̃L(·) and τ̃N(·) follow from
Lemma 3.

Proof: See Appendix A.
Recall that p(t) = e−βt is the LOS probability function
defined in Section II-A, and captures the effect of building
blockages. In (4), the term ζL

k (·) models the contribution from
the LOS serving link, Υk,1 (·) accounts for the other LOS
links, and Υk,2 (·) captures the effect of the NLOS links. Note
that the ith term in (6), (7) corresponds to the contributions
from the BS-user links having directivity gain Di. Similarly,
ζN
k (·) in (5) models the case where the serving BS is NLOS.

Note that these terms further depend on the channel propa-
gation conditions (αL, αN, NL, NN, CL, CN), the network
density λ as well as the antenna geometry parameters (via
Di, pi), which are summarized in Table I. Furthermore, the
outage threshold ψ will depend on the power requirements
at a particular user, and would typically be greater than the
sensitivity of the harvesting circuit (i.e., ψ ≥ ψmin such
that ψ̂ = ψ

ξ ). Though the expressions in Theorem 1 can be
evaluated using numerical tools, this could be tedious due to
the presence of multiple integrals. To address this, we simplify
the analysis by approximating the LOS probability function
with a step function, and by further ignoring the small-scale
fading. This result in a much simpler expression for the energy
coverage probability.

Proposition 1: Let RB =
(
− ln(1−%L)

λπ

)0.5

, ã =

λπR2
Be
−λπR2

B , and Wik = akDiPtCL

ψ̂
for i ∈ {1, 2, 3, 4},

k ∈ {0, 1, · · · , N}. The energy coverage probability can be
further approximated as

Pcon (λ, ψ) ≈ ã
N∑
k=0

(−1)
k

(
N

k

)∫ 1(
rg
RB

)2
ζL
k

(
t

1
2RB

)
×

4∏
i=1

e
− 2πλ

αL
piW

2
αL
ik Γ

(
− 2
αL

;Wik

(
t

1
2RB

)−αL
,WikR

−αL
B

)
dt, (8)

where Γ (h;u, v) =
∫ v
u
xh−1e−xdx is the generalized incom-

plete Gamma function.
Proof: See Appendix B.

We note that Proposition 1 is relatively efficient to compute
as it involves integration over a finite interval only, and
because Gamma function can be readily evaluated using most
numerical tools. We also observe that the coverage is mainly
influenced by the LOS BSs. For example, a key term in (8)
is λπR2

B which represents the average number of LOS BSs
seen by the user. We now provide analytical expressions for
the average harvested power at a connected user.

Proposition 2: The average harvested power for the con-
nected case P̄con (λ, ψ) for an energy outage threshold ψ ∈
[ψmin,∞) is given by P̄con (λ, ψ) =

∫∞
ψ
Pcon (λ, x) dx +

ψPcon (λ, ψ) .
Proof: The proof follows by noting that γ has nonnegative

support, and by treating Pcon (·, ·) as the CCDF of γ.
Here, Pcon (·, ·) follows from Theorem 1 or Proposition 1.
P̄con (λ, ψ) can be interpreted as the useful average harvested
power. This is because only those incident signals that meet the
activation threshold can be harvested. To get further insights,
we now analyze the limiting case ψ → 0 of Proposition 2. This
provides an upper bound on the average harvested power.

Corollary 1: The average harvested power for the limiting
case lim

ψ→0
P̄con (λ, ψ) = P̄con (λ, 0) = ξ

(
%LP̄L + %NP̄N

)
,

where

P̄L =

∞∫
rg

(
PtMtMrCLr

−αL + ΨL (r) + ΨN (ρL(r))
)
τ̃L (r) dr,

(9)

P̄N =

∞∫
rg

(
PtMtMrCNr

−αN + ΨL (ρN(r)) + ΨN (r)
)
τ̃N (r) dr,

(10)

ΨL (x) = κCL

4∑
i=1

Dipi

∫ ∞
x

t−(αL−1)p(t)dt, (11)

ΨN (x) = κCN

4∑
i=1

Dipi

(
x−(αN−2)

αN − 2
−
∫ ∞
x

t−(αN−1)p(t)dt
)
,

(12)

and κ = 2πλPt.
Proof: See Appendix C.

P̄L and P̄N denote the average harvested power given the
user is tagged to an LOS or an NLOS BS. Note that the
average harvested power is independent of the small-scale
fading parameters. To reveal further insights, we provide
the following approximation for the average harvested power
(which is validated in Section III-B).

Corollary 2: The average harvested power for the limiting
case, P̄con (λ, 0), can be further approximated as

P̄con (λ, 0)
(a)
≈ κMtMrCL

RB∫
rg

e−λπt
2

tαL−1
dt

=
Γ
(
1− 0.5αL;λπr2

g ,∞
)
− Γ

(
1− 0.5αL;λπR2

B ,∞
)

2 (κMtMrCL)−1 (λπ)1−0.5αL
. (13)

Proof: The proof follows by using the simplifying as-
sumptions of Appendix B, and by further ignoring the contri-
butions from all but the serving LOS BS.
This approximation suggests that the average harvested power
is mainly determined by the LOS serving link. Note that
P̄con(·, ·) grows linearly with the transmit power Pt since
κ = 2πλPt. Depending on the path loss exponent αL, it may
exhibit a sublinear to approximately-linear scaling with the
BS density λ. When αL is large, the denominator tαL−1 in
(a) overshadows the impact of λ on the numerator e−πλt

2

.
Therefore, the scaling behavior is essentially determined by



κ = 2πλPt, which is linear in λ. This suggests that increasing
the transmit power or BS density has almost the same effect
on the average harvested power when αL is large (e.g., when
αL = 3). Also note that (13) is relatively simple as it is
expressed in terms of the incomplete Gamma function only.

