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Abstract—This paper considers a low-complexity Gaussian
Message Passing Iterative Detection (GMPID) algorithm for
massive Multiuser Multiple-Input Multiple-Output (MU-MIMO)
system, in which a base station with M antennas serves K
Gaussian sources simultaneously. Both K and M are very large
numbers, and we consider the cases that K < M . The GMPID
is a low-complexity message passing algorithm based on a fully
connected loopy graph, which is well understood to be not
convergent in some cases. As it is hard to analyse the GMPID
directly, the large-scale property of the massive MU-MIMO is
used to simplify the analysis. Firstly, we prove that the variances
of the GMPID definitely converge to the mean square error of
Minimum Mean Square Error (MMSE) detection. Secondly, we
propose two sufficient conditions that the means of the GMPID
converge to those of the MMSE detection. However, the means of
GMPID may not converge when K/M ≥ (

√
2− 1)2. Therefore,

a new convergent GMPID called SA-GMPID (scale-and-add
GMPID) , which converges to the MMSE detection in mean and
variance for any K < M and has a faster convergence speed than
the GMPID, but has no higher complexity than the GMPID, is
proposed. Finally, numerical results are provided to verify the
validity and accuracy of the theoretical results.

Index Terms—Convergence analysis, Gaussian message pass-
ing, Gaussian belief propagation, graph-based detection, loopy
factor graph, low-complexity MIMO detection.

I. INTRODUCTION

Recent research investigations [1]–[3] have shown that Mul-
tiuser Multiple-Input and Multiple-Output (MU-MIMO) will
play a critical role in the future wireless systems. MU-MIMO
has become a key technology for wireless communication stan-
dards like IEEE 802.11n, IEEE 802.11ac, WiMAX and Long
Term Evolution. More recently, the massive MU-MIMO tech-
nology, in which the Base Station (BS) has a very large number
of antennas (e.g., hundreds or even more), has attracted more
and more attention [1]–[9]. In particular, massive MU-MIMO
has been shown to be able to bring significant improvement
both in throughput and energy efficiency, and thus meet the
growing demands for higher throughput and quality-of-service
of the next-generation communication systems [4]–[6].
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The costs of introducing massive MIMO include more
physical space at BS, higher complexity, and higher energy
consumption for signal processing at the transmitters and
receivers [2]. Low-complexity uplink signal detection for
massive MU-MIMO is hence desirable [2]. In the case of linear
detection of Gaussian sources in noisy channels, it is well
known that Minimum Mean Square Error (MMSE) detection
is optimal. However, its computational complexity is high due
to the need to perform large matrix inversion [10]. To avoid
the matrix inversion, some classical iterative algorithms like
Jacobi algorithm, Richardson algorithm, Neumann Series and
Gauss-Seidel algorithm may be applied [11]–[16]. Another
promising MU-MIMO detection is a graph-based detection
called message passing algorithm (MPA) [17]–[21]. It is also
linked to the canonical problem of solving systems of linear
equations [20], [24], which is encountered in many computer
science and engineering problems such as signal processing,
linear programming, ranking in social networks, support vector
machines, etc. [18]–[23]. There are two types of MPAs. The
first is the Gaussian Belief Propagation (GaBP) algorithm
based on a graph that consists of variable nodes [24]–[28]. The
second is the Gaussian Message Passing Iterative Detection
(GMPID) algorithm based on a pairwise graph that consists
of variable nodes and sum nodes [29]–[35]. Both of them are
efficient distributed algorithms for Gaussian graphical models.
In particular, GMPID has also been extensively studied for
equalization in the inter-symbol interference channel [29], and
decoding of modern channel codes, such as turbo codes and
Low Density Parity Check (LDPC) codes [30].

It has been proved that if the factor graph has a tree
structure, the means and variances of the MPA converge to
the true marginal means and approximate marginal variances
respectively [18], [19]. However, if the graph has cycles, the
MPA may fail to converge. To the best of our knowledge,
most previous works of the MPA focus on the convergence
of the GaBP algorithm. Three sufficient conditions for the
convergence of GaBP in loopy graphs are known: diagonal-
dominance [25], [26], convex decomposition [24] and walk-
summability [27]. Recently, a necessary and sufficient variance
convergence condition of GaBP is given in [28]. For the
GMPID based on the pairwise graph, a sufficient condition
of the mean convergence is given in [31] and it is shown
that 1) the covariance matrices definitely converge, 2) if
they converge, the means of GMPID coincide with the true
marginal means. However, in this GMPID, posterior density
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matrices of the sum nodes need to be calculated [31], which
introduces the matrix inversion operation and leads to a much
higher computational complexity during the message updating.
In general, the GMPID algorithm has lower computational
complexity and better Mean Square Error (MSE) performance
than the GaBP algorithm. Actually, the MU-MIMO system
can be regarded as a randomly-spread CDMA channel [32]
by treating the antennas as different time chips. Montanari
[33] has proved that GMPID converges to the optimal MMSE
solution for any arbitrarily loaded randomly-spread CDMA
system. However, the proof works only for CDMA MIMO
system with binary channels. To the best of our knowledge,
most previous works focus on the convergence of the MPA
based on the graphs that consist of only variable nodes (like
GaBP). On the other hand, the convergence of MPA based on
pairwise graphs that consist of variable nodes and sum nodes
(like GMPID) is far from solved.

In this paper, we analyse the convergence of GMPID and
propose a new low-complexity fast-convergence multi-user
detector for massive MU-MIMO system with K users and
M antennas. Let β = K/M and β < 1. The contributions of
this paper are summarized as follows:
1) We prove that the variances of GMPID definitely converge

to the MSE of MMSE detection, which gives a simple
alternative way to estimate the MSE of the MMSE
detector.

2) Two sufficient conditions, which show that the means of
GMPID converge to those of the MMSE detector for {β :
0 < β < (

√
2− 1)2}, are derived.

3) A new fast-convergence detector called SA-GMPID, which
converges to the MMSE detection in mean and variance
and has a faster convergence speed than the GMPID for
any {β : 0 < β < 1}, is proposed.

This paper is organized as follows. In Section II, the
MU-MIMO model and MMSE detector are introduced. The
GMPID is elaborated in Section III. Section IV presents the
proposed fast-convergence detector SA-GMPID. Numerical
results are shown in Section V, and we end this paper with
conclusions in Section VI.

II. SYSTEM MODEL AND MMSE DETECTOR

In this section, the massive MU-MIMO system model and
some preliminaries about the MMSE detection algorithm for
the massive MU-MIMO systems are introduced.

A. System Model

Fig. 1 shows an uplink MU-MIMO system with K users
and one BS with M antennas [2]–[5]. For massive MIMO,
the K and M are in hundreds or thousands, e.g., M = 600
and K = 100. The M × 1 received signal vector y at the BS
can be represented by

y = Hx + n, (1)

where H denotes the M ×K channel matrix, n is an M × 1
independent Additive White Gaussian Noise (AWGN) vector,
i.e., n ∼NM (0, σ2

n), and x is the message vector sent by
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Fig. 1. K ×M MU-MIMO system model: K autonomous single-antenna

terminals communicate with an array of M antennas of the base station.

K users. Each component of x is Gaussian distributed, i.e.,
xk∼N (0, σ2

xk
) for k∈{1, 2, · · · ,K}. We assume that the chan-

nels only suffer from small-scale fading without large scale
fading, in which case H takes the form of a Rayleigh fading
channel matrix whose entries are independently and identically
distributed (i.i.d.) Gaussian random variables with zero means
and unit variances, i.e., normal distributions NM×K(0, 1).
The task of multi-user detection at the BS is to estimate the
transmitted signal vector x from the received signal vector y.
In this paper, we assume that the BS knows the H, and we
only consider the real MU-MIMO system because the complex
case can be easily extended from the real case [15].

B. Gaussian Source Assumption

In the real communication systems, discrete modulated
signals are generally used. However, according to the Shan-
non theory [46], [47], the capacity of Gaussian channel is
achieved by a Gaussian input. Therefore, the independent
Gaussian sources assumption is widely used in the design
of communication networks [40]–[45]. It means that, in real
systems, to achieve a high transmission rate, the distributions
of the discrete modulated signals should be close to Gaussian
distributions, especially for high rate communication systems
or high order modulation communication systems. For exam-
ple, the capacity-achieving superposition coded modulation
(SCM) [48], [49], the quantization and mapping method,
Gallager mapping [46], [47], etc. are widely used to generate
Gaussian-like transmit signals. As long as the discrete sources
adopt some of these Gaussian-like modulation and coding
schemes, the theorems and results in this paper are expected
to be applicable. In the simulation results, we will show
some capacity-achieving Bit Error Ratio (BER) performances
for practical discrete communication systems in which the
superposition coded modulation is used to produce Gaussian-
like transmit signals.

C. Existing Algorithms

In this section, we first review the existing MMSE detection
and classical iterative algorithms that are usually used in MU-
MIMO systems. Then, a modification will be made on these
algorithms. Specifically, the output estimation will be modified
by taking the source distributions into consideration under the
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Fig. 2. Message update rules for the equality constraint, sum constraint and matrix multiplication constraint.

message passing rules. The results obtained will be used for
the convergence analysis of the GMPID.

Some preliminaries about the message update rules [18]–
[21], [29] are given in Fig. 2, which include the mean vector
m, the covariance matrix V and W=V−1. If the messages are
scalars, then the expressions can be replaced by scalar version.

1) MMSE Detector: It is well known that MMSE detection
is optimal under MSE measure when the sources are Gaussian
distributed [37]. The MMSE detector [10] is given by

x̃k =
hTkV

−1
ñk

y
hTkV

−1
ñk

hk
= xk + n′k, (2)

where hi denotes the ith column of channel matrix H, and
Vñk

= σ2
nIn +

∑
i 6=k

σ2
xi
hih

T
i denotes the covariance matrix of

interference-noise vector
∑
i 6=k

hixi + n. The equivalent Gaus-

sian noise satisfies n′k ∼ N (0, (hTkV
−1
ñk

hk)−1). According
to the first equality constraint update rule in Fig. 2, each
user combines the estimated distribution N (x̃k, σ

2
n′k

) with
the source distribution N (0, σ2

xk
). We then get the following

modified MMSE detector with the Matrix Inversion Lemma.

x̂ = σ−2n Vx̂H
T y, (3)

where
Vx̂ = (σ−2n HTH + V−1x )−1

= Vx −VxH
T (σ2

nIM + HVxH
T )−1HVx.

(4)

The Vx̂ contains the estimation error of each source. Specif-
ically, the kth diagonal element vkk of the covariance matrix
Vx̂ denotes the estimation error of the source xk.

2) Classical Iterative Algorithms: We express the iterative
algorithms [36] in a simple form

x(t) = Bx(t− 1) + c, (5)

where neither the iteration matrix B nor the vector c depends
upon the iteration number t. Some iterative detections like
Jacobi iterative detector and Richardson iterative algorithm
are special cases of the classical iterative algorithms (5).

Proposition 1 [11], [12]: Assuming that the matrix I − B
is invertible, the iteration (5) converges to the exact solution
x∗ = (I−B)−1c for any initial guess x (0) if I−B is strictly
(or irreducibly) diagonally dominant or ρ (B) < 1, where
ρ(B) is the spectral radius of B.

This convergence proposition of the classical iterative algo-
rithms (5) is very important for the convergence analysis of
the GMPID algorithm in following sections.

D. Performance Analysis of the MMSE Detector

Firstly, we introduce some results in Random Matrix Theory
that will be used in this subsection. When β = K/M is fixed
and K →∞, we can have the following expression [37].

1

K
tr
{

(IK + ηHTH)
−1}→ 1− F(ηM, β)

4ηβM
(6)

where η is a constant and

F(x, z)=

(√
x
(
1 +
√
z
)2

+ 1−
√
x
(
1−
√
z
)2

+ 1

)2

. (7)

From (4), the MSE of the MMSE detector is calculated by

MSE =
1

K
tr(Vx̂) =

1

K
tr{(σ−2n HTH + V−1x )−1}. (8)

Assuming that Vx = σ2
xIK and with (6), (7) and (8), we can

get the following proposition.

Proposition 2: For the Massive MU-MIMO system where

β=K/M is fixed, K→∞, and the transmitted symbols of

the sources are i.i.d. with NK(0, σ2
x), the MSE of the optimal

MMSE detector is described by

MSE → σ2
x−

σ2
x

4snrβM
F(snrM, β)→



σ2
n

M−K , β < 1

K−M
K σ2

x , β > 1√
σ2
xσ

2
n

K , β = 1.
(9)

where snr = σ2
x

/
σ2
n is the signal-to-noise ratio.

We can obtain some interesting results from Proposition
2. Firstly, when K < M , the MSE of MMSE detection is
determined by the variance of the Gaussian noise and the
value of M − K, but it is independent of the variances of
the sources. Secondly, when M < K, the MSE of MMSE
detection is determined by the variances of the sources with a
scale parameter K−M

K , but it is independent of the Gaussian
noise. This means that the system keeps the same MSE even
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if we decrease the variance of the noise at the BS. Finally,
when M = K, the MSE of MMSE detection depends on the
variance of the Gaussian noise, the variances of the sources
and the number of users K. From (9), we can see that the
performance of the massive MU-MIMO system is poor when
β ≥ 1. Hence, we only consider the case β < 1 in this paper.

Remark 1: Although the result in (9) is derived for the
asymptotic MSE analysis of MU-MIMO MMSE detection, it
also comes close to the actual MSE of the MU-MIMO system
with small values of K and M [37].

E. Complexity of MMSE Detector

From (3) and (4), we can see that the complexity of MMSE
detection is O(min{M3+KM2,K3+MK2}), where O(K3)
(or O(M3)) arises from the matrix inverse calculation and
O(MK2) (or O(KM2)) arises from the matrix multiplication.
The complexity of MMSE detection is very high when the
number of users and the number of antennas are very large.
Therefore, the research on low-complexity detectors without
performance loss for the massive MU-MIMO systems is
important. In the next section, we consider a low-complexity
Gaussian Message Passing Iterative Detector for the mas-
sive MU-MIMO systems, which can converge to the optimal
MMSE detector.