Nonconnected case: Having discussed the connected case,
we now consider the case where a user operates in the noncon-
nected mode. The following theorem characterizes the energy
coverage probability at a typical user for the nonconnected
case.

Theorem 2: In a mmWave network of density λ, the energy
coverage probability for the nonconnected case Pncon (λ, ψ)
given an outage threshold ψ can be evaluated using

Pncon (λ, ψ) ≈
N∑
k=0

(−1)
k

(
N

k

)
e−Υk,1(λ,ψ̂,rg)−Υk,2(λ,ψ̂,rg),

(14)

where Υk,1 (·) and Υk,2 (·) are given by (6) and (7) respec-
tively, ψ̂ = max

(
ψ
ξ , ψmin

)
, and rg is the minimum link

distance.
Proof: The proof follows from that of Theorem 1 and is

therefore omitted.
Similar to the connected case, the energy coverage probability
for this case is also a function of the propagation conditions,
the network density and the antenna geometry parameters.
We note that the expressions in Theorem 2 are efficient to
compute, obviating the need for further simplification. We now
consider the average harvested power for the nonconnected
case.

Proposition 3: The average harvested power for the non-
connected case P̄ncon (λ, ψ) for an energy outage threshold
ψ ∈ [ψmin,∞) is given by P̄ncon (λ, ψ) =

∫∞
ψ
Pncon (λ, x) dx+

ψPncon (λ, ψ) .

Proof: The proof follows from that of Proposition 2 and
is therefore omitted.

Corollary 3: The average harvested power for the limiting
case lim

ψ→0
P̄ncon (λ, ψ) = P̄ncon (λ, 0) is given by

P̄ncon (λ, 0) = ξ (ΨL (rg) + ΨN (rg)) , (15)

where ΨL (·) and ΨN (·) are given in (11) and (12) respec-
tively.

Proof: The proof follows from that of Corollary 1 and is
therefore omitted.
The average harvested power for the nonconnected case scales
linearly with the transmit power and the BS density. This
follows from (15) as both ΨL (·) and ΨN (·) relate linearly
with the transmit power and density via the term κ = 2πλPt.
This also suggests that increasing the transmit power or density
has the same effect on the average harvested power. Note that
this is different from the connected case where the path loss
exponent affects how average harvested power scales with the
BS density.

B. Results and Design Insights

We first verify the accuracy of the analytical expressions
presented in Section III-A using simulations. We then study
how key design parameters such as the antenna beam pattern
affects the energy coverage probability in purely connected
(ε → 1) and nonconnected (ε → 0) networks. We also
compare the performance of mmWave energy harvesting with
lower frequency solutions. After developing key insights for
purely connected/nonconnected scenarios, we provide energy
coverage results for the general case (0 < ε < 1), where the
network serves both types of users.

Validation: In the following plots, the users are assumed
to be equipped with a single omnidirectional receive antenna,
the mmWave carrier frequency is set to 28 GHz, the blockage
constant β = 0.0071 [21], and ψ > ψmin. In other words, for
a given ψ, the plots are valid for any ψmin < ψ. Note that for
the less relevant case when ψ < ψmin, the energy coverage
probability flattens out, and is specified by Pcon (λ, ψmin) or
Pncon (λ, ψmin). Without loss of generality, we set the rectifier
efficiency ξ = 1 since this parameter does not impact the
shape of the results, i.e., setting ξ < 1 results in shifting all the
curves to the left by the same amount. We assume the rectifier
efficiency to be the same when comparing mmWave and UHF.
Note that there are no standard values for ξ since prior work
has reported widely varying values [10], [26] depending on
the device technology, operating frequency, etc. For example,
[26], [27] suggest that a mmWave energy harvesting circuit
may have better overall performance than its lower frequency
counterparts. Fig. 2a and 2b plot the energy coverage proba-
bility for the connected case using different model parameters.
The analytical results based on Theorem 1 are obtained using
N = 5 terms in the approximation. The simulation results are
generated using Monte Carlo simulations with 10,000 runs.
Similarly, using Theorem 2, Fig. 4a and 4b plot the energy
coverage probability for the nonconnected case. There is a
nice agreement between analytical and simulation results.

Connected case (ε→ 1): In Fig. 2a, we plot the energy cov-
erage probability with three distinct transmit beam patterns for
a given network density. We observe that the energy harvest-
ing performance improves with narrower beams, i.e., smaller
beamwidths and larger directivity gains. As the beamwidth
decreases, relatively fewer beams from the neighboring BSs
would be incident on a typical user. But the beams that do
reach, will have larger directivity gains, resulting in an overall
performance improvement. This is possible due to the use of
potentially large antenna arrays at the mmWave BSs. Note
that this performance boost will possibly be limited due to
the ensuing EIRP (equivalent isotropically radiated power) or
other safety regulations on future mmWave systems [28].

For the purpose of comparison, we also plot the energy
coverage probability for UHF energy harvesting under realistic
assumptions. Given the current state-of-the-art [2], [29], the
UHF BSs are assumed to have 8 transmit antennas each.
Further, they are assumed to employ maximal ratio transmit
beamforming to serve a connected user. For the channel model,



we assume an IID Rayleigh fading environment and a path
loss exponent of 3.6 (no blockage is considered). The network
density is set to 25 nodes/km2, which corresponds to an
average distance of about 113 m to the closest UHF BS.
The carrier frequency is set to 2.1 GHz and the transmission
bandwidth is 100 MHz. As can be seen from Fig. 2a, mmWave
energy harvesting could provide considerable performance
gain over its lower frequency counterpart. Moreover, the
anticipated dense deployments of mmWave networks would
further widen this gap. This effect is illustrated in Fig. 2b,
where we plot the energy coverage probability for different
mmWave network densities for a given transmit antenna beam
pattern. In Fig. 3a, we use Proposition 2 to plot the average
harvested power at a typical mmWave user against the transmit
array size. The plots based on Corollary 1 are also included.
We note that the limiting case ψ → 0 treated in Corollary 1
closely approximates the average harvested power obtained
using Proposition 2. This figure also confirms our earlier
intuition that mmWave energy harvesting can benefit from
(i) potentially large antenna arrays at the BSs, and (ii) high
BS density, which would be the key ingredients of future
mmWave cellular systems. Fig. 3b shows how the path loss
exponent impacts the scaling behavior of the average harvested
power with BS density, corroborating the discussion following
Corollary 2.

Nonconnected case (ε → 0): We now analyze the energy
harvesting performance when the harvesting devices operate
in the nonconnected mode. In a stark contrast to the connected
case, Fig. 4a shows that for the nonconnected case, mmWave
energy harvesting could benefit from using wider beams. This
is because BS connectivity (alignment) is critical for the
nonconnected case. With wider beams, it is more likely that a
mmWave BS gets aligned with a receiver, albeit at the expense
of the beamforming gain. Furthermore, a comparison with
UHF energy harvesting shows that mmWave energy harvesting
gives a comparable performance to its UHF counterpart.
Similarly, Fig. 4b plots the energy coverage probability for
different deployment densities. We note that performance can
be substantially improved with denser deployments, which
would be a key feature of future mmWave cellular systems.

General case (0 < ε < 1): Having presented the energy
coverage trends for the two extreme network scenarios, we
now consider the general case where the user population
consists of both connected and nonconnected users. We expect
this to be the likely scenario for reasons explained in the
network model (Section II-A). As described in Section II-C, an
antenna beam pattern can be characterized by the half power
beamwidth and directivity gain for both the main and side
lobes. By tuning these parameters, the beam pattern can be par-
ticularized to a given antenna array. As an example, we assume
that uniform linear arrays (ULA) are deployed at the mmWave
BSs. We use the following relations to approximate the main
and side lobe beamwidths as a function of the transmit array
size: θt ≈ 360

π arcsin
(

0.892
Nt

)
and θ̄t ≈ 720

π

∣∣∣arcsin
(

2
Nt

)∣∣∣ [30].
We use Mt = 10V log (Nt) and mt = V (Mt − 12) for the

directivity gains of the main and side lobes [30]. To ensure
the power normalization, the constant V is chosen to satisfy
θt
2πMt + θ̄t

2πmt = 1.
In Fig. 5, we plot the overall energy coverage probability

Λ(ε, ψ, λ) against transmit array size Nt for different values
of parameter ε. We find that the optimal transmit array size
depends on the statistics of the user population. For example,
when ε is large, it is desirable to use large antenna arrays at
the BSs. When ε is small, it is favorable to use small antenna
arrays to improve the overall energy coverage probability.
Depending on the network load (or the user population mix)
captured via ε, the energy coverage probability can be sub-
stantially improved by intelligent antenna switching schemes.
Since the parameter ε would typically vary over large time-
scales, such schemes would be practically feasible.

Having presented the energy coverage trends for mmWave
energy harvesting, we now consider the scenario where the
user attempts to extract both energy and information from the
incident mmWave signals.

IV. MMWAVE SIMULTANEOUS INFORMATION AND POWER
TRANSFER

In this section, we consider the case where the energy
harvesting device also attempts to decode information from the
received signals, in what is known as simultaneous wireless
information and power transfer (SWIPT) [4], [11]. We now
assume that the energy harvesting receiver is also equipped
with an information decoding circuit. We focus on the case
where a given user is already aligned with its serving BS,
i.e., ε = 1 for this section. Further, we consider a power
splitting receiver architecture [11] where the received signal
is split using factors

√
ν and

√
1− ν, ν ∈ [0, 1]. A fraction√

1− ν of received signal is available for energy harvesting,
while the remaining signal is used for information decoding.
With this notation, the signal-to-interference-plus-noise ratio
(SINR) at a typical receiver can be expressed as SINR =

νS
ν(I+σ2)+σ2

c
, where S = PtMtMrH0g0(r0) denotes the useful

signal power and I =
∑
`>0,`∈Φ(λ)\B(rg) Ptδ`H`g`(r`) gives

the aggregate interference power from the neighboring BSs. σ2

is the thermal noise power before splitting, while σ2
c captures

possible signal degradation after power splitting. Similarly,
γ = (1− ν) ξ

(
S + I + σ2

)
1{S+I+σ2>ψmin} denotes the re-

ceived signal power fed to the energy harvester. Note that
a user will be in outage if the harvested energy and/or the
SINR fall below their respective thresholds. We now define
Psuc(λ, T, ψ, ν) = Pr [SINR > T, γ > ψ] to be the probability
of successful reception given the SINR outage threshold T ,
the energy outage threshold ψ, and the power splitting ratio
ν. Extending the results from the previous sections, we now
provide an analytical expression to characterize the system
performance with SWIPT.