III. GAUSSIAN MESSAGE PASSING ITERATIVE DETECTOR

The GMPID for the MU-MIMO systems is based on a
pairwise factor graph, as shown in Fig. 3. Similar to the
Belief Propagation (BP) decoding process of LDPC code [30],
the GMPID calculates the output message, called extrinsic
information, on each edge by employing the messages on the
other edges that are connected with the same node. There
are two main differences between the GMPID and the BP
decoding process of LDPC code, one of which is that the
messages passed on each edge of GMPID are the means and
variances, while the BP decoding process passes the likelihood
values. The second difference is the different message update
functions at the sum nodes and variable nodes. Fig. 4 presents
the message updating diagram of the GMPID. The message
updating rules are given as follows.

A. Message Update at Sum Nodes of GMPID

Each sum node can be seen as a multiple-access process
and its message is updated by

esm→k(t) = ym −
∑
i6=k

hmie
v
i→m(t− 1) ,

vsm→k(t) =
∑
i 6=k

h2miv
v
i→m(t− 1) + σ2

n ,
(10)

where i, k ∈ {1, 2, · · · ,K},m ∈ {1, 2, · · · ,M}, ym is the
mth element of the received vector y, hmi is the element
of channel matrix H in mth row and ith column, and σ2

n is
the variance of the Gaussian noise. In addition, evk→m(t) and
vvk→m(t) denote the mean and variance passing from the kth
variable node to mth sum node respectively, and esm→k(t) and
vsm→k(t) denote the mean and variance passing from mth sum
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Fig. 3. Gaussian message passing iterative Detection for MU-MIMO systems.

node to kth variable node respectively. The initial value vv(0)
equals to +∞ and ev(0) equals to 0, where vv(t) and ev(t)
are vectors containing the elements vvk→m(t) and evk→m(t) for
all k ∈ {1, 2, · · · ,K} and m ∈ {1, 2, · · · ,M} respectively.

B. Message Update at Variable Nodes of GMPID

Each variable node can be seen as a broadcast process and
its message update is denoted by

vvk→m(t) = (
∑
i

h2ikv
s −1

i→k (t) + σ−2xk
)
−1
,

evk→m(t) = vvk→m(t)
∑
i

hikv
s −1

i→k (t)esi→k(t) .
(11)

where k ∈ {1, 2, · · · ,K}, i,m ∈ {1, 2, · · · ,M}, and σ2
xk

denotes the variance of the source xk.

C. Decision and Output of GMPID

When the MSE of the GMPID meets the requirement or the
number of iterations reaches the limit, we output the estimation
x̂k and its MSE σ2

x̂k
of xk as follows. σ2

x̂k
= (
∑
m
h2mkv

s −1

m→k(t) + σ−2xk
)−1,

x̂k = σ2
x̂k

∑
m
hmkv

s −1

m→k(t)esm→k(t) ,
(12)

where k ∈ {1, 2, · · · ,K}. It should be pointed out that the
decision is made based on the full information coming from
all the sum nodes.

Remark 2: Compared with the original GMPID, there is
a minor modification in the variable node updating rule in
(11). The modification is that the full information, not just
the extrinsic information, is passed from the variable nodes to
the sum nodes. This does not lead to significant performance
loss, because the difference between these two messages is
negligible at the variable nodes when M is very large and
K < M . In fact, we can show that the variances of the
GMPID converge to those of the original GMPID, which
means that both algorithms have the same performance. Our
simulation results will also show that the modified GMPID and
the original GMPID have the same performance when used in
the massive MU-MIMO detection.
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The challenge of the original GMPID is that it is hard to
analyse its mean convergence directly because the structure
of the original GMPID algorithm is too complicated. Interest-
ingly, when using the message update (11) at the variable node,
the GMPID can be rewritten into a matrix form like the clas-
sical iterative algorithm. Thus, the convergence analysis of the
GMPID becomes feasible. Based on the above considerations,
in the rest of this paper, we do not distinguish the modified
GMPID with the original one and will call them GMPID. In
the next section, we will give the convergence analysis of the
variances and the means of GMPID respectively.

D. GMPID in Matrix Form

Let AM×N . ∗BM×N = [aijbij ]M×N , diag−1{AN×N} =

[a11, a22, · · · , aNN ]
T , 1M×N=[1]M×N and A

(k)
M×N=

[
akij
]
M×N .

Assume Esu(t) = [esm→i(t)]M×K , Vsu(t) = [vsm→i(t)]M×K ,
Eus(t) = [evi→m(t)]K×M and Vus(t) = [vvi→m(t)]K×M .

The message update at the sum nodes (10) is rewritten as[
Esu(t)
Vsu(t)

]
=

[
y− diag−1{1M×K · Ẽus(t− 1)}

σ2
n · 1M×1+diag−1{1M×K ·Ṽus(t−1)}

]
·11×K

−

[
−ẼTus(t− 1)

ṼT
us(t− 1)

]
,

(13)
where Ẽus(t) = Eus(t).∗HT and Ṽus(t) = Vus(t).∗H(2)T .
Let vx = [σ2

x1
, . . . , σ2

x1
]T , Wsu(t) = V

(−1)
su (t), Wus(t) =

V
(−1)
us (t) and Gus(t) = Wus(t). ∗ Eus(t). At the variable

nodes, the message update (11) is rewritten as

[
Wus(t)
Gus(t)

]
=

v
(−1)
x +diag−1

{
1K×M · W̃su(t)

}
diag−1

{
1K×M · G̃su(t)

}
·11×M ,

(14)
where W̃su(t) = H(2).∗Wsu(t) and G̃su(t) = H.∗Gsu(t) =
H.∗Wsu(t).∗Esu(t). Then, we can get Vus(t) by Vus(t) =

W
(−1)
us (t), and get Eus(t) by Eus(t) = Vus(t). ∗Gus(t).

Algorithm 1 GMPID Algorithm
1: Input: H, Vx, σ2

n, ε > 0, Nite and calculate H(2).

2: Initialization: t=−1, Eus(0)=[0]K×M , Vus(0)=[+∞]K×M .

3: Do
4: t= t+1, Ẽus(t)=Eus(t). ∗HT and Ṽus(t)=Vus(t). ∗H(2)T,

5: [
Esu(t)

Vsu(t)

]
=

[
y− diag−1{1M×K · Ẽus(t− 1)}

σ2
n ·1M×1+diag

−1{1M×K ·Ṽus(t− 1)}

]
·11×K

−

[
−ẼT

us(t− 1)

ṼT
us(t− 1)

]
,

6:
W̃su(t)=H(2).∗V(−1)

su (t), G̃su(t)=H.∗V(−1)
su (t).∗Esu(t),

7: [
Wus(t)

Gus(t)

]
=

 v
(−1)
x +diag−1{1K×M ·W̃su(t)}

diag−1{1K×M · G̃su(t)}

 · 11×M ,

8: Vus(t) = W
(−1)
us (t) and Eus(t) = Vus(t). ∗Gus(t).