A. Stochastic Geometry Analysis

Before stating the main result of this section, we first
provide a lemma for the SINR coverage probability at a
mmWave receiver [21].
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Fig. 2. (a) Energy coverage probability Λ(ε, ψ, λ) for different transmit antenna beam patterns parameterized by [Mt,mt, θt, θ̄t] in a purely connected
network (ε = 1, λ = 100/km2). The performance improves with narrower beams for this case. Pt = 13 dB, W = 100 MHz, αL = 2, αN = 4, NL = 2,
NN = 3, and rg = 1 m. There is a nice agreement between Monte Carlo simulation (sim) results and the analytical (anlt) results obtained using Theorem
1 with N = 5 terms. (b) Energy coverage probability Λ(1, ψ, λ) for different network densities for connected users. Transmit beam pattern is fixed to
[10,−10, 30◦, 330◦]. Other parameters are the same as given in Fig. 2a. Also included are the results based on the analytical approximation (approx) in
Proposition 1. The approximation becomes tighter as the density increases.

Lemma 4 (Modified from [21, Theorem 1]): In a mmWave
network of density λ, the SINR coverage probability
Pcov (λ, T, ν) at a SWIPT device, given an SINR outage
threshold T and a power splitting ratio ν, is given by

Pcov (λ, T, ν) = Pcov,L (λ, T, ν) %L + Pcov,N (λ, T, ν) %N, (16)

where %L = 1− %N is defined in Lemma 2, and Pcov,L(·) gives
the conditional SINR coverage probability given the device is
served by a LOS BS, and can be approximated as

Pcov,L (λ, T, ν) ≈
NL∑
k=1

(−1)k+1

(
NL

k

) ∞∫
rg

e
−
kcLr

αLT(σ2+ν−1σ2
c)

PCLMtMr

× e−∆k,1(T,r)−∆k,2(T,r)τ̃L (r) dr. (17)

Similarly, the conditional SINR coverage probability for the
NLOS case Pcov,N(·) is given by

Pcov,N (λ, T, ν) ≈
NN∑
k=1

(−1)k+1

(
NN

k

) ∞∫
rg

e
−
kcNr

αNT(σ2+ν−1σ2
c)

PCNMtMr

× e−∆k,3(T,r)−∆k,4(T,r)τ̃N (r) dr, (18)

where

∆k,1 (T, x) = 2πλ

4∑
i=1

pi

∞∫
x

(
1−

[
1 +

cLkD̃iTx
αL

NLtαL

]−NL
)

× p(t)tdt, (19)

∆k,2 (T, x) = 2πλ

4∑
i=1

pi

∞∫
ρL(x)

(
1−

[
1 +

cLkD̃iCNTx
αL

NNCLtαN

]−NN
)

× (1− p(t)) tdt, (20)

∆k,3 (T, x) = 2πλ

4∑
i=1

pi

∞∫
ρN(x)

(
1−

[
1 +

cNkD̃iCLTx
αN

NLCNtαL

]−NL
)

× p(t)tdt, (21)

∆k,4 (T, x) = 2πλ

4∑
i=1

pi

∞∫
x

(
1−

[
1 +

cNkD̃iTx
αN

NNtαN

]−NN
)

× (1− p(t)) tdt, (22)

D̃i = Di
MtMr

for i ∈ {1, 2, 3, 4, 5}, cL = NL (NL!)
− 1
NL and

cN = NN (NN!)
− 1
NN .

The following theorem provides the main analytical result of
this section.

Theorem 3: In a mmWave network of density λ, the success
probability Psuc(λ, T, ψ, ν) given the SINR outage threshold
T , the energy outage threshold ψ, and the power splitting ratio
ν is given by

Psuc (λ, T, ψ, ν) ≈ Pcov (λ, T, ν) P̃con (λ, µ)

+ Pcon (λ, ϕ)
[
1− P̃con (λ, µ)

]
, (23)

where the SINR coverage probability Pcov(·) can be evaluated
using the expressions in Lemma 4, while the energy coverage
probability Pcon(·) follows from Theorem 1. We further define
P̃con(λ, µ) = P̃con,L(λ, µ)%L + P̃con,N(λ, µ)%N, where P̃con,L(·)
and P̃ncon,N(·) are specified by (4) and (5) respectively, by
setting ζL

k (·) = ζN
k (·) = 1. Moreover, µ and ϕ depend on

several parameters including the power splitting ratio ν, the
SINR outage threshold T , the energy outage threshold ψ, the
harvester activation threshold ψmin, the rectifier efficiency ξ,
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Fig. 3. (a) The average harvested power in a connected mmWave network for different number of BS antennas Nt and deployment densities λ. Results
based on Proposition 2 are obtained for ψ = −35 dBm. The analytical (anlt) results based on Corollary 1 (ψ → 0) are validated using Monte Carlo
simulations (sim); and closely approximate the average harvested energy obtained using Proposition 2. The transmit antenna beam patterns are calculated
using the approximations used for obtaining Fig. 5. Other simulation parameters are the same as used in Fig. 2a. For comparison, a plot for a UHF system
is also included. (b) Plots the average harvested power (Corollary 1) vs. BS density for Nt = 32. The plot validates the approximation in (13). Moreover, it
shows how the average power scales with the BS density for different path loss exponents αL. For illustration, also included are the solid lines corresponding
to the (hypothetical) case when average power scales linearly with density. The scaling tends to become linear as αL is increased.

and the noise parameters. Further, µ = ψ̂
(1−ν)(1+T ) − σ2 −

σ2
c

ν(1+ 1
T )
, ϕ = ψ̂

(1−ν) , and ψ̂ = max
(
ψ
ξ , ψmin

)
.