9: While ( |Eus(t)−Eus(t− 1)| < ε or t ≤ Nite )

10:

σ2
x̂ =

(
diag−1{1K×M · W̃su(t)}

)(−1)

,

x̂ = σ2
x̂ . ∗ diag−1{1K×M · G̃su(t)}.

11: Output: x̂ and σ2
x̂ .

When|Eus(t) − Eus(t− 1)| < ε, where ε is a sufficiently
small positive precision parameter, or when the evaluation has
passed a sufficient number of iterations, we output x̂ as the
estimation of x and output the MSE σ2

x̂ between x and x̂ by

 σ2
x̂ =

(
diag−1

{
1K×M · W̃su(t)

})(−1)
,

x̂ = σ2
x̂ . ∗ diag−1

{
1K×M · G̃su(t)

}
.

(15)
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E. Complexity of GMPID
This section will show that the matrix GMPID form further

reduces the complexity and also permits a parallel iterative
detection algorithm. As the variance calculations are inde-
pendent of the received signals y and the means, it can be
pre-computed before the iteration. In each iteration, it needs
about 4KM multiplications and 4KM additions. Therefore,
the complexity is as low as O(KMNite), where Nite is the
number of iterations. The distributed scalar operation at each
node of the GMPID avoids the huge matrix calculation, which
results in a lower complexity. Algorithm 1 shows the detailed
process of the GMPID.

F. Variance Convergence of GMPID
We show the variance convergence of GMPID by the

following proposition.

Proposition 3: For the Massive MU-MIMO system where

β =K/M is fixed, K→∞, and the transmitted symbols of

the sources are i.i.d. with NK(0, σ2
x), the variances of GMPID

converge to

σ2
x̂ ≈ σ̂2 ≈



σ2
n

M−K+snr−1 , β < 1,

K−M
K σ2

x , β > 1,√
σ2
xσ

2
n

K , β = 1,

(16)

where snr = σ2
x

/
σ2
n is the signal-to-noise ratio.

Proof: From (10) and (11), we have

vvk→m(t)=

∑
i

h2ik(
∑
j 6=k

h2ijv
v
j→i(t−1)+σ2

n )
−1
+ σ−2xk

−1. (17)

As the initial value vv(0) is equal to +∞, it is easy to see
that vv(t) > 0 for any t > 0 during the iteration. Hence,
vv(t) has a lower bound 0. From (17), we can see that vv(t)
is a monotonically non-increasing function with respect to
vv(t− 1). Besides, we can get vv(1) < vv(0) = +∞ for the
first iteration. All the inequations in this paper are component-
wise inequalities. Therefore, it can be shown that vv(t) ≤
vv(t − 1) with vv(1) ≤ vv(0) by the monotonicity of the
iteration function. This means that {vv(t)} is a monotonically
decreasing sequence but is lower bounded. Thus, sequence
{vv(t)} converges to a certain value, i.e., lim

t→∞
vv(t) = v∗.

To simplify the calculation, we assume Vx = σ2
xIK , i.e.,

σ2
xk

= σ2
x for k ∈ {1, · · · ,K}. With the symmetry of all the

elements in v∗, we can get v∗k→m = σ̂2 for k ∈ {1, · · · ,K}
and m ∈ {1, · · · ,M}. Thus, from (17), the convergence point
σ̂2 can be solved by

σ̂2 =

∑
i

h2ik(σ̂2
∑
j 6=k

h2ij + σ2
n )
−1

+ σ−2x

−1. (18)

As the channel parameters h2ik and h2ij are independent with
each other, the above expression can be rewritten as

σ−2x
∑
j 6=k

h2ij σ̂
4+(σ2

nσ
−2
x +
∑
i

h2ik −
∑
j 6=k

h2ij )σ̂2−σ2
n = 0. (19)

When M is large, taking an expectation on (19) with respect
to the channel parameters h2ik and h2ij , we get

Kσ−2x σ̂4 + (σ2
nσ
−2
x +M −K)σ̂2 − σ2

n = 0. (20)

Then σ̂2 is the positive solution of (20), i.e.,

σ̂2=

√
(σ2
nσ
−2
x +M−K)

2
+4Kσ−2x σ2

n−(σ2
nσ
−2
x +M−K)

2Kσ−2x
.

(21)
With (12) and(21), Proposition 3 is proved.

As snr−1 is an infinitesimal compared with K and M and
thus can be ignored, we can see that (16) has the same MSE
performance as the MMSE detection given in (9). Thus, we
obtain the following theorem.

Theorem 1: For the Massive MU-MIMO system where β =
K/M is fixed, K → ∞, and the transmitted symbols of the
sources are i.i.d. with NK(0, σ2

x), the variances of GMPID
converge to the exact MSE of the MMSE detector.

Remark 3: Actually, the variance convergence analysis of
GMPID is the same as that of the original GMPID. It is easy
to find that the original GMPID has the same results on the
variance convergence. Moreover, it should be pointed out that
the above analysis provides an alternative way to estimate the
MSE performance of the MMSE detector.

Similar to {vv(t)}, sequence {vs(t)} also converges to a
certain value, i.e., vsm→k → σ̃2 for k ∈ {1, · · · ,K} and m ∈
{1, · · · ,M}. From (10), we can get

σ̃2 ≈ Kσ̂2 + σ2
n. (22)

Let γ = σ̂2
/
σ̃2, from (16) and (22), we get

γ =
1

K + σ2
n

/
σ̂2
≈
(
M + snr−1

)−1
, β < 1. (23)

G. Mean Convergence of GMPID

Unlike the variances, the means of GMPID do not always
converge. Two sufficient conditions for the mean convergence
of GMPID are given by the following theorem.

Theorem 2: For the Massive MU-MIMO system where β =
K/M is fixed, K → ∞, and the transmitted symbols of the
sources are i.i.d. with NK(0, σ2

x), the GMPID converges to
the MMSE estimation if any of the following conditions holds.

1. The matrix IK + γ
(
HTH−DHTH

)
is strictly or irre-

ducibly diagonally dominant,
2. ρ

(
γ(HTH−DHTH)

)
< 1,

where γ = σ̂2
/
σ̃2.

Proof: From (10) and (11), we have

evk→m(t)=vvk→m(t)
∑
i

hikv
s −1

i→k (t)(yi−
∑
j 6=k

hije
v
j→i(t−1)).