Proof: See Appendix D.
Note that P̃con(λ, µ) in (23) is the interference CCDF evaluated
at parameter µ. It plays a key role in determining the operating
mode of the system. Though the interference is harmful
for information decoding, it can be beneficial for energy
harvesting. When the interference is high, the SINR coverage
probability will typically limit the success probability. In the
other extreme, the energy coverage probability will play the
limiting role. Also note that the success probability can be
optimized over the design paramter ν, given other parameters.
Moreover, we can recover Theorem 1 and Lemma 4 from (23)
by letting ψ → 0 and T → 0, respectively.

Note that, in principle, the success probability at a connected
mmWave energy harvesting or SWIPT device can be further
improved by leveraging large antenna arrays at the receiver,
thanks to smaller wavelengths. Though our analytical model
allows the users to have receive antenna arrays, it implicitly
assumes the presence of ideal RF combining circuitry con-
sisting of power-hungry components such as phase shifters,
multiple RF chains, etc. When large antenna arrays are used at
the receiver, the power consumption due to additional antenna
circuitry may get prohibitively high, overshadowing the array
gains. As SWIPT typically targets low-power devices, we
present a simple low-power receiver architecture in the next
section. Note that the analytical results based on Theorem 3
can be interpreted as an upper bound on performance when
the receiver consists of suboptimal components (as is the case
in the following section).

B. Low-power Receiver Architecture

We now propose a novel architecture for a mmWave SWIPT
receiver with multi-antenna array, as depicted in Fig. 6. In
this architecture, we assume per-antenna power splitting with
parameter ν (as defined earlier). After power splitting, the
input signal at each antenna passes through a rectifier, followed
by a DC combiner that yields the harvested energy. For the
information path, after passing through power splitters, the
received signals are first combined in the RF domain using
a combining vector w. The resulting signal is then decoded
in the baseband. Because they require extremely small power,
the combining vector is assumed to be implemented using
switches [31], i.e., w = [w1, · · · ,wNr

]
∗ ∈ [0, 1]Nr . Note that

both the signals for information decoding and energy harvest-
ing are in the order of µW (Fig. 7). It is worth mentioning
that recent results have shown that mmWave energy harvesting
circuits can run with only a few µW [26], [27].

We now derive the combining gain expression for the
proposed SWIPT receiver architecture in Fig. 6. Let y be
the signal output at the RF combiner. If a BS applies a
beamforming vector f ∈ CNt×1 to send data symbol s(
where E

[
|s|2
]

= Pt
)

to a target user, it follows that

y =
√
ν [w∗Hdfs+ w∗rint + w∗n] , (24)

where Hd ∈ CNr×Nt is the channel between the user and
its serving BS, and rint is the received signal due to the
interfering BSs. Since the channel between each user and its
BS is assumed to be single-path, the channel matrix Hd =
h0

√
g0(r0)ar (φr)a

∗
t (φt), where at (φt) and ar (φr) are the

array response vectors at the BS and user, respectively. Recall
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Fig. 4. (a) Energy coverage probability Λ(ε, ψ, λ) for different transmit antenna beam patterns in a nonconnected network (ε = 0, λ = 100/km2). The
performance improves with wider beams for this case. Other simulation parameters are same as given in Fig. 2a. Monte Carlo simulation (sim) results validate
the analytical (anlt) results obtained using Theorem 2 with N = 5 terms. (b) Energy coverage probability Λ(0, ψ, λ) for different network densities for
nonconnected users. Transmit beam pattern is fixed to [10,−10, 30◦, 330◦]. Other parameters are same as given in Fig. 2a. Monte Carlo simulation (sim)
results validate the analytical (anlt) results obtained using Theorem 2 with N = 5 terms.
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Fig. 5. The overall energy coverage probability Λ(ε, ψ, λ) for different values
of ε. Depending on the fraction of users operating in connected/nonconnnected
modes, the transmit array size (which controls the beamforming beamwidth
in this example) can be optimized to maximize the network-wide energy
coverage. This could translate into massive gains given that the number
of served devices would be potentially large. The users are assumed to be
equipped with a single omnidirectional receive antenna. The energy outage
threshold ψ is −70 dB for Φu,con and −85 dB for Φu,ncon. Pt = 13 dB,
λ = 200/km2. Channel parameters are the same as used in Fig. 2a.

that g0(r0) denotes the path gain from the serving BS, while
φr and φt respectively denote the channel angle-of-arrival and
angle-of-departure at the user and BS. If the channel is known
at the BS, and given the antenna model in Section II-C, the
BS will design the beamforming vector f to maximize the
beamforming gain, i.e., to have |a∗t (φt) f |2 = Nt. Denoting
ᾱ = h0

√
g0(r0)a∗t (φt) f , the received signal in (24) can be
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Fig. 6. Low power receiver architecture for SWIPT.

written as

y =
√
ν (ᾱw∗ar (φr) s+ w∗rint + w∗n) . (25)

The post-combining SINR can then be expressed as

SINR =
νPt |α|2Nt |w∗ar (φr)|2

I + νw∗wσ2
, (26)

where |w∗ar (φr)|2 represents the combining gain at the
receiver, and I denotes the aggregate interference power. The
SINR in (26) can be maximized if the receiver designs the
optimum combining vector, which can be implemented by ac-
tivating certain antennas on or off. This requires the receiver to
have global channel knowledge, which is often challenging in
practice. We relax this condition by assuming that the receiver
has the angle-of-arrival information for the serving BS only.
Ignoring the interference, we propose to design the combining
vector by maximizing the SNR =

Pt|ᾱ|2Nt|w∗ar(φφr )|
2

w∗wσ2 instead,



Algorithm 1 Greedy Switch Combining Design
Input Nr, φr

Initialization w = 0, w1 = 1
for i = 2, · · · , Nr do

if 1
i

∣∣∣∑i−1
n=1 wnekd(n−1) cos(φr) + ekd(i−1) cos(φr)

∣∣∣2 >

1
i−1

∣∣∣∑i−1
n=1 wnekd(n−1) cos(φr)

∣∣∣2 then
wi = 1

end if
end for

i.e., the receiver designs its combining vector w such that

w? = arg max
w∈ [0,1]Nr

|w∗ar (φr)|2

w∗w
. (27)

The optimal solution to (27) can be found by an exhaus-
tive search over all possible combinations of w. For large
receive antenna arrays, this could entail high computational
costs, which would further increase the power consumption.
Therefore, it is important to consider computationally efficient
approaches for designing the combining vector. As outlined in
Algorithm 1, we propose a greedy solution for designing w
by (step-wise) activating only those antennas that boost the re-
ceived SNR. With ŵ denoting the combining vector designed
using Algorithm 1, the combining gain for the switch-based

architecture can be defined as Mc =
|∑Nr

i=1 ŵiekd(i−1) cos(φr)|2
|ŵ|2

where k denotes the wavenumber and d is the antenna element
spacing. Despite its low-complexity, numerical simulations in
the next section reveal that our low-power greedy approach
could give a good combining gain, without losing substantial
performance compared to more advanced but power-hungry
solutions.

C. Results

Fig. 7 plots the overall success probability for a given
transmit antenna beam pattern. The users are equipped with
a single-antenna receiver, similar to the one in Fig. 6 with
Nr = 1. First, Fig. 7 shows that a reasonable success
probability can be obtained with mmWave SWIPT system for
typical mmWave propagation and system parameters. Further,
this plot illustrates that the power splitting ratio ν needs to be
optimized for a given SINR outage threshold to maximize the
overall success probability. Matching the intuition, the figure
shows that in the low SINR outage regime (when T is large), it
is desirable to divert more power to the information decoding
module, while a larger fraction of power needs to be portioned
for the energy harvesting system in the high SINR outage
regime (when T is small). This trend is consistent with prior
studies on SWIPT architectures [11].

We now evaluate the performance of the proposed low-
power receiver architecture for different number of receive
antennas. In Fig. 8, the success probability Psuc(λ, T, ψ, ν)
is plotted for a fixed transmit antenna beam pattern. For the
proposed architecture, the combining vector is obtained using
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Fig. 7. A 3D plot showing the interplay between the success probability,
the power splitting ratio ν, and the SINR outage threshold T for a given
energy outage threshold ψ and network density λ. As T gets large, the system
becomes SINR-limited, and the optimum value of ν increases, suggesting that
a larger fraction of received signal should be used for information extraction to
optimize the overall success probability. The transmit antenna beam pattern is
set to A15,−15,10◦,350◦ . Other parameters include ψ = −70 dB, σ2

c = −80
dB, λ = 200/km2, and Pt = 43 dBm.

Algorithm 1, and the curves are averaged over the angle-of-
arrival parameter. For comparison, we also plot the success
probability for (fully digital) maximal ratio combining (MRC)
receivers. We observe that the success probability improves
with the receive antenna array size. Further, when the SINR
outage threshold T is small, the success probability is mainly
limited by the energy outage. This also explains why the
success probability converges to a limit (determined by the
energy outage threshold) as T decreases. Moreover, there are
diminishing returns as the number of antennas are increased.
A comparison with power-hungry MRC receivers shows that
the proposed switch-based architecture performs reasonably
well. This is particularly desirable for future mmWave SWIPT
devices.

V. CONCLUSIONS

In this paper, we analyzed the energy harvesting perfor-
mance at low-power devices powered by a mmWave cel-
lular network. Using a stochastic geometry framework, we
derived analytical expressions characterizing the performance
of mmWave energy and information transfer in terms of
system, channel and network parameters. Simulations results
were used to validate the accuracy of the derived expressions.
Leveraging the analytical framework, we also provided useful
network and device level design insights. For the connected
case when the transmitter and receiver beams are aligned,
results show that the energy coverage improves with narrower
beams. In contrast, wider beams provide better energy cov-
erage when the receivers are not aligned with a particular
transmitter. This trade-off is evident in the more general
scenario having both types of receivers, where there typically
exists an optimal beamforming beamwidth that maximizes
the network-wide energy coverage. Moreover, we found that
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Fig. 8. The success probability for different number of receive antennas
Nr at the user given a fixed transmit beam pattern A15,−15,10◦,350◦ at the
BSs. Proposed low-power architecture achieves good performance compared
to superior receiver architectures. Other parameters include ν = 0.5, ψ =
−70 dB, σ2

c = −80 dB, λ = 200/km2, and Pt = 43 dBm.

several device-related parameters can significantly impact the
system performance. For example, the performance can be
substantially improved by optimizing over the power splitting
ratio and by leveraging large antenna arrays. To allow using
multiple antennas at the mmWave receivers while keeping the
power consumption low, we proposed a low-power receiver
architecture for mmWave energy and information transfer
using antenna switches. Simulation results show that the
proposed architecture can provide good gains for the overall
mmWave energy harvesting performance. Simulation results
also reveal that mmWave cellular networks could potentially
provide better energy coverage than lower frequency solutions.