(24)
From the variance convergence analyses (22) and (16), the
vsm→k and vvk→m converge to σ̃2 and σ̂2 respectively. There-
fore, (24) can be rewritten as

evk→m(t) =
σ̂2

σ̃2

∑
i

hik( yi −
∑
j 6=k

hije
v
j→i(t− 1) ) . (25)
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Then, we can get evk→m(t) = evk(t), k ∈ {1, · · · ,K} and
m ∈ {1, · · · ,M}. Thus, the above equation is rewritten as

ev(t) = γHT y− γ
(
HTH−DHTH

)
ev(t− 1), (26)

where γ = σ̂2
/
σ̃2, ev(t) = [ev1(t) ev2(t) · · · evK(t)]

T ,
DHTH = diag{d11, d22, · · · , dKK} is a diagonal matrix and
dkk = hTk hk, k ∈ {1, 2, · · · ,K} is the diagonal element of
the matrix HTH. When M is large, from the Law of Large
Numbers, the matrix DHTH can be approximated by MIK .
Assuming that the sequence {ev(t)} converges to e∗, then
from (26) we have

e∗ =
(
(γ−1 −M)IK + HTH

)−1
HT y. (27)

When β = K/M is fixed and K →∞, we have γ−1−M →
snr−1 from (16) and (23). With Vx = σ2

xIK and β < 1, it is
easy to see that it converges to the same value as (3), i.e.,

e∗ =
(
snr−1IK + HTH

)−1
HT y, (28)

which means that the GMPID converges to the MMSE
estimation if it converges. Let c = γHT y and B =
γ
(
HTH−DHTH

)
, then (26) is a classical iterative algorithm

(5). Thus, we can get Theorem 2 with Proposition 1.
As γ → 1

M+snr−1 , K,M → ∞ and β < 1, from Random
Matrix Theory, we have

ρ(γ(HTH−DHTH))→ β + 2
√
β, (29)

for a finite snr. Then, from the second condition of Theorem
2, we have the following corollary.

Corollary 1: For the Massive MU-MIMO system where β =
K/M is fixed, K → ∞, and the transmitted symbols of the
sources are i.i.d. with NK(0, σ2

x), the GMPID converges to
the MMSE detection if β < (

√
2− 1)2.

Let 4e(t) = e∗−ev(t) be the mean deviation vector. From
(26), we can get

∆e(t) = γ
(
HTH−DHTH

)
∆e(t− 1). (30)

From (30), we can see that the means converge to the
fixing point with an exponential speed of the spectral radius
ρ
(
γ(HTH−DHTH)

)
, i.e., the smaller spectral radius is, the

faster convergence speed it will have. Therefore, both the
convergence condition and the convergence speed of GMPID
can be improved by minimizing the spectral radius of the
GMPID, which motivates us to modify the GMPID to get a
better convergence condition and a better convergence speed.

IV. A NEW FAST-CONVERGENCE DETECTOR SA-GMPID

As shown in the convergence analysis in Section III, the
GMPID does not always converge to the optimal MMSE
detection. The main reason is that the spectral radius of
GMPID does not achieve the minimum value. Therefore,
we propose a new scale-and-add GMPID (SA-GMPID). The
SA-GMPID is achieved by modifying the mean updates of
GMPID with linear operators, that is i) scaling the received
y and the channel matrix H with a relaxation parameter w,
i.e., H′ =

√
wH and y′ =

√
wy, where h′mk =

√
whmk

is an element of matrix H′, and ii) adding a new term

(w−1)evk→m(t−1) for the mean message update at each variable
node. However, all the variance updates of SA-GMPID are
kept the same, because we have proved in Theorem 1 that
the variances converge to the exact MSE of the optimal
MMSE detection. By doing so, we can optimize the relaxation
parameter w to minimize the spectral radius of SA-GMPID. As
a result, the SA-GMPID will always converge to the optimal
MMSE detection and have a faster convergence speed (see
Theorem 3 and Corollary 2). In addition, the SA-GMPID has
the same complexity as the previous GMPID. In the following,
we present the SA-GMPID.

A. Message Update at Sum Nodes of SA-GMPID

The message update at the sum nodes (10) is changed to
esm→k(t) = y′m −

∑
i 6=k

h′mie
v
i→m(t− 1),

vsm→k(t) =
∑
i 6=k

h2miv
v
i→m(t− 1) + σ2

n ,
(31)

for i, k ∈ {1, 2, · · · ,K} and m ∈ {1, 2, · · · ,M}.

B. Message Update at Variable Nodes of SA-GMPID

The message update of the variable nodes (11) is modified
as
vvk→m(t) = (

∑
i

h2ikv
s −1

i→k (t) + σ−2xk
)
−1
,

evk→m(t)=vvk→m(t)
∑
i

h′ikv
s −1

i→k(t)e
s
i→k(t)−(w−1)evk→m(t−1),

(32)
for k ∈ {1, 2, · · · ,K} and i,m ∈ {1, 2, · · · ,M}.

C. Decision and Output of SA-GMPID

After several iterations between (32) and (31), output
σ2
x̂k

= (
∑
m
h2mkv

s −1

m→k(t) + σ−2xk
)−1,

x̂k=
∑
m

(
σ2
x̂k
h′mkv

s −1

m→k(t)esm→k(t)− w−1
M evk→m(t−1)

)
,

(33)
where k∈{1, 2, · · · ,K} and m∈{1, 2, · · · ,M}. The detailed
process of SA-GMPID is given in Algorithm 2.

D. Variance Convergence of SA-GMPID

As the variance updates of SA-GMPID are the same as
those of the GMPID, the variances of SA-GMPID converge
to the same values as those of the GMPID, i.e., vvk→m(t) and
vsm→k(t) converge to σ̂2 and σ̃2 respectively. When β < 1,
we have

γ = σ̂2
/
σ̃2 =

1

K + σ2
n

/
σ̂2
≈
(
M + snr−1

)−1
. (34)

E. Mean Convergence of SA-GMPID

Now, we discuss the mean convergence of SA-GMPID.
From (32) and (31), we have

evk→m(t)=vvk→m(t)
∑
i

h′ikv
s−1

i→k(t)(yi
′−
∑
j 6=k

h′ije
v
j→i(t−1))

−(w − 1)evk→m(t− 1).
(35)
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Algorithm 2 SA-GMPID Algorithm
1: Input: H, Vx, σ2

n, ε > 0, Nite, γ, calculate w, H(2), H′, y′.

2: Initialization: t=0, Eus(0)=[0]K×M , Vus(0) = [+∞]K×M .

3: Do
4: t= t+1, Ẽus(t)=Eus(t). ∗H′T, Ṽus(t)=Vus(t).∗H(2)T ,
5: [

Esu(t)

Vsu(t)

]
=

[
y′ − diag−1{1M×K · Ẽus(t− 1)}

σ2
n ·1M×1+diag

−1{1M×K ·Ṽus(t−1)}

]
·11×K

−

[
−ẼT

us(t− 1)

ṼT
us(t− 1)

]
,

6:
W̃su(t)=H(2).∗V(−1)

su (t), G̃su(t)=H′.∗V(−1)
su (t).∗Esu(t),

7: [
Wus(t)

Gus(t)

]
=

v(−1)
x +diag−1{1K×M ·W̃su(t)}

diag−1{1K×M · G̃su(t)}

·11×M ,

8:
Vus(t)=W

(−1)
us (t),Eus(t)=Vus(t).∗Gus(t)−(w−1)Eus(t−1).

9: While ( |Eus(t)−Eus(t− 1)| > ε or t < Nite )

10:
σ2

x̂ =
(
diag−1{1K×M · W̃su(t)}

)(−1)

,

x̂ = σ2
x̂ . ∗ diag−1{1K×M · (G̃su(t)− w−1

M
ET

us(t− 1))}.

11: Output: x̂ and σ2
x̂ .

From Proposition 3, when t is large enough, (35) can be
rewritten to

evk→m(t)=γ
∑
i

h′ik(y′i−
∑
j 6=k

h′ije
v
j→i(t−1))−(w−1)evk→m(t−1).

(36)
Then, we can get evk→m(t) = evk(t), for k ∈ {1, · · · ,K}
and m ∈ {1, · · · ,M}. Thus, the matrix form of (36) can be
rewritten to

ev(t)=γH′T y′−
[
γ
(
H′TH′−DH′TH′

)
+(w−1)IK

]
ev(t−1).

(37)
Based on this analysis, we can have the following theorem.

Theorem 3: For the Massive MU-MIMO system where β =
K/M is fixed, K → ∞, and the transmitted symbols of the
sources are i.i.d. with NK(0, σ2

x), the SA-GMPID converges
to the MMSE detection if the relaxation parameter w satisfies
0 < w < 2/λAmax, where λAmax is the largest eigenvalue of
matrix A = γ

(
HTH−DHTH

)
+ IK .

Proof: From (37), we can see that SA-GMPID is an
equivalent classical iterative algorithm in (5). Thus, according
to Proposition 1, the SA-GMPID converges if

ρ
(
γ
(
H′TH′ −DH′TH′

)
+ (w − 1)IK

)
< 1, (38)

i.e., ρ (I− wA) < 1, and A = γ
(
HTH−DHTH

)
+ IK .

When K,M →∞, the smallest and largest eigenvalues λAmax
and λAmin of matrix A are given by [38]

λAmin=1 + γM((1−
√
β)2−1), λAmax=1 + γM((1+

√
β)2−1).

(39)

When β < 1, from (23), we have Mγ → 1. Then we
can get λAmax > λAmin > 0 from (39), which means that
A is strictly positive definite. Therefore, the condition (38)
can always be satisfied if the relaxation parameter w satisfies
0 < w < 2/λAmax. In addition, we can always find such a w
that satisfies 0 < w < 2/λAmax because λAmax > 0.

Next, we will show that the SA-GMPID converges to the
MMSE detection. From Proposition 1, we know that ev(t)
converges to

e∗ =
(
snr−1IK + HTH

)−1
HHy, (40)

which is the same as (27). Following the proof of Theorem 1,
it can be shown that the SA-GMPID converges to the MMSE
detection.

Now, we discuss the value of w. The relaxation parameter
w can be optimized by [15]

w = 2/(λAmin + λAmax). (41)

It minimizes the spectral radius of IK − wA and we get
ρmin(IK − wA) =

λA
max−λ

A
min

λA
max+λ

A
min

< 1 . From (39), we have
w = 1/(1 + γMβ), where β = K/M . When β < 1, from
(34), we get Mγ → 1. Thus, we can simplify (41) to

w = 1/(1 + β), ρmin(IK − wA) ≈ 2
√
β

1 + β
< 1. (42)

Therefore, the SA-GMPID converges to MMSE with a speed(
2
√
β

1+β

)t
, where t denotes the number of iterations. Comparing

with (29), we have the following corollary.
Corollary 2: For the Massive MU-MIMO system where β=

K/M is fixed, K→∞, and the transmitted symbols of the
sources are i.i.d. with NK(0, σ2

x), the SA-GMPID has a faster
convergence speed than the GMPID.

Remark 4: When K and M are finite, the smallest and
largest eigenvalues of the matrix A given by (39) are inac-
curate, which may impact the convergence and MSE perfor-
mance of the SA-GMPID. To improve the convergence speed
and the robustness of the algorithm, we can set the relaxation
parameter as w = 2/λ∗A, where λ∗A is an upper bound of
the eigenvalues of matrix A [39], which introduces a little bit
more calculations.

λmax ≤ λ∗A = min{ max
1≤i≤K

K∑
j=1

|aij |, max
1≤j≤K

K∑
i=1

|aij |}. (43)

Remark 5: The proof of Theorem 3 and the spectral radius
analysis show the detailed process of the SA-GMPID design.
The main reason that we propose the SA-GMPID is that its
spectral radius is minimized after the modification of GMPID.
As a result, the convergence prerequisite and convergence
speed of the SA-GMPID are significantly improved.

F. Relationship with the IF and GMP Algorithms

1) Inverse Filter: Inverse Filter (IF) [10] is also known as
interference nulling, decorrelator or zero-forcing receiver. It is
given by

x̃=(HTH)−1HT y = x + (HTH)−1HTn = x + n′, (44)
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TABLE I

COMPLEXITY COMPARISON OF THE DIFFERENT DETECTION ALGORITHMS FOR MU-MIMO SYSTEM

NONITERATIVE

DETECTION ALGORIHMS
IF & GMP MMSE

COMPLEXITY O(M2K +M3) O(min{MK2 +K3, KM2 +M3})

ITERATIVE

DETECTION ALGORIHMS

Jacobi & GaBP

& Richarson
GMPID & SA-GMPID

COMPLEXITY O(MK2 +K2Nite) O(MKNite)

where n′ ∼ N (0,Vn′) with Vn′ = (HTH)−1σ2
n. By com-

bining the estimated distribution N (x̃,Vn′) with N (0,Vx)
according to the first message update rule in Fig. 2, we get

x̂ = σ−2n Vx̂H
T y, (45)

where Vx̂ = (σ−2n HTH + V−1x )−1, which is the same as the
MMSE detection.

2) Gaussian Message Passing Algorithm: Gaussian Mes-
sage Passing (GMP) algorithm [17]–[21], [29] considers the
fourth message update rule for the matrix multiplication con-
straint in Fig. 2. Replacing matrix A with the channel matrix
H, we have {

Wx̃ = HTWin
y H,

Wx̃x̃ = HTWin
y min

y ,
(46)

where Win
y = σ−2n IM and min

y = y. Thus, we get a Gaussian
estimation x̃ and the estimation deviation matrix W−1

x̃ . By
combining the estimated N (x̃,W−1

x̃ ) with N (0,Vx), we get

x̂ = σ−2n Vx̂H
T y = σ−2n (σ−2n HTH + V−1x )−1HT y, (47)

where Vx̂ =(σ−2n HTH+V−1x )−1, which is the same as the
MMSE detection. Hence, we have the following proposition.

Proposition 4: If the distributions of the sources are known
and are combined with the outputs of IF and GMP detector, the
IF and GMP algorithms are equivalent to the MMSE algorithm
for the uplink MU-MIMO detection.

It means that the proposed GMPID also converges to the
modified IF and GMP algorithms under the message update
rule. It should be noted that, in general, the IF, MMSE detector
and GMP algorithm are not equivalent. Their equivalence here
is based on the condition that all the detectors are combined
with source distributions according to the message update
rules. For simplicity, we call all these three detections MMSE
detection in this paper.