APPENDIX A: THEOREM 1

The following inequality approximates the tail probability
of a normalized Gamma distribution.

Lemma 5 (From [32]): For a normalized Gamma random
variable u with parameter N , the probability Pr (u < x) can
be tightly upper-bounded by Pr (u < x) < (1− e−ax)

N ,
where the constant x > 0 and a = N(N !)−

1
N .

We write Pcon (λ, ψ) = Pr
[
Y > max

(
ψ
ξ , ψmin

)]
=

Pr
[
S + I > ψ̂

]
, where S = PtMtMrH0g0(r0) is the re-

ceived signal power from the serving BS, and I =∑
`>0,`∈Φ(λ)\B(rg) Ptδ`H`g`(r`) is the received signal power

from all the other BSs. We can derive the result in Theorem
1 by finding the conditional distributions Pcon,L (λ, ψ) and
Pcon,N (λ, ψ). To proceed, first consider the conditional dis-
tribution Pcon,L (λ, ψ) = Pr (S + I > ψ|L) given the receiver
is aligned with a LOS BS (which is indicated by the subscript
L in the following notation).

Pcon,L (λ, ψ) = ES,I|L
[
Pr

(
u <

S + I

ψ

)]
(a)
≈ ES,I|L

[(
1− e−a

S+I
ψ

)N]

= ES,I|L

[
N∑
k=0

(−1)k
(
N

k

)
e
−ak S+I

ψ

]

=

N∑
k=0

(−1)k
(
N

k

)
ES,I|L

[
e−â(S+I)

]
(28)

where we have included a dummy random variable
u∼Γ

(
N, 1

N

)
in the first equation. Note that u converges

to 1 as N → ∞. Therefore, this substitution is in fact an
approximation when N is finite. The introduction of u allows
leveraging the inequality in Lemma 5, which leads to (a),
where the constant a = N(N !)−

1
N . The last equation follows

from the Binomial series expansion of (b), and by further
substituting â = ak

ψ . To evaluate the expectation in (28),
consider

ES,I|L
[
e−â(S+I)

]
= ES|L

[
e−âSEI|S,L

[
e−âI

]]
. (29)

The inner expectation in (29) can be simplified by applying
the thinning theorem for a PPP [25]. Note that Φ can be
independently thinned into two PPPs ΦL and ΦN, where the
former comprises the LOS BSs whereas the latter consists
of NLOS BSs. Therefore, we can interpret ΦL and ΦN as
two independent tiers of BSs. The user will be tagged with
either the closest BS in ΦL or in ΦN, whichever maximizes the
average received power at the user. We can further thin ΦL into
four independent PPPs {ΦiL}4i=1, where each resulting PPP ΦiL
contains BSs that correspond to a nonzero directivity gain Di
with pi being the thinning probability. This follows because the
beam orientations are assumed to be independent across links.
Thus, a link can have a directivity gain of Di with probability
pi independently of other links. We let the received power due
to the transmission from the BSs in ΦiL be IiL. Likewise, ΦN

can be split into {ΦiN}4i=1 with the corresponding received
powers denoted by {IiN}4i=1. Since the resulting PPPs are
independent, (29) can be simplified as

EI|S,L
[
e−âI

]
=

4∏
i=1

EI|S,L
[
e−âI

i
L

] 4∏
j=1

EI|S,L
[
e−âI

j
N

]
(30)

where

EI|S,L
[
e−âI

i
L

]
(a)
= EΦiL|ro

 ∏
`∈ΦiL\B(ro)

EH`
[
e−âPtH`DiCLr`

−αL
]

(b)
= EΦiL|ro

 ∏
`∈ΦiL\B(ro)

(
1

1 + âPtDiCLr`−αLNL
−1

)NL


= e
−2πλpi

∞∫
ro

(
1−
(

1

1+âPtDiCLt
−αLNL

−1

)NL
)
p(t)tdt

(31)

where (a) follows by conditioning on the length ro of the
serving LOS link, and by further noting that small-scale fading
is independent across links. Here, B (ro) denotes a circular
disc of radius ro centered at the typical user. (b) is obtained
by using the moment generating function of a normalized
Gamma random variable, while the last equation follows by
invoking the probability generating functional [25] of the PPP
ΦiL. Substituting (31) in the first (left) product term of (30)



yields (6). Similarly, EI|S,L
[
e−âI

i
N

]
is given by

EΦiL,H|ro

e−â ∑
`∈Φi

N
\B(ρL(ro))

PtH`DiCNr`
−αN


= e
−2πλpi

∞∫
ρL(ro)

(
1−
(

1

1+âPtDiCNx
−αNNN

−1

)NN
)

(1−p(t))tdt
. (32)

By substituting (32) in the second (right) product term of (30)
yields (7). Using the expressions in (30)–(32) in (29), and by
further evaluating the expectation of the resulting expression
with respect to S, we obtain

∞∫
rg

(
1

1 + âPtMtMrCLr−αLNL
−1

)NL

× e−Υk,1(λ,ψ,r)−Υk,2(λ,ψ,ρL(r))τ̃L(r)dr (33)

where we have again used definition of the moment generating
function of a normalized Gamma distribution. Υk,1 (·) and
Υk,2 (·) are given in (6) and (7) respectively, rg denotes
the minimum link distance, while the distance distribution
is provided in Lemma 3. Using (28) and (29), we can thus
retrieve the expression in (4). We can similarly derive the
conditional distribution Pcon,N (λ, ψ) = Pr (S + I > ψ|N) in
(5) for the NLOS case.