G. Complexity Comparison of Different Detectors

Table I compares the computational complexity between the
GMPID and the other detection algorithms. The complexities
of GMP detector and IF are both O(M3 + KM2), where
O(M3) arises from the matrix inversion and O(KM2) arises
from calculation of HHH, i.e., matrix multiplication. The
complexity of the MMSE detector is O({K3 +MK2, M3 +

KM2}), which is given in Section II-E. Similarly, the com-
plexity in each iteration of the above classical iterative al-
gorithms is O(K2), and the matrix calculation A = IK +
snrHTH costs O(MK2) operations before the iteration. So
the total complexity of the classical iterative algorithm is
O(MK2 +K2Nite).

It should be pointed out that the computational complexities
of GMPID and SA-GMPID algorithms are almost the same,
i.e., O(MKNite) (see Section III. E). Besides, if the channel
is sparse, the complexity of SA-GMPID (or GMPID) can be
further reduced to O(NHNite), where NH is the number of
nonzero elements in channel matrix H. However, for the IF,
GMP, MMSE, Jacobi, GaBP and Richardson algorithms, their
complexities will not change with the sparsity of the channel
matrix, as the sparsity is destroyed after calculating HTH.

V. SIMULATION RESULTS

In this section, we present the numerical simulation re-
sults of the proposed detectors for MU-MIMO system with
Gaussian sources. We assume that the sources are i.i.d. with
NK(0, 1) and the entries of the channel matrix H are i.i.d.
with normal distribution NM×K(0, 1). In the following sim-

ulations, Nite denotes the number of iterations, SNR =
1

σ2
n

is the signal-to-noise ratio and MSE = 1
K ·E

[
‖x− x̂‖2

]
de-

notes the averaged mean squared error between the estimation
and the transmitted sources. All the simulations are repeated
with 500 random realizations.

In Fig. 5, we track the input and output MSE (or the
input and output message variances: σ2

in and σ2
out) during the

iteration process of the GMPID algorithm. In this paper, the
performance of the detectors is measured by the MSE instead
of the mutual information. Therefore, the “MSE Transfer
(MSET) chart” is used to analyse the system performance,
which is analogous to the EXIT chart [50]. In fact, the MSET
chart can be transformed into the EXIT chart based on the
relationship between the mutual information and MSE [50],
[51]. Fig. 5(a) and Fig. 5(c) are considered for the underloaded
100 × 600 MU-MIMO system with β = 1/6, and Fig. 5(b)
and Fig. 5(d) are considered for the overloaded 600 × 100
MU-MIMO system with β = 6. The SNR of the MSET
chart curves in Fig. 5(a) and Fig. 5(b) is 20 dB, and in Fig.
5(c) and Fig. 5(d), the SNRs of the MSET chart curves are



10

−80 −60 −40 −20 0 20 40
−80

−60

−40

−20

0

20

40

σ2
in
 (or σ2

out
)(dB)

σ2 ou
t (

or
 σ

2 in
)(

dB
)

(c)

−60 −50 −40 −30 −20 −10 0 10 20 30
−60

−50

−40

−30

−20

−10

0

10

20

30

σ2
in
 (or σ2

out
)(dB)

σ2 ou
t (

or
 σ

2 in
)(

dB
)

(a)

−47 −46.5 −46

−48

−46

−80 −60 −40 −20 0 20 40
−80

−60

−40

−20

0

20

40

σ2
in
 (or σ2

out
)(dB)

σ2 ou
t (

or
 σ

2 in
)(

dB
)

(d)

−80 −60 −40 −20 0 20 40
−80

−60

−40

−20

0

20

40

σ2
in
 (or σ2

out
)(dB)

σ2 ou
t (

or
 σ

2 in
)(

dB
)

(b)

−1 −0.5 0
−1

−0.5

0

K<M K>M

Fig. 5. MSET chart analysis of the GMPID. In sub-figure (a), K = 100, M = 600, β = 1/6 and SNR = 20(dB). In sub-figure (b), K = 600, M = 100,

β = 6 and SNR = 20(dB). In sub-figure (c), K = 100, M = 600, β = 1/6 and SNR = −20 : 20 : 40(dB). In sub-figure (d), K = 600, M = 100,

β = 6 and SNR = −20 : 20 : 40(dB).
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Fig. 6. Performance comparison between the matched filter, MMSE detection

and GMPID with 10 iterations; the performance estimates of the MMSE

detection and the proposed GMPID for the MU-MIMO system withK = 100,

M = 600 and β = 1/6.

−20 : 20 : 40 dB. Fig. 5(a) and Fig. 5(c) show the process that
the variance decreases with increasing number of iterations.
We can see that when K < M , the GMPID often converges
to a fix point with a low variance (MSE). The variance of the
converged point will be smaller with a higher SNR but it needs
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algorithms: Gaussian BP, Jacobi and Richardson algorithm. The simulations

are for 100× 300 MU-MIMO system with β = 1/3 and 1 ∼ 30 iterations.

more iterations to reach there (slower convergence speed).
From Fig. 5(b) and Fig. 5(d), we can see that when K > M ,
the GMPID converges to a fix point with a high variance
(MSE) which is close to the prior variance of the sources,
and the fix point moves slowly with increasing SNR. This is
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Fig. 8. Performance comparison between GMPID and SA-GMPID (proposed) for the MU-MIMO system. In sub-figures (a) and (b), K = 1000, M = 1500,

β = 2/3. In sub-figures (c) and (d), K = 10, M = 60, β = 1/6.

the reason why we only consider the case β < 1 in this paper.
However, in the case β > 1, it has a very fast convergence
speed (no more than 10 iterations in general). Besides, our
simulation results also show that the larger the difference of
K and M , the larger the gap of the transfer curves, i.e., the
GIMP converges faster. Fig. 6 presents the averaged MSE
performances and the performance estimates (see 16) of the
different detection algorithms for the MU-MIMO system with
K = 100, M = 600 and β = 1/6. The curve RT Estimation
is the MMSE detection performance estimate given by the
Random Matrix Theory, and the curve GMPID Estimation is
the GMPID performance estimate given by (16). It can be seen
that the performance of MF (Matched Filter) is poor, while the
other curves are almost completely overlapped. These verify
that 1) the proposed GMPID converges fast (only 10 iterations)
to the MMSE detection (Theorem 1), 2) the performance
estimates made by Random Matrix Theory and GMPID match
well to the simulation results (Proposition 1). These results
agree with the MSET chart analysis in Fig. 5.

Fig. 7 gives the averaged MSE performance and conver-
gence comparisons between the GMPID and the other iterative
MU-MIMO detection algorithms, namely Jacobi, Gaussian BP
and Richardson, where K = 100, M = 300 and β = 1/3.
We can see that the GMPID converges to the MMSE detec-
tion faster than the other three algorithms. Furthermore, the
GMPID is convergent even when the Jacobi algorithm and
Gaussian BP algorithm are divergent.