APPENDIX B: PROPOSITION 1
To simplify the analysis, we approximate the LOS probabil-

ity function p(r) by a step function p(r) = 1{0<r<RB}, i.e.,
the BSs within a LOS ball of radius RB are marked LOS with
probability 1, while the rest as NLOS [21]. The radius RB is
chosen such that the LOS association probability %L remains
the same (as in our original model). Using a step function
for p(r), it follows from Lemma 2 that %L = 1 − e−λπR

2
B

and RB =
(

ln(1−%L)
λπ

)0.5

. Moreover, we neglect small scale
fading for all the links except for the serving BS. We also
ignore the NLOS signals in the analysis. This effectively
leads to a scenario where the user receives signals from the
BSs within the LOS ball only. Intuitively, this would be
the likely scenario in sufficiently dense networks. We only
list the key steps since the rest of the proof follows from
Appendix A. Ignoring the NLOS signals, we approximate (30)

as EI|S,L
[
e−âI

]
≈

4∏
i=1

EI|S,L
[
e−âI

i
L

]
where

EI|S,L
[
e−âI

i
L

]
= EΦiL|ro

 ∏
`∈ΦiL∩[B(RB)\B(ro)]

e−âPtDiCLr`
−αL


(a)
= e

−2πλpi

RB∫
ro

(
1−e−âPtDiCLt

−αL
)
tdt

(b)
= e

− 2πλpi
αL

∫WikR−αL
B

Wikr
−αL
o

1−e−v

v
1+ 2

αL

dv

(c)
= e

−
2πλpiW

2
αL
ik

αL
Γ
(
−2
αL

;Wikr
−αL
o ,WikR

−αL
B

)

× e−πλpi(R
2
B−r

2
o). (34)

Here, (a) follows by ignoring the small scale fading and invok-
ing the probability generating functional [25] of PPP, (b) by a
change of variables, and (c) by the definition of the generalized

incomplete Gamma function. The result in Proposition 1 is
obtained by assuming p5 = 0, and by further noting that the
distance distribution simplifies to τL(x) = 2πλx

%L
e−λπx

2

due to
the LOS ball approximation.

APPENDIX C: COROLLARY 1
We derive Corollary 1 by finding the conditional means

P̄L = E [S + I|L] and P̄N = E [S + I|N]. P̄L can be evaluated
by conditioning on the link distance r0 from the serving BS
as follows.

E [S + I|r0,L] = E [S|r0,L] +

4∑
i=1

E
[
IiL + IiN|r0,L

]
(a)
= PtMtMrCLr0

−αL +

4∑
i=1

2πλPtpiDiCL

∞∫
r0

t−(αL−1)p(t)dt

+

4∑
i=1

2πλPtpiDiCN

 (ρL(r0))−(αN−2)

αN − 2
−

∞∫
ρL(r0)

t−(αN−1)p(t)dt


= PtMtMrCLr0

−αL + ΨL (r0) + ΨN (ρL(r0)) (35)

where (a) is obtained by averaging over the fading distribution,
followed by invoking Campbell’s theorem [25], while (35)
follows from the definitions of ΨL and ΨN provided in (11)
and (12) respectively. Taking expectation of E [S + I|r0,L]
with respect to ro using Lemma 3 yields (9). The expression
for P̄N is (10) can be derived using similar steps.

APPENDIX D: THEOREM 3
From (2), it follows that the harvested energy γ =

ξY 1{Y >ψmin}. Let Y = (1 − ν)
(
S + I + σ2

)
, where S =

PtMtMrH0g0(r0) and I =
∑
`>0,`∈Φ(λ)\B(rg) Ptδ`H`g`(r`)

respectively denote the contributions from the serving
and the interfering BSs. To find Psuc (λ, T, ψ, ν) =
Pr [SINR > T, γ > ψ], consider

Pr

[
νS

ν(I + σ2) + σ2
c

> T, (1− ν)
(
S + I + σ2) > ψ̂

]
(a)
= EI

[
Pr

[
S > T

(
I + σ2 +

σ2
c

ν

)
, S >

ψ̂

(1− ν)
− I − σ2

]]
(b)
= EI

[
Pr

[
S > T

(
I + σ2 +

σ2
c

ν

)] ∣∣∣∣I > µ

]
Pr [I > µ]

+ EI

[
Pr

[
S >

ψ̂

(1− ν)
− I − σ2

] ∣∣∣∣I ≤ µ
]

Pr [I ≤ µ]

(c)
≈ EI

[
Pr

[
S > T

(
I + σ2 +

σ2
c

ν

)]]
Pr [I > µ]

+ EI

[
Pr

[
S >

ψ̂

(1− ν)
− I − σ2

]]
Pr [I ≤ µ]

= Pcov(λ, T, ν)P̃con(λ, µ) + Pcon(λ, ϕ)
[
1− P̃con(λ, µ)

]
(36)

where the expectation in (a) is with respect to the interference
I , (b) is obtained by further conditioning on I to be greater (or
smaller) than a parameter µ which follows from the inequality
T
(
I + σ2 +

σ2
c

ν

)
> ψ̂

(1−ν) − I − σ
2. The approximation (or

effectively an upperbound) in (c) results from dropping the
conditions I > µ or I ≤ µ while calculating the expectation.



Finally, the SINR coverage probability Pcov(λ, T, ν) follows
from Lemma 4, and the energy coverage probability Pcon(λ, ϕ)
from Theorem 1. P̃con(λ, µ) is the interference CCDF evalu-
ated at µ.
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