Fig. 8 gives the averaged MSE performance comparison
between the GMPID and SA-GMPID for the cases that β =

2/3, K = 1000, M = 1500 with 100 iterations (Fig. 8(a) and
Fig. 8(b)) and β = 1/6, K = 10, M = 60 with 20 iterations
(Fig. 8(c) and Fig. 8(d)) respectively. From Fig. 8(a), we can
see that GMPID diverges when β → 1. In contrast, Fig. 8(b)
shows that the SA-GMPID converges to the MMSE detection
with increasing number of iterations. This verifies our analysis
result in Theorem 2. Furthermore, Fig. 8(c) and Fig. 8(d) show
that 1) SA-GMPID converges to the MMSE detection faster
than GMPID (Corollary 2), 2) the proposed theoretical results
even work for MU-MIMO systems with a small number of
antennas and users (K = 10, M = 60).

Table II concludes the convergence comparison of the
different MU-MIMO detection algorithms, where “C” (or
“D”) denotes converging to (or diverging from) the MMSE
detection and “ + ” (or “− ”) denotes right limit (left limit).
It shows that 1) all the iterative algorithms are convergent
when β < (

√
2 − 1)2, 2) the Jacobi and GaBP algorithms

are divergent when β > (
√

2 − 1)2, 3) GMPID and SA-
GMPID are still convergent when β is close to (

√
2 − 1)2+

and 4) Richardson algorithm and SA-GMPID are convergent
even when β is close to 1.

Fig. 9 illustrates the computational complexity comparison
between the different detection algorithms with respect to the
MSE (determined by the SNR of the system) for 500× 3500
MU-MIMO system with β = 1/7. The relative error of
MSE of each iterative algorithm is less than 0.1. We can
see that the complexity of the SA-GMPID detector increases
with decreasing MSE, i.e., the lower MSE we need, the
higher complexity it costs. It also shows that 1) the MMSE
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TABLE II

CONVERGENCE COMPARISON BETWEEN SA-GMPID, GMPID, JACOBI,

GABP AND RICHARDSON ALGORITHMS. THE “C” AND “D” DENOTE

CONVERGING TO AND DIVERGING FROM THE MMSE DETECTION

RESPECTIVELY, AND “ + ” AND “− ” DENOTE THE RIGHT AND LEFT

LIMIT RESPECTIVELY.

Figure β
Jacobi

& GaBP
GMPID

Richardson &

SA-GMPID

Fig. 6 β < (
√
2− 1)2 C C C

Fig. 7 β → (
√
2− 1)2+ D C C

Fig. 8 β → 1− D D C

detector has a constant and the highest complexity, 2) the
classical iterative algorithms like GaBP, Jacobi and Richardson
algorithms always have much higher complexities than the
GMPID, 3) the SA-GMPID has a significant reduction of
system complexity compared with the GMPID. Therefore, the
proposed SA-GMPID has a good convergence performance
and much lower computational complexity. In addition, the
SA-GMPID can achieve more improvement in complexity and
performance with larger number of users or antennas.

To show that the proposed SA-GMPID also works for
the discrete modulated systems, Fig. 10 presents the BER
performances of the SA-GMPID and MMSE detection for the
practical 10 × 60 and 10 × 30 MU-MIMO communication
systems transmitting digital modulation waveforms. For the
10 × 30 MU-MIMO communication system with β = 1/3,
the original GMPID is divergent. In these two systems, each
user is encoded with a Turbo Hadamard channel code [52],
[53](3 component codes, Hadamard order: 5, spread length:
4), where the code rate is 0.01452 bits/symbol and the code
length is 2.82×105. A 10-bit superposition coded modulation
[48], [49] is employed for each user to produce Gaussian like
transmitting signals. Hence, the transmitting length of each
user is 2.82 × 104, the rate of each user is Ru = 0.1452
bits/symbol, and the system sum rate is 1.452 bits per channel

use. Eb/N0 is calculated by Eb/N0 =
Pu

2Ruσ2
n

, where Pu= 1

is the power of each user, and σ2
n is the variance of the

Gaussian noise. The Shannon limit of 10×60 MU-MIMO
system is Eb/N0=−16.37dB, and 10×30 MU-MIMO system is
Eb/N0=−13.88dB. The base station recovers the messages of
all users by iterative multi-user decoding between the detector
and separate user decoders. The detector and user decoders
exchange extrinsic soft information (means and variances)
of the transmitting signals with each other. It means that
the MMSE detector has to perform one detection in each
iteration, which increases the complexity of MMSE detector
to O(min{(MK2+K3)Nite, (KM2+M3)Nite}) that is Nite
times the original detection complexity. Fig. 10(a) shows that
for the 10 × 60 MU-MIMO system with the channel coding
at each user, it only needs 2 iterations for the proposed SA-
GMIPD to converge to the MMSE detection, and after 5
iterations the BER performance is 2.37dB away from the
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Fig. 9. Complexity comparison between the MMSE detector, Jacobi

algorithm, GaBP algorithm, Richardson algorithm, GMPID and SA-GMPID

for the MU-MIMO system that K = 500, M = 3500 and β = 1/7.

Shannon limit. Fig. 10(b) shows that for the 10×30 MU-
MIMO system with the channel coding at each user, it only
needs 5 iterations that the proposed SA-GMIPD converges
to the MMSE detection, and 5 iterations is good enough
to achieve a BER performance that is 2.9dB away from
the Shannon limit. This phenomenon is consistent with our
theoretic analysis which points out that the proposed SA-
GMIPD can always converge to the MMSE detection quickly,
even when β = 1/3 > (

√
2−1)2. It should be noted that we

do not consider the matching design between the detector and
the channel codes in this system. If the detector and channel
codes were globally optimized, the BER performance could be
further improved, but this is beyond the scope of this paper.

VI. CONCLUSION

GMPID is a low-complexity multi-user detection algorithm
in which the means and variances are transmitted between the
variable nodes and sum nodes. The convergence of GMPID
is analysed in this paper. It is proved that the variances
of GMPID converge to the MSE of MMSE detection. Two
sufficient conditions that the GMPID converges to the MMSE
detection are presented. As GMPID does not converge when
β≥ (

√
2−1)2, the SA-GMPID algorithm is proposed, which

is proved to converge to the MMSE detection for any β < 1
(underloaded system) with a faster convergence speed and has
no higher complexity as the GMPID. Numerical results are
provided to verify the theoretical results. Interestingly, our
simulations show that the proposed theorems even work for
MU-MIMO systems with a small number of antennas and
users (e.g., tens or less).

When β > 1 (overloaded system), it can be shown that
although the GMPID may converge to the MMSE detection
very quickly, the system performance may be very poor.
However, overloaded MU-MIMO will be the future trend of
wireless communication networks. Therefore, we will focus
on the case of β > 1 in our future work.
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in sub-figure (a), K = 10, M = 60 and β = 1/6, and in sub-figure (b), K = 10, M = 30 and β = 1/3. Each user is encoded by a Turbo Hadamard code

(3 component codes, Hadamard order: 5, spread length: 4) with code rate 0.01452 bits/symbol and code length 2.82 × 105, and then 10bits superposition

coded modulation is employed for the Turbo Hadamard code. Transmitting length of each user is 2.82 × 104. The rate of each user is 0.1452 bits/symbol,

and the system sum rate is 1.452 bits per channel use. The Shannon Eb/N0 limit of system (a) is -16.37dB, and system (b) is -13.88dB.
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